Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * FP/SIMD context switching and fault handling
   4 *
   5 * Copyright (C) 2012 ARM Ltd.
   6 * Author: Catalin Marinas <catalin.marinas@arm.com>
   7 */
   8
   9#include <linux/bitmap.h>
  10#include <linux/bitops.h>
  11#include <linux/bottom_half.h>
  12#include <linux/bug.h>
  13#include <linux/cache.h>
  14#include <linux/compat.h>
  15#include <linux/compiler.h>
  16#include <linux/cpu.h>
  17#include <linux/cpu_pm.h>
  18#include <linux/ctype.h>
  19#include <linux/kernel.h>
  20#include <linux/linkage.h>
  21#include <linux/irqflags.h>
  22#include <linux/init.h>
  23#include <linux/percpu.h>
  24#include <linux/prctl.h>
  25#include <linux/preempt.h>
  26#include <linux/ptrace.h>
  27#include <linux/sched/signal.h>
  28#include <linux/sched/task_stack.h>
  29#include <linux/signal.h>
  30#include <linux/slab.h>
  31#include <linux/stddef.h>
  32#include <linux/sysctl.h>
  33#include <linux/swab.h>
  34
  35#include <asm/esr.h>
  36#include <asm/exception.h>
  37#include <asm/fpsimd.h>
  38#include <asm/cpufeature.h>
  39#include <asm/cputype.h>
  40#include <asm/neon.h>
  41#include <asm/processor.h>
  42#include <asm/simd.h>
  43#include <asm/sigcontext.h>
  44#include <asm/sysreg.h>
  45#include <asm/traps.h>
  46#include <asm/virt.h>
  47
  48#define FPEXC_IOF	(1 << 0)
  49#define FPEXC_DZF	(1 << 1)
  50#define FPEXC_OFF	(1 << 2)
  51#define FPEXC_UFF	(1 << 3)
  52#define FPEXC_IXF	(1 << 4)
  53#define FPEXC_IDF	(1 << 7)
  54
  55/*
  56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
  57 *
  58 * In order to reduce the number of times the FPSIMD state is needlessly saved
  59 * and restored, we need to keep track of two things:
  60 * (a) for each task, we need to remember which CPU was the last one to have
  61 *     the task's FPSIMD state loaded into its FPSIMD registers;
  62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
  63 *     been loaded into its FPSIMD registers most recently, or whether it has
  64 *     been used to perform kernel mode NEON in the meantime.
  65 *
  66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
  67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
  68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
  69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
  70 * the most recently, or NULL if kernel mode NEON has been performed after that.
  71 *
  72 * With this in place, we no longer have to restore the next FPSIMD state right
  73 * when switching between tasks. Instead, we can defer this check to userland
  74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
  75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
  76 * can omit the FPSIMD restore.
  77 *
  78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
  79 * indicate whether or not the userland FPSIMD state of the current task is
  80 * present in the registers. The flag is set unless the FPSIMD registers of this
  81 * CPU currently contain the most recent userland FPSIMD state of the current
  82 * task. If the task is behaving as a VMM, then this is will be managed by
  83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
  84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
  85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
  86 * flag the register state as invalid.
  87 *
  88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
  89 * called from softirq context, which will save the task's FPSIMD context back
  90 * to task_struct. To prevent this from racing with the manipulation of the
  91 * task's FPSIMD state from task context and thereby corrupting the state, it
  92 * is necessary to protect any manipulation of a task's fpsimd_state or
  93 * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
  94 * softirq servicing entirely until put_cpu_fpsimd_context() is called.
  95 *
  96 * For a certain task, the sequence may look something like this:
  97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
  98 *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
  99 *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
 100 *   cleared, otherwise it is set;
 101 *
 102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
 103 *   userland FPSIMD state is copied from memory to the registers, the task's
 104 *   fpsimd_cpu field is set to the id of the current CPU, the current
 105 *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
 106 *   TIF_FOREIGN_FPSTATE flag is cleared;
 107 *
 108 * - the task executes an ordinary syscall; upon return to userland, the
 109 *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
 110 *   restored;
 111 *
 112 * - the task executes a syscall which executes some NEON instructions; this is
 113 *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
 114 *   register contents to memory, clears the fpsimd_last_state per-cpu variable
 115 *   and sets the TIF_FOREIGN_FPSTATE flag;
 116 *
 117 * - the task gets preempted after kernel_neon_end() is called; as we have not
 118 *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
 119 *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
 120 */
 121
 122static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
 123
 124__ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
 125#ifdef CONFIG_ARM64_SVE
 126	[ARM64_VEC_SVE] = {
 127		.type			= ARM64_VEC_SVE,
 128		.name			= "SVE",
 129		.min_vl			= SVE_VL_MIN,
 130		.max_vl			= SVE_VL_MIN,
 131		.max_virtualisable_vl	= SVE_VL_MIN,
 132	},
 133#endif
 134#ifdef CONFIG_ARM64_SME
 135	[ARM64_VEC_SME] = {
 136		.type			= ARM64_VEC_SME,
 137		.name			= "SME",
 138	},
 139#endif
 140};
 141
 142static unsigned int vec_vl_inherit_flag(enum vec_type type)
 143{
 144	switch (type) {
 145	case ARM64_VEC_SVE:
 146		return TIF_SVE_VL_INHERIT;
 147	case ARM64_VEC_SME:
 148		return TIF_SME_VL_INHERIT;
 149	default:
 150		WARN_ON_ONCE(1);
 151		return 0;
 152	}
 153}
 154
 155struct vl_config {
 156	int __default_vl;		/* Default VL for tasks */
 157};
 158
 159static struct vl_config vl_config[ARM64_VEC_MAX];
 160
 161static inline int get_default_vl(enum vec_type type)
 162{
 163	return READ_ONCE(vl_config[type].__default_vl);
 164}
 165
 166#ifdef CONFIG_ARM64_SVE
 167
 168static inline int get_sve_default_vl(void)
 169{
 170	return get_default_vl(ARM64_VEC_SVE);
 171}
 172
 173static inline void set_default_vl(enum vec_type type, int val)
 174{
 175	WRITE_ONCE(vl_config[type].__default_vl, val);
 176}
 177
 178static inline void set_sve_default_vl(int val)
 179{
 180	set_default_vl(ARM64_VEC_SVE, val);
 181}
 182
 183static void __percpu *efi_sve_state;
 184
 185#else /* ! CONFIG_ARM64_SVE */
 186
 187/* Dummy declaration for code that will be optimised out: */
 188extern void __percpu *efi_sve_state;
 189
 190#endif /* ! CONFIG_ARM64_SVE */
 191
 192#ifdef CONFIG_ARM64_SME
 193
 194static int get_sme_default_vl(void)
 195{
 196	return get_default_vl(ARM64_VEC_SME);
 197}
 198
 199static void set_sme_default_vl(int val)
 200{
 201	set_default_vl(ARM64_VEC_SME, val);
 202}
 203
 204static void sme_free(struct task_struct *);
 205
 206#else
 207
 208static inline void sme_free(struct task_struct *t) { }
 209
 210#endif
 211
 212static void fpsimd_bind_task_to_cpu(void);
 213
 214/*
 215 * Claim ownership of the CPU FPSIMD context for use by the calling context.
 216 *
 217 * The caller may freely manipulate the FPSIMD context metadata until
 218 * put_cpu_fpsimd_context() is called.
 219 *
 220 * On RT kernels local_bh_disable() is not sufficient because it only
 221 * serializes soft interrupt related sections via a local lock, but stays
 222 * preemptible. Disabling preemption is the right choice here as bottom
 223 * half processing is always in thread context on RT kernels so it
 224 * implicitly prevents bottom half processing as well.
 225 */
 226static void get_cpu_fpsimd_context(void)
 227{
 228	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 229		local_bh_disable();
 230	else
 231		preempt_disable();
 232}
 233
 234/*
 235 * Release the CPU FPSIMD context.
 236 *
 237 * Must be called from a context in which get_cpu_fpsimd_context() was
 238 * previously called, with no call to put_cpu_fpsimd_context() in the
 239 * meantime.
