Loading...
1/*
2 * linux/boot/head.S
3 *
4 * Copyright (C) 1991, 1992, 1993 Linus Torvalds
5 */
6
7/*
8 * head.S contains the 32-bit startup code.
9 *
10 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
11 * the page directory will exist. The startup code will be overwritten by
12 * the page directory. [According to comments etc elsewhere on a compressed
13 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
14 *
15 * Page 0 is deliberately kept safe, since System Management Mode code in
16 * laptops may need to access the BIOS data stored there. This is also
17 * useful for future device drivers that either access the BIOS via VM86
18 * mode.
19 */
20
21/*
22 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
23 */
24 .code32
25 .text
26
27#include <linux/init.h>
28#include <linux/linkage.h>
29#include <asm/segment.h>
30#include <asm/pgtable_types.h>
31#include <asm/page_types.h>
32#include <asm/boot.h>
33#include <asm/msr.h>
34#include <asm/processor-flags.h>
35#include <asm/asm-offsets.h>
36
37 __HEAD
38 .code32
39ENTRY(startup_32)
40 cld
41 /*
42 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
43 * us to not reload segments
44 */
45 testb $(1<<6), BP_loadflags(%esi)
46 jnz 1f
47
48 cli
49 movl $(__KERNEL_DS), %eax
50 movl %eax, %ds
51 movl %eax, %es
52 movl %eax, %ss
531:
54
55/*
56 * Calculate the delta between where we were compiled to run
57 * at and where we were actually loaded at. This can only be done
58 * with a short local call on x86. Nothing else will tell us what
59 * address we are running at. The reserved chunk of the real-mode
60 * data at 0x1e4 (defined as a scratch field) are used as the stack
61 * for this calculation. Only 4 bytes are needed.
62 */
63 leal (BP_scratch+4)(%esi), %esp
64 call 1f
651: popl %ebp
66 subl $1b, %ebp
67
68/* setup a stack and make sure cpu supports long mode. */
69 movl $boot_stack_end, %eax
70 addl %ebp, %eax
71 movl %eax, %esp
72
73 call verify_cpu
74 testl %eax, %eax
75 jnz no_longmode
76
77/*
78 * Compute the delta between where we were compiled to run at
79 * and where the code will actually run at.
80 *
81 * %ebp contains the address we are loaded at by the boot loader and %ebx
82 * contains the address where we should move the kernel image temporarily
83 * for safe in-place decompression.
84 */
85
86#ifdef CONFIG_RELOCATABLE
87 movl %ebp, %ebx
88 movl BP_kernel_alignment(%esi), %eax
89 decl %eax
90 addl %eax, %ebx
91 notl %eax
92 andl %eax, %ebx
93#else
94 movl $LOAD_PHYSICAL_ADDR, %ebx
95#endif
96
97 /* Target address to relocate to for decompression */
98 addl $z_extract_offset, %ebx
99
100/*
101 * Prepare for entering 64 bit mode
102 */
103
104 /* Load new GDT with the 64bit segments using 32bit descriptor */
105 leal gdt(%ebp), %eax
106 movl %eax, gdt+2(%ebp)
107 lgdt gdt(%ebp)
108
109 /* Enable PAE mode */
110 movl $(X86_CR4_PAE), %eax
111 movl %eax, %cr4
112
113 /*
114 * Build early 4G boot pagetable
115 */
116 /* Initialize Page tables to 0 */
117 leal pgtable(%ebx), %edi
118 xorl %eax, %eax
119 movl $((4096*6)/4), %ecx
120 rep stosl
121
122 /* Build Level 4 */
123 leal pgtable + 0(%ebx), %edi
124 leal 0x1007 (%edi), %eax
125 movl %eax, 0(%edi)
126
127 /* Build Level 3 */
128 leal pgtable + 0x1000(%ebx), %edi
129 leal 0x1007(%edi), %eax
130 movl $4, %ecx
1311: movl %eax, 0x00(%edi)
132 addl $0x00001000, %eax
133 addl $8, %edi
134 decl %ecx
135 jnz 1b
136
137 /* Build Level 2 */
138 leal pgtable + 0x2000(%ebx), %edi
139 movl $0x00000183, %eax
140 movl $2048, %ecx
1411: movl %eax, 0(%edi)
142 addl $0x00200000, %eax
143 addl $8, %edi
144 decl %ecx
145 jnz 1b
146
147 /* Enable the boot page tables */
148 leal pgtable(%ebx), %eax
149 movl %eax, %cr3
150
151 /* Enable Long mode in EFER (Extended Feature Enable Register) */
152 movl $MSR_EFER, %ecx
153 rdmsr
154 btsl $_EFER_LME, %eax
155 wrmsr
156
157 /*
158 * Setup for the jump to 64bit mode
159 *
160 * When the jump is performend we will be in long mode but
161 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
162 * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
163 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
164 * We place all of the values on our mini stack so lret can
165 * used to perform that far jump.
