Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
 
 
  19#include <linux/highmem.h>
  20#include <linux/mm.h>
 
  21#include <linux/kernel_stat.h>
  22#include <linux/string.h>
  23#include <linux/init.h>
  24#include <linux/completion.h>
  25#include <linux/slab.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/task_io_accounting_ops.h>
  29#include <linux/fault-inject.h>
  30#include <linux/list_sort.h>
 
 
 
 
 
 
 
 
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/block.h>
  34
  35#include "blk.h"
 
 
 
 
 
 
 
  36
  37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
 
 
 
  40
  41static int __make_request(struct request_queue *q, struct bio *bio);
  42
  43/*
  44 * For the allocated request tables
  45 */
  46static struct kmem_cache *request_cachep;
  47
  48/*
  49 * For queue allocation
  50 */
  51struct kmem_cache *blk_requestq_cachep;
  52
  53/*
  54 * Controlling structure to kblockd
  55 */
  56static struct workqueue_struct *kblockd_workqueue;
  57
  58static void drive_stat_acct(struct request *rq, int new_io)
 
 
 
 
 
  59{
  60	struct hd_struct *part;
  61	int rw = rq_data_dir(rq);
  62	int cpu;
  63
  64	if (!blk_do_io_stat(rq))
  65		return;
  66
  67	cpu = part_stat_lock();
  68
  69	if (!new_io) {
  70		part = rq->part;
  71		part_stat_inc(cpu, part, merges[rw]);
  72	} else {
  73		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
  74		if (!hd_struct_try_get(part)) {
  75			/*
  76			 * The partition is already being removed,
  77			 * the request will be accounted on the disk only
  78			 *
  79			 * We take a reference on disk->part0 although that
  80			 * partition will never be deleted, so we can treat
  81			 * it as any other partition.
  82			 */
  83			part = &rq->rq_disk->part0;
  84			hd_struct_get(part);
  85		}
  86		part_round_stats(cpu, part);
  87		part_inc_in_flight(part, rw);
  88		rq->part = part;
  89	}
  90
  91	part_stat_unlock();
  92}
 
  93
  94void blk_queue_congestion_threshold(struct request_queue *q)
 
 
 
 
 
  95{
  96	int nr;
  97
  98	nr = q->nr_requests - (q->nr_requests / 8) + 1;
  99	if (nr > q->nr_requests)
 100		nr = q->nr_requests;
 101	q->nr_congestion_on = nr;
 102
 103	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 104	if (nr < 1)
 105		nr = 1;
 106	q->nr_congestion_off = nr;
 107}
 
 108
 109/**
 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 111 * @bdev:	device
 112 *
 113 * Locates the passed device's request queue and returns the address of its
 114 * backing_dev_info
 115 *
 116 * Will return NULL if the request queue cannot be located.
 
 117 */
 118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 119{
 120	struct backing_dev_info *ret = NULL;
 121	struct request_queue *q = bdev_get_queue(bdev);
 122
 123	if (q)
 124		ret = &q->backing_dev_info;
 125	return ret;
 126}
 127EXPORT_SYMBOL(blk_get_backing_dev_info);
 128
 129void blk_rq_init(struct request_queue *q, struct request *rq)
 130{
 131	memset(rq, 0, sizeof(*rq));
 132
 133	INIT_LIST_HEAD(&rq->queuelist);
 134	INIT_LIST_HEAD(&rq->timeout_list);
 135	rq->cpu = -1;
 136	rq->q = q;
 137	rq->__sector = (sector_t) -1;
 138	INIT_HLIST_NODE(&rq->hash);
 139	RB_CLEAR_NODE(&rq->rb_node);
 140	rq->cmd = rq->__cmd;
 141	rq->cmd_len = BLK_MAX_CDB;
 142	rq->tag = -1;
 143	rq->ref_count = 1;
 144	rq->start_time = jiffies;
 145	set_start_time_ns(rq);
 146	rq->part = NULL;
 147}
 148EXPORT_SYMBOL(blk_rq_init);
 149
 150static void req_bio_endio(struct request *rq, struct bio *bio,
 151			  unsigned int nbytes, int error)
 
 
 
 
 
 
 
 152{
 153	if (error)
 154		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 155	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 156		error = -EIO;
 157
 158	if (unlikely(nbytes > bio->bi_size)) {
 159		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
 160		       __func__, nbytes, bio->bi_size);
 161		nbytes = bio->bi_size;
 162	}
 163
 164	if (unlikely(rq->cmd_flags & REQ_QUIET))
 165		set_bit(BIO_QUIET, &bio->bi_flags);
 166
 167	bio->bi_size -= nbytes;
 168	bio->bi_sector += (nbytes >> 9);
 169
 170	if (bio_integrity(bio))
 171		bio_integrity_advance(bio, nbytes);
 172
 173	/* don't actually finish bio if it's part of flush sequence */
 174	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 175		bio_endio(bio, error);
 176}
 
