Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
   4 * All rights reserved.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/spi/spi.h>
   9#include <linux/crc7.h>
  10#include <linux/crc-itu-t.h>
  11#include <linux/gpio/consumer.h>
  12
  13#include "netdev.h"
  14#include "cfg80211.h"
  15
  16#define SPI_MODALIAS		"wilc1000_spi"
  17
  18static bool enable_crc7;	/* protect SPI commands with CRC7 */
  19module_param(enable_crc7, bool, 0644);
  20MODULE_PARM_DESC(enable_crc7,
  21		 "Enable CRC7 checksum to protect command transfers\n"
  22		 "\t\t\tagainst corruption during the SPI transfer.\n"
  23		 "\t\t\tCommand transfers are short and the CPU-cycle cost\n"
  24		 "\t\t\tof enabling this is small.");
  25
  26static bool enable_crc16;	/* protect SPI data with CRC16 */
  27module_param(enable_crc16, bool, 0644);
  28MODULE_PARM_DESC(enable_crc16,
  29		 "Enable CRC16 checksum to protect data transfers\n"
  30		 "\t\t\tagainst corruption during the SPI transfer.\n"
  31		 "\t\t\tData transfers can be large and the CPU-cycle cost\n"
  32		 "\t\t\tof enabling this may be substantial.");
  33
  34/*
  35 * For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or
  36 * more zero bytes between the command response and the DATA Start tag
  37 * (0xf3).  This behavior appears to be undocumented in "ATWILC1000
  38 * USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4
  39 * zero bytes when the SPI bus operates at 48MHz and none when it
  40 * operates at 1MHz.
  41 */
  42#define WILC_SPI_RSP_HDR_EXTRA_DATA	8
  43
  44struct wilc_spi {
  45	bool isinit;		/* true if wilc_spi_init was successful */
  46	bool probing_crc;	/* true if we're probing chip's CRC config */
  47	bool crc7_enabled;	/* true if crc7 is currently enabled */
  48	bool crc16_enabled;	/* true if crc16 is currently enabled */
  49	struct wilc_gpios {
  50		struct gpio_desc *enable;	/* ENABLE GPIO or NULL */
  51		struct gpio_desc *reset;	/* RESET GPIO or NULL */
  52	} gpios;
  53};
  54
  55static const struct wilc_hif_func wilc_hif_spi;
  56
  57static int wilc_spi_reset(struct wilc *wilc);
  58static int wilc_spi_configure_bus_protocol(struct wilc *wilc);
  59static int wilc_validate_chipid(struct wilc *wilc);
  60
  61/********************************************
  62 *
  63 *      Spi protocol Function
  64 *
  65 ********************************************/
  66
  67#define CMD_DMA_WRITE				0xc1
  68#define CMD_DMA_READ				0xc2
  69#define CMD_INTERNAL_WRITE			0xc3
  70#define CMD_INTERNAL_READ			0xc4
  71#define CMD_TERMINATE				0xc5
  72#define CMD_REPEAT				0xc6
  73#define CMD_DMA_EXT_WRITE			0xc7
  74#define CMD_DMA_EXT_READ			0xc8
  75#define CMD_SINGLE_WRITE			0xc9
  76#define CMD_SINGLE_READ				0xca
  77#define CMD_RESET				0xcf
  78
  79#define SPI_RETRY_MAX_LIMIT			10
  80#define SPI_ENABLE_VMM_RETRY_LIMIT		2
  81
  82/* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */
  83#define RSP_START_FIELD				GENMASK(7, 4)
  84#define RSP_TYPE_FIELD				GENMASK(3, 0)
  85
  86/* SPI response values for the response fields: */
  87#define RSP_START_TAG				0xc
  88#define RSP_TYPE_FIRST_PACKET			0x1
  89#define RSP_TYPE_INNER_PACKET			0x2
  90#define RSP_TYPE_LAST_PACKET			0x3
  91#define RSP_STATE_NO_ERROR			0x00
  92
  93#define PROTOCOL_REG_PKT_SZ_MASK		GENMASK(6, 4)
  94#define PROTOCOL_REG_CRC16_MASK			GENMASK(3, 3)
  95#define PROTOCOL_REG_CRC7_MASK			GENMASK(2, 2)
  96
  97/*
  98 * The SPI data packet size may be any integer power of two in the
  99 * range from 256 to 8192 bytes.
 100 */
 101#define DATA_PKT_LOG_SZ_MIN			8	/* 256 B */
 102#define DATA_PKT_LOG_SZ_MAX			13	/* 8 KiB */
 103
 104/*
 105 * Select the data packet size (log2 of number of bytes): Use the
 106 * maximum data packet size.  We only retransmit complete packets, so
 107 * there is no benefit from using smaller data packets.