166 */
167 pushl $__KERNEL_CS
168 leal startup_64(%ebp), %eax
169 pushl %eax
170
171 /* Enter paged protected Mode, activating Long Mode */
172 movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
173 movl %eax, %cr0
174
175 /* Jump from 32bit compatibility mode into 64bit mode. */
176 lret
177ENDPROC(startup_32)
178
179no_longmode:
180 /* This isn't an x86-64 CPU so hang */
1811:
182 hlt
183 jmp 1b
184
185#include "../../kernel/verify_cpu.S"
186
187 /*
188 * Be careful here startup_64 needs to be at a predictable
189 * address so I can export it in an ELF header. Bootloaders
190 * should look at the ELF header to find this address, as
191 * it may change in the future.
192 */
193 .code64
194 .org 0x200
195ENTRY(startup_64)
196 /*
197 * We come here either from startup_32 or directly from a
198 * 64bit bootloader. If we come here from a bootloader we depend on
199 * an identity mapped page table being provied that maps our
200 * entire text+data+bss and hopefully all of memory.
201 */
202
203 /* Setup data segments. */
204 xorl %eax, %eax
205 movl %eax, %ds
206 movl %eax, %es
207 movl %eax, %ss
208 movl %eax, %fs
209 movl %eax, %gs
210 lldt %ax
211 movl $0x20, %eax
212 ltr %ax
213
214 /*
215 * Compute the decompressed kernel start address. It is where
216 * we were loaded at aligned to a 2M boundary. %rbp contains the
217 * decompressed kernel start address.
218 *
219 * If it is a relocatable kernel then decompress and run the kernel
220 * from load address aligned to 2MB addr, otherwise decompress and
221 * run the kernel from LOAD_PHYSICAL_ADDR
222 *
223 * We cannot rely on the calculation done in 32-bit mode, since we
224 * may have been invoked via the 64-bit entry point.
225 */
226
227 /* Start with the delta to where the kernel will run at. */
228#ifdef CONFIG_RELOCATABLE
229 leaq startup_32(%rip) /* - $startup_32 */, %rbp
230 movl BP_kernel_alignment(%rsi), %eax
231 decl %eax
232 addq %rax, %rbp
233 notq %rax
234 andq %rax, %rbp
235#else
236 movq $LOAD_PHYSICAL_ADDR, %rbp
237#endif
238
239 /* Target address to relocate to for decompression */
240 leaq z_extract_offset(%rbp), %rbx
241
242 /* Set up the stack */
243 leaq boot_stack_end(%rbx), %rsp
244
245 /* Zero EFLAGS */
246 pushq $0
247 popfq
248
249/*
250 * Copy the compressed kernel to the end of our buffer
251 * where decompression in place becomes safe.
252 */
253 pushq %rsi
254 leaq (_bss-8)(%rip), %rsi
255 leaq (_bss-8)(%rbx), %rdi
256 movq $_bss /* - $startup_32 */, %rcx
257 shrq $3, %rcx
258 std
259 rep movsq
260 cld
261 popq %rsi
262
263/*
264 * Jump to the relocated address.