 177
 178void blk_dump_rq_flags(struct request *rq, char *msg)
 179{
 180	int bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181
 182	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
 183		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 184		rq->cmd_flags);
 185
 186	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 187	       (unsigned long long)blk_rq_pos(rq),
 188	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 189	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
 190	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
 191
 192	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 193		printk(KERN_INFO "  cdb: ");
 194		for (bit = 0; bit < BLK_MAX_CDB; bit++)
 195			printk("%02x ", rq->cmd[bit]);
 196		printk("\n");
 197	}
 198}
 199EXPORT_SYMBOL(blk_dump_rq_flags);
 200
 201static void blk_delay_work(struct work_struct *work)
 
 
 
 
 202{
 203	struct request_queue *q;
 204
 205	q = container_of(work, struct request_queue, delay_work.work);
 206	spin_lock_irq(q->queue_lock);
 207	__blk_run_queue(q);
 208	spin_unlock_irq(q->queue_lock);
 209}
 210
 211/**
 212 * blk_delay_queue - restart queueing after defined interval
 213 * @q:		The &struct request_queue in question
 214 * @msecs:	Delay in msecs
 215 *
 216 * Description:
 217 *   Sometimes queueing needs to be postponed for a little while, to allow
 218 *   resources to come back. This function will make sure that queueing is
 219 *   restarted around the specified time.
 220 */
 221void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 222{
 223	queue_delayed_work(kblockd_workqueue, &q->delay_work,
 224				msecs_to_jiffies(msecs));
 225}
 226EXPORT_SYMBOL(blk_delay_queue);
 227
 228/**
 229 * blk_start_queue - restart a previously stopped queue
 230 * @q:    The &struct request_queue in question
 231 *
 232 * Description:
 233 *   blk_start_queue() will clear the stop flag on the queue, and call
 234 *   the request_fn for the queue if it was in a stopped state when
 235 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 236 **/
 237void blk_start_queue(struct request_queue *q)
 238{
 239	WARN_ON(!irqs_disabled());
 240
 241	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 242	__blk_run_queue(q);
 
 243}
 244EXPORT_SYMBOL(blk_start_queue);
 245
 246/**
 247 * blk_stop_queue - stop a queue
 248 * @q:    The &struct request_queue in question
 249 *
 250 * Description:
 251 *   The Linux block layer assumes that a block driver will consume all
 252 *   entries on the request queue when the request_fn strategy is called.
 253 *   Often this will not happen, because of hardware limitations (queue
 254 *   depth settings). If a device driver gets a 'queue full' response,
 255 *   or if it simply chooses not to queue more I/O at one point, it can
 256 *   call this function to prevent the request_fn from being called until
 257 *   the driver has signalled it's ready to go again. This happens by calling
 258 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 259 **/
 260void blk_stop_queue(struct request_queue *q)
 261{
 262	__cancel_delayed_work(&q->delay_work);
 263	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 
 