 108 */
 109#define DATA_PKT_LOG_SZ				DATA_PKT_LOG_SZ_MAX
 110#define DATA_PKT_SZ				(1 << DATA_PKT_LOG_SZ)
 111
 112#define WILC_SPI_COMMAND_STAT_SUCCESS		0
 113#define WILC_GET_RESP_HDR_START(h)		(((h) >> 4) & 0xf)
 114
 115struct wilc_spi_cmd {
 116	u8 cmd_type;
 117	union {
 118		struct {
 119			u8 addr[3];
 120			u8 crc[];
 121		} __packed simple_cmd;
 122		struct {
 123			u8 addr[3];
 124			u8 size[2];
 125			u8 crc[];
 126		} __packed dma_cmd;
 127		struct {
 128			u8 addr[3];
 129			u8 size[3];
 130			u8 crc[];
 131		} __packed dma_cmd_ext;
 132		struct {
 133			u8 addr[2];
 134			__be32 data;
 135			u8 crc[];
 136		} __packed internal_w_cmd;
 137		struct {
 138			u8 addr[3];
 139			__be32 data;
 140			u8 crc[];
 141		} __packed w_cmd;
 142	} u;
 143} __packed;
 144
 145struct wilc_spi_read_rsp_data {
 146	u8 header;
 147	u8 data[4];
 148	u8 crc[];
 149} __packed;
 150
 151struct wilc_spi_rsp_data {
 152	u8 rsp_cmd_type;
 153	u8 status;
 154	u8 data[];
 155} __packed;
 156
 157struct wilc_spi_special_cmd_rsp {
 158	u8 skip_byte;
 159	u8 rsp_cmd_type;
 160	u8 status;
 161} __packed;
 162
 163static int wilc_parse_gpios(struct wilc *wilc)
 164{
 165	struct spi_device *spi = to_spi_device(wilc->dev);
 166	struct wilc_spi *spi_priv = wilc->bus_data;
 167	struct wilc_gpios *gpios = &spi_priv->gpios;
 168
 169	/* get ENABLE pin and deassert it (if it is defined): */
 170	gpios->enable = devm_gpiod_get_optional(&spi->dev,
 171						"enable", GPIOD_OUT_LOW);
 172	/* get RESET pin and assert it (if it is defined): */
 173	if (gpios->enable) {
 174		/* if enable pin exists, reset must exist as well */
 175		gpios->reset = devm_gpiod_get(&spi->dev,
 176					      "reset", GPIOD_OUT_HIGH);
 177		if (IS_ERR(gpios->reset)) {
 178			dev_err(&spi->dev, "missing reset gpio.\n");
 179			return PTR_ERR(gpios->reset);
 180		}
 181	} else {
 182		gpios->reset = devm_gpiod_get_optional(&spi->dev,
 183						       "reset", GPIOD_OUT_HIGH);
 184	}
 185	return 0;
 186}
 187
 188static void wilc_wlan_power(struct wilc *wilc, bool on)
 189{
 190	struct wilc_spi *spi_priv = wilc->bus_data;
 191	struct wilc_gpios *gpios = &spi_priv->gpios;
 192
 193	if (on) {
 194		/* assert ENABLE: */
 195		gpiod_set_value(gpios->enable, 1);
 196		mdelay(5);
 197		/* deassert RESET: */
 198		gpiod_set_value(gpios->reset, 0);
 199	} else {
 200		/* assert RESET: */
 201		gpiod_set_value(gpios->reset, 1);
 202		/* deassert ENABLE: */
 203		gpiod_set_value(gpios->enable, 0);
 204	}
 205}
 206
 207static int wilc_bus_probe(struct spi_device *spi)
 208{
 209	int ret;
 210	struct wilc *wilc;
 211	struct wilc_spi *spi_priv;
 212
 213	spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
 214	if (!spi_priv)
 215		return -ENOMEM;
 216
 217	ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
 218	if (ret)
 219		goto free;
 220
 221	spi_set_drvdata(spi, wilc);
 222	wilc->dev = &spi->dev;
 223	wilc->bus_data = spi_priv;
 224	wilc->dev_irq_num = spi->irq;
 225
 226	ret = wilc_parse_gpios(wilc);
 227	if (ret < 0)
 228		goto netdev_cleanup;
 229
 230	wilc->rtc_clk = devm_clk_get_optional(&spi->dev, "rtc");
 231	if (IS_ERR(wilc->rtc_clk)) {
 232		ret = PTR_ERR(wilc->rtc_clk);
 233		goto netdev_cleanup;
 234	}
 235	clk_prepare_enable(wilc->rtc_clk);
 236
 237	dev_info(&spi->dev, "Selected CRC config: crc7=%s, crc16=%s\n",
 238		 enable_crc7 ? "on" : "off", enable_crc16 ? "on" : "off");
 239
 240	/* we need power to configure the bus protocol and to read the chip id: */
 241
 242	wilc_wlan_power(wilc, true);
 243
 244	ret = wilc_spi_configure_bus_protocol(wilc);
 245	if (ret)
 246		goto power_down;
 247
 248	ret = wilc_validate_chipid(wilc);
 249	if (ret)
 250		goto power_down;
 251
 252	wilc_wlan_power(wilc, false);
 253	return 0;
 254
 255power_down:
 256	clk_disable_unprepare(wilc->rtc_clk);
 257	wilc_wlan_power(wilc, false);
 258netdev_cleanup:
 259	wilc_netdev_cleanup(wilc);
 260free:
 261	kfree(spi_priv);
 262	return ret;
 263}
 264
 265static void wilc_bus_remove(struct spi_device *spi)
 266{
 267	struct wilc *wilc = spi_get_drvdata(spi);
 268	struct wilc_spi *spi_priv = wilc->bus_data;
 269
 270	clk_disable_unprepare(wilc->rtc_clk);
 271	wilc_netdev_cleanup(wilc);
 272	kfree(spi_priv);
 273}
 274
 275static const struct of_device_id wilc_of_match[] = {
 276	{ .compatible = "microchip,wilc1000", },
 277	{ /* sentinel */ }
 278};
 279MODULE_DEVICE_TABLE(of, wilc_of_match);
 280
 281static const struct spi_device_id wilc_spi_id[] = {
 282	{ "wilc1000", 0 },
 283	{ /* sentinel */ }
 284};
 285MODULE_DEVICE_TABLE(spi, wilc_spi_id);
 286
 287static struct spi_driver wilc_spi_driver = {
 288	.driver = {
 289		.name = SPI_MODALIAS,
 290		.of_match_table = wilc_of_match,
 291	},
 292	.id_table = wilc_spi_id,
 293	.probe =  wilc_bus_probe,