265 */
266 leaq relocated(%rbx), %rax
267 jmp *%rax
268
269 .text
270relocated:
271
272/*
273 * Clear BSS (stack is currently empty)
274 */
275 xorl %eax, %eax
276 leaq _bss(%rip), %rdi
277 leaq _ebss(%rip), %rcx
278 subq %rdi, %rcx
279 shrq $3, %rcx
280 rep stosq
281
282/*
283 * Adjust our own GOT
284 */
285 leaq _got(%rip), %rdx
286 leaq _egot(%rip), %rcx
2871:
288 cmpq %rcx, %rdx
289 jae 2f
290 addq %rbx, (%rdx)
291 addq $8, %rdx
292 jmp 1b
2932:
294
295/*
296 * Do the decompression, and jump to the new kernel..
297 */
298 pushq %rsi /* Save the real mode argument */
299 movq %rsi, %rdi /* real mode address */
300 leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
301 leaq input_data(%rip), %rdx /* input_data */
302 movl $z_input_len, %ecx /* input_len */
303 movq %rbp, %r8 /* output target address */
304 call decompress_kernel
305 popq %rsi
306
307/*
308 * Jump to the decompressed kernel.
309 */
310 jmp *%rbp
311
312 .data
313gdt:
314 .word gdt_end - gdt
315 .long gdt
316 .word 0
317 .quad 0x0000000000000000 /* NULL descriptor */
318 .quad 0x00af9a000000ffff /* __KERNEL_CS */
319 .quad 0x00cf92000000ffff /* __KERNEL_DS */
320 .quad 0x0080890000000000 /* TS descriptor */
321 .quad 0x0000000000000000 /* TS continued */
322gdt_end:
323
324/*
325 * Stack and heap for uncompression
326 */
327 .bss
328 .balign 4
329boot_heap:
330 .fill BOOT_HEAP_SIZE, 1, 0
331boot_stack:
332 .fill BOOT_STACK_SIZE, 1, 0
333boot_stack_end:
334
335/*
336 * Space for page tables (not in .bss so not zeroed)
337 */
338 .section ".pgtable","a",@nobits
339 .balign 4096
340pgtable:
341 .fill 6*4096, 1, 0
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * linux/boot/head.S
4 *
5 * Copyright (C) 1991, 1992, 1993 Linus Torvalds
6 */
7
8/*
9 * head.S contains the 32-bit startup code.
10 *
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 *
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there. This is also
18 * useful for future device drivers that either access the BIOS via VM86
19 * mode.
20 */
21
22/*
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
24 */
25 .code32
26 .text
27
28#include <linux/init.h>
29#include <linux/linkage.h>
30#include <asm/segment.h>
31#include <asm/boot.h>
32#include <asm/msr.h>
33#include <asm/processor-flags.h>
34#include <asm/asm-offsets.h>
35#include <asm/bootparam.h>
36#include <asm/desc_defs.h>
37#include <asm/trapnr.h>
38#include "pgtable.h"
39
40/*
41 * Fix alignment at 16 bytes. Following CONFIG_FUNCTION_ALIGNMENT will result
42 * in assembly errors due to trying to move .org backward due to the excessive
43 * alignment.
44 */
45#undef __ALIGN
46#define __ALIGN .balign 16, 0x90
47
48/*
49 * Locally defined symbols should be marked hidden:
50 */
51 .hidden _bss
52 .hidden _ebss
53 .hidden _end
54
55 __HEAD
56
57/*
58 * This macro gives the relative virtual address of X, i.e. the offset of X
59 * from startup_32. This is the same as the link-time virtual address of X,
60 * since startup_32 is at 0, but defining it this way tells the
61 * assembler/linker that we do not want the actual run-time address of X. This
62 * prevents the linker from trying to create unwanted run-time relocation
63 * entries for the reference when the compressed kernel is linked as PIE.
