Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SMP initialisation and IPI support
   4 * Based on arch/arm/kernel/smp.c
   5 *
   6 * Copyright (C) 2012 ARM Ltd.
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/arm_sdei.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/hotplug.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/interrupt.h>
  18#include <linux/cache.h>
  19#include <linux/profile.h>
  20#include <linux/errno.h>
  21#include <linux/mm.h>
  22#include <linux/err.h>
  23#include <linux/cpu.h>
  24#include <linux/smp.h>
  25#include <linux/seq_file.h>
  26#include <linux/irq.h>
  27#include <linux/irqchip/arm-gic-v3.h>
  28#include <linux/percpu.h>
  29#include <linux/clockchips.h>
  30#include <linux/completion.h>
  31#include <linux/of.h>
  32#include <linux/irq_work.h>
  33#include <linux/kernel_stat.h>
  34#include <linux/kexec.h>
  35#include <linux/kgdb.h>
  36#include <linux/kvm_host.h>
  37#include <linux/nmi.h>
  38
  39#include <asm/alternative.h>
  40#include <asm/atomic.h>
  41#include <asm/cacheflush.h>
  42#include <asm/cpu.h>
  43#include <asm/cputype.h>
  44#include <asm/cpu_ops.h>
  45#include <asm/daifflags.h>
  46#include <asm/kvm_mmu.h>
  47#include <asm/mmu_context.h>
  48#include <asm/numa.h>
  49#include <asm/processor.h>
  50#include <asm/smp_plat.h>
  51#include <asm/sections.h>
  52#include <asm/tlbflush.h>
  53#include <asm/ptrace.h>
  54#include <asm/virt.h>
  55
  56#include <trace/events/ipi.h>
  57
  58DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
  59EXPORT_PER_CPU_SYMBOL(cpu_number);
  60
  61/*
  62 * as from 2.5, kernels no longer have an init_tasks structure
  63 * so we need some other way of telling a new secondary core
  64 * where to place its SVC stack
  65 */
  66struct secondary_data secondary_data;
  67/* Number of CPUs which aren't online, but looping in kernel text. */
  68static int cpus_stuck_in_kernel;
  69
  70enum ipi_msg_type {
  71	IPI_RESCHEDULE,
  72	IPI_CALL_FUNC,
  73	IPI_CPU_STOP,
  74	IPI_CPU_CRASH_STOP,
  75	IPI_TIMER,
  76	IPI_IRQ_WORK,
  77	NR_IPI,
  78	/*
  79	 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
  80	 * with trace_ipi_*
  81	 */
  82	IPI_CPU_BACKTRACE = NR_IPI,
  83	IPI_KGDB_ROUNDUP,
  84	MAX_IPI
  85};
  86
  87static int ipi_irq_base __ro_after_init;
  88static int nr_ipi __ro_after_init = NR_IPI;
  89static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
  90
  91static void ipi_setup(int cpu);
  92
  93#ifdef CONFIG_HOTPLUG_CPU
  94static void ipi_teardown(int cpu);
  95static int op_cpu_kill(unsigned int cpu);
  96#else
  97static inline int op_cpu_kill(unsigned int cpu)
  98{
  99	return -ENOSYS;
 100}
 101#endif
 102
 103
 104/*
 105 * Boot a secondary CPU, and assign it the specified idle task.
 106 * This also gives us the initial stack to use for this CPU.
 107 */
 108static int boot_secondary(unsigned int cpu, struct task_struct *idle)
 109{
 110	const struct cpu_operations *ops = get_cpu_ops(cpu);
 111
 112	if (ops->cpu_boot)
 113		return ops->cpu_boot(cpu);
 114
 115	return -EOPNOTSUPP;
 116}
 117
 118static DECLARE_COMPLETION(cpu_running);
 119
 120int __cpu_up(unsigned int cpu, struct task_struct *idle)
 121{
 122	int ret;
 123	long status;
 124
 125	/*
 126	 * We need to tell the secondary core where to find its stack and the
 127	 * page tables.
 128	 */
 129	secondary_data.task = idle;
 130	update_cpu_boot_status(CPU_MMU_OFF);
 131
 132	/* Now bring the CPU into our world */
 133	ret = boot_secondary(cpu, idle);
 134	if (ret) {
 135		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 136		return ret;
 137	}
 138
 139	/*
 140	 * CPU was successfully started, wait for it to come online or
 141	 * time out.
