Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * handle transition of Linux booting another kernel
  3 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
 
 
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 
 
 
 18
 19#include <asm/pgtable.h>
 20#include <asm/tlbflush.h>
 21#include <asm/mmu_context.h>
 
 22#include <asm/debugreg.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24static int init_one_level2_page(struct kimage *image, pgd_t *pgd,
 25				unsigned long addr)
 26{
 27	pud_t *pud;
 28	pmd_t *pmd;
 29	struct page *page;
 30	int result = -ENOMEM;
 31
 32	addr &= PMD_MASK;
 33	pgd += pgd_index(addr);
 34	if (!pgd_present(*pgd)) {
 35		page = kimage_alloc_control_pages(image, 0);
 36		if (!page)
 37			goto out;
 38		pud = (pud_t *)page_address(page);
 39		clear_page(pud);
 40		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
 41	}
 42	pud = pud_offset(pgd, addr);
 43	if (!pud_present(*pud)) {
 44		page = kimage_alloc_control_pages(image, 0);
 45		if (!page)
 46			goto out;
 47		pmd = (pmd_t *)page_address(page);
 48		clear_page(pmd);
 49		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 50	}
 51	pmd = pmd_offset(pud, addr);
 52	if (!pmd_present(*pmd))
 53		set_pmd(pmd, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
 54	result = 0;
 55out:
 56	return result;
 57}
 58
 59static void init_level2_page(pmd_t *level2p, unsigned long addr)
 
 60{
 61	unsigned long end_addr;
 
 
 62
 63	addr &= PAGE_MASK;
 64	end_addr = addr + PUD_SIZE;
 65	while (addr < end_addr) {
 66		set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
 67		addr += PMD_SIZE;
 68	}
 69}
 70
 71static int init_level3_page(struct kimage *image, pud_t *level3p,
 72				unsigned long addr, unsigned long last_addr)
 73{
 74	unsigned long end_addr;
 75	int result;
 76
 77	result = 0;
 78	addr &= PAGE_MASK;
 79	end_addr = addr + PGDIR_SIZE;
 80	while ((addr < last_addr) && (addr < end_addr)) {
 81		struct page *page;
 82		pmd_t *level2p;
 83
 84		page = kimage_alloc_control_pages(image, 0);
 85		if (!page) {
 86			result = -ENOMEM;
 87			goto out;
 88		}
 89		level2p = (pmd_t *)page_address(page);
 90		init_level2_page(level2p, addr);
 91		set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE));
 92		addr += PUD_SIZE;
 93	}
 94	/* clear the unused entries */
 95	while (addr < end_addr) {
 96		pud_clear(level3p++);
 97		addr += PUD_SIZE;
 98	}
 99out:
100	return result;
101}
 
 
 
102
 
 
 
 
 
 
103
104static int init_level4_page(struct kimage *image, pgd_t *level4p,
105				unsigned long addr, unsigned long last_addr)
106{
107	unsigned long end_addr;
108	int result;
109
110	result = 0;
111	addr &= PAGE_MASK;
112	end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE);
113	while ((addr < last_addr) && (addr < end_addr)) {
114		struct page *page;
115		pud_t *level3p;
116
117		page = kimage_alloc_control_pages(image, 0);
118		if (!page) {
119			result = -ENOMEM;
120			goto out;
121		}
122		level3p = (pud_t *)page_address(page);
123		result = init_level3_page(image, level3p, addr, last_addr);
124		if (result)
125			goto out;
126		set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE));
127		addr += PGDIR_SIZE;
128	}
129	/* clear the unused entries */
130	while (addr < end_addr) {
131		pgd_clear(level4p++);
132		addr += PGDIR_SIZE;
133	}
134out:
135	return result;
136}
137
138static void free_transition_pgtable(struct kimage *image)
139{
 
 
140	free_page((unsigned long)image->arch.pud);
 
141	free_page((unsigned long)image->arch.pmd);
 
142	free_page((unsigned long)image->arch.pte);
 
143}
144
145static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
146{
 
 
 
 
147	pud_t *pud;
148	pmd_t *pmd;
149	pte_t *pte;
150	unsigned long vaddr, paddr;
151	int result = -ENOMEM;
152
153	vaddr = (unsigned long)relocate_kernel;
154	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
155	pgd += pgd_index(vaddr);
156	if (!pgd_present(*pgd)) {
 
 
 
 
 
 
 