64 *
65 * A reference X(%reg) will result in the link-time VA of X being stored with
66 * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
67 * adds the 64-bit base address where the kernel is loaded.
68 *
69 * Replacing it with (X-startup_32)(%reg) results in the offset being stored,
70 * and no run-time relocation.
71 *
72 * The macro should be used as a displacement with a base register containing
73 * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
74 * [$ rva(X)].
75 *
76 * This macro can only be used from within the .head.text section, since the
77 * expression requires startup_32 to be in the same section as the code being
78 * assembled.
79 */
80#define rva(X) ((X) - startup_32)
81
82 .code32
83SYM_FUNC_START(startup_32)
84 /*
85 * 32bit entry is 0 and it is ABI so immutable!
86 * If we come here directly from a bootloader,
87 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
88 * all need to be under the 4G limit.
89 */
90 cld
91 cli
92
93/*
94 * Calculate the delta between where we were compiled to run
95 * at and where we were actually loaded at. This can only be done
96 * with a short local call on x86. Nothing else will tell us what
97 * address we are running at. The reserved chunk of the real-mode
98 * data at 0x1e4 (defined as a scratch field) are used as the stack
99 * for this calculation. Only 4 bytes are needed.
100 */
101 leal (BP_scratch+4)(%esi), %esp
102 call 1f
1031: popl %ebp
104 subl $ rva(1b), %ebp
105
106 /* Load new GDT with the 64bit segments using 32bit descriptor */
107 leal rva(gdt)(%ebp), %eax
108 movl %eax, 2(%eax)
109 lgdt (%eax)
110
111 /* Load segment registers with our descriptors */
112 movl $__BOOT_DS, %eax
113 movl %eax, %ds
114 movl %eax, %es
115 movl %eax, %fs
116 movl %eax, %gs
117 movl %eax, %ss
118
119 /* Setup a stack and load CS from current GDT */
120 leal rva(boot_stack_end)(%ebp), %esp
121
122 pushl $__KERNEL32_CS
123 leal rva(1f)(%ebp), %eax
124 pushl %eax
125 lretl
1261:
127
128 /* Setup Exception handling for SEV-ES */
129#ifdef CONFIG_AMD_MEM_ENCRYPT
130 call startup32_load_idt
131#endif
132
133 /* Make sure cpu supports long mode. */
134 call verify_cpu
135 testl %eax, %eax
136 jnz .Lno_longmode
137
138/*
139 * Compute the delta between where we were compiled to run at
140 * and where the code will actually run at.
141 *
142 * %ebp contains the address we are loaded at by the boot loader and %ebx
143 * contains the address where we should move the kernel image temporarily
144 * for safe in-place decompression.
145 */
146
147#ifdef CONFIG_RELOCATABLE
148 movl %ebp, %ebx
149 movl BP_kernel_alignment(%esi), %eax
150 decl %eax
151 addl %eax, %ebx
152 notl %eax
153 andl %eax, %ebx
154 cmpl $LOAD_PHYSICAL_ADDR, %ebx
155 jae 1f
156#endif
157 movl $LOAD_PHYSICAL_ADDR, %ebx
1581:
159
160 /* Target address to relocate to for decompression */
161 addl BP_init_size(%esi), %ebx
162 subl $ rva(_end), %ebx
163
164/*
165 * Prepare for entering 64 bit mode
166 */
167
168 /* Enable PAE mode */
169 movl %cr4, %eax
170 orl $X86_CR4_PAE, %eax
171 movl %eax, %cr4
172
173 /*
174 * Build early 4G boot pagetable
175 */
176 /*
177 * If SEV is active then set the encryption mask in the page tables.
178 * This will ensure that when the kernel is copied and decompressed
179 * it will be done so encrypted.