 142	 */
 143	wait_for_completion_timeout(&cpu_running,
 144				    msecs_to_jiffies(5000));
 145	if (cpu_online(cpu))
 146		return 0;
 147
 148	pr_crit("CPU%u: failed to come online\n", cpu);
 149	secondary_data.task = NULL;
 150	status = READ_ONCE(secondary_data.status);
 151	if (status == CPU_MMU_OFF)
 152		status = READ_ONCE(__early_cpu_boot_status);
 153
 154	switch (status & CPU_BOOT_STATUS_MASK) {
 155	default:
 156		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
 157		       cpu, status);
 158		cpus_stuck_in_kernel++;
 159		break;
 160	case CPU_KILL_ME:
 161		if (!op_cpu_kill(cpu)) {
 162			pr_crit("CPU%u: died during early boot\n", cpu);
 163			break;
 164		}
 165		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
 166		fallthrough;
 167	case CPU_STUCK_IN_KERNEL:
 168		pr_crit("CPU%u: is stuck in kernel\n", cpu);
 169		if (status & CPU_STUCK_REASON_52_BIT_VA)
 170			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
 171		if (status & CPU_STUCK_REASON_NO_GRAN) {
 172			pr_crit("CPU%u: does not support %luK granule\n",
 173				cpu, PAGE_SIZE / SZ_1K);
 174		}
 175		cpus_stuck_in_kernel++;
 176		break;
 177	case CPU_PANIC_KERNEL:
 178		panic("CPU%u detected unsupported configuration\n", cpu);
 179	}
 180
 181	return -EIO;
 182}
 183
 184static void init_gic_priority_masking(void)
 185{
 186	u32 cpuflags;
 187
 188	if (WARN_ON(!gic_enable_sre()))
 189		return;
 190
 191	cpuflags = read_sysreg(daif);
 192
 193	WARN_ON(!(cpuflags & PSR_I_BIT));
 194	WARN_ON(!(cpuflags & PSR_F_BIT));
 195
 196	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
 197}
 198
 199/*
 200 * This is the secondary CPU boot entry.  We're using this CPUs
 201 * idle thread stack, but a set of temporary page tables.
 202 */
 203asmlinkage notrace void secondary_start_kernel(void)
 204{
 205	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 206	struct mm_struct *mm = &init_mm;
 207	const struct cpu_operations *ops;
 208	unsigned int cpu = smp_processor_id();
 209
 210	/*
 211	 * All kernel threads share the same mm context; grab a
 212	 * reference and switch to it.
 213	 */
 214	mmgrab(mm);
 215	current->active_mm = mm;
 216
 217	/*
 218	 * TTBR0 is only used for the identity mapping at this stage. Make it
 219	 * point to zero page to avoid speculatively fetching new entries.
 220	 */
 221	cpu_uninstall_idmap();
 222
 223	if (system_uses_irq_prio_masking())
 224		init_gic_priority_masking();
 225
 226	rcutree_report_cpu_starting(cpu);
 227	trace_hardirqs_off();
 228
 229	/*
 230	 * If the system has established the capabilities, make sure
 231	 * this CPU ticks all of those. If it doesn't, the CPU will
 232	 * fail to come online.
 233	 */
 234	check_local_cpu_capabilities();
 235
 236	ops = get_cpu_ops(cpu);
 237	if (ops->cpu_postboot)
 238		ops->cpu_postboot();
 239
 240	/*
 241	 * Log the CPU info before it is marked online and might get read.
 242	 */
 243	cpuinfo_store_cpu();
 244	store_cpu_topology(cpu);
 245
 246	/*
 247	 * Enable GIC and timers.
 248	 */
 249	notify_cpu_starting(cpu);
 250
 251	ipi_setup(cpu);
 252
 253	numa_add_cpu(cpu);
 254
 255	/*
 256	 * OK, now it's safe to let the boot CPU continue.  Wait for
 257	 * the CPU migration code to notice that the CPU is online
 258	 * before we continue.