 
157		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
158		if (!pud)
159			goto err;
160		image->arch.pud = pud;
161		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
162	}
163	pud = pud_offset(pgd, vaddr);
164	if (!pud_present(*pud)) {
165		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
166		if (!pmd)
167			goto err;
168		image->arch.pmd = pmd;
169		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
170	}
171	pmd = pmd_offset(pud, vaddr);
172	if (!pmd_present(*pmd)) {
173		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
174		if (!pte)
175			goto err;
176		image->arch.pte = pte;
177		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
178	}
179	pte = pte_offset_kernel(pmd, vaddr);
180	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
 
 
 
 
181	return 0;
182err:
183	free_transition_pgtable(image);
184	return result;
185}
186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
188static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
189{
 
 
 
 
 
 
 
190	pgd_t *level4p;
191	int result;
 
 
192	level4p = (pgd_t *)__va(start_pgtable);
193	result = init_level4_page(image, level4p, 0, max_pfn << PAGE_SHIFT);
194	if (result)
195		return result;
196	/*
197	 * image->start may be outside 0 ~ max_pfn, for example when
198	 * jump back to original kernel from kexeced kernel
199	 */
200	result = init_one_level2_page(image, level4p, image->start);
201	if (result)
202		return result;
203	return init_transition_pgtable(image, level4p);
204}
205
206static void set_idt(void *newidt, u16 limit)
207{
208	struct desc_ptr curidt;
 
209
210	/* x86-64 supports unaliged loads & stores */
211	curidt.size    = limit;
212	curidt.address = (unsigned long)newidt;
213
214	__asm__ __volatile__ (
215		"lidtq %0\n"
216		: : "m" (curidt)
217		);
218};
219
 
 
 
 
 
220
221static void set_gdt(void *newgdt, u16 limit)
222{
223	struct desc_ptr curgdt;
 
 
 
 
 
 
224
225	/* x86-64 supports unaligned loads & stores */
226	curgdt.size    = limit;
227	curgdt.address = (unsigned long)newgdt;
228
229	__asm__ __volatile__ (
230		"lgdtq %0\n"
231		: : "m" (curgdt)
232		);
233};
 
 
 
 
 
 
 
 
 
 
 
 
 
234
235static void load_segments(void)
236{
237	__asm__ __volatile__ (
238		"\tmovl %0,%%ds\n"
239		"\tmovl %0,%%es\n"
240		"\tmovl %0,%%ss\n"
241		"\tmovl %0,%%fs\n"
242		"\tmovl %0,%%gs\n"
243		: : "a" (__KERNEL_DS) : "memory"
244		);
245}
246
247int machine_kexec_prepare(struct kimage *image)
248{
249	unsigned long start_pgtable;
250	int result;
251
252	/* Calculate the offsets */
253	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
254
255	/* Setup the identity mapped 64bit page table */
256	result = init_pgtable(image, start_pgtable);
257	if (result)
258		return result;
259
260	return 0;
261}
262
263void machine_kexec_cleanup(struct kimage *image)
264{
265	free_transition_pgtable(image);
266}
267
268/*
269 * Do not allocate memory (or fail in any way) in machine_kexec().
270 * We are past the point of no return, committed to rebooting now.
271 */
272void machine_kexec(struct kimage *image)
273{
274	unsigned long page_list[PAGES_NR];
275	void *control_page;
276	int save_ftrace_enabled;
277
278#ifdef CONFIG_KEXEC_JUMP
279	if (image->preserve_context)
280		save_processor_state();
281#endif
282
283	save_ftrace_enabled = __ftrace_enabled_save();
284
285	/* Interrupts aren't acceptable while we reboot */
286	local_irq_disable();
287	hw_breakpoint_disable();
 
288
289	if (image->preserve_context) {
290#ifdef CONFIG_X86_IO_APIC
291		/*
292		 * We need to put APICs in legacy mode so that we can
293		 * get timer interrupts in second kernel. kexec/kdump
294		 * paths already have calls to disable_IO_APIC() in
295		 * one form or other. kexec jump path also need
296		 * one.
297		 */
298		disable_IO_APIC();
 