 294	.remove = wilc_bus_remove,
 295};
 296module_spi_driver(wilc_spi_driver);
 297MODULE_DESCRIPTION("Atmel WILC1000 SPI wireless driver");
 298MODULE_LICENSE("GPL");
 299
 300static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
 301{
 302	struct spi_device *spi = to_spi_device(wilc->dev);
 303	int ret;
 304	struct spi_message msg;
 305
 306	if (len > 0 && b) {
 307		struct spi_transfer tr = {
 308			.tx_buf = b,
 309			.len = len,
 310			.delay = {
 311				.value = 0,
 312				.unit = SPI_DELAY_UNIT_USECS
 313			},
 314		};
 315		char *r_buffer = kzalloc(len, GFP_KERNEL);
 316
 317		if (!r_buffer)
 318			return -ENOMEM;
 319
 320		tr.rx_buf = r_buffer;
 321		dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
 322
 323		memset(&msg, 0, sizeof(msg));
 324		spi_message_init(&msg);
 325		spi_message_add_tail(&tr, &msg);
 326
 327		ret = spi_sync(spi, &msg);
 328		if (ret < 0)
 329			dev_err(&spi->dev, "SPI transaction failed\n");
 330
 331		kfree(r_buffer);
 332	} else {
 333		dev_err(&spi->dev,
 334			"can't write data with the following length: %d\n",
 335			len);
 336		ret = -EINVAL;
 337	}
 338
 339	return ret;
 340}
 341
 342static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
 343{
 344	struct spi_device *spi = to_spi_device(wilc->dev);
 345	int ret;
 346
 347	if (rlen > 0) {
 348		struct spi_message msg;
 349		struct spi_transfer tr = {
 350			.rx_buf = rb,
 351			.len = rlen,
 352			.delay = {
 353				.value = 0,
 354				.unit = SPI_DELAY_UNIT_USECS
 355			},
 356
 357		};
 358		char *t_buffer = kzalloc(rlen, GFP_KERNEL);
 359
 360		if (!t_buffer)
 361			return -ENOMEM;
 362
 363		tr.tx_buf = t_buffer;
 364
 365		memset(&msg, 0, sizeof(msg));
 366		spi_message_init(&msg);
 367		spi_message_add_tail(&tr, &msg);
 368
 369		ret = spi_sync(spi, &msg);
 370		if (ret < 0)
 371			dev_err(&spi->dev, "SPI transaction failed\n");
 372		kfree(t_buffer);
 373	} else {
 374		dev_err(&spi->dev,
 375			"can't read data with the following length: %u\n",
 376			rlen);
 377		ret = -EINVAL;
 378	}
 379
 380	return ret;
 381}
 382
 383static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
 384{
 385	struct spi_device *spi = to_spi_device(wilc->dev);
 386	int ret;
 387
 388	if (rlen > 0) {
 389		struct spi_message msg;
 390		struct spi_transfer tr = {
 391			.rx_buf = rb,
 392			.tx_buf = wb,
 393			.len = rlen,
 394			.bits_per_word = 8,
 395			.delay = {
 396				.value = 0,
 397				.unit = SPI_DELAY_UNIT_USECS
 398			},
 399
 400		};
 401
 402		memset(&msg, 0, sizeof(msg));
 403		spi_message_init(&msg);
 404		spi_message_add_tail(&tr, &msg);
 405		ret = spi_sync(spi, &msg);
 406		if (ret < 0)
 407			dev_err(&spi->dev, "SPI transaction failed\n");
 408	} else {
 409		dev_err(&spi->dev,
 410			"can't read data with the following length: %u\n",
 411			rlen);
 412		ret = -EINVAL;
 413	}
 414
 415	return ret;
 416}
 417
 418static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
 419{
 420	struct spi_device *spi = to_spi_device(wilc->dev);
 421	struct wilc_spi *spi_priv = wilc->bus_data;
 422	int ix, nbytes;
 423	int result = 0;
 424	u8 cmd, order, crc[2];
 425	u16 crc_calc;
 426
 427	/*
 428	 * Data
 429	 */
 430	ix = 0;
 431	do {
 432		if (sz <= DATA_PKT_SZ) {
 433			nbytes = sz;
 434			order = 0x3;
 435		} else {
 436			nbytes = DATA_PKT_SZ;
 437			if (ix == 0)
 438				order = 0x1;
 439			else
 440				order = 0x02;
 441		}
 442
 443		/*
 444		 * Write command
 445		 */
 446		cmd = 0xf0;
 447		cmd |= order;
 448
 449		if (wilc_spi_tx(wilc, &cmd, 1)) {
 450			dev_err(&spi->dev,
 451				"Failed data block cmd write, bus error...\n");
 452			result = -EINVAL;
 453			break;
 454		}
 455
 456		/*
 457		 * Write data
 458		 */
 459		if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
 460			dev_err(&spi->dev,
 461				"Failed data block write, bus error...\n");
 462			result = -EINVAL;
 463			break;
 464		}
 465
 466		/*
 467		 * Write CRC
 468		 */
 469		if (spi_priv->crc16_enabled) {
 470			crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
 471			crc[0] = crc_calc >> 8;
 472			crc[1] = crc_calc;
 473			if (wilc_spi_tx(wilc, crc, 2)) {
 474				dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
 475				result = -EINVAL;
 476				break;
 477			}
 478		}
 479
 480		/*
 481		 * No need to wait for response
 482		 */
 483		ix += nbytes;
 484		sz -= nbytes;
 485	} while (sz);
 486
 487	return result;
 488}
 489
 490/********************************************
 491 *
 492 *      Spi Internal Read/Write Function
 493 *
 494 ********************************************/
 495static u8 wilc_get_crc7(u8 *buffer, u32 len)
 496{
 497	return crc7_be(0xfe, buffer, len) | 0x01;
 498}
 499
 500static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b,
 501				u8 clockless)
 502{