 259	 */
 260	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
 261					 cpu, (unsigned long)mpidr,
 262					 read_cpuid_id());
 263	update_cpu_boot_status(CPU_BOOT_SUCCESS);
 264	set_cpu_online(cpu, true);
 265	complete(&cpu_running);
 266
 267	local_daif_restore(DAIF_PROCCTX);
 268
 269	/*
 270	 * OK, it's off to the idle thread for us
 271	 */
 272	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 273}
 274
 275#ifdef CONFIG_HOTPLUG_CPU
 276static int op_cpu_disable(unsigned int cpu)
 277{
 278	const struct cpu_operations *ops = get_cpu_ops(cpu);
 279
 280	/*
 281	 * If we don't have a cpu_die method, abort before we reach the point
 282	 * of no return. CPU0 may not have an cpu_ops, so test for it.
 283	 */
 284	if (!ops || !ops->cpu_die)
 285		return -EOPNOTSUPP;
 286
 287	/*
 288	 * We may need to abort a hot unplug for some other mechanism-specific
 289	 * reason.
 290	 */
 291	if (ops->cpu_disable)
 292		return ops->cpu_disable(cpu);
 293
 294	return 0;
 295}
 296
 297/*
 298 * __cpu_disable runs on the processor to be shutdown.
 299 */
 300int __cpu_disable(void)
 301{
 302	unsigned int cpu = smp_processor_id();
 303	int ret;
 304
 305	ret = op_cpu_disable(cpu);
 306	if (ret)
 307		return ret;
 308
 309	remove_cpu_topology(cpu);
 310	numa_remove_cpu(cpu);
 311
 312	/*
 313	 * Take this CPU offline.  Once we clear this, we can't return,
 314	 * and we must not schedule until we're ready to give up the cpu.
 315	 */
 316	set_cpu_online(cpu, false);
 317	ipi_teardown(cpu);
 318
 319	/*
 320	 * OK - migrate IRQs away from this CPU
 321	 */
 322	irq_migrate_all_off_this_cpu();
 323
 324	return 0;
 325}
 326
 327static int op_cpu_kill(unsigned int cpu)
 328{
 329	const struct cpu_operations *ops = get_cpu_ops(cpu);
 330
 331	/*
 332	 * If we have no means of synchronising with the dying CPU, then assume
 333	 * that it is really dead. We can only wait for an arbitrary length of
 334	 * time and hope that it's dead, so let's skip the wait and just hope.
 335	 */
 336	if (!ops->cpu_kill)
 337		return 0;
 338
 339	return ops->cpu_kill(cpu);
 340}
 341
 342/*
 343 * Called on the thread which is asking for a CPU to be shutdown after the
 344 * shutdown completed.
 345 */
 346void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
 347{
 348	int err;
 349
 350	pr_debug("CPU%u: shutdown\n", cpu);
 351
 352	/*
 353	 * Now that the dying CPU is beyond the point of no return w.r.t.
 354	 * in-kernel synchronisation, try to get the firwmare to help us to
 355	 * verify that it has really left the kernel before we consider
 356	 * clobbering anything it might still be using.
 357	 */
 358	err = op_cpu_kill(cpu);
 359	if (err)
 360		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
 361}
 362
 363/*
 364 * Called from the idle thread for the CPU which has been shutdown.
 365 *
 366 */
 367void __noreturn cpu_die(void)
 368{
 369	unsigned int cpu = smp_processor_id();
 370	const struct cpu_operations *ops = get_cpu_ops(cpu);
 371
 372	idle_task_exit();
 373
 374	local_daif_mask();
 375
 376	/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
 377	cpuhp_ap_report_dead();
 378
 379	/*
 380	 * Actually shutdown the CPU. This must never fail. The specific hotplug
 381	 * mechanism must perform all required cache maintenance to ensure that
 382	 * no dirty lines are lost in the process of shutting down the CPU.
 383	 */
 384	ops->cpu_die(cpu);
 385
 386	BUG();
 387}
 388#endif
 389
 390static void __cpu_try_die(int cpu)
 391{
 392#ifdef CONFIG_HOTPLUG_CPU
 393	const struct cpu_operations *ops = get_cpu_ops(cpu);
 394
 395	if (ops && ops->cpu_die)
 396		ops->cpu_die(cpu);
 397#endif
 398}
 399
 400/*
 401 * Kill the calling secondary CPU, early in bringup before it is turned
 402 * online.
