Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.1
 
   1/*
   2 *   (c) 2003-2010 Advanced Micro Devices, Inc.
   3 *  Your use of this code is subject to the terms and conditions of the
   4 *  GNU general public license version 2. See "COPYING" or
   5 *  http://www.gnu.org/licenses/gpl.html
   6 *
   7 *  Support : mark.langsdorf@amd.com
 
   8 *
   9 *  Based on the powernow-k7.c module written by Dave Jones.
  10 *  (C) 2003 Dave Jones on behalf of SuSE Labs
  11 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
  12 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
  13 *  Licensed under the terms of the GNU GPL License version 2.
  14 *  Based upon datasheets & sample CPUs kindly provided by AMD.
  15 *
  16 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
  17 *  Dominik Brodowski, Jacob Shin, and others.
  18 *  Originally developed by Paul Devriendt.
  19 *  Processor information obtained from Chapter 9 (Power and Thermal Management)
  20 *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
  21 *  Opteron Processors" available for download from www.amd.com
  22 *
  23 *  Tables for specific CPUs can be inferred from
  24 *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
 
 
 
 
 
  25 */
  26
 
 
  27#include <linux/kernel.h>
  28#include <linux/smp.h>
  29#include <linux/module.h>
  30#include <linux/init.h>
  31#include <linux/cpufreq.h>
  32#include <linux/slab.h>
  33#include <linux/string.h>
  34#include <linux/cpumask.h>
  35#include <linux/sched.h>	/* for current / set_cpus_allowed() */
  36#include <linux/io.h>
  37#include <linux/delay.h>
  38
  39#include <asm/msr.h>
 
  40
  41#include <linux/acpi.h>
  42#include <linux/mutex.h>
  43#include <acpi/processor.h>
  44
  45#define PFX "powernow-k8: "
  46#define VERSION "version 2.20.00"
  47#include "powernow-k8.h"
  48#include "mperf.h"
  49
  50/* serialize freq changes  */
  51static DEFINE_MUTEX(fidvid_mutex);
  52
  53static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  54
  55static int cpu_family = CPU_OPTERON;
  56
  57/* core performance boost */
  58static bool cpb_capable, cpb_enabled;
  59static struct msr __percpu *msrs;
  60
  61static struct cpufreq_driver cpufreq_amd64_driver;
  62
  63#ifndef CONFIG_SMP
  64static inline const struct cpumask *cpu_core_mask(int cpu)
  65{
  66	return cpumask_of(0);
  67}
  68#endif
  69
  70/* Return a frequency in MHz, given an input fid */
  71static u32 find_freq_from_fid(u32 fid)
  72{
  73	return 800 + (fid * 100);
  74}
  75
  76/* Return a frequency in KHz, given an input fid */
  77static u32 find_khz_freq_from_fid(u32 fid)
  78{
  79	return 1000 * find_freq_from_fid(fid);
  80}
  81
  82static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
  83		u32 pstate)
  84{
  85	return data[pstate].frequency;
  86}
  87
  88/* Return the vco fid for an input fid
  89 *
  90 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  91 * only from corresponding high fids. This returns "high" fid corresponding to
  92 * "low" one.
  93 */
  94static u32 convert_fid_to_vco_fid(u32 fid)
  95{
  96	if (fid < HI_FID_TABLE_BOTTOM)
  97		return 8 + (2 * fid);
  98	else
  99		return fid;
 100}
 101
 102/*
 103 * Return 1 if the pending bit is set. Unless we just instructed the processor
 104 * to transition to a new state, seeing this bit set is really bad news.
 105 */
 106static int pending_bit_stuck(void)
 107{
 108	u32 lo, hi;
 109
 110	if (cpu_family == CPU_HW_PSTATE)
 111		return 0;
 112
 113	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 114	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
 115}
 116
 117/*
 118 * Update the global current fid / vid values from the status msr.
 119 * Returns 1 on error.
 120 */
 121static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
 122{
 123	u32 lo, hi;
 124	u32 i = 0;
 125
 126	if (cpu_family == CPU_HW_PSTATE) {
 127		rdmsr(MSR_PSTATE_STATUS, lo, hi);
 128		i = lo & HW_PSTATE_MASK;
 129		data->currpstate = i;
 130
 131		/*
 132		 * a workaround for family 11h erratum 311 might cause
 133		 * an "out-of-range Pstate if the core is in Pstate-0
 134		 */
 135		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
 136			data->currpstate = HW_PSTATE_0;
 137
 138		return 0;
 139	}
 140	do {
 141		if (i++ > 10000) {
 142			pr_debug("detected change pending stuck\n");
 143			return 1;
 144		}
 145		rdmsr(MSR_FIDVID_STATUS, lo, hi);
 146	} while (lo & MSR_S_LO_CHANGE_PENDING);
 147
 148	data->currvid = hi & MSR_S_HI_CURRENT_VID;
 149	data->currfid = lo & MSR_S_LO_CURRENT_FID;
 150
 151	return 0;
 152}
 153
 154/* the isochronous relief time */
 155static void count_off_irt(struct powernow_k8_data *data)
 156{
 157	udelay((1 << data->irt) * 10);
 158	return;
 159}
 160
 161/* the voltage stabilization time */
 162static void count_off_vst(struct powernow_k8_data *data)
 163{
 164	udelay(data->vstable * VST_UNITS_20US);
 165	return;
 166}
 167
 168/* need to init the control msr to a safe value (for each cpu) */
 169static void fidvid_msr_init(void)
 170{
 171	u32 lo, hi;
 172	u8 fid, vid;
 173
 174	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 175	vid = hi & MSR_S_HI_CURRENT_VID;
 176	fid = lo & MSR_S_LO_CURRENT_FID;
 177	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
 178	hi = MSR_C_HI_STP_GNT_BENIGN;
 179	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
 180	wrmsr(MSR_FIDVID_CTL, lo, hi);
 181}
 182
 183/* write the new fid value along with the other control fields to the msr */
 184static int write_new_fid(struct powernow_k8_data *data, u32 fid)
 185{
 186	u32 lo;
 187	u32 savevid = data->currvid;
 188	u32 i = 0;
 189
 190	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
 191		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
 192		return 1;
 193	}
 194
 195	lo = fid;
 196	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
 197	lo |= MSR_C_LO_INIT_FID_VID;
 198
 199	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
 200		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
 201
 202	do {
 203		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
 204		if (i++ > 100) {
 205			printk(KERN_ERR PFX
 206				"Hardware error - pending bit very stuck - "
 207				"no further pstate changes possible\n");
 208			return 1;
 209		}
 210	} while (query_current_values_with_pending_wait(data));
 211
 212	count_off_irt(data);
 213
 214	if (savevid != data->currvid) {
 215		printk(KERN_ERR PFX
 216			"vid change on fid trans, old 0x%x, new 0x%x\n",
 217			savevid, data->currvid);
 218		return 1;
 219	}
 220
 221	if (fid != data->currfid) {
 222		printk(KERN_ERR PFX
 223			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
 224			data->currfid);
 225		return 1;
 226	}
 227
 228	return 0;
 229}
 230
 231/* Write a new vid to the hardware */
 232static int write_new_vid(struct powernow_k8_data *data, u32 vid)
 233{
 234	u32 lo;
 235	u32 savefid = data->currfid;
 236	int i = 0;
 237
 238	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
 239		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
 240		return 1;
 241	}
 242
 243	lo = data->currfid;
 244	lo |= (vid << MSR_C_LO_VID_SHIFT);
 245	lo |= MSR_C_LO_INIT_FID_VID;
 246
 247	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
 248		vid, lo, STOP_GRANT_5NS);
 249
 250	do {
 251		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
 252		if (i++ > 100) {
 253			printk(KERN_ERR PFX "internal error - pending bit "
 254					"very stuck - no further pstate "
 255					"changes possible\n");
 256			return 1;
 257		}
 258	} while (query_current_values_with_pending_wait(data));
 259
 260	if (savefid != data->currfid) {
 261		printk(KERN_ERR PFX "fid changed on vid trans, old "
 262			"0x%x new 0x%x\n",
 263		       savefid, data->currfid);
 264		return 1;
 265	}
 266
 267	if (vid != data->currvid) {
 268		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
 269				"curr 0x%x\n",
 270				vid, data->currvid);
 271		return 1;
 272	}
 273
 274	return 0;
 275}
 276
 277/*
 278 * Reduce the vid by the max of step or reqvid.
 279 * Decreasing vid codes represent increasing voltages:
 280 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 281 */
 282static int decrease_vid_code_by_step(struct powernow_k8_data *data,
 283		u32 reqvid, u32 step)
 284{
 285	if ((data->currvid - reqvid) > step)
 286		reqvid = data->currvid - step;
 287
 288	if (write_new_vid(data, reqvid))
 289		return 1;
 290
 291	count_off_vst(data);
 292
 293	return 0;
 294}
 295
 296/* Change hardware pstate by single MSR write */
 297static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
 298{
 299	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
 300	data->currpstate = pstate;
 301	return 0;
 302}
 303
 304/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
 305static int transition_fid_vid(struct powernow_k8_data *data,
 306		u32 reqfid, u32 reqvid)
 307{
 308	if (core_voltage_pre_transition(data, reqvid, reqfid))
 309		return 1;
 310
 311	if (core_frequency_transition(data, reqfid))
 312		return 1;
 313
 314	if (core_voltage_post_transition(data, reqvid))
 315		return 1;
 316
 317	if (query_current_values_with_pending_wait(data))
 318		return 1;
 319
 320	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
 321		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
 322				"curr 0x%x 0x%x\n",
 323				smp_processor_id(),
 324				reqfid, reqvid, data->currfid, data->currvid);
 325		return 1;
 326	}
 327
 328	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
 329		smp_processor_id(), data->currfid, data->currvid);
 330
 331	return 0;
 332}
 333
 334/* Phase 1 - core voltage transition ... setup voltage */
 335static int core_voltage_pre_transition(struct powernow_k8_data *data,
 336		u32 reqvid, u32 reqfid)
 337{
 338	u32 rvosteps = data->rvo;
 339	u32 savefid = data->currfid;
 340	u32 maxvid, lo, rvomult = 1;
 341
 342	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
 343		"reqvid 0x%x, rvo 0x%x\n",
 344		smp_processor_id(),
 345		data->currfid, data->currvid, reqvid, data->rvo);
 346
 347	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
 348		rvomult = 2;
 349	rvosteps *= rvomult;
 350	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
 351	maxvid = 0x1f & (maxvid >> 16);
 352	pr_debug("ph1 maxvid=0x%x\n", maxvid);
 353	if (reqvid < maxvid) /* lower numbers are higher voltages */
 354		reqvid = maxvid;
 355
 356	while (data->currvid > reqvid) {
 357		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
 358			data->currvid, reqvid);
 359		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
 360			return 1;
 361	}
 362
 363	while ((rvosteps > 0) &&
 364			((rvomult * data->rvo + data->currvid) > reqvid)) {
 365		if (data->currvid == maxvid) {
 366			rvosteps = 0;
 367		} else {
 368			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
 369				data->currvid - 1);
 370			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
 371				return 1;
 372			rvosteps--;
 373		}
 374	}
 375
 376	if (query_current_values_with_pending_wait(data))
 377		return 1;
 378
 379	if (savefid != data->currfid) {
 380		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
 381				data->currfid);
 382		return 1;
 383	}
 384
 385	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
 386		data->currfid, data->currvid);
 387
 388	return 0;
 389}
 390
 391/* Phase 2 - core frequency transition */
 392static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
 393{
 394	u32 vcoreqfid, vcocurrfid, vcofiddiff;
 395	u32 fid_interval, savevid = data->currvid;
 396
 397	if (data->currfid == reqfid) {
 398		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
 399				data->currfid);
 400		return 0;
 401	}
 402
 403	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
 404		"reqfid 0x%x\n",
 405		smp_processor_id(),
 406		data->currfid, data->currvid, reqfid);
 407
 408	vcoreqfid = convert_fid_to_vco_fid(reqfid);
 409	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 410	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 411	    : vcoreqfid - vcocurrfid;
 412
 413	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
 414		vcofiddiff = 0;
 415
 416	while (vcofiddiff > 2) {
 417		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
 418
 419		if (reqfid > data->currfid) {
 420			if (data->currfid > LO_FID_TABLE_TOP) {
 421				if (write_new_fid(data,
 422						data->currfid + fid_interval))
 423					return 1;
 424			} else {
 425				if (write_new_fid
 426				    (data,
 427				     2 + convert_fid_to_vco_fid(data->currfid)))
 428					return 1;
 429			}
 430		} else {
 431			if (write_new_fid(data, data->currfid - fid_interval))
 432				return 1;
 433		}
 434
 435		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 436		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 437		    : vcoreqfid - vcocurrfid;
 438	}
 439
 440	if (write_new_fid(data, reqfid))
 441		return 1;
 442
 443	if (query_current_values_with_pending_wait(data))
 444		return 1;
 445
 446	if (data->currfid != reqfid) {
 447		printk(KERN_ERR PFX
 448			"ph2: mismatch, failed fid transition, "
 449			"curr 0x%x, req 0x%x\n",
 450			data->currfid, reqfid);
 451		return 1;
 452	}
 453
 454	if (savevid != data->currvid) {
 455		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
 456			savevid, data->currvid);
 457		return 1;
 458	}
 459
 460	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
 461		data->currfid, data->currvid);
 462
 463	return 0;
 464}
 465
 466/* Phase 3 - core voltage transition flow ... jump to the final vid. */
 467static int core_voltage_post_transition(struct powernow_k8_data *data,
 468		u32 reqvid)
 469{
 470	u32 savefid = data->currfid;
 471	u32 savereqvid = reqvid;
 472
 473	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
 474		smp_processor_id(),
 475		data->currfid, data->currvid);
 476
 477	if (reqvid != data->currvid) {
 478		if (write_new_vid(data, reqvid))
 479			return 1;
 480
 481		if (savefid != data->currfid) {
 482			printk(KERN_ERR PFX
 483			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
 484			       savefid, data->currfid);
 485			return 1;
 486		}
 487
 488		if (data->currvid != reqvid) {
 489			printk(KERN_ERR PFX
 490			       "ph3: failed vid transition\n, "
 491			       "req 0x%x, curr 0x%x",
 492			       reqvid, data->currvid);
 493			return 1;
 494		}
 495	}
 496
 497	if (query_current_values_with_pending_wait(data))
 498		return 1;
 499
 500	if (savereqvid != data->currvid) {
 501		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
 502		return 1;
 503	}
 504
 505	if (savefid != data->currfid) {
 506		pr_debug("ph3 failed, currfid changed 0x%x\n",
 507			data->currfid);
 508		return 1;
 509	}
 510
 511	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
 512		data->currfid, data->currvid);
 513
 514	return 0;
 515}
 516
 