 240 */
 241static void put_cpu_fpsimd_context(void)
 242{
 243	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 244		local_bh_enable();
 245	else
 246		preempt_enable();
 247}
 248
 249unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
 250{
 251	return task->thread.vl[type];
 252}
 253
 254void task_set_vl(struct task_struct *task, enum vec_type type,
 255		 unsigned long vl)
 256{
 257	task->thread.vl[type] = vl;
 258}
 259
 260unsigned int task_get_vl_onexec(const struct task_struct *task,
 261				enum vec_type type)
 262{
 263	return task->thread.vl_onexec[type];
 264}
 265
 266void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
 267			unsigned long vl)
 268{
 269	task->thread.vl_onexec[type] = vl;
 270}
 271
 272/*
 273 * TIF_SME controls whether a task can use SME without trapping while
 274 * in userspace, when TIF_SME is set then we must have storage
 275 * allocated in sve_state and sme_state to store the contents of both ZA
 276 * and the SVE registers for both streaming and non-streaming modes.
 277 *
 278 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
 279 * may disable TIF_SME and reenable traps.
 280 */
 281
 282
 283/*
 284 * TIF_SVE controls whether a task can use SVE without trapping while
 285 * in userspace, and also (together with TIF_SME) the way a task's
 286 * FPSIMD/SVE state is stored in thread_struct.
 287 *
 288 * The kernel uses this flag to track whether a user task is actively
 289 * using SVE, and therefore whether full SVE register state needs to
 290 * be tracked.  If not, the cheaper FPSIMD context handling code can
 291 * be used instead of the more costly SVE equivalents.
 292 *
 293 *  * TIF_SVE or SVCR.SM set:
 294 *
 295 *    The task can execute SVE instructions while in userspace without
 296 *    trapping to the kernel.
 297 *
 298 *    During any syscall, the kernel may optionally clear TIF_SVE and
 299 *    discard the vector state except for the FPSIMD subset.
 300 *
 301 *  * TIF_SVE clear:
 302 *
 303 *    An attempt by the user task to execute an SVE instruction causes
 304 *    do_sve_acc() to be called, which does some preparation and then
 305 *    sets TIF_SVE.
 306 *
 307 * During any syscall, the kernel may optionally clear TIF_SVE and
 308 * discard the vector state except for the FPSIMD subset.
 309 *
 310 * The data will be stored in one of two formats:
 311 *
 312 *  * FPSIMD only - FP_STATE_FPSIMD:
 313 *
 314 *    When the FPSIMD only state stored task->thread.fp_type is set to
 315 *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
 316 *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
 317 *    logically zero but not stored anywhere; P0-P15 and FFR are not
 318 *    stored and have unspecified values from userspace's point of
 319 *    view.  For hygiene purposes, the kernel zeroes them on next use,
 320 *    but userspace is discouraged from relying on this.
 321 *
 322 *    task->thread.sve_state does not need to be non-NULL, valid or any
 323 *    particular size: it must not be dereferenced and any data stored
 324 *    there should be considered stale and not referenced.
 325 *
 326 *  * SVE state - FP_STATE_SVE:
 327 *
 328 *    When the full SVE state is stored task->thread.fp_type is set to
 329 *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
 330 *    corresponding Zn), P0-P15 and FFR are encoded in in
 331 *    task->thread.sve_state, formatted appropriately for vector
 332 *    length task->thread.sve_vl or, if SVCR.SM is set,
 333 *    task->thread.sme_vl. The storage for the vector registers in
 334 *    task->thread.uw.fpsimd_state should be ignored.
 335 *
 336 *    task->thread.sve_state must point to a valid buffer at least
 337 *    sve_state_size(task) bytes in size. The data stored in
 338 *    task->thread.uw.fpsimd_state.vregs should be considered stale
 339 *    and not referenced.
 340 *
 341 *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
 342 *    irrespective of whether TIF_SVE is clear or set, since these are
 343 *    not vector length dependent.
 344 */
 345
 346/*
 347 * Update current's FPSIMD/SVE registers from thread_struct.
 348 *
 349 * This function should be called only when the FPSIMD/SVE state in
 350 * thread_struct is known to be up to date, when preparing to enter
 351 * userspace.
 352 */
 353static void task_fpsimd_load(void)
 354{
 355	bool restore_sve_regs = false;
 356	bool restore_ffr;
 357
 358	WARN_ON(!system_supports_fpsimd());
 359	WARN_ON(preemptible());
 360	WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
 361
 362	if (system_supports_fpmr())
 363		write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
 364
 365	if (system_supports_sve() || system_supports_sme()) {
 366		switch (current->thread.fp_type) {
 367		case FP_STATE_FPSIMD:
 368			/* Stop tracking SVE for this task until next use. */
 369			if (test_and_clear_thread_flag(TIF_SVE))
 370				sve_user_disable();
 371			break;
 372		case FP_STATE_SVE:
 373			if (!thread_sm_enabled(&current->thread) &&
 374			    !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
 375				sve_user_enable();
 376
 377			if (test_thread_flag(TIF_SVE))
 378				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
 379
 380			restore_sve_regs = true;
 381			restore_ffr = true;
 382			break;
 383		default:
 384			/*
 385			 * This indicates either a bug in
 386			 * fpsimd_save_user_state() or memory corruption, we
 387			 * should always record an explicit format
 388			 * when we save. We always at least have the
 389			 * memory allocated for FPSMID registers so
 390			 * try that and hope for the best.
 391			 */
 392			WARN_ON_ONCE(1);
 393			clear_thread_flag(TIF_SVE);
 394			break;
 395		}
 396	}
 397
 398	/* Restore SME, override SVE register configuration if needed */
 399	if (system_supports_sme()) {
 400		unsigned long sme_vl = task_get_sme_vl(current);
 401
 402		/* Ensure VL is set up for restoring data */
 403		if (test_thread_flag(TIF_SME))
 404			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
 405
 406		write_sysreg_s(current->thread.svcr, SYS_SVCR);
 407
 408		if (thread_za_enabled(&current->thread))
 409			sme_load_state(current->thread.sme_state,
 410				       system_supports_sme2());
 411
 412		if (thread_sm_enabled(&current->thread))
 413			restore_ffr = system_supports_fa64();
 414	}
 415
 416	if (restore_sve_regs) {
 417		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
 418		sve_load_state(sve_pffr(&current->thread),
 419			       &current->thread.uw.fpsimd_state.fpsr,
 420			       restore_ffr);
 421	} else {
 422		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
 423		fpsimd_load_state(&current->thread.uw.fpsimd_state);
 424	}
 425}
 426
 427/*
 428 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
 429 * date with respect to the CPU registers. Note carefully that the
 430 * current context is the context last bound to the CPU stored in
 431 * last, if KVM is involved this may be the guest VM context rather
 432 * than the host thread for the VM pointed to by current. This means
 433 * that we must always reference the state storage via last rather
 434 * than via current, if we are saving KVM state then it will have
 435 * ensured that the type of registers to save is set in last->to_save.
 436 */
 437static void fpsimd_save_user_state(void)
 438{
 439	struct cpu_fp_state const *last =
 440		this_cpu_ptr(&fpsimd_last_state);
 441	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
 442	bool save_sve_regs = false;
 443	bool save_ffr;
 444	unsigned int vl;
 445
 446	WARN_ON(!system_supports_fpsimd());
 447	WARN_ON(preemptible());
 448
 449	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
 450		return;
 451
 452	if (system_supports_fpmr())
 453		*(last->fpmr) = read_sysreg_s(SYS_FPMR);
 454
 455	/*
 456	 * If a task is in a syscall the ABI allows us to only
 457	 * preserve the state shared with FPSIMD so don't bother
 458	 * saving the full SVE state in that case.
 459	 */
 460	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
 461	     !in_syscall(current_pt_regs())) ||
 462	    last->to_save == FP_STATE_SVE) {
 463		save_sve_regs = true;
 464		save_ffr = true;
 465		vl = last->sve_vl;
 466	}
 467
 468	if (system_supports_sme()) {
 469		u64 *svcr = last->svcr;
 470
 471		*svcr = read_sysreg_s(SYS_SVCR);
 472
 473		if (*svcr & SVCR_ZA_MASK)
 474			sme_save_state(last->sme_state,
 475				       system_supports_sme2());
 476
 477		/* If we are in streaming mode override regular SVE. */
 478		if (*svcr & SVCR_SM_MASK) {
 479			save_sve_regs = true;
 480			save_ffr = system_supports_fa64();
 481			vl = last->sme_vl;
 482		}
 483	}
 484
 485	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
 486		/* Get the configured VL from RDVL, will account for SM */
 487		if (WARN_ON(sve_get_vl() != vl)) {
 488			/*
 489			 * Can't save the user regs, so current would
 490			 * re-enter user with corrupt state.