299#endif
300	}
301
302	control_page = page_address(image->control_code_page) + PAGE_SIZE;
303	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
304
305	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
306	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
307	page_list[PA_TABLE_PAGE] =
308	  (unsigned long)__pa(page_address(image->control_code_page));
309
310	if (image->type == KEXEC_TYPE_DEFAULT)
311		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
312						<< PAGE_SHIFT);
313
314	/*
315	 * The segment registers are funny things, they have both a
316	 * visible and an invisible part.  Whenever the visible part is
317	 * set to a specific selector, the invisible part is loaded
318	 * with from a table in memory.  At no other time is the
319	 * descriptor table in memory accessed.
320	 *
321	 * I take advantage of this here by force loading the
322	 * segments, before I zap the gdt with an invalid value.
323	 */
324	load_segments();
325	/*
326	 * The gdt & idt are now invalid.
327	 * If you want to load them you must set up your own idt & gdt.
328	 */
329	set_gdt(phys_to_virt(0), 0);
330	set_idt(phys_to_virt(0), 0);
331
332	/* now call it */
333	image->start = relocate_kernel((unsigned long)image->head,
334				       (unsigned long)page_list,
335				       image->start,
336				       image->preserve_context);
 
337
338#ifdef CONFIG_KEXEC_JUMP
339	if (image->preserve_context)
340		restore_processor_state();
341#endif
342
343	__ftrace_enabled_restore(save_ftrace_enabled);
344}
345
346void arch_crash_save_vmcoreinfo(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347{
348	VMCOREINFO_SYMBOL(phys_base);
349	VMCOREINFO_SYMBOL(init_level4_pgt);
350
351#ifdef CONFIG_NUMA
352	VMCOREINFO_SYMBOL(node_data);
353	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
 
354#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355}
356
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
 
 
 
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20#include <linux/cc_platform.h>
 21
 22#include <asm/init.h>
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 30#include <asm/cpu.h>
 31
 32#ifdef CONFIG_ACPI
 33/*
 34 * Used while adding mapping for ACPI tables.
 35 * Can be reused when other iomem regions need be mapped
 36 */
 37struct init_pgtable_data {
 38	struct x86_mapping_info *info;
 39	pgd_t *level4p;
 40};
 41
 42static int mem_region_callback(struct resource *res, void *arg)
 
 43{
 44	struct init_pgtable_data *data = arg;
 
 
 
 45
 46	return kernel_ident_mapping_init(data->info, data->level4p,
 47					 res->start, res->end + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48}
 49
 50static int
 51map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 52{
 53	struct init_pgtable_data data;
 54	unsigned long flags;
 55	int ret;
 56
 57	data.info = info;
 58	data.level4p = level4p;
 59	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 
 
 
 
 60
 61	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 62				  &data, mem_region_callback);
 63	if (ret && ret != -EINVAL)
 64		return ret;
 
 65
 66	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 67	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 68				  &data, mem_region_callback);
 69	if (ret && ret != -EINVAL)
 70		return ret;
 71
 72	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73}
 74#else
 75static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 76#endif
 77
 78#ifdef CONFIG_KEXEC_FILE
 79const struct kexec_file_ops * const kexec_file_loaders[] = {
 80		&kexec_bzImage64_ops,
 81		NULL
 82};
 83#endif
 84
 85static int
 86map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 87{
 88#ifdef CONFIG_EFI
 89	unsigned long mstart, mend;
 90
 91	if (!efi_enabled(EFI_BOOT))
 92		return 0;
 93
 94	mstart = (boot_params.efi_info.efi_systab |
 95			((u64)boot_params.efi_info.efi_systab_hi<<32));
 96
 97	if (efi_enabled(EFI_64BIT))
 98		mend = mstart + sizeof(efi_system_table_64_t);
 99	else
100		mend = mstart + sizeof(efi_system_table_32_t);
101
102	if (!mstart)
103		return 0;
104
105	return kernel_ident_mapping_init(info, level4p, mstart, mend);
106#endif
107	return 0;
 
 
 
 
 
 
 
 
 
108}
109
110static void free_transition_pgtable(struct kimage *image)
111{
112	free_page((unsigned long)image->arch.p4d);
113	image->arch.p4d = NULL;
114	free_page((unsigned long)image->arch.pud);
115	image->arch.pud = NULL;
116	free_page((unsigned long)image->arch.pmd);
117	image->arch.pmd = NULL;
118	free_page((unsigned long)image->arch.pte);
119	image->arch.pte = NULL;
120}
121
122static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
123{
124	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
125	unsigned long vaddr, paddr;
126	int result = -ENOMEM;
127	p4d_t *p4d;
128	pud_t *pud;
129	pmd_t *pmd;
130	pte_t *pte;
 