 
 
 
 
 
 
 517static void check_supported_cpu(void *_rc)
 518{
 519	u32 eax, ebx, ecx, edx;
 520	int *rc = _rc;
 521
 522	*rc = -ENODEV;
 523
 524	if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
 525		return;
 526
 527	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 528	if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
 529	    ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
 530		return;
 531
 532	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
 533		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
 534		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
 535			printk(KERN_INFO PFX
 536				"Processor cpuid %x not supported\n", eax);
 537			return;
 538		}
 539
 540		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
 541		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
 542			printk(KERN_INFO PFX
 543			       "No frequency change capabilities detected\n");
 544			return;
 545		}
 546
 547		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 548		if ((edx & P_STATE_TRANSITION_CAPABLE)
 549			!= P_STATE_TRANSITION_CAPABLE) {
 550			printk(KERN_INFO PFX
 551				"Power state transitions not supported\n");
 552			return;
 553		}
 554	} else { /* must be a HW Pstate capable processor */
 555		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 556		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
 557			cpu_family = CPU_HW_PSTATE;
 558		else
 559			return;
 560	}
 561
 562	*rc = 0;
 563}
 564
 565static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
 566		u8 maxvid)
 567{
 568	unsigned int j;
 569	u8 lastfid = 0xff;
 570
 571	for (j = 0; j < data->numps; j++) {
 572		if (pst[j].vid > LEAST_VID) {
 573			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
 574			       j, pst[j].vid);
 575			return -EINVAL;
 576		}
 577		if (pst[j].vid < data->rvo) {
 578			/* vid + rvo >= 0 */
 579			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
 580			       " %d\n", j);
 581			return -ENODEV;
 582		}
 583		if (pst[j].vid < maxvid + data->rvo) {
 584			/* vid + rvo >= maxvid */
 585			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
 586			       " %d\n", j);
 587			return -ENODEV;
 588		}
 589		if (pst[j].fid > MAX_FID) {
 590			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
 591			       " %d\n", j);
 592			return -ENODEV;
 593		}
 594		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
 595			/* Only first fid is allowed to be in "low" range */
 596			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
 597			       "0x%x\n", j, pst[j].fid);
 598			return -EINVAL;
 599		}
 600		if (pst[j].fid < lastfid)
 601			lastfid = pst[j].fid;
 602	}
 603	if (lastfid & 1) {
 604		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
 605		return -EINVAL;
 606	}
 607	if (lastfid > LO_FID_TABLE_TOP)
 608		printk(KERN_INFO FW_BUG PFX
 609			"first fid not from lo freq table\n");
 610
 611	return 0;
 612}
 613
 614static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
 615		unsigned int entry)
 616{
 617	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
 618}
 619
 620static void print_basics(struct powernow_k8_data *data)
 621{
 622	int j;
 623	for (j = 0; j < data->numps; j++) {
 624		if (data->powernow_table[j].frequency !=
 625				CPUFREQ_ENTRY_INVALID) {
 626			if (cpu_family == CPU_HW_PSTATE) {
 627				printk(KERN_INFO PFX
 628					"   %d : pstate %d (%d MHz)\n", j,
 629					data->powernow_table[j].index,
 630					data->powernow_table[j].frequency/1000);
 631			} else {
 632				printk(KERN_INFO PFX
 633					"fid 0x%x (%d MHz), vid 0x%x\n",
 634					data->powernow_table[j].index & 0xff,
 635					data->powernow_table[j].frequency/1000,
 636					data->powernow_table[j].index >> 8);
 637			}
 638		}
 639	}
 640	if (data->batps)
 641		printk(KERN_INFO PFX "Only %d pstates on battery\n",
 642				data->batps);
 643}
 644
 645static u32 freq_from_fid_did(u32 fid, u32 did)
 646{
 647	u32 mhz = 0;
 648
 649	if (boot_cpu_data.x86 == 0x10)
 650		mhz = (100 * (fid + 0x10)) >> did;
 651	else if (boot_cpu_data.x86 == 0x11)
 652		mhz = (100 * (fid + 8)) >> did;
 653	else
 654		BUG();
 655
 656	return mhz * 1000;
 657}
 658
 659static int fill_powernow_table(struct powernow_k8_data *data,
 660		struct pst_s *pst, u8 maxvid)
 661{
 662	struct cpufreq_frequency_table *powernow_table;
 663	unsigned int j;
 664
 665	if (data->batps) {
 666		/* use ACPI support to get full speed on mains power */
 667		printk(KERN_WARNING PFX
 668			"Only %d pstates usable (use ACPI driver for full "
 669			"range\n", data->batps);
 670		data->numps = data->batps;
 671	}
 672
 673	for (j = 1; j < data->numps; j++) {
 674		if (pst[j-1].fid >= pst[j].fid) {
 675			printk(KERN_ERR PFX "PST out of sequence\n");
 676			return -EINVAL;
 677		}
 678	}
 679
 680	if (data->numps < 2) {
 681		printk(KERN_ERR PFX "no p states to transition\n");
 682		return -ENODEV;
 683	}
 684
 685	if (check_pst_table(data, pst, maxvid))
 686		return -EINVAL;
 687
 688	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 689		* (data->numps + 1)), GFP_KERNEL);
 690	if (!powernow_table) {
 691		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
 692		return -ENOMEM;
 693	}
 694
 695	for (j = 0; j < data->numps; j++) {
 696		int freq;
 697		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
 698		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
 699		freq = find_khz_freq_from_fid(pst[j].fid);
 700		powernow_table[j].frequency = freq;
 701	}
 702	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
 703	powernow_table[data->numps].index = 0;
 704
 705	if (query_current_values_with_pending_wait(data)) {
 706		kfree(powernow_table);
 707		return -EIO;
 708	}
 709
 710	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
 711	data->powernow_table = powernow_table;
 712	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 713		print_basics(data);
 714
 715	for (j = 0; j < data->numps; j++)
 716		if ((pst[j].fid == data->currfid) &&
 717		    (pst[j].vid == data->currvid))
 718			return 0;
 719
 720	pr_debug("currfid/vid do not match PST, ignoring\n");
 721	return 0;
 722}
 723
 724/* Find and validate the PSB/PST table in BIOS. */
 725static int find_psb_table(struct powernow_k8_data *data)
 726{
 727	struct psb_s *psb;
 728	unsigned int i;
 729	u32 mvs;
 730	u8 maxvid;
 731	u32 cpst = 0;
 732	u32 thiscpuid;
 733
 734	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
 735		/* Scan BIOS looking for the signature. */
 736		/* It can not be at ffff0 - it is too big. */
 737
 738		psb = phys_to_virt(i);
 739		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
 740			continue;
 741
 742		pr_debug("found PSB header at 0x%p\n", psb);
 743
 744		pr_debug("table vers: 0x%x\n", psb->tableversion);
 745		if (psb->tableversion != PSB_VERSION_1_4) {
 746			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
 747			return -ENODEV;
 748		}
 749
 750		pr_debug("flags: 0x%x\n", psb->flags1);
 751		if (psb->flags1) {
 752			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
 753			return -ENODEV;
 754		}
 755
 756		data->vstable = psb->vstable;
 757		pr_debug("voltage stabilization time: %d(*20us)\n",
 758				data->vstable);
 759
 760		pr_debug("flags2: 0x%x\n", psb->flags2);
 761		data->rvo = psb->flags2 & 3;
 762		data->irt = ((psb->flags2) >> 2) & 3;
 763		mvs = ((psb->flags2) >> 4) & 3;
 764		data->vidmvs = 1 << mvs;
 765		data->batps = ((psb->flags2) >> 6) & 3;
 766
 767		pr_debug("ramp voltage offset: %d\n", data->rvo);
 768		pr_debug("isochronous relief time: %d\n", data->irt);
 769		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
 770
 771		pr_debug("numpst: 0x%x\n", psb->num_tables);
 772		cpst = psb->num_tables;
 773		if ((psb->cpuid == 0x00000fc0) ||
 774		    (psb->cpuid == 0x00000fe0)) {
 775			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 776			if ((thiscpuid == 0x00000fc0) ||
 777			    (thiscpuid == 0x00000fe0))
 778				cpst = 1;
 779		}
 780		if (cpst != 1) {
 781			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
 782			return -ENODEV;
 783		}
 784
 785		data->plllock = psb->plllocktime;
 786		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
 787		pr_debug("maxfid: 0x%x\n", psb->maxfid);
 788		pr_debug("maxvid: 0x%x\n", psb->maxvid);
 789		maxvid = psb->maxvid;