 
 264}
 265EXPORT_SYMBOL(blk_stop_queue);
 266
 267/**
 268 * blk_sync_queue - cancel any pending callbacks on a queue
 269 * @q: the queue
 270 *
 271 * Description:
 272 *     The block layer may perform asynchronous callback activity
 273 *     on a queue, such as calling the unplug function after a timeout.
 274 *     A block device may call blk_sync_queue to ensure that any
 275 *     such activity is cancelled, thus allowing it to release resources
 276 *     that the callbacks might use. The caller must already have made sure
 277 *     that its ->make_request_fn will not re-add plugging prior to calling
 278 *     this function.
 279 *
 280 *     This function does not cancel any asynchronous activity arising
 281 *     out of elevator or throttling code. That would require elevaotor_exit()
 282 *     and blk_throtl_exit() to be called with queue lock initialized.
 283 *
 284 */
 285void blk_sync_queue(struct request_queue *q)
 286{
 287	del_timer_sync(&q->timeout);
 288	cancel_delayed_work_sync(&q->delay_work);
 289}
 290EXPORT_SYMBOL(blk_sync_queue);
 291
 292/**
 293 * __blk_run_queue - run a single device queue
 294 * @q:	The queue to run
 295 *
 296 * Description:
 297 *    See @blk_run_queue. This variant must be called with the queue lock
 298 *    held and interrupts disabled.
 299 */
 300void __blk_run_queue(struct request_queue *q)
 301{
 302	if (unlikely(blk_queue_stopped(q)))
 303		return;
 304
 305	q->request_fn(q);
 306}
 307EXPORT_SYMBOL(__blk_run_queue);
 308
 309/**
 310 * blk_run_queue_async - run a single device queue in workqueue context
 311 * @q:	The queue to run
 312 *
 313 * Description:
 314 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 315 *    of us.
 316 */
 317void blk_run_queue_async(struct request_queue *q)
 318{
 319	if (likely(!blk_queue_stopped(q))) {
 320		__cancel_delayed_work(&q->delay_work);
 321		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 322	}
 323}
 324EXPORT_SYMBOL(blk_run_queue_async);
 325
 326/**
 327 * blk_run_queue - run a single device queue
 328 * @q: The queue to run
 329 *
 330 * Description:
 331 *    Invoke request handling on this queue, if it has pending work to do.
 332 *    May be used to restart queueing when a request has completed.
 333 */
 334void blk_run_queue(struct request_queue *q)
 335{
 336	unsigned long flags;
 337
 338	spin_lock_irqsave(q->queue_lock, flags);
 339	__blk_run_queue(q);
 340	spin_unlock_irqrestore(q->queue_lock, flags);
 341}
 342EXPORT_SYMBOL(blk_run_queue);
 343
 344void blk_put_queue(struct request_queue *q)
 345{
 346	kobject_put(&q->kobj);
 347}
 348EXPORT_SYMBOL(blk_put_queue);
 349
 350/*
 351 * Note: If a driver supplied the queue lock, it is disconnected
 352 * by this function. The actual state of the lock doesn't matter
 353 * here as the request_queue isn't accessible after this point
 354 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
 355 */
 356void blk_cleanup_queue(struct request_queue *q)
 357{
 358	/*
 359	 * We know we have process context here, so we can be a little
 360	 * cautious and ensure that pending block actions on this device
 361	 * are done before moving on. Going into this function, we should
 362	 * not have processes doing IO to this device.
 363	 */
 364	blk_sync_queue(q);
 365
 366	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 367	mutex_lock(&q->sysfs_lock);
 368	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
 369	mutex_unlock(&q->sysfs_lock);
 370
 371	if (q->queue_lock != &q->__queue_lock)
 372		q->queue_lock = &q->__queue_lock;
 373
 374	blk_put_queue(q);
 375}
 376EXPORT_SYMBOL(blk_cleanup_queue);
 377
 378static int blk_init_free_list(struct request_queue *q)
 379{
 380	struct request_list *rl = &q->rq;
 381
 382	if (unlikely(rl->rq_pool))
 383		return 0;
 384
 385	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 386	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 387	rl->elvpriv = 0;
 388	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 389	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 390
 391	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
 392				mempool_free_slab, request_cachep, q->node);
 393
 394	if (!rl->rq_pool)
 395		return -ENOMEM;
 396
 397	return 0;
 398}
 399
 400struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 401{
 402	return blk_alloc_queue_node(gfp_mask, -1);
 403}
 404EXPORT_SYMBOL(blk_alloc_queue);
 405
 406struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 407{
 408	struct request_queue *q;
 409	int err;
 410
 411	q = kmem_cache_alloc_node(blk_requestq_cachep,
 412				gfp_mask | __GFP_ZERO, node_id);
 413	if (!q)
 414		return NULL;
 415
 416	q->backing_dev_info.ra_pages =
 417			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
 418	q->backing_dev_info.state = 0;
 419	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
 420	q->backing_dev_info.name = "block";
 421
 422	err = bdi_init(&q->backing_dev_info);
 423	if (err) {
 424		kmem_cache_free(blk_requestq_cachep, q);
 425		return NULL;
 426	}
 427
 428	if (blk_throtl_init(q)) {
 429		kmem_cache_free(blk_requestq_cachep, q);