 503	struct spi_device *spi = to_spi_device(wilc->dev);
 504	struct wilc_spi *spi_priv = wilc->bus_data;
 505	u8 wb[32], rb[32];
 506	int cmd_len, resp_len, i;
 507	u16 crc_calc, crc_recv;
 508	struct wilc_spi_cmd *c;
 509	struct wilc_spi_rsp_data *r;
 510	struct wilc_spi_read_rsp_data *r_data;
 511
 512	memset(wb, 0x0, sizeof(wb));
 513	memset(rb, 0x0, sizeof(rb));
 514	c = (struct wilc_spi_cmd *)wb;
 515	c->cmd_type = cmd;
 516	if (cmd == CMD_SINGLE_READ) {
 517		c->u.simple_cmd.addr[0] = adr >> 16;
 518		c->u.simple_cmd.addr[1] = adr >> 8;
 519		c->u.simple_cmd.addr[2] = adr;
 520	} else if (cmd == CMD_INTERNAL_READ) {
 521		c->u.simple_cmd.addr[0] = adr >> 8;
 522		if (clockless == 1)
 523			c->u.simple_cmd.addr[0] |= BIT(7);
 524		c->u.simple_cmd.addr[1] = adr;
 525		c->u.simple_cmd.addr[2] = 0x0;
 526	} else {
 527		dev_err(&spi->dev, "cmd [%x] not supported\n", cmd);
 528		return -EINVAL;
 529	}
 530
 531	cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
 532	resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA;
 533
 534	if (spi_priv->crc7_enabled) {
 535		c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
 536		cmd_len += 1;
 537		resp_len += 2;
 538	}
 539
 540	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
 541		dev_err(&spi->dev,
 542			"spi buffer size too small (%d) (%d) (%zu)\n",
 543			cmd_len, resp_len, ARRAY_SIZE(wb));
 544		return -EINVAL;
 545	}
 546
 547	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
 548		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
 549		return -EINVAL;
 550	}
 551
 552	r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
 553	if (r->rsp_cmd_type != cmd && !clockless) {
 554		if (!spi_priv->probing_crc)
 555			dev_err(&spi->dev,
 556				"Failed cmd, cmd (%02x), resp (%02x)\n",
 557				cmd, r->rsp_cmd_type);
 558		return -EINVAL;
 559	}
 560
 561	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
 562		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
 563			r->status);
 564		return -EINVAL;
 565	}
 566
 567	for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i)
 568		if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf)
 569			break;
 570
 571	if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) {
 572		dev_err(&spi->dev, "Error, data start missing\n");
 573		return -EINVAL;
 574	}
 575
 576	r_data = (struct wilc_spi_read_rsp_data *)&r->data[i];
 577
 578	if (b)
 579		memcpy(b, r_data->data, 4);
 580
 581	if (!clockless && spi_priv->crc16_enabled) {
 582		crc_recv = (r_data->crc[0] << 8) | r_data->crc[1];
 583		crc_calc = crc_itu_t(0xffff, r_data->data, 4);
 584		if (crc_recv != crc_calc) {
 585			dev_err(&spi->dev, "%s: bad CRC 0x%04x "
 586				"(calculated 0x%04x)\n", __func__,
 587				crc_recv, crc_calc);
 588			return -EINVAL;
 589		}
 590	}
 591
 592	return 0;
 593}
 594
 595static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data,
 596			      u8 clockless)
 597{
 598	struct spi_device *spi = to_spi_device(wilc->dev);
 599	struct wilc_spi *spi_priv = wilc->bus_data;
 600	u8 wb[32], rb[32];
 601	int cmd_len, resp_len;
 602	struct wilc_spi_cmd *c;
 603	struct wilc_spi_rsp_data *r;
 604
 605	memset(wb, 0x0, sizeof(wb));
 606	memset(rb, 0x0, sizeof(rb));
 607	c = (struct wilc_spi_cmd *)wb;
 608	c->cmd_type = cmd;
 609	if (cmd == CMD_INTERNAL_WRITE) {
 610		c->u.internal_w_cmd.addr[0] = adr >> 8;
 611		if (clockless == 1)
 612			c->u.internal_w_cmd.addr[0] |= BIT(7);
 613
 614		c->u.internal_w_cmd.addr[1] = adr;
 615		c->u.internal_w_cmd.data = cpu_to_be32(data);
 616		cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc);
 617		if (spi_priv->crc7_enabled)
 618			c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
 619	} else if (cmd == CMD_SINGLE_WRITE) {
 620		c->u.w_cmd.addr[0] = adr >> 16;
 621		c->u.w_cmd.addr[1] = adr >> 8;
 622		c->u.w_cmd.addr[2] = adr;
 623		c->u.w_cmd.data = cpu_to_be32(data);
 624		cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc);
 625		if (spi_priv->crc7_enabled)
 626			c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
 627	} else {
 628		dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd);
 629		return -EINVAL;
 630	}
 631
 632	if (spi_priv->crc7_enabled)
 633		cmd_len += 1;
 634
 635	resp_len = sizeof(*r);
 636
 637	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
 638		dev_err(&spi->dev,
 639			"spi buffer size too small (%d) (%d) (%zu)\n",
 640			cmd_len, resp_len, ARRAY_SIZE(wb));
 641		return -EINVAL;
 642	}
 643
 644	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
 645		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
 646		return -EINVAL;
 647	}
 648
 649	r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
 650	/*
 651	 * Clockless registers operations might return unexptected responses,
 652	 * even if successful.