 790
 791		data->numps = psb->numps;
 792		pr_debug("numpstates: 0x%x\n", data->numps);
 793		return fill_powernow_table(data,
 794				(struct pst_s *)(psb+1), maxvid);
 795	}
 796	/*
 797	 * If you see this message, complain to BIOS manufacturer. If
 798	 * he tells you "we do not support Linux" or some similar
 799	 * nonsense, remember that Windows 2000 uses the same legacy
 800	 * mechanism that the old Linux PSB driver uses. Tell them it
 801	 * is broken with Windows 2000.
 802	 *
 803	 * The reference to the AMD documentation is chapter 9 in the
 804	 * BIOS and Kernel Developer's Guide, which is available on
 805	 * www.amd.com
 806	 */
 807	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
 808	printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
 809		" and Cool'N'Quiet support is enabled in BIOS setup\n");
 810	return -ENODEV;
 811}
 812
 813static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
 814		unsigned int index)
 815{
 816	u64 control;
 817
 818	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
 819		return;
 820
 821	control = data->acpi_data.states[index].control;
 822	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
 823	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
 824	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
 825	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
 826	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
 827	data->vstable = (control >> VST_SHIFT) & VST_MASK;
 828}
 829
 830static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
 831{
 832	struct cpufreq_frequency_table *powernow_table;
 833	int ret_val = -ENODEV;
 834	u64 control, status;
 835
 836	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
 837		pr_debug("register performance failed: bad ACPI data\n");
 838		return -EIO;
 839	}
 840
 841	/* verify the data contained in the ACPI structures */
 842	if (data->acpi_data.state_count <= 1) {
 843		pr_debug("No ACPI P-States\n");
 844		goto err_out;
 845	}
 846
 847	control = data->acpi_data.control_register.space_id;
 848	status = data->acpi_data.status_register.space_id;
 849
 850	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 851	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 852		pr_debug("Invalid control/status registers (%llx - %llx)\n",
 853			control, status);
 854		goto err_out;
 855	}
 856
 857	/* fill in data->powernow_table */
 858	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 859		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
 860	if (!powernow_table) {
 861		pr_debug("powernow_table memory alloc failure\n");
 862		goto err_out;
 863	}
 864
 865	/* fill in data */
 866	data->numps = data->acpi_data.state_count;
 867	powernow_k8_acpi_pst_values(data, 0);
 868
 869	if (cpu_family == CPU_HW_PSTATE)
 870		ret_val = fill_powernow_table_pstate(data, powernow_table);
 871	else
 872		ret_val = fill_powernow_table_fidvid(data, powernow_table);
 873	if (ret_val)
 874		goto err_out_mem;
 875
 876	powernow_table[data->acpi_data.state_count].frequency =
 877		CPUFREQ_TABLE_END;
 878	powernow_table[data->acpi_data.state_count].index = 0;
 879	data->powernow_table = powernow_table;
 880
 881	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 882		print_basics(data);
 883
 884	/* notify BIOS that we exist */
 885	acpi_processor_notify_smm(THIS_MODULE);
 886
 887	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
 888		printk(KERN_ERR PFX
 889				"unable to alloc powernow_k8_data cpumask\n");
 890		ret_val = -ENOMEM;
 891		goto err_out_mem;
 892	}
 893
 894	return 0;
 895
 896err_out_mem:
 897	kfree(powernow_table);
 898
 899err_out:
 900	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
 901
 902	/* data->acpi_data.state_count informs us at ->exit()
 903	 * whether ACPI was used */
 904	data->acpi_data.state_count = 0;
 905
 906	return ret_val;
 907}
 908
 909static int fill_powernow_table_pstate(struct powernow_k8_data *data,
 910		struct cpufreq_frequency_table *powernow_table)
 911{
 912	int i;
 913	u32 hi = 0, lo = 0;
 914	rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
 915	data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
 916
 917	for (i = 0; i < data->acpi_data.state_count; i++) {
 918		u32 index;
 919
 920		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
 921		if (index > data->max_hw_pstate) {
 922			printk(KERN_ERR PFX "invalid pstate %d - "
 923					"bad value %d.\n", i, index);
 924			printk(KERN_ERR PFX "Please report to BIOS "
 925					"manufacturer\n");
 926			invalidate_entry(powernow_table, i);
 927			continue;
 928		}
 929		rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
 930		if (!(hi & HW_PSTATE_VALID_MASK)) {
 931			pr_debug("invalid pstate %d, ignoring\n", index);
 932			invalidate_entry(powernow_table, i);
 933			continue;
 934		}
 935
 936		powernow_table[i].index = index;
 937
 938		/* Frequency may be rounded for these */
 939		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
 940				 || boot_cpu_data.x86 == 0x11) {
 941			powernow_table[i].frequency =
 942				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
 943		} else
 944			powernow_table[i].frequency =
 945				data->acpi_data.states[i].core_frequency * 1000;
 946	}
 947	return 0;
 948}
 949
 950static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
 951		struct cpufreq_frequency_table *powernow_table)
 952{
 953	int i;
 954
 955	for (i = 0; i < data->acpi_data.state_count; i++) {
 956		u32 fid;
 957		u32 vid;
 958		u32 freq, index;
 959		u64 status, control;
 960
 961		if (data->exttype) {
 962			status =  data->acpi_data.states[i].status;
 963			fid = status & EXT_FID_MASK;
 964			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
 965		} else {
 966			control =  data->acpi_data.states[i].control;
 967			fid = control & FID_MASK;
 968			vid = (control >> VID_SHIFT) & VID_MASK;
 969		}
 970
 971		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
 972
 973		index = fid | (vid<<8);
 974		powernow_table[i].index = index;
 975
 976		freq = find_khz_freq_from_fid(fid);
 977		powernow_table[i].frequency = freq;
 978
 979		/* verify frequency is OK */
 980		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
 981			pr_debug("invalid freq %u kHz, ignoring\n", freq);
 982			invalidate_entry(powernow_table, i);
 983			continue;
 984		}
 985
 986		/* verify voltage is OK -
 987		 * BIOSs are using "off" to indicate invalid */
 988		if (vid == VID_OFF) {
 989			pr_debug("invalid vid %u, ignoring\n", vid);
 990			invalidate_entry(powernow_table, i);
 991			continue;
 992		}
 993
 994		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
 995			printk(KERN_INFO PFX "invalid freq entries "
 996				"%u kHz vs. %u kHz\n", freq,
 997				(unsigned int)
 998				(data->acpi_data.states[i].core_frequency
 999				 * 1000));
1000			invalidate_entry(powernow_table, i);
1001			continue;
1002		}
1003	}
1004	return 0;
1005}
1006
1007static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1008{
1009	if (data->acpi_data.state_count)
1010		acpi_processor_unregister_performance(&data->acpi_data,
1011				data->cpu);
1012	free_cpumask_var(data->acpi_data.shared_cpu_map);
1013}
1014
1015static int get_transition_latency(struct powernow_k8_data *data)
1016{
1017	int max_latency = 0;
1018	int i;
1019	for (i = 0; i < data->acpi_data.state_count; i++) {
1020		int cur_latency = data->acpi_data.states[i].transition_latency
1021			+ data->acpi_data.states[i].bus_master_latency;
1022		if (cur_latency > max_latency)
1023			max_latency = cur_latency;
1024	}
1025	if (max_latency == 0) {
1026		/*
1027		 * Fam 11h and later may return 0 as transition latency. This
1028		 * is intended and means "very fast". While cpufreq core and
1029		 * governors currently can handle that gracefully, better set it
1030		 * to 1 to avoid problems in the future.
1031		 */
1032		if (boot_cpu_data.x86 < 0x11)
1033			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1034				"latency\n");
1035		max_latency = 1;
1036	}
1037	/* value in usecs, needs to be in nanoseconds */
1038	return 1000 * max_latency;
1039}
1040
1041/* Take a frequency, and issue the fid/vid transition command */
1042static int transition_frequency_fidvid(struct powernow_k8_data *data,
1043		unsigned int index)
 