 491			 * There's no way to recover, so kill it:
 492			 */
 493			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
 494			return;
 495		}
 496
 497		sve_save_state((char *)last->sve_state +
 498					sve_ffr_offset(vl),
 499			       &last->st->fpsr, save_ffr);
 500		*last->fp_type = FP_STATE_SVE;
 501	} else {
 502		fpsimd_save_state(last->st);
 503		*last->fp_type = FP_STATE_FPSIMD;
 504	}
 505}
 506
 507/*
 508 * All vector length selection from userspace comes through here.
 509 * We're on a slow path, so some sanity-checks are included.
 510 * If things go wrong there's a bug somewhere, but try to fall back to a
 511 * safe choice.
 512 */
 513static unsigned int find_supported_vector_length(enum vec_type type,
 514						 unsigned int vl)
 515{
 516	struct vl_info *info = &vl_info[type];
 517	int bit;
 518	int max_vl = info->max_vl;
 519
 520	if (WARN_ON(!sve_vl_valid(vl)))
 521		vl = info->min_vl;
 522
 523	if (WARN_ON(!sve_vl_valid(max_vl)))
 524		max_vl = info->min_vl;
 525
 526	if (vl > max_vl)
 527		vl = max_vl;
 528	if (vl < info->min_vl)
 529		vl = info->min_vl;
 530
 531	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
 532			    __vq_to_bit(sve_vq_from_vl(vl)));
 533	return sve_vl_from_vq(__bit_to_vq(bit));
 534}
 535
 536#if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
 537
 538static int vec_proc_do_default_vl(struct ctl_table *table, int write,
 539				  void *buffer, size_t *lenp, loff_t *ppos)
 540{
 541	struct vl_info *info = table->extra1;
 542	enum vec_type type = info->type;
 543	int ret;
 544	int vl = get_default_vl(type);
 545	struct ctl_table tmp_table = {
 546		.data = &vl,
 547		.maxlen = sizeof(vl),
 548	};
 549
 550	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
 551	if (ret || !write)
 552		return ret;
 553
 554	/* Writing -1 has the special meaning "set to max": */
 555	if (vl == -1)
 556		vl = info->max_vl;
 557
 558	if (!sve_vl_valid(vl))
 559		return -EINVAL;
 560
 561	set_default_vl(type, find_supported_vector_length(type, vl));
 562	return 0;
 563}
 564
 565static struct ctl_table sve_default_vl_table[] = {
 566	{
 567		.procname	= "sve_default_vector_length",
 568		.mode		= 0644,
 569		.proc_handler	= vec_proc_do_default_vl,
 570		.extra1		= &vl_info[ARM64_VEC_SVE],
 571	},
 572};
 573
 574static int __init sve_sysctl_init(void)
 575{
 576	if (system_supports_sve())
 577		if (!register_sysctl("abi", sve_default_vl_table))
 578			return -EINVAL;
 579
 580	return 0;
 581}
 582
 583#else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
 584static int __init sve_sysctl_init(void) { return 0; }
 585#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
 586
 587#if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
 588static struct ctl_table sme_default_vl_table[] = {
 589	{
 590		.procname	= "sme_default_vector_length",
 591		.mode		= 0644,
 592		.proc_handler	= vec_proc_do_default_vl,
 593		.extra1		= &vl_info[ARM64_VEC_SME],
 594	},
 595};
 596
 597static int __init sme_sysctl_init(void)
 598{
 599	if (system_supports_sme())
 600		if (!register_sysctl("abi", sme_default_vl_table))
 601			return -EINVAL;
 602
 603	return 0;
 604}
 605
 606#else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
 607static int __init sme_sysctl_init(void) { return 0; }
 608#endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
 609
 610#define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
 611	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
 612
 613#ifdef CONFIG_CPU_BIG_ENDIAN
 614static __uint128_t arm64_cpu_to_le128(__uint128_t x)
 615{
 616	u64 a = swab64(x);
 617	u64 b = swab64(x >> 64);
 618
 619	return ((__uint128_t)a << 64) | b;
 620}
 621#else
 622static __uint128_t arm64_cpu_to_le128(__uint128_t x)
 623{
 624	return x;
 625}
 626#endif
 627
 628#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
 629
 630static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
 631			    unsigned int vq)
 632{
 633	unsigned int i;
 634	__uint128_t *p;
 635
 636	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
 637		p = (__uint128_t *)ZREG(sst, vq, i);
 638		*p = arm64_cpu_to_le128(fst->vregs[i]);
 639	}
 640}
 641
 642/*
 643 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
 644 * task->thread.sve_state.
 645 *
 646 * Task can be a non-runnable task, or current.  In the latter case,
 647 * the caller must have ownership of the cpu FPSIMD context before calling
 648 * this function.
 649 * task->thread.sve_state must point to at least sve_state_size(task)
 650 * bytes of allocated kernel memory.
 651 * task->thread.uw.fpsimd_state must be up to date before calling this
 652 * function.
 653 */
 654static void fpsimd_to_sve(struct task_struct *task)
 655{
 656	unsigned int vq;
 657	void *sst = task->thread.sve_state;
 658	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
 659
 660	if (!system_supports_sve() && !system_supports_sme())
 661		return;
 662
 663	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
 664	__fpsimd_to_sve(sst, fst, vq);
 665}
 666
 667/*
 668 * Transfer the SVE state in task->thread.sve_state to
 669 * task->thread.uw.fpsimd_state.
 670 *
 671 * Task can be a non-runnable task, or current.  In the latter case,
 672 * the caller must have ownership of the cpu FPSIMD context before calling
 673 * this function.
 674 * task->thread.sve_state must point to at least sve_state_size(task)
 675 * bytes of allocated kernel memory.
 676 * task->thread.sve_state must be up to date before calling this function.
 677 */
 678static void sve_to_fpsimd(struct task_struct *task)
 679{
 680	unsigned int vq, vl;
 681	void const *sst = task->thread.sve_state;
 682	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
 683	unsigned int i;
 684	__uint128_t const *p;
 685
 686	if (!system_supports_sve() && !system_supports_sme())
 687		return;
 688
 689	vl = thread_get_cur_vl(&task->thread);
 690	vq = sve_vq_from_vl(vl);
 691	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
 692		p = (__uint128_t const *)ZREG(sst, vq, i);
 693		fst->vregs[i] = arm64_le128_to_cpu(*p);
 694	}
 695}
 696
 697void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
 698{
 699	write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
 700		       SYS_SCTLR_EL1);
 701}
 702
 703#ifdef CONFIG_ARM64_SVE
 704/*
 705 * Call __sve_free() directly only if you know task can't be scheduled
 706 * or preempted.
 707 */
 708static void __sve_free(struct task_struct *task)
 709{
 710	kfree(task->thread.sve_state);
 711	task->thread.sve_state = NULL;
 712}
 713
 714static void sve_free(struct task_struct *task)
 715{
 716	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
 717
 718	__sve_free(task);
 719}
 720
 721/*
 722 * Return how many bytes of memory are required to store the full SVE
 723 * state for task, given task's currently configured vector length.
 724 */
 725size_t sve_state_size(struct task_struct const *task)
 726{
 727	unsigned int vl = 0;
 728
 729	if (system_supports_sve())
 730		vl = task_get_sve_vl(task);
 731	if (system_supports_sme())
 732		vl = max(vl, task_get_sme_vl(task));
 733
 734	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
 735}
 736
 737/*
 738 * Ensure that task->thread.sve_state is allocated and sufficiently large.
 739 *
 740 * This function should be used only in preparation for replacing
 741 * task->thread.sve_state with new data.  The memory is always zeroed
 742 * here to prevent stale data from showing through: this is done in
 743 * the interest of testability and predictability: except in the
 744 * do_sve_acc() case, there is no ABI requirement to hide stale data
 745 * written previously be task.
 746 */
 747void sve_alloc(struct task_struct *task, bool flush)
 748{
 749	if (task->thread.sve_state) {
 750		if (flush)
 751			memset(task->thread.sve_state, 0,
 752			       sve_state_size(task));
 753		return;
 754	}
 755
 756	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
 757	task->thread.sve_state =
 758		kzalloc(sve_state_size(task), GFP_KERNEL);
 759}
 760
 761
 762/*
 763 * Force the FPSIMD state shared with SVE to be updated in the SVE state
 764 * even if the SVE state is the current active state.
 765 *
 766 * This should only be called by ptrace.  task must be non-runnable.