180 */
181 xorl %edx, %edx
182#ifdef CONFIG_AMD_MEM_ENCRYPT
183 call get_sev_encryption_bit
184 xorl %edx, %edx
185 testl %eax, %eax
186 jz 1f
187 subl $32, %eax /* Encryption bit is always above bit 31 */
188 bts %eax, %edx /* Set encryption mask for page tables */
189 /*
190 * Set MSR_AMD64_SEV_ENABLED_BIT in sev_status so that
191 * startup32_check_sev_cbit() will do a check. sev_enable() will
192 * initialize sev_status with all the bits reported by
193 * MSR_AMD_SEV_STATUS later, but only MSR_AMD64_SEV_ENABLED_BIT
194 * needs to be set for now.
195 */
196 movl $1, rva(sev_status)(%ebp)
1971:
198#endif
199
200 /* Initialize Page tables to 0 */
201 leal rva(pgtable)(%ebx), %edi
202 xorl %eax, %eax
203 movl $(BOOT_INIT_PGT_SIZE/4), %ecx
204 rep stosl
205
206 /* Build Level 4 */
207 leal rva(pgtable + 0)(%ebx), %edi
208 leal 0x1007 (%edi), %eax
209 movl %eax, 0(%edi)
210 addl %edx, 4(%edi)
211
212 /* Build Level 3 */
213 leal rva(pgtable + 0x1000)(%ebx), %edi
214 leal 0x1007(%edi), %eax
215 movl $4, %ecx
2161: movl %eax, 0x00(%edi)
217 addl %edx, 0x04(%edi)
218 addl $0x00001000, %eax
219 addl $8, %edi
220 decl %ecx
221 jnz 1b
222
223 /* Build Level 2 */
224 leal rva(pgtable + 0x2000)(%ebx), %edi
225 movl $0x00000183, %eax
226 movl $2048, %ecx
2271: movl %eax, 0(%edi)
228 addl %edx, 4(%edi)
229 addl $0x00200000, %eax
230 addl $8, %edi
231 decl %ecx
232 jnz 1b
233
234 /* Enable the boot page tables */
235 leal rva(pgtable)(%ebx), %eax
236 movl %eax, %cr3
237
238 /* Enable Long mode in EFER (Extended Feature Enable Register) */
239 movl $MSR_EFER, %ecx
240 rdmsr
241 btsl $_EFER_LME, %eax
242 wrmsr
243
244 /* After gdt is loaded */
245 xorl %eax, %eax
246 lldt %ax
247 movl $__BOOT_TSS, %eax
248 ltr %ax
249
250#ifdef CONFIG_AMD_MEM_ENCRYPT
251 /* Check if the C-bit position is correct when SEV is active */
252 call startup32_check_sev_cbit
253#endif
254
255 /*
256 * Setup for the jump to 64bit mode
257 *
258 * When the jump is performed we will be in long mode but
259 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
260 * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
261 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
262 * We place all of the values on our mini stack so lret can
263 * used to perform that far jump.
264 */
265 leal rva(startup_64)(%ebp), %eax
266#ifdef CONFIG_EFI_MIXED
267 cmpb $1, rva(efi_is64)(%ebp)
268 je 1f
269 leal rva(startup_64_mixed_mode)(%ebp), %eax
2701:
271#endif
272
273 pushl $__KERNEL_CS
274 pushl %eax
275
276 /* Enter paged protected Mode, activating Long Mode */
277 movl $CR0_STATE, %eax
278 movl %eax, %cr0
279
280 /* Jump from 32bit compatibility mode into 64bit mode. */
281 lret
282SYM_FUNC_END(startup_32)
283
284 .code64
285 .org 0x200
286SYM_CODE_START(startup_64)
287 /*
288 * 64bit entry is 0x200 and it is ABI so immutable!
289 * We come here either from startup_32 or directly from a
290 * 64bit bootloader.
291 * If we come here from a bootloader, kernel(text+data+bss+brk),
292 * ramdisk, zero_page, command line could be above 4G.
293 * We depend on an identity mapped page table being provided
294 * that maps our entire kernel(text+data+bss+brk), zero page
295 * and command line.