1044{
1045	u32 fid = 0;
1046	u32 vid = 0;
1047	int res, i;
1048	struct cpufreq_freqs freqs;
1049
1050	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1051
1052	/* fid/vid correctness check for k8 */
1053	/* fid are the lower 8 bits of the index we stored into
1054	 * the cpufreq frequency table in find_psb_table, vid
1055	 * are the upper 8 bits.
1056	 */
1057	fid = data->powernow_table[index].index & 0xFF;
1058	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1059
1060	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1061
1062	if (query_current_values_with_pending_wait(data))
1063		return 1;
1064
1065	if ((data->currvid == vid) && (data->currfid == fid)) {
1066		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1067			fid, vid);
1068		return 0;
1069	}
1070
1071	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1072		smp_processor_id(), fid, vid);
1073	freqs.old = find_khz_freq_from_fid(data->currfid);
1074	freqs.new = find_khz_freq_from_fid(fid);
1075
1076	for_each_cpu(i, data->available_cores) {
1077		freqs.cpu = i;
1078		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1079	}
1080
1081	res = transition_fid_vid(data, fid, vid);
1082	if (res)
1083		return res;
1084
1085	freqs.new = find_khz_freq_from_fid(data->currfid);
1086
1087	for_each_cpu(i, data->available_cores) {
1088		freqs.cpu = i;
1089		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1090	}
1091	return res;
1092}
1093
1094/* Take a frequency, and issue the hardware pstate transition command */
1095static int transition_frequency_pstate(struct powernow_k8_data *data,
1096		unsigned int index)
1097{
1098	u32 pstate = 0;
1099	int res, i;
1100	struct cpufreq_freqs freqs;
1101
1102	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1103
1104	/* get MSR index for hardware pstate transition */
1105	pstate = index & HW_PSTATE_MASK;
1106	if (pstate > data->max_hw_pstate)
1107		return -EINVAL;
1108
1109	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1110			data->currpstate);
1111	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1112
1113	for_each_cpu(i, data->available_cores) {
1114		freqs.cpu = i;
1115		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1116	}
1117
1118	res = transition_pstate(data, pstate);
1119	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1120
1121	for_each_cpu(i, data->available_cores) {
1122		freqs.cpu = i;
1123		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1124	}
1125	return res;
1126}
1127
1128/* Driver entry point to switch to the target frequency */
1129static int powernowk8_target(struct cpufreq_policy *pol,
1130		unsigned targfreq, unsigned relation)
1131{
1132	cpumask_var_t oldmask;
 
 
1133	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1134	u32 checkfid;
1135	u32 checkvid;
1136	unsigned int newstate;
1137	int ret = -EIO;
1138
1139	if (!data)
1140		return -EINVAL;
1141
1142	checkfid = data->currfid;
1143	checkvid = data->currvid;
1144
1145	/* only run on specific CPU from here on. */
1146	/* This is poor form: use a workqueue or smp_call_function_single */
1147	if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1148		return -ENOMEM;
1149
1150	cpumask_copy(oldmask, tsk_cpus_allowed(current));
1151	set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1152
1153	if (smp_processor_id() != pol->cpu) {
1154		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1155		goto err_out;
1156	}
1157
1158	if (pending_bit_stuck()) {
1159		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1160		goto err_out;
1161	}
1162
1163	pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1164		pol->cpu, targfreq, pol->min, pol->max, relation);
 
1165
1166	if (query_current_values_with_pending_wait(data))
1167		goto err_out;
1168
1169	if (cpu_family != CPU_HW_PSTATE) {
1170		pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1171		data->currfid, data->currvid);
1172
1173		if ((checkvid != data->currvid) ||
1174		    (checkfid != data->currfid)) {
1175			printk(KERN_INFO PFX
1176				"error - out of sync, fix 0x%x 0x%x, "
1177				"vid 0x%x 0x%x\n",
1178				checkfid, data->currfid,
1179				checkvid, data->currvid);
1180		}
1181	}
1182
1183	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1184				targfreq, relation, &newstate))
1185		goto err_out;
1186
1187	mutex_lock(&fidvid_mutex);
1188
1189	powernow_k8_acpi_pst_values(data, newstate);
1190
1191	if (cpu_family == CPU_HW_PSTATE)
1192		ret = transition_frequency_pstate(data, newstate);
1193	else
1194		ret = transition_frequency_fidvid(data, newstate);
1195	if (ret) {
1196		printk(KERN_ERR PFX "transition frequency failed\n");
1197		ret = 1;
1198		mutex_unlock(&fidvid_mutex);
1199		goto err_out;
1200	}
1201	mutex_unlock(&fidvid_mutex);
1202
1203	if (cpu_family == CPU_HW_PSTATE)
1204		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1205				newstate);
1206	else
1207		pol->cur = find_khz_freq_from_fid(data->currfid);
1208	ret = 0;
1209
1210err_out:
1211	set_cpus_allowed_ptr(current, oldmask);
1212	free_cpumask_var(oldmask);
1213	return ret;
1214}
1215
1216/* Driver entry point to verify the policy and range of frequencies */
1217static int powernowk8_verify(struct cpufreq_policy *pol)
1218{
1219	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1220
1221	if (!data)
1222		return -EINVAL;
1223
1224	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1225}
1226
1227struct init_on_cpu {
1228	struct powernow_k8_data *data;
1229	int rc;
1230};
1231
1232static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1233{
1234	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1235
1236	if (pending_bit_stuck()) {
1237		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1238		init_on_cpu->rc = -ENODEV;
1239		return;
1240	}
1241
1242	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1243		init_on_cpu->rc = -ENODEV;
1244		return;
1245	}
1246
1247	if (cpu_family == CPU_OPTERON)
1248		fidvid_msr_init();
1249
1250	init_on_cpu->rc = 0;
1251}
1252
 
 
 
 
 
1253/* per CPU init entry point to the driver */
1254static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1255{
1256	static const char ACPI_PSS_BIOS_BUG_MSG[] =
1257		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1258		FW_BUG PFX "Try again with latest BIOS.\n";
1259	struct powernow_k8_data *data;
1260	struct init_on_cpu init_on_cpu;
1261	int rc;
1262	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1263
1264	if (!cpu_online(pol->cpu))
1265		return -ENODEV;
1266
1267	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1268	if (rc)
1269		return -ENODEV;
1270
1271	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1272	if (!data) {
1273		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1274		return -ENOMEM;
1275	}
1276
1277	data->cpu = pol->cpu;
1278	data->currpstate = HW_PSTATE_INVALID;
1279
1280	if (powernow_k8_cpu_init_acpi(data)) {
1281		/*
1282		 * Use the PSB BIOS structure. This is only available on
1283		 * an UP version, and is deprecated by AMD.
1284		 */
1285		if (num_online_cpus() != 1) {
1286			printk_once(ACPI_PSS_BIOS_BUG_MSG);
1287			goto err_out;
1288		}
1289		if (pol->cpu != 0) {
1290			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1291			       "CPU other than CPU0. Complain to your BIOS "
1292			       "vendor.\n");
1293			goto err_out;
1294		}
1295		rc = find_psb_table(data);
1296		if (rc)
1297			goto err_out;
1298
1299		/* Take a crude guess here.
1300		 * That guess was in microseconds, so multiply with 1000 */
1301		pol->cpuinfo.transition_latency = (
1302			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1303			 ((1 << data->irt) * 30)) * 1000;
1304	} else /* ACPI _PSS objects available */
1305		pol->cpuinfo.transition_latency = get_transition_latency(data);
1306
1307	/* only run on specific CPU from here on */
1308	init_on_cpu.data = data;
1309	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1310				 &init_on_cpu, 1);
1311	rc = init_on_cpu.rc;
1312	if (rc != 0)
1313		goto err_out_exit_acpi;
1314
1315	if (cpu_family == CPU_HW_PSTATE)
1316		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1317	else
1318		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1319	data->available_cores = pol->cpus;
 
1320
1321	if (cpu_family == CPU_HW_PSTATE)
1322		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1323				data->currpstate);
1324	else
1325		pol->cur = find_khz_freq_from_fid(data->currfid);
1326	pr_debug("policy current frequency %d kHz\n", pol->cur);
1327
1328	/* min/max the cpu is capable of */
1329	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1330		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1331		powernow_k8_cpu_exit_acpi(data);
1332		kfree(data->powernow_table);
1333		kfree(data);
1334		return -EINVAL;
1335	}
1336
1337	/* Check for APERF/MPERF support in hardware */
1338	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1339		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1340
1341	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1342
1343	if (cpu_family == CPU_HW_PSTATE)
1344		pr_debug("cpu_init done, current pstate 0x%x\n",
1345				data->currpstate);
1346	else
1347		pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1348			data->currfid, data->currvid);
1349
1350	per_cpu(powernow_data, pol->cpu) = data;
 
 
1351
1352	return 0;
1353
1354err_out_exit_acpi:
1355	powernow_k8_cpu_exit_acpi(data);
1356
1357err_out:
1358	kfree(data);
1359	return -ENODEV;
1360}
1361
1362static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1363{
1364	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
 
1365
1366	if (!data)
1367		return -EINVAL;
1368
1369	powernow_k8_cpu_exit_acpi(data);
1370
1371	cpufreq_frequency_table_put_attr(pol->cpu);
1372
1373	kfree(data->powernow_table);
1374	kfree(data);
1375	per_cpu(powernow_data, pol->cpu) = NULL;
 
 
1376
1377	return 0;
1378}
1379
1380static void query_values_on_cpu(void *_err)
1381{
1382	int *err = _err;
1383	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1384
1385	*err = query_current_values_with_pending_wait(data);
1386}
1387
1388static unsigned int powernowk8_get(unsigned int cpu)
1389{
1390	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1391	unsigned int khz = 0;
1392	int err;
1393
1394	if (!data)
1395		return 0;
1396
1397	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1398	if (err)
1399		goto out;
1400
1401	if (cpu_family == CPU_HW_PSTATE)
1402		khz = find_khz_freq_from_pstate(data->powernow_table,
1403						data->currpstate);
1404	else
1405		khz = find_khz_freq_from_fid(data->currfid);
1406
1407
1408out:
1409	return khz;
1410}
1411
1412static void _cpb_toggle_msrs(bool t)
1413{
1414	int cpu;
1415
1416	get_online_cpus();
1417
1418	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1419
1420	for_each_cpu(cpu, cpu_online_mask) {
1421		struct msr *reg = per_cpu_ptr(msrs, cpu);
1422		if (t)
1423			reg->l &= ~BIT(25);
1424		else
1425			reg->l |= BIT(25);
1426	}
1427	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1428
1429	put_online_cpus();
1430}
1431
1432/*
1433 * Switch on/off core performance boosting.
1434 *
1435 * 0=disable
1436 * 1=enable.
1437 */
1438static void cpb_toggle(bool t)
1439{
1440	if (!cpb_capable)
1441		return;
1442
1443	if (t && !cpb_enabled) {
1444		cpb_enabled = true;
1445		_cpb_toggle_msrs(t);
1446		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1447	} else if (!t && cpb_enabled) {
1448		cpb_enabled = false;
1449		_cpb_toggle_msrs(t);
1450		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1451	}
1452}
1453
1454static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1455				 size_t count)
1456{
1457	int ret = -EINVAL;
1458	unsigned long val = 0;
1459
1460	ret = strict_strtoul(buf, 10, &val);
1461	if (!ret && (val == 0 || val == 1) && cpb_capable)
1462		cpb_toggle(val);
1463	else
1464		return -EINVAL;
1465
1466	return count;
1467}
1468
1469static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1470{
1471	return sprintf(buf, "%u\n", cpb_enabled);
1472}
1473
1474#define define_one_rw(_name) \
1475static struct freq_attr _name = \
1476__ATTR(_name, 0644, show_##_name, store_##_name)
1477
1478define_one_rw(cpb);
1479
1480static struct freq_attr *powernow_k8_attr[] = {
1481	&cpufreq_freq_attr_scaling_available_freqs,
1482	&cpb,
1483	NULL,
1484};
1485
1486static struct cpufreq_driver cpufreq_amd64_driver = {
1487	.verify		= powernowk8_verify,
1488	.target		= powernowk8_target,
 