 767 * task->thread.sve_state must point to at least sve_state_size(task)
 768 * bytes of allocated kernel memory.
 769 */
 770void fpsimd_force_sync_to_sve(struct task_struct *task)
 771{
 772	fpsimd_to_sve(task);
 773}
 774
 775/*
 776 * Ensure that task->thread.sve_state is up to date with respect to
 777 * the user task, irrespective of when SVE is in use or not.
 778 *
 779 * This should only be called by ptrace.  task must be non-runnable.
 780 * task->thread.sve_state must point to at least sve_state_size(task)
 781 * bytes of allocated kernel memory.
 782 */
 783void fpsimd_sync_to_sve(struct task_struct *task)
 784{
 785	if (!test_tsk_thread_flag(task, TIF_SVE) &&
 786	    !thread_sm_enabled(&task->thread))
 787		fpsimd_to_sve(task);
 788}
 789
 790/*
 791 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
 792 * the user task, irrespective of whether SVE is in use or not.
 793 *
 794 * This should only be called by ptrace.  task must be non-runnable.
 795 * task->thread.sve_state must point to at least sve_state_size(task)
 796 * bytes of allocated kernel memory.
 797 */
 798void sve_sync_to_fpsimd(struct task_struct *task)
 799{
 800	if (task->thread.fp_type == FP_STATE_SVE)
 801		sve_to_fpsimd(task);
 802}
 803
 804/*
 805 * Ensure that task->thread.sve_state is up to date with respect to
 806 * the task->thread.uw.fpsimd_state.
 807 *
 808 * This should only be called by ptrace to merge new FPSIMD register
 809 * values into a task for which SVE is currently active.
 810 * task must be non-runnable.
 811 * task->thread.sve_state must point to at least sve_state_size(task)
 812 * bytes of allocated kernel memory.
 813 * task->thread.uw.fpsimd_state must already have been initialised with
 814 * the new FPSIMD register values to be merged in.
 815 */
 816void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
 817{
 818	unsigned int vq;
 819	void *sst = task->thread.sve_state;
 820	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
 821
 822	if (!test_tsk_thread_flag(task, TIF_SVE) &&
 823	    !thread_sm_enabled(&task->thread))
 824		return;
 825
 826	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
 827
 828	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
 829	__fpsimd_to_sve(sst, fst, vq);
 830}
 831
 832int vec_set_vector_length(struct task_struct *task, enum vec_type type,
 833			  unsigned long vl, unsigned long flags)
 834{
 835	bool free_sme = false;
 836
 837	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
 838				     PR_SVE_SET_VL_ONEXEC))
 839		return -EINVAL;
 840
 841	if (!sve_vl_valid(vl))
 842		return -EINVAL;
 843
 844	/*
 845	 * Clamp to the maximum vector length that VL-agnostic code
 846	 * can work with.  A flag may be assigned in the future to
 847	 * allow setting of larger vector lengths without confusing
 848	 * older software.
 849	 */
 850	if (vl > VL_ARCH_MAX)
 851		vl = VL_ARCH_MAX;
 852
 853	vl = find_supported_vector_length(type, vl);
 854
 855	if (flags & (PR_SVE_VL_INHERIT |
 856		     PR_SVE_SET_VL_ONEXEC))
 857		task_set_vl_onexec(task, type, vl);
 858	else
 859		/* Reset VL to system default on next exec: */
 860		task_set_vl_onexec(task, type, 0);
 861
 862	/* Only actually set the VL if not deferred: */
 863	if (flags & PR_SVE_SET_VL_ONEXEC)
 864		goto out;
 865
 866	if (vl == task_get_vl(task, type))
 867		goto out;
 868
 869	/*
 870	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
 871	 * write any live register state back to task_struct, and convert to a
 872	 * regular FPSIMD thread.
 873	 */
 874	if (task == current) {
 875		get_cpu_fpsimd_context();
 876
 877		fpsimd_save_user_state();
 878	}
 879
 880	fpsimd_flush_task_state(task);
 881	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
 882	    thread_sm_enabled(&task->thread)) {
 883		sve_to_fpsimd(task);
 884		task->thread.fp_type = FP_STATE_FPSIMD;
 885	}
 886
 887	if (system_supports_sme()) {
 888		if (type == ARM64_VEC_SME ||
 889		    !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
 890			/*
 891			 * We are changing the SME VL or weren't using
 892			 * SME anyway, discard the state and force a
 893			 * reallocation.
 894			 */
 895			task->thread.svcr &= ~(SVCR_SM_MASK |
 896					       SVCR_ZA_MASK);
 897			clear_tsk_thread_flag(task, TIF_SME);
 898			free_sme = true;
 899		}
 900	}
 901
 902	if (task == current)
 903		put_cpu_fpsimd_context();
 904
 905	task_set_vl(task, type, vl);
 906
 907	/*
 908	 * Free the changed states if they are not in use, SME will be
 909	 * reallocated to the correct size on next use and we just
 910	 * allocate SVE now in case it is needed for use in streaming
 911	 * mode.
 912	 */
 913	sve_free(task);
 914	sve_alloc(task, true);
 915
 916	if (free_sme)
 917		sme_free(task);
 918
 919out:
 920	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
 921			       flags & PR_SVE_VL_INHERIT);
 922
 923	return 0;
 924}
 925
 926/*
 927 * Encode the current vector length and flags for return.
 928 * This is only required for prctl(): ptrace has separate fields.
 929 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
 930 *
 931 * flags are as for vec_set_vector_length().
 932 */
 933static int vec_prctl_status(enum vec_type type, unsigned long flags)
 934{
 935	int ret;
 936
 937	if (flags & PR_SVE_SET_VL_ONEXEC)
 938		ret = task_get_vl_onexec(current, type);
 939	else
 940		ret = task_get_vl(current, type);
 941
 942	if (test_thread_flag(vec_vl_inherit_flag(type)))
 943		ret |= PR_SVE_VL_INHERIT;
 944
 945	return ret;
 946}
 947
 948/* PR_SVE_SET_VL */
 949int sve_set_current_vl(unsigned long arg)
 950{
 951	unsigned long vl, flags;
 952	int ret;
 953
 954	vl = arg & PR_SVE_VL_LEN_MASK;
 955	flags = arg & ~vl;
 956
 957	if (!system_supports_sve() || is_compat_task())
 958		return -EINVAL;
 959
 960	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
 961	if (ret)
 962		return ret;
 963
 964	return vec_prctl_status(ARM64_VEC_SVE, flags);
 965}
 966
 967/* PR_SVE_GET_VL */
 968int sve_get_current_vl(void)
 969{
 970	if (!system_supports_sve() || is_compat_task())
 971		return -EINVAL;
 972
 973	return vec_prctl_status(ARM64_VEC_SVE, 0);
 974}
 975
 976#ifdef CONFIG_ARM64_SME
 977/* PR_SME_SET_VL */
 978int sme_set_current_vl(unsigned long arg)
 979{
 980	unsigned long vl, flags;
 981	int ret;
 982
 983	vl = arg & PR_SME_VL_LEN_MASK;
 984	flags = arg & ~vl;
 985
 986	if (!system_supports_sme() || is_compat_task())
 987		return -EINVAL;
 988
 989	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
 990	if (ret)
 991		return ret;
 992
 993	return vec_prctl_status(ARM64_VEC_SME, flags);
 994}
 995
 996/* PR_SME_GET_VL */
 997int sme_get_current_vl(void)
 998{
 999	if (!system_supports_sme() || is_compat_task())
1000		return -EINVAL;
1001
1002	return vec_prctl_status(ARM64_VEC_SME, 0);
1003}
1004#endif /* CONFIG_ARM64_SME */
1005
1006static void vec_probe_vqs(struct vl_info *info,
1007			  DECLARE_BITMAP(map, SVE_VQ_MAX))
1008{
1009	unsigned int vq, vl;
1010
1011	bitmap_zero(map, SVE_VQ_MAX);
1012
1013	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1014		write_vl(info->type, vq - 1); /* self-syncing */
1015
1016		switch (info->type) {
1017		case ARM64_VEC_SVE:
1018			vl = sve_get_vl();
1019			break;
1020		case ARM64_VEC_SME:
1021			vl = sme_get_vl();
1022			break;
1023		default:
1024			vl = 0;
1025			break;
1026		}
1027
1028		/* Minimum VL identified? */
1029		if (sve_vq_from_vl(vl) > vq)
1030			break;
1031
1032		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1033		set_bit(__vq_to_bit(vq), map);
1034	}
1035}
1036
1037/*
1038 * Initialise the set of known supported VQs for the boot CPU.