 430		return NULL;
 431	}
 432
 433	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 434		    laptop_mode_timer_fn, (unsigned long) q);
 435	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 436	INIT_LIST_HEAD(&q->timeout_list);
 437	INIT_LIST_HEAD(&q->flush_queue[0]);
 438	INIT_LIST_HEAD(&q->flush_queue[1]);
 439	INIT_LIST_HEAD(&q->flush_data_in_flight);
 440	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 441
 442	kobject_init(&q->kobj, &blk_queue_ktype);
 443
 444	mutex_init(&q->sysfs_lock);
 445	spin_lock_init(&q->__queue_lock);
 446
 447	/*
 448	 * By default initialize queue_lock to internal lock and driver can
 449	 * override it later if need be.
 450	 */
 451	q->queue_lock = &q->__queue_lock;
 452
 453	return q;
 454}
 455EXPORT_SYMBOL(blk_alloc_queue_node);
 456
 457/**
 458 * blk_init_queue  - prepare a request queue for use with a block device
 459 * @rfn:  The function to be called to process requests that have been
 460 *        placed on the queue.
 461 * @lock: Request queue spin lock
 462 *
 463 * Description:
 464 *    If a block device wishes to use the standard request handling procedures,
 465 *    which sorts requests and coalesces adjacent requests, then it must
 466 *    call blk_init_queue().  The function @rfn will be called when there
 467 *    are requests on the queue that need to be processed.  If the device
 468 *    supports plugging, then @rfn may not be called immediately when requests
 469 *    are available on the queue, but may be called at some time later instead.
 470 *    Plugged queues are generally unplugged when a buffer belonging to one
 471 *    of the requests on the queue is needed, or due to memory pressure.
 472 *
 473 *    @rfn is not required, or even expected, to remove all requests off the
 474 *    queue, but only as many as it can handle at a time.  If it does leave
 475 *    requests on the queue, it is responsible for arranging that the requests
 476 *    get dealt with eventually.
 477 *
 478 *    The queue spin lock must be held while manipulating the requests on the
 479 *    request queue; this lock will be taken also from interrupt context, so irq
 480 *    disabling is needed for it.
 481 *
 482 *    Function returns a pointer to the initialized request queue, or %NULL if
 483 *    it didn't succeed.
 484 *
 485 * Note:
 486 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 487 *    when the block device is deactivated (such as at module unload).
 488 **/
 489
 490struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 491{
 492	return blk_init_queue_node(rfn, lock, -1);
 493}
 494EXPORT_SYMBOL(blk_init_queue);
 495
 496struct request_queue *
 497blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 498{
 499	struct request_queue *uninit_q, *q;
 500
 501	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 502	if (!uninit_q)
 503		return NULL;
 504
 505	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
 506	if (!q)
 507		blk_cleanup_queue(uninit_q);
 508
 509	return q;
 510}
 511EXPORT_SYMBOL(blk_init_queue_node);
 512
 513struct request_queue *
 514blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 515			 spinlock_t *lock)
 516{
 517	return blk_init_allocated_queue_node(q, rfn, lock, -1);
 518}
 519EXPORT_SYMBOL(blk_init_allocated_queue);
 520
 521struct request_queue *
 522blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
 523			      spinlock_t *lock, int node_id)
 524{
 525	if (!q)
 526		return NULL;
 527
 528	q->node = node_id;
 529	if (blk_init_free_list(q))
 530		return NULL;
 531
 532	q->request_fn		= rfn;
 533	q->prep_rq_fn		= NULL;
 534	q->unprep_rq_fn		= NULL;
 535	q->queue_flags		= QUEUE_FLAG_DEFAULT;
 536
 537	/* Override internal queue lock with supplied lock pointer */
 538	if (lock)
 539		q->queue_lock		= lock;
 540
 541	/*
 542	 * This also sets hw/phys segments, boundary and size
 543	 */
 544	blk_queue_make_request(q, __make_request);
 545
 546	q->sg_reserved_size = INT_MAX;
 547
 548	/*
 549	 * all done
 550	 */
 551	if (!elevator_init(q, NULL)) {
 552		blk_queue_congestion_threshold(q);
 553		return q;
 554	}
 555
 556	return NULL;
 557}
 558EXPORT_SYMBOL(blk_init_allocated_queue_node);
 559
 560int blk_get_queue(struct request_queue *q)
 561{
 562	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
 563		kobject_get(&q->kobj);
 564		return 0;
 565	}
 566
 567	return 1;
 568}
 569EXPORT_SYMBOL(blk_get_queue);
 570
 571static inline void blk_free_request(struct request_queue *q, struct request *rq)
 572{
 573	if (rq->cmd_flags & REQ_ELVPRIV)
 574		elv_put_request(q, rq);
 575	mempool_free(rq, q->rq.rq_pool);
 576}
 577
 578static struct request *
 579blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
 580{
 581	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
 582
 583	if (!rq)
 584		return NULL;
 585
 586	blk_rq_init(q, rq);
 587
 588	rq->cmd_flags = flags | REQ_ALLOCED;
 589
 590	if (priv) {
 591		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
 592			mempool_free(rq, q->rq.rq_pool);
 593			return NULL;
 594		}
 595		rq->cmd_flags |= REQ_ELVPRIV;
 596	}
 597
 598	return rq;
 599}
 