296 */
297
298 cld
299 cli
300
301 /* Setup data segments. */
302 xorl %eax, %eax
303 movl %eax, %ds
304 movl %eax, %es
305 movl %eax, %ss
306 movl %eax, %fs
307 movl %eax, %gs
308
309 /*
310 * Compute the decompressed kernel start address. It is where
311 * we were loaded at aligned to a 2M boundary. %rbp contains the
312 * decompressed kernel start address.
313 *
314 * If it is a relocatable kernel then decompress and run the kernel
315 * from load address aligned to 2MB addr, otherwise decompress and
316 * run the kernel from LOAD_PHYSICAL_ADDR
317 *
318 * We cannot rely on the calculation done in 32-bit mode, since we
319 * may have been invoked via the 64-bit entry point.
320 */
321
322 /* Start with the delta to where the kernel will run at. */
323#ifdef CONFIG_RELOCATABLE
324 leaq startup_32(%rip) /* - $startup_32 */, %rbp
325 movl BP_kernel_alignment(%rsi), %eax
326 decl %eax
327 addq %rax, %rbp
328 notq %rax
329 andq %rax, %rbp
330 cmpq $LOAD_PHYSICAL_ADDR, %rbp
331 jae 1f
332#endif
333 movq $LOAD_PHYSICAL_ADDR, %rbp
3341:
335
336 /* Target address to relocate to for decompression */
337 movl BP_init_size(%rsi), %ebx
338 subl $ rva(_end), %ebx
339 addq %rbp, %rbx
340
341 /* Set up the stack */
342 leaq rva(boot_stack_end)(%rbx), %rsp
343
344 /*
345 * At this point we are in long mode with 4-level paging enabled,
346 * but we might want to enable 5-level paging or vice versa.
347 *
348 * The problem is that we cannot do it directly. Setting or clearing
349 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
350 * long mode and paging first.
351 *
352 * We also need a trampoline in lower memory to switch over from
353 * 4- to 5-level paging for cases when the bootloader puts the kernel
354 * above 4G, but didn't enable 5-level paging for us.
355 *
356 * The same trampoline can be used to switch from 5- to 4-level paging
357 * mode, like when starting 4-level paging kernel via kexec() when
358 * original kernel worked in 5-level paging mode.
359 *
360 * For the trampoline, we need the top page table to reside in lower
361 * memory as we don't have a way to load 64-bit values into CR3 in
362 * 32-bit mode.
363 */
364
365 /* Make sure we have GDT with 32-bit code segment */
366 leaq gdt64(%rip), %rax
367 addq %rax, 2(%rax)
368 lgdt (%rax)
369
370 /* Reload CS so IRET returns to a CS actually in the GDT */
371 pushq $__KERNEL_CS
372 leaq .Lon_kernel_cs(%rip), %rax
373 pushq %rax
374 lretq
375
376.Lon_kernel_cs:
377 /*
378 * RSI holds a pointer to a boot_params structure provided by the
379 * loader, and this needs to be preserved across C function calls. So
380 * move it into a callee saved register.
381 */
382 movq %rsi, %r15
383
384 call load_stage1_idt
385
386#ifdef CONFIG_AMD_MEM_ENCRYPT
387 /*
388 * Now that the stage1 interrupt handlers are set up, #VC exceptions from
389 * CPUID instructions can be properly handled for SEV-ES guests.
390 *
391 * For SEV-SNP, the CPUID table also needs to be set up in advance of any
392 * CPUID instructions being issued, so go ahead and do that now via
393 * sev_enable(), which will also handle the rest of the SEV-related
394 * detection/setup to ensure that has been done in advance of any dependent
395 * code. Pass the boot_params pointer as the first argument.
396 */
397 movq %r15, %rdi
398 call sev_enable
399#endif
400
401 /* Preserve only the CR4 bits that must be preserved, and clear the rest */
402 movq %cr4, %rax
403 andl $(X86_CR4_PAE | X86_CR4_MCE | X86_CR4_LA57), %eax
404 movq %rax, %cr4
405
406 /*
407 * configure_5level_paging() updates the number of paging levels using
408 * a trampoline in 32-bit addressable memory if the current number does
409 * not match the desired number.