 653	 */
 654	if (r->rsp_cmd_type != cmd && !clockless) {
 655		dev_err(&spi->dev,
 656			"Failed cmd response, cmd (%02x), resp (%02x)\n",
 657			cmd, r->rsp_cmd_type);
 658		return -EINVAL;
 659	}
 660
 661	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
 662		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
 663			r->status);
 664		return -EINVAL;
 665	}
 666
 667	return 0;
 668}
 669
 670static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz)
 671{
 672	struct spi_device *spi = to_spi_device(wilc->dev);
 673	struct wilc_spi *spi_priv = wilc->bus_data;
 674	u16 crc_recv, crc_calc;
 675	u8 wb[32], rb[32];
 676	int cmd_len, resp_len;
 677	int retry, ix = 0;
 678	u8 crc[2];
 679	struct wilc_spi_cmd *c;
 680	struct wilc_spi_rsp_data *r;
 681
 682	memset(wb, 0x0, sizeof(wb));
 683	memset(rb, 0x0, sizeof(rb));
 684	c = (struct wilc_spi_cmd *)wb;
 685	c->cmd_type = cmd;
 686	if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) {
 687		c->u.dma_cmd.addr[0] = adr >> 16;
 688		c->u.dma_cmd.addr[1] = adr >> 8;
 689		c->u.dma_cmd.addr[2] = adr;
 690		c->u.dma_cmd.size[0] = sz >> 8;
 691		c->u.dma_cmd.size[1] = sz;
 692		cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc);
 693		if (spi_priv->crc7_enabled)
 694			c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
 695	} else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) {
 696		c->u.dma_cmd_ext.addr[0] = adr >> 16;
 697		c->u.dma_cmd_ext.addr[1] = adr >> 8;
 698		c->u.dma_cmd_ext.addr[2] = adr;
 699		c->u.dma_cmd_ext.size[0] = sz >> 16;
 700		c->u.dma_cmd_ext.size[1] = sz >> 8;
 701		c->u.dma_cmd_ext.size[2] = sz;
 702		cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc);
 703		if (spi_priv->crc7_enabled)
 704			c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len);
 705	} else {
 706		dev_err(&spi->dev, "dma read write cmd [%x] not supported\n",
 707			cmd);
 708		return -EINVAL;
 709	}
 710	if (spi_priv->crc7_enabled)
 711		cmd_len += 1;
 712
 713	resp_len = sizeof(*r);
 714
 715	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
 716		dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n",
 717			cmd_len, resp_len, ARRAY_SIZE(wb));
 718		return -EINVAL;
 719	}
 720
 721	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
 722		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
 723		return -EINVAL;
 724	}
 725
 726	r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
 727	if (r->rsp_cmd_type != cmd) {
 728		dev_err(&spi->dev,
 729			"Failed cmd response, cmd (%02x), resp (%02x)\n",
 730			cmd, r->rsp_cmd_type);
 731		return -EINVAL;
 732	}
 733
 734	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
 735		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
 736			r->status);
 737		return -EINVAL;
 738	}
 739
 740	if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE)
 741		return 0;
 742
 743	while (sz > 0) {
 744		int nbytes;
 745		u8 rsp;
 746
 747		nbytes = min_t(u32, sz, DATA_PKT_SZ);
 748
 749		/*
 750		 * Data Response header
 751		 */
 752		retry = 100;
 753		do {
 754			if (wilc_spi_rx(wilc, &rsp, 1)) {
 755				dev_err(&spi->dev,
 756					"Failed resp read, bus err\n");
 757				return -EINVAL;
 758			}
 759			if (WILC_GET_RESP_HDR_START(rsp) == 0xf)
 760				break;
 761		} while (retry--);
 762
 763		/*
 764		 * Read bytes
 765		 */
 766		if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
 767			dev_err(&spi->dev,
 768				"Failed block read, bus err\n");
 769			return -EINVAL;
 770		}
 771
 772		/*
 773		 * Read CRC
 774		 */
 775		if (spi_priv->crc16_enabled) {
 776			if (wilc_spi_rx(wilc, crc, 2)) {
 777				dev_err(&spi->dev,
 778					"Failed block CRC read, bus err\n");
 779				return -EINVAL;
 780			}
 781			crc_recv = (crc[0] << 8) | crc[1];
 782			crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
 783			if (crc_recv != crc_calc) {
 784				dev_err(&spi->dev, "%s: bad CRC 0x%04x "
 785					"(calculated 0x%04x)\n", __func__,
 786					crc_recv, crc_calc);
 787				return -EINVAL;
 788			}
 789		}
 790
 791		ix += nbytes;
 792		sz -= nbytes;
 793	}
 794	return 0;
 795}
 796
 797static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd)
 798{
 799	struct spi_device *spi = to_spi_device(wilc->dev);
 800	struct wilc_spi *spi_priv = wilc->bus_data;
 801	u8 wb[32], rb[32];
 802	int cmd_len, resp_len = 0;
 803	struct wilc_spi_cmd *c;
 804	struct wilc_spi_special_cmd_rsp *r;
 805
 806	if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET)
 807		return -EINVAL;
 808
 809	memset(wb, 0x0, sizeof(wb));
 810	memset(rb, 0x0, sizeof(rb));
 811	c = (struct wilc_spi_cmd *)wb;
 812	c->cmd_type = cmd;
 813
 814	if (cmd == CMD_RESET)
 815		memset(c->u.simple_cmd.addr, 0xFF, 3);
 816
 817	cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
 818	resp_len = sizeof(*r);
 819
 820	if (spi_priv->crc7_enabled) {
 821		c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
 822		cmd_len += 1;
 823	}
 824	if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
 825		dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n",