 600
 601/*
 602 * ioc_batching returns true if the ioc is a valid batching request and
 603 * should be given priority access to a request.
 604 */
 605static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 606{
 607	if (!ioc)
 608		return 0;
 609
 610	/*
 611	 * Make sure the process is able to allocate at least 1 request
 612	 * even if the batch times out, otherwise we could theoretically
 613	 * lose wakeups.
 614	 */
 615	return ioc->nr_batch_requests == q->nr_batching ||
 616		(ioc->nr_batch_requests > 0
 617		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 618}
 619
 620/*
 621 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 622 * will cause the process to be a "batcher" on all queues in the system. This
 623 * is the behaviour we want though - once it gets a wakeup it should be given
 624 * a nice run.
 625 */
 626static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 627{
 628	if (!ioc || ioc_batching(q, ioc))
 629		return;
 630
 631	ioc->nr_batch_requests = q->nr_batching;
 632	ioc->last_waited = jiffies;
 633}
 634
 635static void __freed_request(struct request_queue *q, int sync)
 636{
 637	struct request_list *rl = &q->rq;
 638
 639	if (rl->count[sync] < queue_congestion_off_threshold(q))
 640		blk_clear_queue_congested(q, sync);
 641
 642	if (rl->count[sync] + 1 <= q->nr_requests) {
 643		if (waitqueue_active(&rl->wait[sync]))
 644			wake_up(&rl->wait[sync]);
 645
 646		blk_clear_queue_full(q, sync);
 647	}
 648}
 649
 650/*
 651 * A request has just been released.  Account for it, update the full and
 652 * congestion status, wake up any waiters.   Called under q->queue_lock.
 653 */
 654static void freed_request(struct request_queue *q, int sync, int priv)
 655{
 656	struct request_list *rl = &q->rq;
 657
 658	rl->count[sync]--;
 659	if (priv)
 660		rl->elvpriv--;
 661
 662	__freed_request(q, sync);
 663
 664	if (unlikely(rl->starved[sync ^ 1]))
 665		__freed_request(q, sync ^ 1);
 666}
 667
 668/*
 669 * Determine if elevator data should be initialized when allocating the
 670 * request associated with @bio.
 671 */
 672static bool blk_rq_should_init_elevator(struct bio *bio)
 673{
 674	if (!bio)
 675		return true;
 676
 677	/*
 678	 * Flush requests do not use the elevator so skip initialization.
 679	 * This allows a request to share the flush and elevator data.
 680	 */
 681	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
 682		return false;
 683
 684	return true;
 685}
 686
 687/*
 688 * Get a free request, queue_lock must be held.
 689 * Returns NULL on failure, with queue_lock held.
 690 * Returns !NULL on success, with queue_lock *not held*.
 691 */
 692static struct request *get_request(struct request_queue *q, int rw_flags,
 693				   struct bio *bio, gfp_t gfp_mask)
 694{
 695	struct request *rq = NULL;
 696	struct request_list *rl = &q->rq;
 697	struct io_context *ioc = NULL;
 698	const bool is_sync = rw_is_sync(rw_flags) != 0;
 699	int may_queue, priv = 0;
 700
 701	may_queue = elv_may_queue(q, rw_flags);
 702	if (may_queue == ELV_MQUEUE_NO)
 703		goto rq_starved;
 704
 705	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
 706		if (rl->count[is_sync]+1 >= q->nr_requests) {
 707			ioc = current_io_context(GFP_ATOMIC, q->node);
 708			/*
 709			 * The queue will fill after this allocation, so set
 710			 * it as full, and mark this process as "batching".
 711			 * This process will be allowed to complete a batch of
 712			 * requests, others will be blocked.
 713			 */
 714			if (!blk_queue_full(q, is_sync)) {
 715				ioc_set_batching(q, ioc);
 716				blk_set_queue_full(q, is_sync);
 717			} else {
 718				if (may_queue != ELV_MQUEUE_MUST
 719						&& !ioc_batching(q, ioc)) {
 720					/*
 721					 * The queue is full and the allocating
 722					 * process is not a "batcher", and not
 723					 * exempted by the IO scheduler
 724					 */
 725					goto out;
 726				}
 727			}
 728		}
 729		blk_set_queue_congested(q, is_sync);
 730	}
 731
 732	/*
 733	 * Only allow batching queuers to allocate up to 50% over the defined
 734	 * limit of requests, otherwise we could have thousands of requests
 735	 * allocated with any setting of ->nr_requests
 736	 */
 737	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
 738		goto out;
 739
 740	rl->count[is_sync]++;
 741	rl->starved[is_sync] = 0;
 742
 743	if (blk_rq_should_init_elevator(bio)) {
 744		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
 745		if (priv)
 746			rl->elvpriv++;
 747	}
 748
 749	if (blk_queue_io_stat(q))
 750		rw_flags |= REQ_IO_STAT;
 751	spin_unlock_irq(q->queue_lock);
 752
 753	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
 754	if (unlikely(!rq)) {
 755		/*
 756		 * Allocation failed presumably due to memory. Undo anything
 757		 * we might have messed up.
 758		 *
 759		 * Allocating task should really be put onto the front of the
 760		 * wait queue, but this is pretty rare.
 761		 */
 762		spin_lock_irq(q->queue_lock);
 763		freed_request(q, is_sync, priv);
 764
 765		/*
 766		 * in the very unlikely event that allocation failed and no
 767		 * requests for this direction was pending, mark us starved
 768		 * so that freeing of a request in the other direction will
 769		 * notice us. another possible fix would be to split the
 770		 * rq mempool into READ and WRITE
 771		 */
 772rq_starved:
 773		if (unlikely(rl->count[is_sync] == 0))
 774			rl->starved[is_sync] = 1;
 775
 776		goto out;
 