410 *
411 * Pass the boot_params pointer as the first argument. The second
412 * argument is the relocated address of the page table to use instead
413 * of the page table in trampoline memory (if required).
414 */
415 movq %r15, %rdi
416 leaq rva(top_pgtable)(%rbx), %rsi
417 call configure_5level_paging
418
419 /* Zero EFLAGS */
420 pushq $0
421 popfq
422
423/*
424 * Copy the compressed kernel to the end of our buffer
425 * where decompression in place becomes safe.
426 */
427 leaq (_bss-8)(%rip), %rsi
428 leaq rva(_bss-8)(%rbx), %rdi
429 movl $(_bss - startup_32), %ecx
430 shrl $3, %ecx
431 std
432 rep movsq
433 cld
434
435 /*
436 * The GDT may get overwritten either during the copy we just did or
437 * during extract_kernel below. To avoid any issues, repoint the GDTR
438 * to the new copy of the GDT.
439 */
440 leaq rva(gdt64)(%rbx), %rax
441 leaq rva(gdt)(%rbx), %rdx
442 movq %rdx, 2(%rax)
443 lgdt (%rax)
444
445/*
446 * Jump to the relocated address.
447 */
448 leaq rva(.Lrelocated)(%rbx), %rax
449 jmp *%rax
450SYM_CODE_END(startup_64)
451
452 .text
453SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
454
455/*
456 * Clear BSS (stack is currently empty)
457 */
458 xorl %eax, %eax
459 leaq _bss(%rip), %rdi
460 leaq _ebss(%rip), %rcx
461 subq %rdi, %rcx
462 shrq $3, %rcx
463 rep stosq
464
465 call load_stage2_idt
466
467 /* Pass boot_params to initialize_identity_maps() */
468 movq %r15, %rdi
469 call initialize_identity_maps
470
471/*
472 * Do the extraction, and jump to the new kernel..
473 */
474 /* pass struct boot_params pointer and output target address */
475 movq %r15, %rdi
476 movq %rbp, %rsi
477 call extract_kernel /* returns kernel entry point in %rax */
478
479/*
480 * Jump to the decompressed kernel.
481 */
482 movq %r15, %rsi
483 jmp *%rax
484SYM_FUNC_END(.Lrelocated)
485
486/*
487 * This is the 32-bit trampoline that will be copied over to low memory. It
488 * will be called using the ordinary 64-bit calling convention from code
489 * running in 64-bit mode.
490 *
491 * Return address is at the top of the stack (might be above 4G).
492 * The first argument (EDI) contains the address of the temporary PGD level
493 * page table in 32-bit addressable memory which will be programmed into
494 * register CR3.
495 */
496 .section ".rodata", "a", @progbits
497SYM_CODE_START(trampoline_32bit_src)
498 /*
499 * Preserve callee save 64-bit registers on the stack: this is
500 * necessary because the architecture does not guarantee that GPRs will
501 * retain their full 64-bit values across a 32-bit mode switch.
502 */
503 pushq %r15
504 pushq %r14
505 pushq %r13
506 pushq %r12
507 pushq %rbp
508 pushq %rbx
509
510 /* Preserve top half of RSP in a legacy mode GPR to avoid truncation */
511 movq %rsp, %rbx
512 shrq $32, %rbx
513
514 /* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
515 pushq $__KERNEL32_CS
516 leaq 0f(%rip), %rax
517 pushq %rax
518 lretq
519
520 /*
521 * The 32-bit code below will do a far jump back to long mode and end
522 * up here after reconfiguring the number of paging levels. First, the
523 * stack pointer needs to be restored to its full 64-bit value before
524 * the callee save register contents can be popped from the stack.