 403 */
 404void __noreturn cpu_die_early(void)
 405{
 406	int cpu = smp_processor_id();
 407
 408	pr_crit("CPU%d: will not boot\n", cpu);
 409
 410	/* Mark this CPU absent */
 411	set_cpu_present(cpu, 0);
 412	rcutree_report_cpu_dead();
 413
 414	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 415		update_cpu_boot_status(CPU_KILL_ME);
 416		__cpu_try_die(cpu);
 417	}
 418
 419	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
 420
 421	cpu_park_loop();
 422}
 423
 424static void __init hyp_mode_check(void)
 425{
 426	if (is_hyp_mode_available())
 427		pr_info("CPU: All CPU(s) started at EL2\n");
 428	else if (is_hyp_mode_mismatched())
 429		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
 430			   "CPU: CPUs started in inconsistent modes");
 431	else
 432		pr_info("CPU: All CPU(s) started at EL1\n");
 433	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
 434		kvm_compute_layout();
 435		kvm_apply_hyp_relocations();
 436	}
 437}
 438
 439void __init smp_cpus_done(unsigned int max_cpus)
 440{
 441	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
 442	hyp_mode_check();
 443	setup_system_features();
 444	setup_user_features();
 445	mark_linear_text_alias_ro();
 446}
 447
 448void __init smp_prepare_boot_cpu(void)
 449{
 450	/*
 451	 * The runtime per-cpu areas have been allocated by
 452	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
 453	 * freed shortly, so we must move over to the runtime per-cpu area.
 454	 */
 455	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 456
 457	cpuinfo_store_boot_cpu();
 458	setup_boot_cpu_features();
 459
 460	/* Conditionally switch to GIC PMR for interrupt masking */
 461	if (system_uses_irq_prio_masking())
 462		init_gic_priority_masking();
 463
 464	kasan_init_hw_tags();
 465}
 466
 467/*
 468 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
 469 * entries and check for duplicates. If any is found just ignore the
 470 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
 471 * matching valid MPIDR values.
 472 */
 473static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
 474{
 475	unsigned int i;
 476
 477	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
 478		if (cpu_logical_map(i) == hwid)
 479			return true;
 480	return false;
 481}
 482
 483/*
 484 * Initialize cpu operations for a logical cpu and
 485 * set it in the possible mask on success
 486 */
 487static int __init smp_cpu_setup(int cpu)
 488{
 489	const struct cpu_operations *ops;
 490
 491	if (init_cpu_ops(cpu))
 492		return -ENODEV;
 493
 494	ops = get_cpu_ops(cpu);
 495	if (ops->cpu_init(cpu))
 496		return -ENODEV;
 497
 498	set_cpu_possible(cpu, true);
 499
 500	return 0;
 501}
 502
 503static bool bootcpu_valid __initdata;
 504static unsigned int cpu_count = 1;
 505
 506#ifdef CONFIG_ACPI
 507static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
 508
 509struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
 510{
 511	return &cpu_madt_gicc[cpu];
 512}
 513EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
 514
 515/*
 516 * acpi_map_gic_cpu_interface - parse processor MADT entry
 517 *
 518 * Carry out sanity checks on MADT processor entry and initialize
 519 * cpu_logical_map on success
 520 */
 521static void __init
 522acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
 523{
 524	u64 hwid = processor->arm_mpidr;
 525
 526	if (!acpi_gicc_is_usable(processor)) {
 527		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
 528		return;
 529	}
 530
 531	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
 532		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
 533		return;
 534	}
 535
 536	if (is_mpidr_duplicate(cpu_count, hwid)) {
 537		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
 538		return;
 539	}
 540
 541	/* Check if GICC structure of boot CPU is available in the MADT */
 542	if (cpu_logical_map(0) == hwid) {
 543		if (bootcpu_valid) {
 544			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
 545			       hwid);
 546			return;
 547		}
 548		bootcpu_valid = true;
 549		cpu_madt_gicc[0] = *processor;
 550		return;
 551	}
 552
 553	if (cpu_count >= NR_CPUS)
 554		return;
 555
 556	/* map the logical cpu id to cpu MPIDR */
 557	set_cpu_logical_map(cpu_count, hwid);
 558
 559	cpu_madt_gicc[cpu_count] = *processor;
 560
 561	/*
 562	 * Set-up the ACPI parking protocol cpu entries
 563	 * while initializing the cpu_logical_map to
 564	 * avoid parsing MADT entries multiple times for
 565	 * nothing (ie a valid cpu_logical_map entry should
 566	 * contain a valid parking protocol data set to
 567	 * initialize the cpu if the parking protocol is
 568	 * the only available enable method).