1489	.bios_limit	= acpi_processor_get_bios_limit,
1490	.init		= powernowk8_cpu_init,
1491	.exit		= __devexit_p(powernowk8_cpu_exit),
1492	.get		= powernowk8_get,
1493	.name		= "powernow-k8",
1494	.owner		= THIS_MODULE,
1495	.attr		= powernow_k8_attr,
1496};
1497
1498/*
1499 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1500 * cannot block the remaining ones from boosting. On the CPU_UP path we
1501 * simply keep the boost-disable flag in sync with the current global
1502 * state.
1503 */
1504static int cpb_notify(struct notifier_block *nb, unsigned long action,
1505		      void *hcpu)
1506{
1507	unsigned cpu = (long)hcpu;
1508	u32 lo, hi;
1509
1510	switch (action) {
1511	case CPU_UP_PREPARE:
1512	case CPU_UP_PREPARE_FROZEN:
1513
1514		if (!cpb_enabled) {
1515			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1516			lo |= BIT(25);
1517			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1518		}
1519		break;
1520
1521	case CPU_DOWN_PREPARE:
1522	case CPU_DOWN_PREPARE_FROZEN:
1523		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1524		lo &= ~BIT(25);
1525		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1526		break;
1527
1528	default:
1529		break;
1530	}
1531
1532	return NOTIFY_OK;
 
 
1533}
1534
1535static struct notifier_block cpb_nb = {
1536	.notifier_call		= cpb_notify,
1537};
1538
1539/* driver entry point for init */
1540static int __cpuinit powernowk8_init(void)
1541{
1542	unsigned int i, supported_cpus = 0, cpu;
1543	int rv;
 
 
 
 
 
 
 
 
1544
 
1545	for_each_online_cpu(i) {
1546		int rc;
1547		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1548		if (rc == 0)
1549			supported_cpus++;
1550	}
1551
1552	if (supported_cpus != num_online_cpus())
 
1553		return -ENODEV;
 
 
1554
1555	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1556		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1557
1558	if (boot_cpu_has(X86_FEATURE_CPB)) {
1559
1560		cpb_capable = true;
1561
1562		msrs = msrs_alloc();
1563		if (!msrs) {
1564			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1565			return -ENOMEM;
1566		}
1567
1568		register_cpu_notifier(&cpb_nb);
1569
1570		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1571
1572		for_each_cpu(cpu, cpu_online_mask) {
1573			struct msr *reg = per_cpu_ptr(msrs, cpu);
1574			cpb_enabled |= !(!!(reg->l & BIT(25)));
1575		}
1576
1577		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1578			(cpb_enabled ? "on" : "off"));
1579	}
1580
1581	rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1582	if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1583		unregister_cpu_notifier(&cpb_nb);
1584		msrs_free(msrs);
1585		msrs = NULL;
1586	}
1587	return rv;
1588}
1589
1590/* driver entry point for term */
1591static void __exit powernowk8_exit(void)
1592{
1593	pr_debug("exit\n");
1594
1595	if (boot_cpu_has(X86_FEATURE_CPB)) {
1596		msrs_free(msrs);
1597		msrs = NULL;
1598
1599		unregister_cpu_notifier(&cpb_nb);
1600	}
1601
1602	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1603}
1604
1605MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1606		"Mark Langsdorf <mark.langsdorf@amd.com>");
1607MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1608MODULE_LICENSE("GPL");
1609
1610late_initcall(powernowk8_init);
1611module_exit(powernowk8_exit);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *   (c) 2003-2012 Advanced Micro Devices, Inc.
 
 
 
   4 *
   5 *  Maintainer:
   6 *  Andreas Herrmann <herrmann.der.user@googlemail.com>
   7 *
   8 *  Based on the powernow-k7.c module written by Dave Jones.
   9 *  (C) 2003 Dave Jones on behalf of SuSE Labs
  10 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
  11 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
 
  12 *  Based upon datasheets & sample CPUs kindly provided by AMD.
  13 *
  14 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
  15 *  Dominik Brodowski, Jacob Shin, and others.
  16 *  Originally developed by Paul Devriendt.
 
 
 
  17 *
  18 *  Processor information obtained from Chapter 9 (Power and Thermal
  19 *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
  20 *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
  21 *  Power Management" in BKDGs for newer AMD CPU families.
  22 *
  23 *  Tables for specific CPUs can be inferred from AMD's processor
  24 *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
  25 */
  26
  27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  28
  29#include <linux/kernel.h>
  30#include <linux/smp.h>
  31#include <linux/module.h>
  32#include <linux/init.h>
  33#include <linux/cpufreq.h>
  34#include <linux/slab.h>
  35#include <linux/string.h>
  36#include <linux/cpumask.h>
 
  37#include <linux/io.h>
  38#include <linux/delay.h>
  39
  40#include <asm/msr.h>
  41#include <asm/cpu_device_id.h>
  42
  43#include <linux/acpi.h>
  44#include <linux/mutex.h>
  45#include <acpi/processor.h>
  46
 
  47#define VERSION "version 2.20.00"
  48#include "powernow-k8.h"
 
  49
  50/* serialize freq changes  */
  51static DEFINE_MUTEX(fidvid_mutex);
  52
  53static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  54
 
 
 
 
 
 
  55static struct cpufreq_driver cpufreq_amd64_driver;
  56
 
 
 
 
 
 
 
  57/* Return a frequency in MHz, given an input fid */
  58static u32 find_freq_from_fid(u32 fid)
  59{
  60	return 800 + (fid * 100);
  61}
  62
  63/* Return a frequency in KHz, given an input fid */
  64static u32 find_khz_freq_from_fid(u32 fid)
  65{
  66	return 1000 * find_freq_from_fid(fid);
  67}
  68
 
 
 
 
 
 
  69/* Return the vco fid for an input fid
  70 *
  71 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  72 * only from corresponding high fids. This returns "high" fid corresponding to
  73 * "low" one.
  74 */
  75static u32 convert_fid_to_vco_fid(u32 fid)
  76{
  77	if (fid < HI_FID_TABLE_BOTTOM)
  78		return 8 + (2 * fid);
  79	else
  80		return fid;
  81}
  82
  83/*
  84 * Return 1 if the pending bit is set. Unless we just instructed the processor
  85 * to transition to a new state, seeing this bit set is really bad news.
  86 */
  87static int pending_bit_stuck(void)
  88{
  89	u32 lo, hi __always_unused;
 
 
 
  90
  91	rdmsr(MSR_FIDVID_STATUS, lo, hi);
  92	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
  93}
  94
  95/*
  96 * Update the global current fid / vid values from the status msr.
  97 * Returns 1 on error.
  98 */
  99static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
 100{
 101	u32 lo, hi;
 102	u32 i = 0;
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104	do {
 105		if (i++ > 10000) {
 106			pr_debug("detected change pending stuck\n");
 107			return 1;
 108		}
 109		rdmsr(MSR_FIDVID_STATUS, lo, hi);
 110	} while (lo & MSR_S_LO_CHANGE_PENDING);
 111
 112	data->currvid = hi & MSR_S_HI_CURRENT_VID;
 113	data->currfid = lo & MSR_S_LO_CURRENT_FID;
 114
 115	return 0;
 116}
 117
 118/* the isochronous relief time */
 119static void count_off_irt(struct powernow_k8_data *data)
 120{
 121	udelay((1 << data->irt) * 10);
 
 122}
 123
 124/* the voltage stabilization time */
 125static void count_off_vst(struct powernow_k8_data *data)
 126{
 127	udelay(data->vstable * VST_UNITS_20US);
 
 128}
 129
 130/* need to init the control msr to a safe value (for each cpu) */
 131static void fidvid_msr_init(void)
 132{
 133	u32 lo, hi;
 134	u8 fid, vid;
 135
 136	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 137	vid = hi & MSR_S_HI_CURRENT_VID;
 138	fid = lo & MSR_S_LO_CURRENT_FID;
 139	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
 140	hi = MSR_C_HI_STP_GNT_BENIGN;
 141	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
 142	wrmsr(MSR_FIDVID_CTL, lo, hi);
 143}
 144
 145/* write the new fid value along with the other control fields to the msr */
 146static int write_new_fid(struct powernow_k8_data *data, u32 fid)
 147{
 148	u32 lo;
 149	u32 savevid = data->currvid;
 150	u32 i = 0;
 151
 152	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
 153		pr_err("internal error - overflow on fid write\n");
 154		return 1;
 155	}
 156
 157	lo = fid;
 158	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
 159	lo |= MSR_C_LO_INIT_FID_VID;
 160
 161	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
 162		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
 163
 164	do {
 165		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
 166		if (i++ > 100) {
 167			pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n");
 
 
 168			return 1;
 169		}
 170	} while (query_current_values_with_pending_wait(data));
 171
 172	count_off_irt(data);
 173
 174	if (savevid != data->currvid) {
 175		pr_err("vid change on fid trans, old 0x%x, new 0x%x\n",
 176		       savevid, data->currvid);
 
 177		return 1;
 178	}
 179
 180	if (fid != data->currfid) {
 181		pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid,
 