 
131
132	vaddr = (unsigned long)relocate_kernel;
133	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
134	pgd += pgd_index(vaddr);
135	if (!pgd_present(*pgd)) {
136		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
137		if (!p4d)
138			goto err;
139		image->arch.p4d = p4d;
140		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
141	}
142	p4d = p4d_offset(pgd, vaddr);
143	if (!p4d_present(*p4d)) {
144		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
145		if (!pud)
146			goto err;
147		image->arch.pud = pud;
148		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
149	}
150	pud = pud_offset(p4d, vaddr);
151	if (!pud_present(*pud)) {
152		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
153		if (!pmd)
154			goto err;
155		image->arch.pmd = pmd;
156		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
157	}
158	pmd = pmd_offset(pud, vaddr);
159	if (!pmd_present(*pmd)) {
160		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
161		if (!pte)
162			goto err;
163		image->arch.pte = pte;
164		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
165	}
166	pte = pte_offset_kernel(pmd, vaddr);
167
168	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
169		prot = PAGE_KERNEL_EXEC;
170
171	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
172	return 0;
173err:
 
174	return result;
175}
176
177static void *alloc_pgt_page(void *data)
178{
179	struct kimage *image = (struct kimage *)data;
180	struct page *page;
181	void *p = NULL;
182
183	page = kimage_alloc_control_pages(image, 0);
184	if (page) {
185		p = page_address(page);
186		clear_page(p);
187	}
188
189	return p;
190}
191
192static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
193{
194	struct x86_mapping_info info = {
195		.alloc_pgt_page	= alloc_pgt_page,
196		.context	= image,
197		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
198		.kernpg_flag	= _KERNPG_TABLE_NOENC,
199	};
200	unsigned long mstart, mend;
201	pgd_t *level4p;
202	int result;
203	int i;
204
205	level4p = (pgd_t *)__va(start_pgtable);
206	clear_page(level4p);
 
 
 
 
 
 
 
 
 
 
 
207
208	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
209		info.page_flag   |= _PAGE_ENC;
210		info.kernpg_flag |= _PAGE_ENC;
211	}
212
213	if (direct_gbpages)
214		info.direct_gbpages = true;
 
215
216	for (i = 0; i < nr_pfn_mapped; i++) {
217		mstart = pfn_mapped[i].start << PAGE_SHIFT;
218		mend   = pfn_mapped[i].end << PAGE_SHIFT;
 
 
219
220		result = kernel_ident_mapping_init(&info,
221						 level4p, mstart, mend);
222		if (result)
223			return result;
224	}
225
226	/*
227	 * segments's mem ranges could be outside 0 ~ max_pfn,
228	 * for example when jump back to original kernel from kexeced kernel.
229	 * or first kernel is booted with user mem map, and second kernel
230	 * could be loaded out of that range.
231	 */
232	for (i = 0; i < image->nr_segments; i++) {
233		mstart = image->segment[i].mem;
234		mend   = mstart + image->segment[i].memsz;
235
236		result = kernel_ident_mapping_init(&info,
237						 level4p, mstart, mend);
 
238
239		if (result)
240			return result;
241	}
242
243	/*
244	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
245	 * not covered by pfn_mapped.
246	 */
247	result = map_efi_systab(&info, level4p);
248	if (result)
249		return result;
250
251	result = map_acpi_tables(&info, level4p);
252	if (result)
253		return result;
254
255	return init_transition_pgtable(image, level4p);
256}
257
258static void load_segments(void)
259{
260	__asm__ __volatile__ (
261		"\tmovl %0,%%ds\n"
262		"\tmovl %0,%%es\n"
263		"\tmovl %0,%%ss\n"
264		"\tmovl %0,%%fs\n"
265		"\tmovl %0,%%gs\n"
266		: : "a" (__KERNEL_DS) : "memory"
267		);
268}
269
270int machine_kexec_prepare(struct kimage *image)
271{
272	unsigned long start_pgtable;
273	int result;
274
275	/* Calculate the offsets */
276	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
277
278	/* Setup the identity mapped 64bit page table */
279	result = init_pgtable(image, start_pgtable);
280	if (result)
281		return result;
282
283	return 0;
284}
285
286void machine_kexec_cleanup(struct kimage *image)
287{
288	free_transition_pgtable(image);
289}
290
291/*
292 * Do not allocate memory (or fail in any way) in machine_kexec().
293 * We are past the point of no return, committed to rebooting now.
294 */
295void machine_kexec(struct kimage *image)
296{
297	unsigned long page_list[PAGES_NR];
298	void *control_page;
299	int save_ftrace_enabled;
300
301#ifdef CONFIG_KEXEC_JUMP
302	if (image->preserve_context)
303		save_processor_state();
304#endif
305
306	save_ftrace_enabled = __ftrace_enabled_save();
307
308	/* Interrupts aren't acceptable while we reboot */
309	local_irq_disable();
310	hw_breakpoint_disable();
311	cet_disable();
312
313	if (image->preserve_context) {
314#ifdef CONFIG_X86_IO_APIC
315		/*
316		 * We need to put APICs in legacy mode so that we can
317		 * get timer interrupts in second kernel. kexec/kdump
318		 * paths already have calls to restore_boot_irq_mode()
319		 * in one form or other. kexec jump path also need one.
 