 569	 */
 570	acpi_set_mailbox_entry(cpu_count, processor);
 571
 572	cpu_count++;
 573}
 574
 575static int __init
 576acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
 577			     const unsigned long end)
 578{
 579	struct acpi_madt_generic_interrupt *processor;
 580
 581	processor = (struct acpi_madt_generic_interrupt *)header;
 582	if (BAD_MADT_GICC_ENTRY(processor, end))
 583		return -EINVAL;
 584
 585	acpi_table_print_madt_entry(&header->common);
 586
 587	acpi_map_gic_cpu_interface(processor);
 588
 589	return 0;
 590}
 591
 592static void __init acpi_parse_and_init_cpus(void)
 593{
 594	int i;
 595
 596	/*
 597	 * do a walk of MADT to determine how many CPUs
 598	 * we have including disabled CPUs, and get information
 599	 * we need for SMP init.
 600	 */
 601	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
 602				      acpi_parse_gic_cpu_interface, 0);
 603
 604	/*
 605	 * In ACPI, SMP and CPU NUMA information is provided in separate
 606	 * static tables, namely the MADT and the SRAT.
 607	 *
 608	 * Thus, it is simpler to first create the cpu logical map through
 609	 * an MADT walk and then map the logical cpus to their node ids
 610	 * as separate steps.
 611	 */
 612	acpi_map_cpus_to_nodes();
 613
 614	for (i = 0; i < nr_cpu_ids; i++)
 615		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
 616}
 617#else
 618#define acpi_parse_and_init_cpus(...)	do { } while (0)
 619#endif
 620
 621/*
 622 * Enumerate the possible CPU set from the device tree and build the
 623 * cpu logical map array containing MPIDR values related to logical
 624 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
 625 */
 626static void __init of_parse_and_init_cpus(void)
 627{
 628	struct device_node *dn;
 629
 630	for_each_of_cpu_node(dn) {
 631		u64 hwid = of_get_cpu_hwid(dn, 0);
 632
 633		if (hwid & ~MPIDR_HWID_BITMASK)
 634			goto next;
 635
 636		if (is_mpidr_duplicate(cpu_count, hwid)) {
 637			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
 638				dn);
 639			goto next;
 640		}
 641
 642		/*
 643		 * The numbering scheme requires that the boot CPU
 644		 * must be assigned logical id 0. Record it so that
 645		 * the logical map built from DT is validated and can
 646		 * be used.
 647		 */
 648		if (hwid == cpu_logical_map(0)) {
 649			if (bootcpu_valid) {
 650				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
 651					dn);
 652				goto next;
 653			}
 654
 655			bootcpu_valid = true;
 656			early_map_cpu_to_node(0, of_node_to_nid(dn));
 657
 658			/*
 659			 * cpu_logical_map has already been
 660			 * initialized and the boot cpu doesn't need
 661			 * the enable-method so continue without
 662			 * incrementing cpu.
 663			 */
 664			continue;
 665		}
 666
 667		if (cpu_count >= NR_CPUS)
 668			goto next;
 669
 670		pr_debug("cpu logical map 0x%llx\n", hwid);
 671		set_cpu_logical_map(cpu_count, hwid);
 672
 673		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
 674next:
 675		cpu_count++;
 676	}
 677}
 678
 679/*
 680 * Enumerate the possible CPU set from the device tree or ACPI and build the
 681 * cpu logical map array containing MPIDR values related to logical
 682 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
 683 */
 684void __init smp_init_cpus(void)
 685{
 686	int i;
 687
 688	if (acpi_disabled)
 689		of_parse_and_init_cpus();
 690	else
 691		acpi_parse_and_init_cpus();
 692
 693	if (cpu_count > nr_cpu_ids)
 694		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
 695			cpu_count, nr_cpu_ids);
 696
 697	if (!bootcpu_valid) {
 698		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
 699		return;
 700	}
 701
 702	/*
 703	 * We need to set the cpu_logical_map entries before enabling
 704	 * the cpus so that cpu processor description entries (DT cpu nodes
 705	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
 706	 * with entries in cpu_logical_map while initializing the cpus.