 182			data->currfid);
 183		return 1;
 184	}
 185
 186	return 0;
 187}
 188
 189/* Write a new vid to the hardware */
 190static int write_new_vid(struct powernow_k8_data *data, u32 vid)
 191{
 192	u32 lo;
 193	u32 savefid = data->currfid;
 194	int i = 0;
 195
 196	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
 197		pr_err("internal error - overflow on vid write\n");
 198		return 1;
 199	}
 200
 201	lo = data->currfid;
 202	lo |= (vid << MSR_C_LO_VID_SHIFT);
 203	lo |= MSR_C_LO_INIT_FID_VID;
 204
 205	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
 206		vid, lo, STOP_GRANT_5NS);
 207
 208	do {
 209		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
 210		if (i++ > 100) {
 211			pr_err("internal error - pending bit very stuck - no further pstate changes possible\n");
 
 
 212			return 1;
 213		}
 214	} while (query_current_values_with_pending_wait(data));
 215
 216	if (savefid != data->currfid) {
 217		pr_err("fid changed on vid trans, old 0x%x new 0x%x\n",
 218			savefid, data->currfid);
 
 219		return 1;
 220	}
 221
 222	if (vid != data->currvid) {
 223		pr_err("vid trans failed, vid 0x%x, curr 0x%x\n",
 
 224				vid, data->currvid);
 225		return 1;
 226	}
 227
 228	return 0;
 229}
 230
 231/*
 232 * Reduce the vid by the max of step or reqvid.
 233 * Decreasing vid codes represent increasing voltages:
 234 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 235 */
 236static int decrease_vid_code_by_step(struct powernow_k8_data *data,
 237		u32 reqvid, u32 step)
 238{
 239	if ((data->currvid - reqvid) > step)
 240		reqvid = data->currvid - step;
 241
 242	if (write_new_vid(data, reqvid))
 243		return 1;
 244
 245	count_off_vst(data);
 246
 247	return 0;
 248}
 249
 
 
 
 
 
 
 
 
 250/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
 251static int transition_fid_vid(struct powernow_k8_data *data,
 252		u32 reqfid, u32 reqvid)
 253{
 254	if (core_voltage_pre_transition(data, reqvid, reqfid))
 255		return 1;
 256
 257	if (core_frequency_transition(data, reqfid))
 258		return 1;
 259
 260	if (core_voltage_post_transition(data, reqvid))
 261		return 1;
 262
 263	if (query_current_values_with_pending_wait(data))
 264		return 1;
 265
 266	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
 267		pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
 
 268				smp_processor_id(),
 269				reqfid, reqvid, data->currfid, data->currvid);
 270		return 1;
 271	}
 272
 273	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
 274		smp_processor_id(), data->currfid, data->currvid);
 275
 276	return 0;
 277}
 278
 279/* Phase 1 - core voltage transition ... setup voltage */
 280static int core_voltage_pre_transition(struct powernow_k8_data *data,
 281		u32 reqvid, u32 reqfid)
 282{
 283	u32 rvosteps = data->rvo;
 284	u32 savefid = data->currfid;
 285	u32 maxvid, lo __always_unused, rvomult = 1;
 286
 287	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
 
 288		smp_processor_id(),
 289		data->currfid, data->currvid, reqvid, data->rvo);
 290
 291	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
 292		rvomult = 2;
 293	rvosteps *= rvomult;
 294	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
 295	maxvid = 0x1f & (maxvid >> 16);
 296	pr_debug("ph1 maxvid=0x%x\n", maxvid);
 297	if (reqvid < maxvid) /* lower numbers are higher voltages */
 298		reqvid = maxvid;
 299
 300	while (data->currvid > reqvid) {
 301		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
 302			data->currvid, reqvid);
 303		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
 304			return 1;
 305	}
 306
 307	while ((rvosteps > 0) &&
 308			((rvomult * data->rvo + data->currvid) > reqvid)) {
 309		if (data->currvid == maxvid) {
 310			rvosteps = 0;
 311		} else {
 312			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
 313				data->currvid - 1);
 314			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
 315				return 1;
 316			rvosteps--;
 317		}
 318	}
 319
 320	if (query_current_values_with_pending_wait(data))
 321		return 1;
 322
 323	if (savefid != data->currfid) {
 324		pr_err("ph1 err, currfid changed 0x%x\n", data->currfid);
 
 325		return 1;
 326	}
 327
 328	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
 329		data->currfid, data->currvid);
 330
 331	return 0;
 332}
 333
 334/* Phase 2 - core frequency transition */
 335static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
 336{
 337	u32 vcoreqfid, vcocurrfid, vcofiddiff;
 338	u32 fid_interval, savevid = data->currvid;
 339
 340	if (data->currfid == reqfid) {
 341		pr_err("ph2 null fid transition 0x%x\n", data->currfid);
 
 342		return 0;
 343	}
 344
 345	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
 
 346		smp_processor_id(),
 347		data->currfid, data->currvid, reqfid);
 348
 349	vcoreqfid = convert_fid_to_vco_fid(reqfid);
 350	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 351	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 352	    : vcoreqfid - vcocurrfid;
 353
 354	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
 355		vcofiddiff = 0;
 356
 357	while (vcofiddiff > 2) {
 358		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
 359
 360		if (reqfid > data->currfid) {
 361			if (data->currfid > LO_FID_TABLE_TOP) {
 362				if (write_new_fid(data,
 363						data->currfid + fid_interval))
 364					return 1;
 365			} else {
 366				if (write_new_fid
 367				    (data,
 368				     2 + convert_fid_to_vco_fid(data->currfid)))
 369					return 1;
 370			}
 371		} else {
 372			if (write_new_fid(data, data->currfid - fid_interval))
 373				return 1;
 374		}
 375
 376		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 377		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 378		    : vcoreqfid - vcocurrfid;
 379	}
 380
 381	if (write_new_fid(data, reqfid))
 382		return 1;
 383
 384	if (query_current_values_with_pending_wait(data))
 385		return 1;
 386
 387	if (data->currfid != reqfid) {
 388		pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
 
 
 389			data->currfid, reqfid);
 390		return 1;
 391	}
 392
 393	if (savevid != data->currvid) {
 394		pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n",
 395			savevid, data->currvid);
 396		return 1;
 397	}
 398
 399	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
 400		data->currfid, data->currvid);
 401
 402	return 0;
 403}
 404
 405/* Phase 3 - core voltage transition flow ... jump to the final vid. */
 406static int core_voltage_post_transition(struct powernow_k8_data *data,
 407		u32 reqvid)
 408{
 409	u32 savefid = data->currfid;
 410	u32 savereqvid = reqvid;
 411
 412	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
 413		smp_processor_id(),
 414		data->currfid, data->currvid);
 415
 416	if (reqvid != data->currvid) {
 417		if (write_new_vid(data, reqvid))
 418			return 1;
 419
 420		if (savefid != data->currfid) {
 421			pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n",
 422				savefid, data->currfid);
 
 423			return 1;
 424		}
 425
 426		if (data->currvid != reqvid) {
 427			pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x",
 428				reqvid, data->currvid);
 
 
 429			return 1;
 430		}
 431	}
 432
 433	if (query_current_values_with_pending_wait(data))
 434		return 1;
 435
 436	if (savereqvid != data->currvid) {
 437		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
 438		return 1;
 439	}
 440
 441	if (savefid != data->currfid) {
 442		pr_debug("ph3 failed, currfid changed 0x%x\n",
 443			data->currfid);
 444		return 1;
 445	}
 446
 447	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
 448		data->currfid, data->currvid);
 449
 450	return 0;
 451}
 452
 453static const struct x86_cpu_id powernow_k8_ids[] = {
 454	/* IO based frequency switching */
 455	X86_MATCH_VENDOR_FAM(AMD, 0xf, NULL),
 456	{}
 457};
 458MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
 459
 460static void check_supported_cpu(void *_rc)
 461{
 462	u32 eax, ebx, ecx, edx;
 463	int *rc = _rc;
 464
 465	*rc = -ENODEV;
 466
 
 
 
 467	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 
 
 
 468
 469	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
 470		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
 471		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
 472			pr_info("Processor cpuid %x not supported\n", eax);
 
 473			return;
 474		}
 475
 476		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
 477		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
 478			pr_info("No frequency change capabilities detected\n");
 
 479			return;
 480		}
 481
 482		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 483		if ((edx & P_STATE_TRANSITION_CAPABLE)
 484			!= P_STATE_TRANSITION_CAPABLE) {
 485			pr_info("Power state transitions not supported\n");
 
 486			return;
 487		}
 488		*rc = 0;
 
 
 
 
 
 489	}
 
 
 490}
 491
 492static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
 493		u8 maxvid)
 494{
 495	unsigned int j;
 496	u8 lastfid = 0xff;
 497
 498	for (j = 0; j < data->numps; j++) {
 499		if (pst[j].vid > LEAST_VID) {
 500			pr_err(FW_BUG "vid %d invalid : 0x%x\n", j,
 501				pst[j].vid);
 502			return -EINVAL;
 503		}
 504		if (pst[j].vid < data->rvo) {
 505			/* vid + rvo >= 0 */
 506			pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j);
 
 507			return -ENODEV;
 508		}
 509		if (pst[j].vid < maxvid + data->rvo) {
 510			/* vid + rvo >= maxvid */
 511			pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j);
 
 512			return -ENODEV;
 513		}
 514		if (pst[j].fid > MAX_FID) {
 515			pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j);
 
 516			return -ENODEV;
 517		}
 518		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
 519			/* Only first fid is allowed to be in "low" range */
 520			pr_err(FW_BUG "two low fids - %d : 0x%x\n", j,
 521				pst[j].fid);
 522			return -EINVAL;
 523		}
 524		if (pst[j].fid < lastfid)
 525			lastfid = pst[j].fid;
 526	}
 527	if (lastfid & 1) {
 528		pr_err(FW_BUG "lastfid invalid\n");
 529		return -EINVAL;
 530	}
 531	if (lastfid > LO_FID_TABLE_TOP)
 532		pr_info(FW_BUG "first fid not from lo freq table\n");
 
 533
 534	return 0;
 535}
 536
 537static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
 538		unsigned int entry)
 539{
 540	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
 541}
 542
 543static void print_basics(struct powernow_k8_data *data)
 544{
 545	int j;
 546	for (j = 0; j < data->numps; j++) {
 547		if (data->powernow_table[j].frequency !=
 548				CPUFREQ_ENTRY_INVALID) {
 549			pr_info("fid 0x%x (%d MHz), vid 0x%x\n",
 550				data->powernow_table[j].driver_data & 0xff,
 551				data->powernow_table[j].frequency/1000,
 552				data->powernow_table[j].driver_data >> 8);
 
 
 
 
 
 
 