 826			cmd_len, resp_len, ARRAY_SIZE(wb));
 827		return -EINVAL;
 828	}
 829
 830	if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
 831		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
 832		return -EINVAL;
 833	}
 834
 835	r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len];
 836	if (r->rsp_cmd_type != cmd) {
 837		if (!spi_priv->probing_crc)
 838			dev_err(&spi->dev,
 839				"Failed cmd response, cmd (%02x), resp (%02x)\n",
 840				cmd, r->rsp_cmd_type);
 841		return -EINVAL;
 842	}
 843
 844	if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
 845		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
 846			r->status);
 847		return -EINVAL;
 848	}
 849	return 0;
 850}
 851
 852static void wilc_spi_reset_cmd_sequence(struct wilc *wl, u8 attempt, u32 addr)
 853{
 854	struct spi_device *spi = to_spi_device(wl->dev);
 855	struct wilc_spi *spi_priv = wl->bus_data;
 856
 857	if (!spi_priv->probing_crc)
 858		dev_err(&spi->dev, "Reset and retry %d %x\n", attempt, addr);
 859
 860	usleep_range(1000, 1100);
 861	wilc_spi_reset(wl);
 862	usleep_range(1000, 1100);
 863}
 864
 865static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
 866{
 867	struct spi_device *spi = to_spi_device(wilc->dev);
 868	int result;
 869	u8 cmd = CMD_SINGLE_READ;
 870	u8 clockless = 0;
 871	u8 i;
 872
 873	if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
 874		/* Clockless register */
 875		cmd = CMD_INTERNAL_READ;
 876		clockless = 1;
 877	}
 878
 879	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
 880		result = wilc_spi_single_read(wilc, cmd, addr, data, clockless);
 881		if (!result) {
 882			le32_to_cpus(data);
 883			return 0;
 884		}
 885
 886		/* retry is not applicable for clockless registers */
 887		if (clockless)
 888			break;
 889
 890		dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
 891		wilc_spi_reset_cmd_sequence(wilc, i, addr);
 892	}
 893
 894	return result;
 895}
 896
 897static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
 898{
 899	struct spi_device *spi = to_spi_device(wilc->dev);
 900	int result;
 901	u8 i;
 902
 903	if (size <= 4)
 904		return -EINVAL;
 905
 906	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
 907		result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr,
 908					 buf, size);
 909		if (!result)
 910			return 0;
 911
 912		dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
 913
 914		wilc_spi_reset_cmd_sequence(wilc, i, addr);
 915	}
 916
 917	return result;
 918}
 919
 920static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
 921{
 922	struct spi_device *spi = to_spi_device(wilc->dev);
 923	int result;
 924	u8 i;
 925
 926	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
 927		result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr,
 928					    dat, 0);
 929		if (!result)
 930			return 0;
 931		dev_err(&spi->dev, "Failed internal write cmd...\n");
 932
 933		wilc_spi_reset_cmd_sequence(wilc, i, adr);
 934	}
 935
 936	return result;
 937}
 938
 939static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
 940{
 941	struct spi_device *spi = to_spi_device(wilc->dev);
 942	struct wilc_spi *spi_priv = wilc->bus_data;
 943	int result;
 944	u8 i;
 945
 946	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
 947		result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr,
 948					      data, 0);
 949		if (!result) {
 950			le32_to_cpus(data);
 951			return 0;
 952		}
 953		if (!spi_priv->probing_crc)
 954			dev_err(&spi->dev, "Failed internal read cmd...\n");
 955
 956		wilc_spi_reset_cmd_sequence(wilc, i, adr);
 957	}
 958
 959	return result;
 960}
 961
 962/********************************************
 963 *
 964 *      Spi interfaces
 965 *
 966 ********************************************/
 967
 968static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
 969{
 970	struct spi_device *spi = to_spi_device(wilc->dev);
 971	int result;
 972	u8 cmd = CMD_SINGLE_WRITE;
 973	u8 clockless = 0;
 974	u8 i;
 975
 976	if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
 977		/* Clockless register */
 978		cmd = CMD_INTERNAL_WRITE;
 979		clockless = 1;
 980	}
 981
 982	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
 983		result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless);
 984		if (!result)
 985			return 0;
 986
 987		dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
 988
 989		if (clockless)
 990			break;
 991
 992		wilc_spi_reset_cmd_sequence(wilc, i, addr);
 993	}
 994	return result;
 995}
 996
 997static int spi_data_rsp(struct wilc *wilc, u8 cmd)
 998{
 999	struct spi_device *spi = to_spi_device(wilc->dev);
1000	int result, i;
1001	u8 rsp[4];
1002
1003	/*
1004	 * The response to data packets is two bytes long.  For
1005	 * efficiency's sake, wilc_spi_write() wisely ignores the
1006	 * responses for all packets but the final one.  The downside
1007	 * of that optimization is that when the final data packet is
1008	 * short, we may receive (part of) the response to the
1009	 * second-to-last packet before the one for the final packet.