1039 * This is called during kernel boot, before secondary CPUs are brought up.
1040 */
1041void __init vec_init_vq_map(enum vec_type type)
1042{
1043	struct vl_info *info = &vl_info[type];
1044	vec_probe_vqs(info, info->vq_map);
1045	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1046}
1047
1048/*
1049 * If we haven't committed to the set of supported VQs yet, filter out
1050 * those not supported by the current CPU.
1051 * This function is called during the bring-up of early secondary CPUs only.
1052 */
1053void vec_update_vq_map(enum vec_type type)
1054{
1055	struct vl_info *info = &vl_info[type];
1056	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1057
1058	vec_probe_vqs(info, tmp_map);
1059	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1060	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1061		  SVE_VQ_MAX);
1062}
1063
1064/*
1065 * Check whether the current CPU supports all VQs in the committed set.
1066 * This function is called during the bring-up of late secondary CPUs only.
1067 */
1068int vec_verify_vq_map(enum vec_type type)
1069{
1070	struct vl_info *info = &vl_info[type];
1071	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1072	unsigned long b;
1073
1074	vec_probe_vqs(info, tmp_map);
1075
1076	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1077	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1078		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1079			info->name, smp_processor_id());
1080		return -EINVAL;
1081	}
1082
1083	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1084		return 0;
1085
1086	/*
1087	 * For KVM, it is necessary to ensure that this CPU doesn't
1088	 * support any vector length that guests may have probed as
1089	 * unsupported.
1090	 */
1091
1092	/* Recover the set of supported VQs: */
1093	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1094	/* Find VQs supported that are not globally supported: */
1095	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1096
1097	/* Find the lowest such VQ, if any: */
1098	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1099	if (b >= SVE_VQ_MAX)
1100		return 0; /* no mismatches */
1101
1102	/*
1103	 * Mismatches above sve_max_virtualisable_vl are fine, since
1104	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1105	 */
1106	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1107		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1108			info->name, smp_processor_id());
1109		return -EINVAL;
1110	}
1111
1112	return 0;
1113}
1114
1115static void __init sve_efi_setup(void)
1116{
1117	int max_vl = 0;
1118	int i;
1119
1120	if (!IS_ENABLED(CONFIG_EFI))
1121		return;
1122
1123	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1124		max_vl = max(vl_info[i].max_vl, max_vl);
1125
1126	/*
1127	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1128	 * This is evidence of a crippled system and we are returning void,
1129	 * so no attempt is made to handle this situation here.
1130	 */
1131	if (!sve_vl_valid(max_vl))
1132		goto fail;
1133
1134	efi_sve_state = __alloc_percpu(
1135		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1136	if (!efi_sve_state)
1137		goto fail;
1138
1139	return;
1140
1141fail:
1142	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1143}
1144
1145void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1146{
1147	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1148	isb();
1149
1150	write_sysreg_s(0, SYS_ZCR_EL1);
1151}
1152
1153void __init sve_setup(void)
1154{
1155	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1156	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1157	unsigned long b;
1158	int max_bit;
1159
1160	if (!system_supports_sve())
1161		return;
1162
1163	/*
1164	 * The SVE architecture mandates support for 128-bit vectors,
1165	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1166	 * If something went wrong, at least try to patch it up:
1167	 */
1168	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1169		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1170
1171	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1172	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1173
1174	/*
1175	 * For the default VL, pick the maximum supported value <= 64.
1176	 * VL == 64 is guaranteed not to grow the signal frame.
1177	 */
1178	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1179
1180	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1181		      SVE_VQ_MAX);
1182
1183	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1184	if (b >= SVE_VQ_MAX)
1185		/* No non-virtualisable VLs found */
1186		info->max_virtualisable_vl = SVE_VQ_MAX;
1187	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1188		/* No virtualisable VLs?  This is architecturally forbidden. */
1189		info->max_virtualisable_vl = SVE_VQ_MIN;
1190	else /* b + 1 < SVE_VQ_MAX */
1191		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1192
1193	if (info->max_virtualisable_vl > info->max_vl)
1194		info->max_virtualisable_vl = info->max_vl;
1195
1196	pr_info("%s: maximum available vector length %u bytes per vector\n",
1197		info->name, info->max_vl);
1198	pr_info("%s: default vector length %u bytes per vector\n",
1199		info->name, get_sve_default_vl());
1200
1201	/* KVM decides whether to support mismatched systems. Just warn here: */
1202	if (sve_max_virtualisable_vl() < sve_max_vl())
1203		pr_warn("%s: unvirtualisable vector lengths present\n",
1204			info->name);
1205
1206	sve_efi_setup();
1207}
1208
1209/*
1210 * Called from the put_task_struct() path, which cannot get here
1211 * unless dead_task is really dead and not schedulable.
1212 */
1213void fpsimd_release_task(struct task_struct *dead_task)
1214{
1215	__sve_free(dead_task);
1216	sme_free(dead_task);
1217}
1218
1219#endif /* CONFIG_ARM64_SVE */
1220
1221#ifdef CONFIG_ARM64_SME
1222
1223/*
1224 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1225 *
1226 * This function should be used only in preparation for replacing
1227 * task->thread.sme_state with new data.  The memory is always zeroed
1228 * here to prevent stale data from showing through: this is done in
1229 * the interest of testability and predictability, the architecture
1230 * guarantees that when ZA is enabled it will be zeroed.
1231 */
1232void sme_alloc(struct task_struct *task, bool flush)
1233{
1234	if (task->thread.sme_state) {
1235		if (flush)
1236			memset(task->thread.sme_state, 0,
1237			       sme_state_size(task));
1238		return;
1239	}
1240
1241	/* This could potentially be up to 64K. */
1242	task->thread.sme_state =
1243		kzalloc(sme_state_size(task), GFP_KERNEL);
1244}
1245
1246static void sme_free(struct task_struct *task)
1247{
1248	kfree(task->thread.sme_state);
1249	task->thread.sme_state = NULL;
1250}
1251
1252void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1253{
1254	/* Set priority for all PEs to architecturally defined minimum */
1255	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1256		       SYS_SMPRI_EL1);
1257
1258	/* Allow SME in kernel */
1259	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1260	isb();
1261
1262	/* Ensure all bits in SMCR are set to known values */
1263	write_sysreg_s(0, SYS_SMCR_EL1);
1264
1265	/* Allow EL0 to access TPIDR2 */
1266	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1267	isb();
1268}
1269
1270void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1271{
1272	/* This must be enabled after SME */
1273	BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1274
1275	/* Allow use of ZT0 */
1276	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1277		       SYS_SMCR_EL1);
1278}
1279
1280void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1281{
1282	/* This must be enabled after SME */
1283	BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1284
1285	/* Allow use of FA64 */
1286	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1287		       SYS_SMCR_EL1);
1288}
1289
1290void __init sme_setup(void)
1291{
1292	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1293	int min_bit, max_bit;
1294
1295	if (!system_supports_sme())
1296		return;
1297
1298	/*
1299	 * SME doesn't require any particular vector length be
1300	 * supported but it does require at least one.  We should have
1301	 * disabled the feature entirely while bringing up CPUs but
1302	 * let's double check here.  The bitmap is SVE_VQ_MAP sized for
1303	 * sharing with SVE.
1304	 */
1305	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1306
1307	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1308	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1309
1310	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1311	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1312
1313	WARN_ON(info->min_vl > info->max_vl);
1314
1315	/*
1316	 * For the default VL, pick the maximum supported value <= 32
1317	 * (256 bits) if there is one since this is guaranteed not to
1318	 * grow the signal frame when in streaming mode, otherwise the
1319	 * minimum available VL will be used.
1320	 */
1321	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1322
1323	pr_info("SME: minimum available vector length %u bytes per vector\n",
1324		info->min_vl);
1325	pr_info("SME: maximum available vector length %u bytes per vector\n",
1326		info->max_vl);
1327	pr_info("SME: default vector length %u bytes per vector\n",
1328		get_sme_default_vl());
1329}
1330
1331void sme_suspend_exit(void)
1332{
1333	u64 smcr = 0;
1334
1335	if (!system_supports_sme())
1336		return;
1337
1338	if (system_supports_fa64())
1339		smcr |= SMCR_ELx_FA64;
1340	if (system_supports_sme2())
1341		smcr |= SMCR_ELx_EZT0;
1342
1343	write_sysreg_s(smcr, SYS_SMCR_EL1);
1344	write_sysreg_s(0, SYS_SMPRI_EL1);
1345}
1346
1347#endif /* CONFIG_ARM64_SME */
1348
1349static void sve_init_regs(void)
1350{
1351	/*
1352	 * Convert the FPSIMD state to SVE, zeroing all the state that
1353	 * is not shared with FPSIMD. If (as is likely) the current
1354	 * state is live in the registers then do this there and
1355	 * update our metadata for the current task including
1356	 * disabling the trap, otherwise update our in-memory copy.