 
 553		}
 554	}
 555	if (data->batps)
 556		pr_info("Only %d pstates on battery\n", data->batps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558
 559static int fill_powernow_table(struct powernow_k8_data *data,
 560		struct pst_s *pst, u8 maxvid)
 561{
 562	struct cpufreq_frequency_table *powernow_table;
 563	unsigned int j;
 564
 565	if (data->batps) {
 566		/* use ACPI support to get full speed on mains power */
 567		pr_warn("Only %d pstates usable (use ACPI driver for full range\n",
 568			data->batps);
 
 569		data->numps = data->batps;
 570	}
 571
 572	for (j = 1; j < data->numps; j++) {
 573		if (pst[j-1].fid >= pst[j].fid) {
 574			pr_err("PST out of sequence\n");
 575			return -EINVAL;
 576		}
 577	}
 578
 579	if (data->numps < 2) {
 580		pr_err("no p states to transition\n");
 581		return -ENODEV;
 582	}
 583
 584	if (check_pst_table(data, pst, maxvid))
 585		return -EINVAL;
 586
 587	powernow_table = kzalloc((sizeof(*powernow_table)
 588		* (data->numps + 1)), GFP_KERNEL);
 589	if (!powernow_table)
 
 590		return -ENOMEM;
 
 591
 592	for (j = 0; j < data->numps; j++) {
 593		int freq;
 594		powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */
 595		powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */
 596		freq = find_khz_freq_from_fid(pst[j].fid);
 597		powernow_table[j].frequency = freq;
 598	}
 599	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
 600	powernow_table[data->numps].driver_data = 0;
 601
 602	if (query_current_values_with_pending_wait(data)) {
 603		kfree(powernow_table);
 604		return -EIO;
 605	}
 606
 607	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
 608	data->powernow_table = powernow_table;
 609	if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
 610		print_basics(data);
 611
 612	for (j = 0; j < data->numps; j++)
 613		if ((pst[j].fid == data->currfid) &&
 614		    (pst[j].vid == data->currvid))
 615			return 0;
 616
 617	pr_debug("currfid/vid do not match PST, ignoring\n");
 618	return 0;
 619}
 620
 621/* Find and validate the PSB/PST table in BIOS. */
 622static int find_psb_table(struct powernow_k8_data *data)
 623{
 624	struct psb_s *psb;
 625	unsigned int i;
 626	u32 mvs;
 627	u8 maxvid;
 628	u32 cpst = 0;
 629	u32 thiscpuid;
 630
 631	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
 632		/* Scan BIOS looking for the signature. */
 633		/* It can not be at ffff0 - it is too big. */
 634
 635		psb = phys_to_virt(i);
 636		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
 637			continue;
 638
 639		pr_debug("found PSB header at 0x%p\n", psb);
 640
 641		pr_debug("table vers: 0x%x\n", psb->tableversion);
 642		if (psb->tableversion != PSB_VERSION_1_4) {
 643			pr_err(FW_BUG "PSB table is not v1.4\n");
 644			return -ENODEV;
 645		}
 646
 647		pr_debug("flags: 0x%x\n", psb->flags1);
 648		if (psb->flags1) {
 649			pr_err(FW_BUG "unknown flags\n");
 650			return -ENODEV;
 651		}
 652
 653		data->vstable = psb->vstable;
 654		pr_debug("voltage stabilization time: %d(*20us)\n",
 655				data->vstable);
 656
 657		pr_debug("flags2: 0x%x\n", psb->flags2);
 658		data->rvo = psb->flags2 & 3;
 659		data->irt = ((psb->flags2) >> 2) & 3;
 660		mvs = ((psb->flags2) >> 4) & 3;
 661		data->vidmvs = 1 << mvs;
 662		data->batps = ((psb->flags2) >> 6) & 3;
 663
 664		pr_debug("ramp voltage offset: %d\n", data->rvo);
 665		pr_debug("isochronous relief time: %d\n", data->irt);
 666		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
 667
 668		pr_debug("numpst: 0x%x\n", psb->num_tables);
 669		cpst = psb->num_tables;
 670		if ((psb->cpuid == 0x00000fc0) ||
 671		    (psb->cpuid == 0x00000fe0)) {
 672			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 673			if ((thiscpuid == 0x00000fc0) ||
 674			    (thiscpuid == 0x00000fe0))
 675				cpst = 1;
 676		}
 677		if (cpst != 1) {
 678			pr_err(FW_BUG "numpst must be 1\n");
 679			return -ENODEV;
 680		}
 681
 682		data->plllock = psb->plllocktime;
 683		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
 684		pr_debug("maxfid: 0x%x\n", psb->maxfid);
 685		pr_debug("maxvid: 0x%x\n", psb->maxvid);
 686		maxvid = psb->maxvid;
 687
 688		data->numps = psb->numps;
 689		pr_debug("numpstates: 0x%x\n", data->numps);
 690		return fill_powernow_table(data,
 691				(struct pst_s *)(psb+1), maxvid);
 692	}
 693	/*
 694	 * If you see this message, complain to BIOS manufacturer. If
 695	 * he tells you "we do not support Linux" or some similar
 696	 * nonsense, remember that Windows 2000 uses the same legacy
 697	 * mechanism that the old Linux PSB driver uses. Tell them it
 698	 * is broken with Windows 2000.
 699	 *
 700	 * The reference to the AMD documentation is chapter 9 in the
 701	 * BIOS and Kernel Developer's Guide, which is available on
 702	 * www.amd.com
 703	 */
 704	pr_err(FW_BUG "No PSB or ACPI _PSS objects\n");
 705	pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n");
 
 706	return -ENODEV;
 707}
 708
 709static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
 710		unsigned int index)
 711{
 712	u64 control;
 713
 714	if (!data->acpi_data.state_count)
 715		return;
 716
 717	control = data->acpi_data.states[index].control;
 718	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
 719	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
 720	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
 721	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
 722	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
 723	data->vstable = (control >> VST_SHIFT) & VST_MASK;
 724}
 725
 726static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
 727{
 728	struct cpufreq_frequency_table *powernow_table;
 729	int ret_val = -ENODEV;
 730	u64 control, status;
 731
 732	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
 733		pr_debug("register performance failed: bad ACPI data\n");
 734		return -EIO;
 735	}
 736
 737	/* verify the data contained in the ACPI structures */
 738	if (data->acpi_data.state_count <= 1) {
 739		pr_debug("No ACPI P-States\n");
 740		goto err_out;
 741	}
 742
 743	control = data->acpi_data.control_register.space_id;
 744	status = data->acpi_data.status_register.space_id;
 745
 746	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 747	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 748		pr_debug("Invalid control/status registers (%llx - %llx)\n",
 749			control, status);
 750		goto err_out;
 751	}
 752
 753	/* fill in data->powernow_table */
 754	powernow_table = kzalloc((sizeof(*powernow_table)
 755		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
 756	if (!powernow_table)
 
 757		goto err_out;
 
 758
 759	/* fill in data */
 760	data->numps = data->acpi_data.state_count;
 761	powernow_k8_acpi_pst_values(data, 0);
 762
 763	ret_val = fill_powernow_table_fidvid(data, powernow_table);
 
 
 
 764	if (ret_val)
 765		goto err_out_mem;
 766
 767	powernow_table[data->acpi_data.state_count].frequency =
 768		CPUFREQ_TABLE_END;
 
 769	data->powernow_table = powernow_table;
 770
 771	if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
 772		print_basics(data);
 773
 774	/* notify BIOS that we exist */
 775	acpi_processor_notify_smm(THIS_MODULE);
 776
 777	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
 778		pr_err("unable to alloc powernow_k8_data cpumask\n");
 
 779		ret_val = -ENOMEM;
 780		goto err_out_mem;
 781	}
 782
 783	return 0;
 784
 785err_out_mem:
 786	kfree(powernow_table);
 787
 788err_out:
 789	acpi_processor_unregister_performance(data->cpu);
 790
 791	/* data->acpi_data.state_count informs us at ->exit()
 792	 * whether ACPI was used */
 793	data->acpi_data.state_count = 0;
 794
 795	return ret_val;
 796}
 797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
 799		struct cpufreq_frequency_table *powernow_table)
 800{
 801	int i;
 802
 803	for (i = 0; i < data->acpi_data.state_count; i++) {
 804		u32 fid;
 805		u32 vid;
 806		u32 freq, index;
 807		u64 status, control;
 808
 809		if (data->exttype) {
 810			status =  data->acpi_data.states[i].status;
 811			fid = status & EXT_FID_MASK;
 812			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
 813		} else {
 814			control =  data->acpi_data.states[i].control;
 815			fid = control & FID_MASK;
 816			vid = (control >> VID_SHIFT) & VID_MASK;
 817		}
 818
 819		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
 820
 821		index = fid | (vid<<8);
 822		powernow_table[i].driver_data = index;
 823
 824		freq = find_khz_freq_from_fid(fid);
 825		powernow_table[i].frequency = freq;
 826
 827		/* verify frequency is OK */
 828		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
 829			pr_debug("invalid freq %u kHz, ignoring\n", freq);
 830			invalidate_entry(powernow_table, i);
 831			continue;
 832		}
 833
 834		/* verify voltage is OK -
 835		 * BIOSs are using "off" to indicate invalid */
 836		if (vid == VID_OFF) {
 837			pr_debug("invalid vid %u, ignoring\n", vid);
 838			invalidate_entry(powernow_table, i);
 839			continue;
 840		}
 841
 842		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
 843			pr_info("invalid freq entries %u kHz vs. %u kHz\n",
 844				freq, (unsigned int)
 
 845				(data->acpi_data.states[i].core_frequency
 846				 * 1000));
 847			invalidate_entry(powernow_table, i);
 848			continue;
 849		}
 850	}
 851	return 0;
 852}
 853
 854static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
 855{
 856	if (data->acpi_data.state_count)
 857		acpi_processor_unregister_performance(data->cpu);
 
 858	free_cpumask_var(data->acpi_data.shared_cpu_map);
 859}
 860
 861static int get_transition_latency(struct powernow_k8_data *data)
 862{
 863	int max_latency = 0;
 864	int i;
 865	for (i = 0; i < data->acpi_data.state_count; i++) {
 866		int cur_latency = data->acpi_data.states[i].transition_latency
 867			+ data->acpi_data.states[i].bus_master_latency;
 868		if (cur_latency > max_latency)
 869			max_latency = cur_latency;
 870	}
 871	if (max_latency == 0) {
 872		pr_err(FW_WARN "Invalid zero transition latency\n");
 
 
 
 
 
 
 