 
 777	}
 778
 779	/*
 780	 * ioc may be NULL here, and ioc_batching will be false. That's
 781	 * OK, if the queue is under the request limit then requests need
 782	 * not count toward the nr_batch_requests limit. There will always
 783	 * be some limit enforced by BLK_BATCH_TIME.
 784	 */
 785	if (ioc_batching(q, ioc))
 786		ioc->nr_batch_requests--;
 787
 788	trace_block_getrq(q, bio, rw_flags & 1);
 789out:
 790	return rq;
 791}
 792
 793/*
 794 * No available requests for this queue, wait for some requests to become
 795 * available.
 796 *
 797 * Called with q->queue_lock held, and returns with it unlocked.
 798 */
 799static struct request *get_request_wait(struct request_queue *q, int rw_flags,
 800					struct bio *bio)
 801{
 802	const bool is_sync = rw_is_sync(rw_flags) != 0;
 803	struct request *rq;
 804
 805	rq = get_request(q, rw_flags, bio, GFP_NOIO);
 806	while (!rq) {
 807		DEFINE_WAIT(wait);
 808		struct io_context *ioc;
 809		struct request_list *rl = &q->rq;
 810
 811		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
 812				TASK_UNINTERRUPTIBLE);
 813
 814		trace_block_sleeprq(q, bio, rw_flags & 1);
 815
 816		spin_unlock_irq(q->queue_lock);
 817		io_schedule();
 