525 */
526.Lret:
527 shlq $32, %rbx
528 orq %rbx, %rsp
529
530 /* Restore the preserved 64-bit registers */
531 popq %rbx
532 popq %rbp
533 popq %r12
534 popq %r13
535 popq %r14
536 popq %r15
537 retq
538
539 .code32
5400:
541 /* Disable paging */
542 movl %cr0, %eax
543 btrl $X86_CR0_PG_BIT, %eax
544 movl %eax, %cr0
545
546 /* Point CR3 to the trampoline's new top level page table */
547 movl %edi, %cr3
548
549 /* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
550 movl $MSR_EFER, %ecx
551 rdmsr
552 btsl $_EFER_LME, %eax
553 /* Avoid writing EFER if no change was made (for TDX guest) */
554 jc 1f
555 wrmsr
5561:
557 /* Toggle CR4.LA57 */
558 movl %cr4, %eax
559 btcl $X86_CR4_LA57_BIT, %eax
560 movl %eax, %cr4
561
562 /* Enable paging again. */
563 movl %cr0, %eax
564 btsl $X86_CR0_PG_BIT, %eax
565 movl %eax, %cr0
566
567 /*
568 * Return to the 64-bit calling code using LJMP rather than LRET, to
569 * avoid the need for a 32-bit addressable stack. The destination
570 * address will be adjusted after the template code is copied into a
571 * 32-bit addressable buffer.
572 */
573.Ljmp: ljmpl $__KERNEL_CS, $(.Lret - trampoline_32bit_src)
574SYM_CODE_END(trampoline_32bit_src)
575
576/*
577 * This symbol is placed right after trampoline_32bit_src() so its address can
578 * be used to infer the size of the trampoline code.
579 */
580SYM_DATA(trampoline_ljmp_imm_offset, .word .Ljmp + 1 - trampoline_32bit_src)
581
582 /*
583 * The trampoline code has a size limit.
584 * Make sure we fail to compile if the trampoline code grows
585 * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
586 */
587 .org trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
588
589 .text
590SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
591 /* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
5921:
593 hlt
594 jmp 1b
595SYM_FUNC_END(.Lno_longmode)
596
597 .globl verify_cpu
598#include "../../kernel/verify_cpu.S"
599
600 .data
601SYM_DATA_START_LOCAL(gdt64)
602 .word gdt_end - gdt - 1
603 .quad gdt - gdt64
604SYM_DATA_END(gdt64)
605 .balign 8
606SYM_DATA_START_LOCAL(gdt)
607 .word gdt_end - gdt - 1
608 .long 0
609 .word 0
610 .quad 0x00cf9a000000ffff /* __KERNEL32_CS */
611 .quad 0x00af9a000000ffff /* __KERNEL_CS */
612 .quad 0x00cf92000000ffff /* __KERNEL_DS */
613 .quad 0x0080890000000000 /* TS descriptor */
614 .quad 0x0000000000000000 /* TS continued */
615SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
616
617SYM_DATA_START(boot_idt_desc)
618 .word boot_idt_end - boot_idt - 1
619 .quad 0
620SYM_DATA_END(boot_idt_desc)
621 .balign 8
622SYM_DATA_START(boot_idt)
623 .rept BOOT_IDT_ENTRIES
624 .quad 0
625 .quad 0
626 .endr
627SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
628
629/*
630 * Stack and heap for uncompression
631 */
632 .bss
633 .balign 4
634SYM_DATA_START_LOCAL(boot_stack)
635 .fill BOOT_STACK_SIZE, 1, 0
636 .balign 16
637SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
638
639/*
640 * Space for page tables (not in .bss so not zeroed)
641 */
642 .section ".pgtable","aw",@nobits
643 .balign 4096
644SYM_DATA_LOCAL(pgtable, .fill BOOT_PGT_SIZE, 1, 0)
645
646/*
647 * The page table is going to be used instead of page table in the trampoline
648 * memory.
649 */
650SYM_DATA_LOCAL(top_pgtable, .fill PAGE_SIZE, 1, 0)