320		 */
321		clear_IO_APIC();
322		restore_boot_irq_mode();
323#endif
324	}
325
326	control_page = page_address(image->control_code_page) + PAGE_SIZE;
327	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331	page_list[PA_TABLE_PAGE] =
332	  (unsigned long)__pa(page_address(image->control_code_page));
333
334	if (image->type == KEXEC_TYPE_DEFAULT)
335		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336						<< PAGE_SHIFT);
337
338	/*
339	 * The segment registers are funny things, they have both a
340	 * visible and an invisible part.  Whenever the visible part is
341	 * set to a specific selector, the invisible part is loaded
342	 * with from a table in memory.  At no other time is the
343	 * descriptor table in memory accessed.
344	 *
345	 * I take advantage of this here by force loading the
346	 * segments, before I zap the gdt with an invalid value.
347	 */
348	load_segments();
349	/*
350	 * The gdt & idt are now invalid.
351	 * If you want to load them you must set up your own idt & gdt.
352	 */
353	native_idt_invalidate();
354	native_gdt_invalidate();
355
356	/* now call it */
357	image->start = relocate_kernel((unsigned long)image->head,
358				       (unsigned long)page_list,
359				       image->start,
360				       image->preserve_context,
361				       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
362
363#ifdef CONFIG_KEXEC_JUMP
364	if (image->preserve_context)
365		restore_processor_state();
366#endif
367
368	__ftrace_enabled_restore(save_ftrace_enabled);
369}
370
371/* arch-dependent functionality related to kexec file-based syscall */
372
373#ifdef CONFIG_KEXEC_FILE
374/*
375 * Apply purgatory relocations.
376 *
377 * @pi:		Purgatory to be relocated.
378 * @section:	Section relocations applying to.
379 * @relsec:	Section containing RELAs.
380 * @symtabsec:	Corresponding symtab.
381 *
382 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
383 */
384int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
385				     Elf_Shdr *section, const Elf_Shdr *relsec,
386				     const Elf_Shdr *symtabsec)
387{
388	unsigned int i;
389	Elf64_Rela *rel;
390	Elf64_Sym *sym;
391	void *location;
392	unsigned long address, sec_base, value;
393	const char *strtab, *name, *shstrtab;
394	const Elf_Shdr *sechdrs;
395
396	/* String & section header string table */
397	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
398	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
399	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
400
401	rel = (void *)pi->ehdr + relsec->sh_offset;
402
403	pr_debug("Applying relocate section %s to %u\n",
404		 shstrtab + relsec->sh_name, relsec->sh_info);
405
406	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
407
408		/*
409		 * rel[i].r_offset contains byte offset from beginning
410		 * of section to the storage unit affected.
411		 *
412		 * This is location to update. This is temporary buffer
413		 * where section is currently loaded. This will finally be
414		 * loaded to a different address later, pointed to by
415		 * ->sh_addr. kexec takes care of moving it
416		 *  (kexec_load_segment()).
417		 */
418		location = pi->purgatory_buf;
419		location += section->sh_offset;
420		location += rel[i].r_offset;
421
422		/* Final address of the location */
423		address = section->sh_addr + rel[i].r_offset;
424
425		/*
426		 * rel[i].r_info contains information about symbol table index
427		 * w.r.t which relocation must be made and type of relocation
428		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
429		 * these respectively.
430		 */
431		sym = (void *)pi->ehdr + symtabsec->sh_offset;
432		sym += ELF64_R_SYM(rel[i].r_info);
433
434		if (sym->st_name)
435			name = strtab + sym->st_name;
436		else
437			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
438
439		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
440			 name, sym->st_info, sym->st_shndx, sym->st_value,
441			 sym->st_size);
442
443		if (sym->st_shndx == SHN_UNDEF) {
444			pr_err("Undefined symbol: %s\n", name);
445			return -ENOEXEC;
446		}