 707	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
 708	 */
 709	for (i = 1; i < nr_cpu_ids; i++) {
 710		if (cpu_logical_map(i) != INVALID_HWID) {
 711			if (smp_cpu_setup(i))
 712				set_cpu_logical_map(i, INVALID_HWID);
 713		}
 714	}
 715}
 716
 717void __init smp_prepare_cpus(unsigned int max_cpus)
 718{
 719	const struct cpu_operations *ops;
 720	int err;
 721	unsigned int cpu;
 722	unsigned int this_cpu;
 723
 724	init_cpu_topology();
 725
 726	this_cpu = smp_processor_id();
 727	store_cpu_topology(this_cpu);
 728	numa_store_cpu_info(this_cpu);
 729	numa_add_cpu(this_cpu);
 730
 731	/*
 732	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
 733	 * secondary CPUs present.
 734	 */
 735	if (max_cpus == 0)
 736		return;
 737
 738	/*
 739	 * Initialise the present map (which describes the set of CPUs
 740	 * actually populated at the present time) and release the
 741	 * secondaries from the bootloader.
 742	 */
 743	for_each_possible_cpu(cpu) {
 744
 745		per_cpu(cpu_number, cpu) = cpu;
 746
 747		if (cpu == smp_processor_id())
 748			continue;
 749
 750		ops = get_cpu_ops(cpu);
 751		if (!ops)
 752			continue;
 753
 754		err = ops->cpu_prepare(cpu);
 755		if (err)
 756			continue;
 757
 758		set_cpu_present(cpu, true);
 759		numa_store_cpu_info(cpu);
 760	}
 761}
 762
 763static const char *ipi_types[NR_IPI] __tracepoint_string = {
 764	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
 765	[IPI_CALL_FUNC]		= "Function call interrupts",
 766	[IPI_CPU_STOP]		= "CPU stop interrupts",
 767	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
 768	[IPI_TIMER]		= "Timer broadcast interrupts",
 769	[IPI_IRQ_WORK]		= "IRQ work interrupts",
 770};
 771
 772static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
 773
 774unsigned long irq_err_count;
 775
 776int arch_show_interrupts(struct seq_file *p, int prec)
 777{
 778	unsigned int cpu, i;
 779
 780	for (i = 0; i < NR_IPI; i++) {
 781		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
 782			   prec >= 4 ? " " : "");
 783		for_each_online_cpu(cpu)
 784			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
 785		seq_printf(p, "      %s\n", ipi_types[i]);
 786	}
 787
 788	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
 789	return 0;
 790}
 791
 792void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 793{
 794	smp_cross_call(mask, IPI_CALL_FUNC);
 795}
 796
 797void arch_send_call_function_single_ipi(int cpu)
 798{
 799	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 800}
 801
 802#ifdef CONFIG_IRQ_WORK
 803void arch_irq_work_raise(void)
 804{
 805	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 806}
 807#endif
 808
 809static void __noreturn local_cpu_stop(void)
 810{
 811	set_cpu_online(smp_processor_id(), false);
 812
 813	local_daif_mask();
 814	sdei_mask_local_cpu();
 815	cpu_park_loop();
 816}
 817
 818/*
 819 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
 820 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
 821 * CPUs that have already stopped themselves.
 822 */
 823void __noreturn panic_smp_self_stop(void)
 824{
 825	local_cpu_stop();
 826}
 827
 828#ifdef CONFIG_KEXEC_CORE
 829static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
 830#endif
 831
 832static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
 833{
 834#ifdef CONFIG_KEXEC_CORE
 835	crash_save_cpu(regs, cpu);
 836
 837	atomic_dec(&waiting_for_crash_ipi);
 838
 839	local_irq_disable();
 840	sdei_mask_local_cpu();
 841
 842	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 843		__cpu_try_die(cpu);
 844
 845	/* just in case */
 846	cpu_park_loop();
 847#else
 848	BUG();
 849#endif
 850}
 851
 852static void arm64_backtrace_ipi(cpumask_t *mask)
 853{
 854	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
 855}
 856
 857void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
 858{
 859	/*
 860	 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
 861	 * nothing about it truly needs to be implemented using an NMI, it's
 862	 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
 863	 * returned false our backtrace attempt will just use a regular IPI.