1010	 * To handle this, we always read 4 bytes and then search for
1011	 * the last byte that contains the "Response Start" code (0xc
1012	 * in the top 4 bits).  We then know that this byte is the
1013	 * first response byte of the final data packet.
1014	 */
1015	result = wilc_spi_rx(wilc, rsp, sizeof(rsp));
1016	if (result) {
1017		dev_err(&spi->dev, "Failed bus error...\n");
1018		return result;
1019	}
1020
1021	for (i = sizeof(rsp) - 2; i >= 0; --i)
1022		if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG)
1023			break;
1024
1025	if (i < 0) {
1026		dev_err(&spi->dev,
1027			"Data packet response missing (%02x %02x %02x %02x)\n",
1028			rsp[0], rsp[1], rsp[2], rsp[3]);
1029		return -1;
1030	}
1031
1032	/* rsp[i] is the last response start byte */
1033
1034	if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET
1035	    || rsp[i + 1] != RSP_STATE_NO_ERROR) {
1036		dev_err(&spi->dev, "Data response error (%02x %02x)\n",
1037			rsp[i], rsp[i + 1]);
1038		return -1;
1039	}
1040	return 0;
1041}
1042
1043static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
1044{
1045	struct spi_device *spi = to_spi_device(wilc->dev);
1046	int result;
1047	u8 i;
1048
1049	/*
1050	 * has to be greated than 4
1051	 */
1052	if (size <= 4)
1053		return -EINVAL;
1054
1055	for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
1056		result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr,
1057					 NULL, size);
1058		if (result) {
1059			dev_err(&spi->dev,
1060				"Failed cmd, write block (%08x)...\n", addr);
1061			wilc_spi_reset_cmd_sequence(wilc, i, addr);
1062			continue;
1063		}
1064
1065		/*
1066		 * Data
1067		 */
1068		result = spi_data_write(wilc, buf, size);
1069		if (result) {
1070			dev_err(&spi->dev, "Failed block data write...\n");
1071			wilc_spi_reset_cmd_sequence(wilc, i, addr);
1072			continue;
1073		}
1074
1075		/*
1076		 * Data response
1077		 */
1078		result = spi_data_rsp(wilc, CMD_DMA_EXT_WRITE);
1079		if (result) {
1080			dev_err(&spi->dev, "Failed block data rsp...\n");
1081			wilc_spi_reset_cmd_sequence(wilc, i, addr);
1082			continue;
1083		}
1084		break;
1085	}
1086	return result;
1087}
1088
1089/********************************************
1090 *
1091 *      Bus interfaces
1092 *
1093 ********************************************/
1094
1095static int wilc_spi_reset(struct wilc *wilc)
1096{
1097	struct spi_device *spi = to_spi_device(wilc->dev);
1098	struct wilc_spi *spi_priv = wilc->bus_data;
1099	int result;
1100
1101	result = wilc_spi_special_cmd(wilc, CMD_RESET);
1102	if (result && !spi_priv->probing_crc)
1103		dev_err(&spi->dev, "Failed cmd reset\n");
1104
1105	return result;
1106}
1107
1108static bool wilc_spi_is_init(struct wilc *wilc)
1109{
1110	struct wilc_spi *spi_priv = wilc->bus_data;
1111
1112	return spi_priv->isinit;
1113}
1114
1115static int wilc_spi_deinit(struct wilc *wilc)
1116{
1117	struct wilc_spi *spi_priv = wilc->bus_data;
1118
1119	spi_priv->isinit = false;
1120	wilc_wlan_power(wilc, false);
1121	return 0;
1122}
1123
1124static int wilc_spi_init(struct wilc *wilc, bool resume)
1125{
1126	struct wilc_spi *spi_priv = wilc->bus_data;
1127	int ret;
1128
1129	if (spi_priv->isinit) {
1130		/* Confirm we can read chipid register without error: */
1131		if (wilc_validate_chipid(wilc) == 0)
1132			return 0;
1133	}
1134
1135	wilc_wlan_power(wilc, true);
1136
1137	ret = wilc_spi_configure_bus_protocol(wilc);
1138	if (ret) {
1139		wilc_wlan_power(wilc, false);
1140		return ret;
1141	}
1142
1143	spi_priv->isinit = true;
1144
1145	return 0;
1146}
1147
1148static int wilc_spi_configure_bus_protocol(struct wilc *wilc)
1149{
1150	struct spi_device *spi = to_spi_device(wilc->dev);
1151	struct wilc_spi *spi_priv = wilc->bus_data;
1152	u32 reg;
1153	int ret, i;
1154
1155	/*
1156	 * Infer the CRC settings that are currently in effect.  This
1157	 * is necessary because we can't be sure that the chip has
1158	 * been RESET (e.g, after module unload and reload).