1357	 * We are guaranteed to not be in streaming mode, we can only
1358	 * take a SVE trap when not in streaming mode and we can't be
1359	 * in streaming mode when taking a SME trap.
1360	 */
1361	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1362		unsigned long vq_minus_one =
1363			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1364		sve_set_vq(vq_minus_one);
1365		sve_flush_live(true, vq_minus_one);
1366		fpsimd_bind_task_to_cpu();
1367	} else {
1368		fpsimd_to_sve(current);
1369		current->thread.fp_type = FP_STATE_SVE;
1370	}
1371}
1372
1373/*
1374 * Trapped SVE access
1375 *
1376 * Storage is allocated for the full SVE state, the current FPSIMD
1377 * register contents are migrated across, and the access trap is
1378 * disabled.
1379 *
1380 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1381 * would have disabled the SVE access trap for userspace during
1382 * ret_to_user, making an SVE access trap impossible in that case.
1383 */
1384void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1385{
1386	/* Even if we chose not to use SVE, the hardware could still trap: */
1387	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1388		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1389		return;
1390	}
1391
1392	sve_alloc(current, true);
1393	if (!current->thread.sve_state) {
1394		force_sig(SIGKILL);
1395		return;
1396	}
1397
1398	get_cpu_fpsimd_context();
1399
1400	if (test_and_set_thread_flag(TIF_SVE))
1401		WARN_ON(1); /* SVE access shouldn't have trapped */
1402
1403	/*
1404	 * Even if the task can have used streaming mode we can only
1405	 * generate SVE access traps in normal SVE mode and
1406	 * transitioning out of streaming mode may discard any
1407	 * streaming mode state.  Always clear the high bits to avoid
1408	 * any potential errors tracking what is properly initialised.
1409	 */
1410	sve_init_regs();
1411
1412	put_cpu_fpsimd_context();
1413}
1414
1415/*
1416 * Trapped SME access
1417 *
1418 * Storage is allocated for the full SVE and SME state, the current
1419 * FPSIMD register contents are migrated to SVE if SVE is not already
1420 * active, and the access trap is disabled.
1421 *
1422 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1423 * would have disabled the SME access trap for userspace during
1424 * ret_to_user, making an SME access trap impossible in that case.
1425 */
1426void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1427{
1428	/* Even if we chose not to use SME, the hardware could still trap: */
1429	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1430		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1431		return;
1432	}
1433
1434	/*
1435	 * If this not a trap due to SME being disabled then something
1436	 * is being used in the wrong mode, report as SIGILL.
1437	 */
1438	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1439		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1440		return;
1441	}
1442
1443	sve_alloc(current, false);
1444	sme_alloc(current, true);
1445	if (!current->thread.sve_state || !current->thread.sme_state) {
1446		force_sig(SIGKILL);
1447		return;
1448	}
1449
1450	get_cpu_fpsimd_context();
1451
1452	/* With TIF_SME userspace shouldn't generate any traps */
1453	if (test_and_set_thread_flag(TIF_SME))
1454		WARN_ON(1);
1455
1456	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1457		unsigned long vq_minus_one =
1458			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1459		sme_set_vq(vq_minus_one);
1460
1461		fpsimd_bind_task_to_cpu();
1462	}
1463
1464	put_cpu_fpsimd_context();
1465}
1466
1467/*
1468 * Trapped FP/ASIMD access.
1469 */
1470void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1471{
1472	/* Even if we chose not to use FPSIMD, the hardware could still trap: */
1473	if (!system_supports_fpsimd()) {
1474		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1475		return;
1476	}
1477
1478	/*
1479	 * When FPSIMD is enabled, we should never take a trap unless something
1480	 * has gone very wrong.
1481	 */
1482	BUG();
1483}
1484
1485/*
1486 * Raise a SIGFPE for the current process.
1487 */
1488void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1489{
1490	unsigned int si_code = FPE_FLTUNK;
1491
1492	if (esr & ESR_ELx_FP_EXC_TFV) {
1493		if (esr & FPEXC_IOF)
1494			si_code = FPE_FLTINV;
1495		else if (esr & FPEXC_DZF)
1496			si_code = FPE_FLTDIV;
1497		else if (esr & FPEXC_OFF)
1498			si_code = FPE_FLTOVF;
1499		else if (esr & FPEXC_UFF)
1500			si_code = FPE_FLTUND;
1501		else if (esr & FPEXC_IXF)
1502			si_code = FPE_FLTRES;
1503	}
1504
1505	send_sig_fault(SIGFPE, si_code,
1506		       (void __user *)instruction_pointer(regs),
1507		       current);
1508}
1509
1510static void fpsimd_load_kernel_state(struct task_struct *task)
1511{
1512	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1513
1514	/*
1515	 * Elide the load if this CPU holds the most recent kernel mode
1516	 * FPSIMD context of the current task.
1517	 */
1518	if (last->st == &task->thread.kernel_fpsimd_state &&
1519	    task->thread.kernel_fpsimd_cpu == smp_processor_id())
1520		return;
1521
1522	fpsimd_load_state(&task->thread.kernel_fpsimd_state);
1523}
1524
1525static void fpsimd_save_kernel_state(struct task_struct *task)
1526{
1527	struct cpu_fp_state cpu_fp_state = {
1528		.st		= &task->thread.kernel_fpsimd_state,
1529		.to_save	= FP_STATE_FPSIMD,
1530	};
1531
1532	fpsimd_save_state(&task->thread.kernel_fpsimd_state);
1533	fpsimd_bind_state_to_cpu(&cpu_fp_state);
1534
1535	task->thread.kernel_fpsimd_cpu = smp_processor_id();
1536}
1537
1538/*
1539 * Invalidate any task's FPSIMD state that is present on this cpu.
1540 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1541 * before calling this function.
1542 */
1543static void fpsimd_flush_cpu_state(void)
1544{
1545	WARN_ON(!system_supports_fpsimd());
1546	__this_cpu_write(fpsimd_last_state.st, NULL);
1547
1548	/*
1549	 * Leaving streaming mode enabled will cause issues for any kernel
1550	 * NEON and leaving streaming mode or ZA enabled may increase power
1551	 * consumption.
1552	 */
1553	if (system_supports_sme())
1554		sme_smstop();
1555
1556	set_thread_flag(TIF_FOREIGN_FPSTATE);
1557}
1558
1559void fpsimd_thread_switch(struct task_struct *next)
1560{
1561	bool wrong_task, wrong_cpu;
1562
1563	if (!system_supports_fpsimd())
1564		return;
1565
1566	WARN_ON_ONCE(!irqs_disabled());
1567
1568	/* Save unsaved fpsimd state, if any: */
1569	if (test_thread_flag(TIF_KERNEL_FPSTATE))
1570		fpsimd_save_kernel_state(current);
1571	else
1572		fpsimd_save_user_state();
1573
1574	if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1575		fpsimd_load_kernel_state(next);
1576		fpsimd_flush_cpu_state();
1577	} else {
1578		/*
1579		 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1580		 * state.  For kernel threads, FPSIMD registers are never
1581		 * loaded with user mode FPSIMD state and so wrong_task and
1582		 * wrong_cpu will always be true.
1583		 */
1584		wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1585			&next->thread.uw.fpsimd_state;
1586		wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1587
1588		update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1589				       wrong_task || wrong_cpu);
1590	}
1591}
1592
1593static void fpsimd_flush_thread_vl(enum vec_type type)
1594{
1595	int vl, supported_vl;
1596
1597	/*
1598	 * Reset the task vector length as required.  This is where we
1599	 * ensure that all user tasks have a valid vector length
1600	 * configured: no kernel task can become a user task without
1601	 * an exec and hence a call to this function.  By the time the
1602	 * first call to this function is made, all early hardware
1603	 * probing is complete, so __sve_default_vl should be valid.
1604	 * If a bug causes this to go wrong, we make some noise and
1605	 * try to fudge thread.sve_vl to a safe value here.