 864	 */
 865	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
 866}
 867
 868#ifdef CONFIG_KGDB
 869void kgdb_roundup_cpus(void)
 870{
 871	int this_cpu = raw_smp_processor_id();
 872	int cpu;
 873
 874	for_each_online_cpu(cpu) {
 875		/* No need to roundup ourselves */
 876		if (cpu == this_cpu)
 877			continue;
 878
 879		__ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
 880	}
 881}
 882#endif
 883
 884/*
 885 * Main handler for inter-processor interrupts
 886 */
 887static void do_handle_IPI(int ipinr)
 888{
 889	unsigned int cpu = smp_processor_id();
 890
 891	if ((unsigned)ipinr < NR_IPI)
 892		trace_ipi_entry(ipi_types[ipinr]);
 893
 894	switch (ipinr) {
 895	case IPI_RESCHEDULE:
 896		scheduler_ipi();
 897		break;
 898
 899	case IPI_CALL_FUNC:
 900		generic_smp_call_function_interrupt();
 901		break;
 902
 903	case IPI_CPU_STOP:
 904		local_cpu_stop();
 905		break;
 906
 907	case IPI_CPU_CRASH_STOP:
 908		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
 909			ipi_cpu_crash_stop(cpu, get_irq_regs());
 910
 911			unreachable();
 912		}
 913		break;
 914
 915#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 916	case IPI_TIMER:
 917		tick_receive_broadcast();
 918		break;
 919#endif
 920
 921#ifdef CONFIG_IRQ_WORK
 922	case IPI_IRQ_WORK:
 923		irq_work_run();
 924		break;
 925#endif
 926
 927	case IPI_CPU_BACKTRACE:
 928		/*
 929		 * NOTE: in some cases this _won't_ be NMI context. See the
 930		 * comment in arch_trigger_cpumask_backtrace().
 931		 */
 932		nmi_cpu_backtrace(get_irq_regs());
 933		break;
 934
 935	case IPI_KGDB_ROUNDUP:
 936		kgdb_nmicallback(cpu, get_irq_regs());
 937		break;
 938
 939	default:
 940		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
 941		break;
 942	}
 943
 944	if ((unsigned)ipinr < NR_IPI)
 945		trace_ipi_exit(ipi_types[ipinr]);
 946}
 947
 948static irqreturn_t ipi_handler(int irq, void *data)
 949{
 950	do_handle_IPI(irq - ipi_irq_base);
 951	return IRQ_HANDLED;
 952}
 953
 954static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 955{
 956	trace_ipi_raise(target, ipi_types[ipinr]);
 957	__ipi_send_mask(ipi_desc[ipinr], target);
 958}
 959
 960static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
 961{
 962	if (!system_uses_irq_prio_masking())
 963		return false;
 964
 965	switch (ipi) {
 966	case IPI_CPU_STOP:
 967	case IPI_CPU_CRASH_STOP:
 968	case IPI_CPU_BACKTRACE:
 969	case IPI_KGDB_ROUNDUP:
 970		return true;
 971	default:
 972		return false;
 973	}
 974}
 975
 976static void ipi_setup(int cpu)
 977{
 978	int i;
 979
 980	if (WARN_ON_ONCE(!ipi_irq_base))
 981		return;
 982
 983	for (i = 0; i < nr_ipi; i++) {
 984		if (ipi_should_be_nmi(i)) {
 985			prepare_percpu_nmi(ipi_irq_base + i);
 986			enable_percpu_nmi(ipi_irq_base + i, 0);
 987		} else {
 988			enable_percpu_irq(ipi_irq_base + i, 0);
 989		}
 990	}
 991}
 992
 993#ifdef CONFIG_HOTPLUG_CPU
 994static void ipi_teardown(int cpu)
 995{
 996	int i;
 997
 998	if (WARN_ON_ONCE(!ipi_irq_base))
 999		return;
1000
1001	for (i = 0; i < nr_ipi; i++) {
1002		if (ipi_should_be_nmi(i)) {
1003			disable_percpu_nmi(ipi_irq_base + i);
1004			teardown_percpu_nmi(ipi_irq_base + i);
1005		} else {
1006			disable_percpu_irq(ipi_irq_base + i);
1007		}
1008	}
1009}
1010#endif
1011
1012void __init set_smp_ipi_range(int ipi_base, int n)
1013{
1014	int i;
1015
1016	WARN_ON(n < MAX_IPI);
1017	nr_ipi = min(n, MAX_IPI);
1018
1019	for (i = 0; i < nr_ipi; i++) {
1020		int err;
1021
1022		if (ipi_should_be_nmi(i)) {
1023			err = request_percpu_nmi(ipi_base + i, ipi_handler,
1024						 "IPI", &cpu_number);
1025			WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1026			     i, err);
1027		} else {
1028			err = request_percpu_irq(ipi_base + i, ipi_handler,
1029						 "IPI", &cpu_number);