 
 818
 819		/*
 820		 * After sleeping, we become a "batching" process and
 821		 * will be able to allocate at least one request, and
 822		 * up to a big batch of them for a small period time.
 823		 * See ioc_batching, ioc_set_batching
 
 824		 */
 825		ioc = current_io_context(GFP_NOIO, q->node);
 826		ioc_set_batching(q, ioc);
 827
 828		spin_lock_irq(q->queue_lock);
 829		finish_wait(&rl->wait[is_sync], &wait);
 830
 831		rq = get_request(q, rw_flags, bio, GFP_NOIO);
 832	};
 833
 834	return rq;
 
 
 
 835}
 836
 837struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
 838{
 839	struct request *rq;
 840
 841	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
 842		return NULL;
 843
 844	BUG_ON(rw != READ && rw != WRITE);
 845
 846	spin_lock_irq(q->queue_lock);
 847	if (gfp_mask & __GFP_WAIT) {
 848		rq = get_request_wait(q, rw, NULL);
 849	} else {
 850		rq = get_request(q, rw, NULL, gfp_mask);
 851		if (!rq)
 852			spin_unlock_irq(q->queue_lock);
 853	}
 854	/* q->queue_lock is unlocked at this point */
 855
 856	return rq;
 857}
 858EXPORT_SYMBOL(blk_get_request);
 859
 860/**
 861 * blk_make_request - given a bio, allocate a corresponding struct request.
 862 * @q: target request queue
 863 * @bio:  The bio describing the memory mappings that will be submitted for IO.
 864 *        It may be a chained-bio properly constructed by block/bio layer.
 865 * @gfp_mask: gfp flags to be used for memory allocation
 866 *
 867 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
 868 * type commands. Where the struct request needs to be farther initialized by
 869 * the caller. It is passed a &struct bio, which describes the memory info of
 870 * the I/O transfer.
 871 *
 872 * The caller of blk_make_request must make sure that bi_io_vec
 873 * are set to describe the memory buffers. That bio_data_dir() will return
 874 * the needed direction of the request. (And all bio's in the passed bio-chain
 875 * are properly set accordingly)
 876 *
 877 * If called under none-sleepable conditions, mapped bio buffers must not
 878 * need bouncing, by calling the appropriate masked or flagged allocator,
 879 * suitable for the target device. Otherwise the call to blk_queue_bounce will
 880 * BUG.
 881 *
 882 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
 883 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
 884 * anything but the first bio in the chain. Otherwise you risk waiting for IO
 885 * completion of a bio that hasn't been submitted yet, thus resulting in a
 886 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
 887 * of bio_alloc(), as that avoids the mempool deadlock.
 888 * If possible a big IO should be split into smaller parts when allocation
 889 * fails. Partial allocation should not be an error, or you risk a live-lock.
 890 */
 891struct request *blk_make_request(struct request_queue *q, struct bio *bio,
 892				 gfp_t gfp_mask)
 893{
 894	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
 895
 896	if (unlikely(!rq))
 897		return ERR_PTR(-ENOMEM);
 898
 899	for_each_bio(bio) {
 900		struct bio *bounce_bio = bio;
 901		int ret;
 902
 903		blk_queue_bounce(q, &bounce_bio);
 904		ret = blk_rq_append_bio(q, rq, bounce_bio);
 905		if (unlikely(ret)) {
 906			blk_put_request(rq);
 907			return ERR_PTR(ret);
 908		}
 909	}
 910
 911	return rq;
 912}
 913EXPORT_SYMBOL(blk_make_request);
 914
 915/**
 916 * blk_requeue_request - put a request back on queue
 917 * @q:		request queue where request should be inserted
 918 * @rq:		request to be inserted
 919 *
 920 * Description:
 921 *    Drivers often keep queueing requests until the hardware cannot accept
 922 *    more, when that condition happens we need to put the request back
 923 *    on the queue. Must be called with queue lock held.
 924 */
 925void blk_requeue_request(struct request_queue *q, struct request *rq)
 926{
 927	blk_delete_timer(rq);
 928	blk_clear_rq_complete(rq);
 929	trace_block_rq_requeue(q, rq);
 930
 931	if (blk_rq_tagged(rq))
 932		blk_queue_end_tag(q, rq);
 933
 934	BUG_ON(blk_queued_rq(rq));
 935
 936	elv_requeue_request(q, rq);
 937}
 938EXPORT_SYMBOL(blk_requeue_request);
 939
 940static void add_acct_request(struct request_queue *q, struct request *rq,
 941			     int where)
 942{
 943	drive_stat_acct(rq, 1);
 944	__elv_add_request(q, rq, where);
 945}
 946
 947/**
 948 * blk_insert_request - insert a special request into a request queue
 949 * @q:		request queue where request should be inserted
 950 * @rq:		request to be inserted
 951 * @at_head:	insert request at head or tail of queue
 952 * @data:	private data
 953 *
 954 * Description:
 955 *    Many block devices need to execute commands asynchronously, so they don't
 956 *    block the whole kernel from preemption during request execution.  This is
 957 *    accomplished normally by inserting aritficial requests tagged as
 958 *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
 959 *    be scheduled for actual execution by the request queue.
 960 *
 961 *    We have the option of inserting the head or the tail of the queue.
 962 *    Typically we use the tail for new ioctls and so forth.  We use the head
 963 *    of the queue for things like a QUEUE_FULL message from a device, or a
 964 *    host that is unable to accept a particular command.
 965 */
 966void blk_insert_request(struct request_queue *q, struct request *rq,
 967			int at_head, void *data)
 968{
 969	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
 970	unsigned long flags;
 971
 972	/*
 973	 * tell I/O scheduler that this isn't a regular read/write (ie it
 974	 * must not attempt merges on this) and that it acts as a soft
 975	 * barrier
 976	 */
 977	rq->cmd_type = REQ_TYPE_SPECIAL;
 978
 979	rq->special = data;
 980
 981	spin_lock_irqsave(q->queue_lock, flags);
 
 
 
 
 982
 983	/*
 984	 * If command is tagged, release the tag
 985	 */
 986	if (blk_rq_tagged(rq))
 987		blk_queue_end_tag(q, rq);
 988
 989	add_acct_request(q, rq, where);
 990	__blk_run_queue(q);
 991	spin_unlock_irqrestore(q->queue_lock, flags);
 992}
 993EXPORT_SYMBOL(blk_insert_request);
 994
 995static void part_round_stats_single(int cpu, struct hd_struct *part,
 996				    unsigned long now)
 997{
 998	if (now == part->stamp)
 999		return;
1000
1001	if (part_in_flight(part)) {
1002		__part_stat_add(cpu, part, time_in_queue,
1003				part_in_flight(part) * (now - part->stamp));
1004		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1005	}
1006	part->stamp = now;
1007}
1008
1009/**
1010 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1011 * @cpu: cpu number for stats access
1012 * @part: target partition
1013 *
1014 * The average IO queue length and utilisation statistics are maintained
1015 * by observing the current state of the queue length and the amount of
1016 * time it has been in this state for.
1017 *
1018 * Normally, that accounting is done on IO completion, but that can result
1019 * in more than a second's worth of IO being accounted for within any one
1020 * second, leading to >100% utilisation.  To deal with that, we call this
1021 * function to do a round-off before returning the results when reading
1022 * /proc/diskstats.  This accounts immediately for all queue usage up to
1023 * the current jiffies and restarts the counters again.
1024 */
1025void part_round_stats(int cpu, struct hd_struct *part)
1026{
1027	unsigned long now = jiffies;
1028
1029	if (part->partno)
1030		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1031	part_round_stats_single(cpu, part, now);
1032}
1033EXPORT_SYMBOL_GPL(part_round_stats);
1034
1035/*
1036 * queue lock must be held
1037 */
1038void __blk_put_request(struct request_queue *q, struct request *req)
1039{
1040	if (unlikely(!q))
1041		return;
1042	if (unlikely(--req->ref_count))
1043		return;
1044
1045	elv_completed_request(q, req);
 