1606	 */
1607	vl = task_get_vl_onexec(current, type);
1608	if (!vl)
1609		vl = get_default_vl(type);
1610
1611	if (WARN_ON(!sve_vl_valid(vl)))
1612		vl = vl_info[type].min_vl;
1613
1614	supported_vl = find_supported_vector_length(type, vl);
1615	if (WARN_ON(supported_vl != vl))
1616		vl = supported_vl;
1617
1618	task_set_vl(current, type, vl);
1619
1620	/*
1621	 * If the task is not set to inherit, ensure that the vector
1622	 * length will be reset by a subsequent exec:
1623	 */
1624	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1625		task_set_vl_onexec(current, type, 0);
1626}
1627
1628void fpsimd_flush_thread(void)
1629{
1630	void *sve_state = NULL;
1631	void *sme_state = NULL;
1632
1633	if (!system_supports_fpsimd())
1634		return;
1635
1636	get_cpu_fpsimd_context();
1637
1638	fpsimd_flush_task_state(current);
1639	memset(&current->thread.uw.fpsimd_state, 0,
1640	       sizeof(current->thread.uw.fpsimd_state));
1641
1642	if (system_supports_sve()) {
1643		clear_thread_flag(TIF_SVE);
1644
1645		/* Defer kfree() while in atomic context */
1646		sve_state = current->thread.sve_state;
1647		current->thread.sve_state = NULL;
1648
1649		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1650	}
1651
1652	if (system_supports_sme()) {
1653		clear_thread_flag(TIF_SME);
1654
1655		/* Defer kfree() while in atomic context */
1656		sme_state = current->thread.sme_state;
1657		current->thread.sme_state = NULL;
1658
1659		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1660		current->thread.svcr = 0;
1661	}
1662
1663	current->thread.fp_type = FP_STATE_FPSIMD;
1664
1665	put_cpu_fpsimd_context();
1666	kfree(sve_state);
1667	kfree(sme_state);
1668}
1669
1670/*
1671 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1672 * currently held in the registers does in fact belong to 'current'
1673 */
1674void fpsimd_preserve_current_state(void)
1675{
1676	if (!system_supports_fpsimd())
1677		return;
1678
1679	get_cpu_fpsimd_context();
1680	fpsimd_save_user_state();
1681	put_cpu_fpsimd_context();
1682}
1683
1684/*
1685 * Like fpsimd_preserve_current_state(), but ensure that
1686 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1687 * the signal frame.
1688 */
1689void fpsimd_signal_preserve_current_state(void)
1690{
1691	fpsimd_preserve_current_state();
1692	if (current->thread.fp_type == FP_STATE_SVE)
1693		sve_to_fpsimd(current);
1694}
1695
1696/*
1697 * Called by KVM when entering the guest.
1698 */
1699void fpsimd_kvm_prepare(void)
1700{
1701	if (!system_supports_sve())
1702		return;
1703
1704	/*
1705	 * KVM does not save host SVE state since we can only enter
1706	 * the guest from a syscall so the ABI means that only the
1707	 * non-saved SVE state needs to be saved.  If we have left
1708	 * SVE enabled for performance reasons then update the task
1709	 * state to be FPSIMD only.
1710	 */
1711	get_cpu_fpsimd_context();
1712
1713	if (test_and_clear_thread_flag(TIF_SVE)) {
1714		sve_to_fpsimd(current);
1715		current->thread.fp_type = FP_STATE_FPSIMD;
1716	}
1717
1718	put_cpu_fpsimd_context();
1719}
1720
1721/*
1722 * Associate current's FPSIMD context with this cpu
1723 * The caller must have ownership of the cpu FPSIMD context before calling
1724 * this function.
1725 */
1726static void fpsimd_bind_task_to_cpu(void)
1727{
1728	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1729
1730	WARN_ON(!system_supports_fpsimd());
1731	last->st = &current->thread.uw.fpsimd_state;
1732	last->sve_state = current->thread.sve_state;
1733	last->sme_state = current->thread.sme_state;
1734	last->sve_vl = task_get_sve_vl(current);
1735	last->sme_vl = task_get_sme_vl(current);
1736	last->svcr = &current->thread.svcr;
1737	last->fpmr = &current->thread.uw.fpmr;
1738	last->fp_type = &current->thread.fp_type;
1739	last->to_save = FP_STATE_CURRENT;
1740	current->thread.fpsimd_cpu = smp_processor_id();
1741
1742	/*
1743	 * Toggle SVE and SME trapping for userspace if needed, these
1744	 * are serialsied by ret_to_user().
1745	 */
1746	if (system_supports_sme()) {
1747		if (test_thread_flag(TIF_SME))
1748			sme_user_enable();
1749		else
1750			sme_user_disable();
1751	}
1752
1753	if (system_supports_sve()) {
1754		if (test_thread_flag(TIF_SVE))
1755			sve_user_enable();
1756		else
1757			sve_user_disable();
1758	}
1759}
1760
1761void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1762{
1763	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1764
1765	WARN_ON(!system_supports_fpsimd());
1766	WARN_ON(!in_softirq() && !irqs_disabled());
1767
1768	*last = *state;
1769}
1770
1771/*
1772 * Load the userland FPSIMD state of 'current' from memory, but only if the
1773 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1774 * state of 'current'.  This is called when we are preparing to return to
1775 * userspace to ensure that userspace sees a good register state.
1776 */
1777void fpsimd_restore_current_state(void)
1778{
1779	/*
1780	 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1781	 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1782	 * Thus user threads can have this set even when FP/SIMD hasn't been
1783	 * detected.
1784	 *
1785	 * When FP/SIMD is detected, begin_new_exec() will set
1786	 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1787	 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1788	 * switching tasks. We detect FP/SIMD before we exec the first user
1789	 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1790	 * do_notify_resume() will call fpsimd_restore_current_state() to
1791	 * install the user FP/SIMD context.
1792	 *
1793	 * When FP/SIMD is not detected, nothing else will clear or set
1794	 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1795	 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1796	 * looping forever calling fpsimd_restore_current_state().
1797	 */
1798	if (!system_supports_fpsimd()) {
1799		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1800		return;
1801	}
1802
1803	get_cpu_fpsimd_context();
1804
1805	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1806		task_fpsimd_load();
1807		fpsimd_bind_task_to_cpu();
1808	}
1809
1810	put_cpu_fpsimd_context();
1811}
1812
1813/*
1814 * Load an updated userland FPSIMD state for 'current' from memory and set the
1815 * flag that indicates that the FPSIMD register contents are the most recent
1816 * FPSIMD state of 'current'. This is used by the signal code to restore the
1817 * register state when returning from a signal handler in FPSIMD only cases,
1818 * any SVE context will be discarded.
1819 */
1820void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1821{
1822	if (WARN_ON(!system_supports_fpsimd()))
1823		return;
1824
1825	get_cpu_fpsimd_context();
1826
1827	current->thread.uw.fpsimd_state = *state;
1828	if (test_thread_flag(TIF_SVE))
1829		fpsimd_to_sve(current);
1830
1831	task_fpsimd_load();
1832	fpsimd_bind_task_to_cpu();
1833
1834	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1835
1836	put_cpu_fpsimd_context();
1837}
1838
1839/*
1840 * Invalidate live CPU copies of task t's FPSIMD state
1841 *
1842 * This function may be called with preemption enabled.  The barrier()
1843 * ensures that the assignment to fpsimd_cpu is visible to any
1844 * preemption/softirq that could race with set_tsk_thread_flag(), so
1845 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1846 *
1847 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1848 * subsequent code.
1849 */
1850void fpsimd_flush_task_state(struct task_struct *t)
1851{
1852	t->thread.fpsimd_cpu = NR_CPUS;
1853	/*
1854	 * If we don't support fpsimd, bail out after we have
1855	 * reset the fpsimd_cpu for this task and clear the
1856	 * FPSTATE.
1857	 */
1858	if (!system_supports_fpsimd())
1859		return;
1860	barrier();
1861	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1862
1863	barrier();
1864}
1865
1866/*
1867 * Save the FPSIMD state to memory and invalidate cpu view.
1868 * This function must be called with preemption disabled.