1159	 */
1160	spi_priv->probing_crc = true;
1161	spi_priv->crc7_enabled = enable_crc7;
1162	spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */
1163	for (i = 0; i < 2; ++i) {
1164		ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
1165		if (ret == 0)
1166			break;
1167		spi_priv->crc7_enabled = !enable_crc7;
1168	}
1169	if (ret) {
1170		dev_err(&spi->dev, "Failed with CRC7 on and off.\n");
1171		return ret;
1172	}
1173
1174	/* set up the desired CRC configuration: */
1175	reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK);
1176	if (enable_crc7)
1177		reg |= PROTOCOL_REG_CRC7_MASK;
1178	if (enable_crc16)
1179		reg |= PROTOCOL_REG_CRC16_MASK;
1180
1181	/* set up the data packet size: */
1182	BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN
1183		     || DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX);
1184	reg &= ~PROTOCOL_REG_PKT_SZ_MASK;
1185	reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK,
1186			  DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN);
1187
1188	/* establish the new setup: */
1189	ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg);
1190	if (ret) {
1191		dev_err(&spi->dev,
1192			"[wilc spi %d]: Failed internal write reg\n",
1193			__LINE__);
1194		return ret;
1195	}
1196	/* update our state to match new protocol settings: */
1197	spi_priv->crc7_enabled = enable_crc7;
1198	spi_priv->crc16_enabled = enable_crc16;
1199
1200	/* re-read to make sure new settings are in effect: */
1201	spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
1202
1203	spi_priv->probing_crc = false;
1204
1205	return 0;
1206}
1207
1208static int wilc_validate_chipid(struct wilc *wilc)
1209{
1210	struct spi_device *spi = to_spi_device(wilc->dev);
1211	u32 chipid;
1212	int ret;
1213
1214	/*
1215	 * make sure can read chip id without protocol error
1216	 */
1217	ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1218	if (ret) {
1219		dev_err(&spi->dev, "Fail cmd read chip id...\n");
1220		return ret;
1221	}
1222	if (!is_wilc1000(chipid)) {
1223		dev_err(&spi->dev, "Unknown chip id 0x%x\n", chipid);
1224		return -ENODEV;
1225	}
1226	return 0;
1227}
1228
1229static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
1230{
1231	int ret;
1232
1233	ret = spi_internal_read(wilc,
1234				WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size);
1235	*size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size);
1236
1237	return ret;
1238}
1239
1240static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
1241{
1242	return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE,
1243				 int_status);
1244}
1245
1246static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
1247{
1248	int ret;
1249	int retry = SPI_ENABLE_VMM_RETRY_LIMIT;
1250	u32 check;
1251
1252	while (retry) {
1253		ret = spi_internal_write(wilc,
1254					 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1255					 val);
1256		if (ret)
1257			break;
1258
1259		ret = spi_internal_read(wilc,
1260					WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1261					&check);
1262		if (ret || ((check & EN_VMM) == (val & EN_VMM)))
1263			break;
1264
1265		retry--;
1266	}
1267	return ret;
1268}
1269
1270static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1271{
1272	struct spi_device *spi = to_spi_device(wilc->dev);
1273	u32 reg;
1274	int ret, i;
1275
1276	if (nint > MAX_NUM_INT) {
1277		dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1278		return -EINVAL;
1279	}
1280
1281	/*
1282	 * interrupt pin mux select
1283	 */
1284	ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
1285	if (ret) {
1286		dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1287			WILC_PIN_MUX_0);
1288		return ret;
1289	}
1290	reg |= BIT(8);
1291	ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1292	if (ret) {
1293		dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1294			WILC_PIN_MUX_0);
1295		return ret;
1296	}
1297
1298	/*
1299	 * interrupt enable
1300	 */
1301	ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
1302	if (ret) {
1303		dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1304			WILC_INTR_ENABLE);
1305		return ret;
1306	}
1307
1308	for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1309		reg |= (BIT((27 + i)));
1310
1311	ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1312	if (ret) {
1313		dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1314			WILC_INTR_ENABLE);
1315		return ret;
1316	}
1317	if (nint) {
1318		ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1319		if (ret) {
1320			dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1321				WILC_INTR2_ENABLE);
1322			return ret;
1323		}
1324
1325		for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1326			reg |= BIT(i);
1327
1328		ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg);
1329		if (ret) {
1330			dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1331				WILC_INTR2_ENABLE);
1332			return ret;
1333		}
1334	}
1335
1336	return 0;
1337}
1338
1339/* Global spi HIF function table */
1340static const struct wilc_hif_func wilc_hif_spi = {
1341	.hif_init = wilc_spi_init,
1342	.hif_deinit = wilc_spi_deinit,
1343	.hif_read_reg = wilc_spi_read_reg,
1344	.hif_write_reg = wilc_spi_write_reg,
1345	.hif_block_rx = wilc_spi_read,
1346	.hif_block_tx = wilc_spi_write,
1347	.hif_read_int = wilc_spi_read_int,
1348	.hif_clear_int_ext = wilc_spi_clear_int_ext,
1349	.hif_read_size = wilc_spi_read_size,
1350	.hif_block_tx_ext = wilc_spi_write,
1351	.hif_block_rx_ext = wilc_spi_read,
1352	.hif_sync_ext = wilc_spi_sync_ext,
1353	.hif_reset = wilc_spi_reset,
1354	.hif_is_init = wilc_spi_is_init,
1355};