1030			WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1031			     i, err);
1032		}
1033
1034		ipi_desc[i] = irq_to_desc(ipi_base + i);
1035		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1036	}
1037
1038	ipi_irq_base = ipi_base;
1039
1040	/* Setup the boot CPU immediately */
1041	ipi_setup(smp_processor_id());
1042}
1043
1044void arch_smp_send_reschedule(int cpu)
1045{
1046	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1047}
1048
1049#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
1050void arch_send_wakeup_ipi(unsigned int cpu)
1051{
1052	/*
1053	 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1054	 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1055	 */
1056	smp_send_reschedule(cpu);
1057}
1058#endif
1059
1060#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1061void tick_broadcast(const struct cpumask *mask)
1062{
1063	smp_cross_call(mask, IPI_TIMER);
1064}
1065#endif
1066
1067/*
1068 * The number of CPUs online, not counting this CPU (which may not be
1069 * fully online and so not counted in num_online_cpus()).
1070 */
1071static inline unsigned int num_other_online_cpus(void)
1072{
1073	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1074
1075	return num_online_cpus() - this_cpu_online;
1076}
1077
1078void smp_send_stop(void)
1079{
1080	unsigned long timeout;
1081
1082	if (num_other_online_cpus()) {
1083		cpumask_t mask;
1084
1085		cpumask_copy(&mask, cpu_online_mask);
1086		cpumask_clear_cpu(smp_processor_id(), &mask);
1087
1088		if (system_state <= SYSTEM_RUNNING)
1089			pr_crit("SMP: stopping secondary CPUs\n");
1090		smp_cross_call(&mask, IPI_CPU_STOP);
1091	}
1092
1093	/* Wait up to one second for other CPUs to stop */
1094	timeout = USEC_PER_SEC;
1095	while (num_other_online_cpus() && timeout--)
1096		udelay(1);
1097
1098	if (num_other_online_cpus())
1099		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1100			cpumask_pr_args(cpu_online_mask));
1101
1102	sdei_mask_local_cpu();
1103}
1104
1105#ifdef CONFIG_KEXEC_CORE
1106void crash_smp_send_stop(void)
1107{
1108	static int cpus_stopped;
1109	cpumask_t mask;
1110	unsigned long timeout;
1111
1112	/*
1113	 * This function can be called twice in panic path, but obviously
1114	 * we execute this only once.
1115	 */
1116	if (cpus_stopped)
1117		return;
1118
1119	cpus_stopped = 1;
1120
1121	/*
1122	 * If this cpu is the only one alive at this point in time, online or
1123	 * not, there are no stop messages to be sent around, so just back out.
1124	 */
1125	if (num_other_online_cpus() == 0)
1126		goto skip_ipi;
1127
1128	cpumask_copy(&mask, cpu_online_mask);
1129	cpumask_clear_cpu(smp_processor_id(), &mask);
1130
1131	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1132
1133	pr_crit("SMP: stopping secondary CPUs\n");
1134	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1135
1136	/* Wait up to one second for other CPUs to stop */
1137	timeout = USEC_PER_SEC;
1138	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1139		udelay(1);
1140
1141	if (atomic_read(&waiting_for_crash_ipi) > 0)
1142		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1143			cpumask_pr_args(&mask));
1144
1145skip_ipi:
1146	sdei_mask_local_cpu();
1147	sdei_handler_abort();
1148}
1149
1150bool smp_crash_stop_failed(void)
1151{
1152	return (atomic_read(&waiting_for_crash_ipi) > 0);
1153}
1154#endif
1155
1156static bool have_cpu_die(void)
1157{
1158#ifdef CONFIG_HOTPLUG_CPU
1159	int any_cpu = raw_smp_processor_id();
1160	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1161
1162	if (ops && ops->cpu_die)
1163		return true;
1164#endif
1165	return false;
1166}
1167
1168bool cpus_are_stuck_in_kernel(void)
1169{
1170	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1171
1172	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1173		is_protected_kvm_enabled();
1174}