447
448		if (sym->st_shndx == SHN_COMMON) {
449			pr_err("symbol '%s' in common section\n", name);
450			return -ENOEXEC;
451		}
452
453		if (sym->st_shndx == SHN_ABS)
454			sec_base = 0;
455		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
456			pr_err("Invalid section %d for symbol %s\n",
457			       sym->st_shndx, name);
458			return -ENOEXEC;
459		} else
460			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
461
462		value = sym->st_value;
463		value += sec_base;
464		value += rel[i].r_addend;
465
466		switch (ELF64_R_TYPE(rel[i].r_info)) {
467		case R_X86_64_NONE:
468			break;
469		case R_X86_64_64:
470			*(u64 *)location = value;
471			break;
472		case R_X86_64_32:
473			*(u32 *)location = value;
474			if (value != *(u32 *)location)
475				goto overflow;
476			break;
477		case R_X86_64_32S:
478			*(s32 *)location = value;
479			if ((s64)value != *(s32 *)location)
480				goto overflow;
481			break;
482		case R_X86_64_PC32:
483		case R_X86_64_PLT32:
484			value -= (u64)address;
485			*(u32 *)location = value;
486			break;
487		default:
488			pr_err("Unknown rela relocation: %llu\n",
489			       ELF64_R_TYPE(rel[i].r_info));
490			return -ENOEXEC;
491		}
492	}
493	return 0;
494
495overflow:
496	pr_err("Overflow in relocation type %d value 0x%lx\n",
497	       (int)ELF64_R_TYPE(rel[i].r_info), value);
498	return -ENOEXEC;
499}
500
501int arch_kimage_file_post_load_cleanup(struct kimage *image)
502{
503	vfree(image->elf_headers);
504	image->elf_headers = NULL;
505	image->elf_headers_sz = 0;
506
507	return kexec_image_post_load_cleanup_default(image);
508}
509#endif /* CONFIG_KEXEC_FILE */
510
511#ifdef CONFIG_CRASH_DUMP
512
513static int
514kexec_mark_range(unsigned long start, unsigned long end, bool protect)
515{
516	struct page *page;
517	unsigned int nr_pages;
518
519	/*
520	 * For physical range: [start, end]. We must skip the unassigned
521	 * crashk resource with zero-valued "end" member.
522	 */
523	if (!end || start > end)
524		return 0;
525
526	page = pfn_to_page(start >> PAGE_SHIFT);
527	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
528	if (protect)
529		return set_pages_ro(page, nr_pages);
530	else
531		return set_pages_rw(page, nr_pages);
532}
533
534static void kexec_mark_crashkres(bool protect)
535{
536	unsigned long control;
537
538	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
539
540	/* Don't touch the control code page used in crash_kexec().*/
541	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
542	/* Control code page is located in the 2nd page. */
543	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
544	control += KEXEC_CONTROL_PAGE_SIZE;
545	kexec_mark_range(control, crashk_res.end, protect);
546}
547
548void arch_kexec_protect_crashkres(void)
549{
550	kexec_mark_crashkres(true);
551}
552
553void arch_kexec_unprotect_crashkres(void)
554{
555	kexec_mark_crashkres(false);
556}
557#endif
558
559/*
560 * During a traditional boot under SME, SME will encrypt the kernel,
561 * so the SME kexec kernel also needs to be un-encrypted in order to
562 * replicate a normal SME boot.
563 *
564 * During a traditional boot under SEV, the kernel has already been
565 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
566 * order to replicate a normal SEV boot.
567 */
568int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
569{
570	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
571		return 0;
572
573	/*
574	 * If host memory encryption is active we need to be sure that kexec
575	 * pages are not encrypted because when we boot to the new kernel the
576	 * pages won't be accessed encrypted (initially).
577	 */
578	return set_memory_decrypted((unsigned long)vaddr, pages);
579}
580
581void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
582{
583	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
584		return;
585
586	/*
587	 * If host memory encryption is active we need to reset the pages back
588	 * to being an encrypted mapping before freeing them.
589	 */
590	set_memory_encrypted((unsigned long)vaddr, pages);
591}