 
 873		max_latency = 1;
 874	}
 875	/* value in usecs, needs to be in nanoseconds */
 876	return 1000 * max_latency;
 877}
 878
 879/* Take a frequency, and issue the fid/vid transition command */
 880static int transition_frequency_fidvid(struct powernow_k8_data *data,
 881		unsigned int index,
 882		struct cpufreq_policy *policy)
 883{
 884	u32 fid = 0;
 885	u32 vid = 0;
 886	int res;
 887	struct cpufreq_freqs freqs;
 888
 889	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
 890
 891	/* fid/vid correctness check for k8 */
 892	/* fid are the lower 8 bits of the index we stored into
 893	 * the cpufreq frequency table in find_psb_table, vid
 894	 * are the upper 8 bits.
 895	 */
 896	fid = data->powernow_table[index].driver_data & 0xFF;
 897	vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8;
 898
 899	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
 900
 901	if (query_current_values_with_pending_wait(data))
 902		return 1;
 903
 904	if ((data->currvid == vid) && (data->currfid == fid)) {
 905		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
 906			fid, vid);
 907		return 0;
 908	}
 909
 910	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
 911		smp_processor_id(), fid, vid);
 912	freqs.old = find_khz_freq_from_fid(data->currfid);
 913	freqs.new = find_khz_freq_from_fid(fid);
 914
 915	cpufreq_freq_transition_begin(policy, &freqs);
 
 
 
 
 916	res = transition_fid_vid(data, fid, vid);
 917	cpufreq_freq_transition_end(policy, &freqs, res);
 
 
 
 918
 
 
 
 
 919	return res;
 920}
 921
 922struct powernowk8_target_arg {
 923	struct cpufreq_policy		*pol;
 924	unsigned			newstate;
 925};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926
 927static long powernowk8_target_fn(void *arg)
 
 
 928{
 929	struct powernowk8_target_arg *pta = arg;
 930	struct cpufreq_policy *pol = pta->pol;
 931	unsigned newstate = pta->newstate;
 932	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
 933	u32 checkfid;
 934	u32 checkvid;
 935	int ret;
 
 936
 937	if (!data)
 938		return -EINVAL;
 939
 940	checkfid = data->currfid;
 941	checkvid = data->currvid;
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 943	if (pending_bit_stuck()) {
 944		pr_err("failing targ, change pending bit set\n");
 945		return -EIO;
 946	}
 947
 948	pr_debug("targ: cpu %d, %d kHz, min %d, max %d\n",
 949		pol->cpu, data->powernow_table[newstate].frequency, pol->min,
 950		pol->max);
 951
 952	if (query_current_values_with_pending_wait(data))
 953		return -EIO;
 954
 955	pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
 
 956		data->currfid, data->currvid);
 957
 958	if ((checkvid != data->currvid) ||
 959	    (checkfid != data->currfid)) {
 960		pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
 961		       checkfid, data->currfid,
 962		       checkvid, data->currvid);
 
 
 
 963	}
 964
 
 
 
 
 965	mutex_lock(&fidvid_mutex);
 966
 967	powernow_k8_acpi_pst_values(data, newstate);
 968
 969	ret = transition_frequency_fidvid(data, newstate, pol);
 970
 
 
 971	if (ret) {
 972		pr_err("transition frequency failed\n");
 
 973		mutex_unlock(&fidvid_mutex);
 974		return 1;
 975	}
 976	mutex_unlock(&fidvid_mutex);
 977
 978	pol->cur = find_khz_freq_from_fid(data->currfid);
 
 
 
 
 
 979
 980	return 0;
 
 
 
 981}
 982
 983/* Driver entry point to switch to the target frequency */
 984static int powernowk8_target(struct cpufreq_policy *pol, unsigned index)
 985{
 986	struct powernowk8_target_arg pta = { .pol = pol, .newstate = index };
 
 
 
 987
 988	return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
 989}
 990
 991struct init_on_cpu {
 992	struct powernow_k8_data *data;
 993	int rc;
 994};
 995
 996static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
 997{
 998	struct init_on_cpu *init_on_cpu = _init_on_cpu;
 999
1000	if (pending_bit_stuck()) {
1001		pr_err("failing init, change pending bit set\n");
1002		init_on_cpu->rc = -ENODEV;
1003		return;
1004	}
1005
1006	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1007		init_on_cpu->rc = -ENODEV;
1008		return;
1009	}
1010
1011	fidvid_msr_init();
 
1012
1013	init_on_cpu->rc = 0;
1014}
1015
1016#define MISSING_PSS_MSG \
1017	FW_BUG "No compatible ACPI _PSS objects found.\n" \
1018	FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \
1019	FW_BUG "If that doesn't help, try upgrading your BIOS.\n"
1020
1021/* per CPU init entry point to the driver */
1022static int powernowk8_cpu_init(struct cpufreq_policy *pol)
1023{
 
 
 
1024	struct powernow_k8_data *data;
1025	struct init_on_cpu init_on_cpu;
1026	int rc, cpu;
 
 
 
 
1027
1028	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1029	if (rc)
1030		return -ENODEV;
1031
1032	data = kzalloc(sizeof(*data), GFP_KERNEL);
1033	if (!data)
 
1034		return -ENOMEM;
 
1035
1036	data->cpu = pol->cpu;
 
1037
1038	if (powernow_k8_cpu_init_acpi(data)) {
1039		/*
1040		 * Use the PSB BIOS structure. This is only available on
1041		 * an UP version, and is deprecated by AMD.
1042		 */
1043		if (num_online_cpus() != 1) {
1044			pr_err_once(MISSING_PSS_MSG);
1045			goto err_out;
1046		}
1047		if (pol->cpu != 0) {
1048			pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n");
 
 
1049			goto err_out;
1050		}
1051		rc = find_psb_table(data);
1052		if (rc)
1053			goto err_out;
1054
1055		/* Take a crude guess here.
1056		 * That guess was in microseconds, so multiply with 1000 */
1057		pol->cpuinfo.transition_latency = (
1058			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1059			 ((1 << data->irt) * 30)) * 1000;
1060	} else /* ACPI _PSS objects available */
1061		pol->cpuinfo.transition_latency = get_transition_latency(data);
1062
1063	/* only run on specific CPU from here on */
1064	init_on_cpu.data = data;
1065	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1066				 &init_on_cpu, 1);
1067	rc = init_on_cpu.rc;
1068	if (rc != 0)
1069		goto err_out_exit_acpi;
1070
1071	cpumask_copy(pol->cpus, topology_core_cpumask(pol->cpu));
 
 
 
1072	data->available_cores = pol->cpus;
1073	pol->freq_table = data->powernow_table;
1074
1075	pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1076		data->currfid, data->currvid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078	/* Point all the CPUs in this policy to the same data */
1079	for_each_cpu(cpu, pol->cpus)
1080		per_cpu(powernow_data, cpu) = data;
1081
1082	return 0;
1083
1084err_out_exit_acpi:
1085	powernow_k8_cpu_exit_acpi(data);
1086
1087err_out:
1088	kfree(data);
1089	return -ENODEV;
1090}
1091
1092static int powernowk8_cpu_exit(struct cpufreq_policy *pol)
1093{
1094	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1095	int cpu;
1096
1097	if (!data)
1098		return -EINVAL;
1099
1100	powernow_k8_cpu_exit_acpi(data);
1101
 
 
1102	kfree(data->powernow_table);
1103	kfree(data);
1104	/* pol->cpus will be empty here, use related_cpus instead. */
1105	for_each_cpu(cpu, pol->related_cpus)
1106		per_cpu(powernow_data, cpu) = NULL;
1107
1108	return 0;
1109}
1110
1111static void query_values_on_cpu(void *_err)
1112{
1113	int *err = _err;
1114	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1115
1116	*err = query_current_values_with_pending_wait(data);
1117}
1118
1119static unsigned int powernowk8_get(unsigned int cpu)
1120{
1121	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1122	unsigned int khz = 0;
1123	int err;
1124
1125	if (!data)
1126		return 0;
1127
1128	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1129	if (err)
1130		goto out;
1131
1132	khz = find_khz_freq_from_fid(data->currfid);
 
 
 
 
1133
1134
1135out:
1136	return khz;
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139static struct cpufreq_driver cpufreq_amd64_driver = {
1140	.flags		= CPUFREQ_ASYNC_NOTIFICATION,
1141	.verify		= cpufreq_generic_frequency_table_verify,
1142	.target_index	= powernowk8_target,
1143	.bios_limit	= acpi_processor_get_bios_limit,
1144	.init		= powernowk8_cpu_init,
1145	.exit		= powernowk8_cpu_exit,
1146	.get		= powernowk8_get,
1147	.name		= "powernow-k8",
1148	.attr		= cpufreq_generic_attr,
 
1149};
1150
1151static void __request_acpi_cpufreq(void)
 
 
 
 
 
 
 
1152{
1153	const char drv[] = "acpi-cpufreq";
1154	const char *cur_drv;
 
 
 
 
1155
1156	cur_drv = cpufreq_get_current_driver();
1157	if (!cur_drv)
1158		goto request;
 
 
 
1159
1160	if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
1161		pr_warn("WTF driver: %s\n", cur_drv);
 
 
 
 
1162
1163	return;
 
 
1164
1165 request:
1166	pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n");
1167	request_module(drv);
1168}
1169
 
 
 
 
1170/* driver entry point for init */
1171static int powernowk8_init(void)
1172{
1173	unsigned int i, supported_cpus = 0;
1174	int ret;
1175
1176	if (!x86_match_cpu(powernow_k8_ids))
1177		return -ENODEV;
1178
1179	if (boot_cpu_has(X86_FEATURE_HW_PSTATE)) {
1180		__request_acpi_cpufreq();
1181		return -ENODEV;
1182	}
1183
1184	cpus_read_lock();
1185	for_each_online_cpu(i) {
1186		smp_call_function_single(i, check_supported_cpu, &ret, 1);
1187		if (!ret)
 
1188			supported_cpus++;
1189	}
1190
1191	if (supported_cpus != num_online_cpus()) {
1192		cpus_read_unlock();
1193		return -ENODEV;
1194	}
1195	cpus_read_unlock();
1196
1197	ret = cpufreq_register_driver(&cpufreq_amd64_driver);
1198	if (ret)
1199		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200
1201	pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n",
1202		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
 
1203
1204	return ret;
 
 
 
 
 
 
1205}
1206
1207/* driver entry point for term */
1208static void __exit powernowk8_exit(void)
1209{
1210	pr_debug("exit\n");
1211
 
 
 
 
 
 
 
1212	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1213}
1214
1215MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>");
1216MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>");
1217MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1218MODULE_LICENSE("GPL");
1219
1220late_initcall(powernowk8_init);
1221module_exit(powernowk8_exit);