1869 */
1870void fpsimd_save_and_flush_cpu_state(void)
1871{
1872	unsigned long flags;
1873
1874	if (!system_supports_fpsimd())
1875		return;
1876	WARN_ON(preemptible());
1877	local_irq_save(flags);
1878	fpsimd_save_user_state();
1879	fpsimd_flush_cpu_state();
1880	local_irq_restore(flags);
1881}
1882
1883#ifdef CONFIG_KERNEL_MODE_NEON
1884
1885/*
1886 * Kernel-side NEON support functions
1887 */
1888
1889/*
1890 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1891 * context
1892 *
1893 * Must not be called unless may_use_simd() returns true.
1894 * Task context in the FPSIMD registers is saved back to memory as necessary.
1895 *
1896 * A matching call to kernel_neon_end() must be made before returning from the
1897 * calling context.
1898 *
1899 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1900 * called.
1901 */
1902void kernel_neon_begin(void)
1903{
1904	if (WARN_ON(!system_supports_fpsimd()))
1905		return;
1906
1907	BUG_ON(!may_use_simd());
1908
1909	get_cpu_fpsimd_context();
1910
1911	/* Save unsaved fpsimd state, if any: */
1912	if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1913		BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1914		fpsimd_save_kernel_state(current);
1915	} else {
1916		fpsimd_save_user_state();
1917
1918		/*
1919		 * Set the thread flag so that the kernel mode FPSIMD state
1920		 * will be context switched along with the rest of the task
1921		 * state.
1922		 *
1923		 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1924		 * mode FPSIMD, but the task will not be preemptible so setting
1925		 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1926		 * would mark the task context FPSIMD state as requiring a
1927		 * context switch) and unnecessary.
1928		 *
1929		 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1930		 * which is scheduled as usual, and this guarantees that these
1931		 * softirqs are not interrupting use of the FPSIMD in kernel
1932		 * mode in task context. So in this case, setting the flag here
1933		 * is always appropriate.
1934		 */
1935		if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq())
1936			set_thread_flag(TIF_KERNEL_FPSTATE);
1937	}
1938
1939	/* Invalidate any task state remaining in the fpsimd regs: */
1940	fpsimd_flush_cpu_state();
1941
1942	put_cpu_fpsimd_context();
1943}
1944EXPORT_SYMBOL_GPL(kernel_neon_begin);
1945
1946/*
1947 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1948 *
1949 * Must be called from a context in which kernel_neon_begin() was previously
1950 * called, with no call to kernel_neon_end() in the meantime.
1951 *
1952 * The caller must not use the FPSIMD registers after this function is called,
1953 * unless kernel_neon_begin() is called again in the meantime.
1954 */
1955void kernel_neon_end(void)
1956{
1957	if (!system_supports_fpsimd())
1958		return;
1959
1960	/*
1961	 * If we are returning from a nested use of kernel mode FPSIMD, restore
1962	 * the task context kernel mode FPSIMD state. This can only happen when
1963	 * running in softirq context on non-PREEMPT_RT.
1964	 */
1965	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() &&
1966	    test_thread_flag(TIF_KERNEL_FPSTATE))
1967		fpsimd_load_kernel_state(current);
1968	else
1969		clear_thread_flag(TIF_KERNEL_FPSTATE);
1970}
1971EXPORT_SYMBOL_GPL(kernel_neon_end);
1972
1973#ifdef CONFIG_EFI
1974
1975static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1976static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1977static DEFINE_PER_CPU(bool, efi_sve_state_used);
1978static DEFINE_PER_CPU(bool, efi_sm_state);
1979
1980/*
1981 * EFI runtime services support functions
1982 *
1983 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1984 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1985 * is always used rather than being an optional accelerator.
1986 *
1987 * These functions provide the necessary support for ensuring FPSIMD
1988 * save/restore in the contexts from which EFI is used.
1989 *
1990 * Do not use them for any other purpose -- if tempted to do so, you are
1991 * either doing something wrong or you need to propose some refactoring.
1992 */
1993
1994/*
1995 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1996 */
1997void __efi_fpsimd_begin(void)
1998{
1999	if (!system_supports_fpsimd())
2000		return;
2001
2002	WARN_ON(preemptible());
2003
2004	if (may_use_simd()) {
2005		kernel_neon_begin();
2006	} else {
2007		/*
2008		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
2009		 * preserving:
2010		 */
2011		if (system_supports_sve() && likely(efi_sve_state)) {
2012			char *sve_state = this_cpu_ptr(efi_sve_state);
2013			bool ffr = true;
2014			u64 svcr;
2015
2016			__this_cpu_write(efi_sve_state_used, true);
2017
2018			if (system_supports_sme()) {
2019				svcr = read_sysreg_s(SYS_SVCR);
2020
2021				__this_cpu_write(efi_sm_state,
2022						 svcr & SVCR_SM_MASK);
2023
2024				/*
2025				 * Unless we have FA64 FFR does not
2026				 * exist in streaming mode.
2027				 */
2028				if (!system_supports_fa64())
2029					ffr = !(svcr & SVCR_SM_MASK);
2030			}
2031
2032			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
2033				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2034				       ffr);
2035
2036			if (system_supports_sme())
2037				sysreg_clear_set_s(SYS_SVCR,
2038						   SVCR_SM_MASK, 0);
2039
2040		} else {
2041			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2042		}
2043
2044		__this_cpu_write(efi_fpsimd_state_used, true);
2045	}
2046}
2047
2048/*
2049 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2050 */
2051void __efi_fpsimd_end(void)
2052{
2053	if (!system_supports_fpsimd())
2054		return;
2055
2056	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2057		kernel_neon_end();
2058	} else {
2059		if (system_supports_sve() &&
2060		    likely(__this_cpu_read(efi_sve_state_used))) {
2061			char const *sve_state = this_cpu_ptr(efi_sve_state);
2062			bool ffr = true;
2063
2064			/*
2065			 * Restore streaming mode; EFI calls are
2066			 * normal function calls so should not return in
2067			 * streaming mode.
2068			 */
2069			if (system_supports_sme()) {
2070				if (__this_cpu_read(efi_sm_state)) {
2071					sysreg_clear_set_s(SYS_SVCR,
2072							   0,
2073							   SVCR_SM_MASK);
2074
2075					/*
2076					 * Unless we have FA64 FFR does not
2077					 * exist in streaming mode.
2078					 */
2079					if (!system_supports_fa64())
2080						ffr = false;
2081				}
2082			}
2083
2084			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2085				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2086				       ffr);
2087
2088			__this_cpu_write(efi_sve_state_used, false);
2089		} else {
2090			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2091		}
2092	}
2093}
2094
2095#endif /* CONFIG_EFI */
2096
2097#endif /* CONFIG_KERNEL_MODE_NEON */
2098
2099#ifdef CONFIG_CPU_PM
2100static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2101				  unsigned long cmd, void *v)
2102{
2103	switch (cmd) {
2104	case CPU_PM_ENTER:
2105		fpsimd_save_and_flush_cpu_state();
2106		break;
2107	case CPU_PM_EXIT:
2108		break;
2109	case CPU_PM_ENTER_FAILED:
2110	default:
2111		return NOTIFY_DONE;
2112	}
2113	return NOTIFY_OK;
2114}
2115
2116static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2117	.notifier_call = fpsimd_cpu_pm_notifier,
2118};
2119
2120static void __init fpsimd_pm_init(void)
2121{
2122	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2123}
2124
2125#else
2126static inline void fpsimd_pm_init(void) { }
2127#endif /* CONFIG_CPU_PM */
2128
2129#ifdef CONFIG_HOTPLUG_CPU
2130static int fpsimd_cpu_dead(unsigned int cpu)
2131{
2132	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2133	return 0;
2134}
2135
2136static inline void fpsimd_hotplug_init(void)
2137{
2138	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2139				  NULL, fpsimd_cpu_dead);
2140}
2141
2142#else
2143static inline void fpsimd_hotplug_init(void) { }
2144#endif
2145
2146void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2147{
2148	unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2149	write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2150	isb();
2151}
2152
2153/*
2154 * FP/SIMD support code initialisation.
2155 */
2156static int __init fpsimd_init(void)
2157{
2158	if (cpu_have_named_feature(FP)) {
2159		fpsimd_pm_init();
2160		fpsimd_hotplug_init();
2161	} else {
2162		pr_notice("Floating-point is not implemented\n");
2163	}
2164
2165	if (!cpu_have_named_feature(ASIMD))
2166		pr_notice("Advanced SIMD is not implemented\n");
2167
2168
2169	sve_sysctl_init();
2170	sme_sysctl_init();
2171
2172	return 0;
2173}
2174core_initcall(fpsimd_init);