1046
1047	/* this is a bio leak */
1048	WARN_ON(req->bio != NULL);
1049
1050	/*
1051	 * Request may not have originated from ll_rw_blk. if not,
1052	 * it didn't come out of our reserved rq pools
1053	 */
1054	if (req->cmd_flags & REQ_ALLOCED) {
1055		int is_sync = rq_is_sync(req) != 0;
1056		int priv = req->cmd_flags & REQ_ELVPRIV;
1057
1058		BUG_ON(!list_empty(&req->queuelist));
1059		BUG_ON(!hlist_unhashed(&req->hash));
1060
1061		blk_free_request(q, req);
1062		freed_request(q, is_sync, priv);
1063	}
1064}
1065EXPORT_SYMBOL_GPL(__blk_put_request);
1066
1067void blk_put_request(struct request *req)
1068{
1069	unsigned long flags;
1070	struct request_queue *q = req->q;
1071
1072	spin_lock_irqsave(q->queue_lock, flags);
1073	__blk_put_request(q, req);
1074	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
1075}
1076EXPORT_SYMBOL(blk_put_request);
1077
1078/**
1079 * blk_add_request_payload - add a payload to a request
1080 * @rq: request to update
1081 * @page: page backing the payload
1082 * @len: length of the payload.
1083 *
1084 * This allows to later add a payload to an already submitted request by
1085 * a block driver.  The driver needs to take care of freeing the payload
1086 * itself.
1087 *
1088 * Note that this is a quite horrible hack and nothing but handling of
1089 * discard requests should ever use it.
1090 */
1091void blk_add_request_payload(struct request *rq, struct page *page,
1092		unsigned int len)
1093{
1094	struct bio *bio = rq->bio;
1095
1096	bio->bi_io_vec->bv_page = page;
1097	bio->bi_io_vec->bv_offset = 0;
1098	bio->bi_io_vec->bv_len = len;
1099
1100	bio->bi_size = len;
1101	bio->bi_vcnt = 1;
1102	bio->bi_phys_segments = 1;
1103
1104	rq->__data_len = rq->resid_len = len;
1105	rq->nr_phys_segments = 1;
1106	rq->buffer = bio_data(bio);
1107}
1108EXPORT_SYMBOL_GPL(blk_add_request_payload);
1109
1110static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1111				   struct bio *bio)
1112{
1113	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1114
1115	if (!ll_back_merge_fn(q, req, bio))
1116		return false;
1117
1118	trace_block_bio_backmerge(q, bio);
1119
1120	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1121		blk_rq_set_mixed_merge(req);
1122
1123	req->biotail->bi_next = bio;
1124	req->biotail = bio;
1125	req->__data_len += bio->bi_size;
1126	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1127
1128	drive_stat_acct(req, 0);
1129	elv_bio_merged(q, req, bio);
1130	return true;
1131}
1132
1133static bool bio_attempt_front_merge(struct request_queue *q,
1134				    struct request *req, struct bio *bio)
1135{
1136	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1137
1138	if (!ll_front_merge_fn(q, req, bio))
1139		return false;
1140
1141	trace_block_bio_frontmerge(q, bio);
1142
1143	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1144		blk_rq_set_mixed_merge(req);
1145
1146	bio->bi_next = req->bio;
1147	req->bio = bio;
1148
1149	/*
1150	 * may not be valid. if the low level driver said
1151	 * it didn't need a bounce buffer then it better
1152	 * not touch req->buffer either...
1153	 */
1154	req->buffer = bio_data(bio);
1155	req->__sector = bio->bi_sector;
1156	req->__data_len += bio->bi_size;
1157	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1158
1159	drive_stat_acct(req, 0);
1160	elv_bio_merged(q, req, bio);
1161	return true;
1162}
1163
1164/*
1165 * Attempts to merge with the plugged list in the current process. Returns
1166 * true if merge was successful, otherwise false.
1167 */
1168static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1169			       struct bio *bio, unsigned int *request_count)
1170{
1171	struct blk_plug *plug;
1172	struct request *rq;
1173	bool ret = false;
1174
1175	plug = tsk->plug;
1176	if (!plug)
1177		goto out;
1178	*request_count = 0;
1179
1180	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1181		int el_ret;
1182
1183		(*request_count)++;
1184
1185		if (rq->q != q)
1186			continue;
1187
1188		el_ret = elv_try_merge(rq, bio);
1189		if (el_ret == ELEVATOR_BACK_MERGE) {
1190			ret = bio_attempt_back_merge(q, rq, bio);
1191			if (ret)
1192				break;
1193		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1194			ret = bio_attempt_front_merge(q, rq, bio);
1195			if (ret)
1196				break;
1197		}
1198	}
1199out:
1200	return ret;
1201}
1202
1203void init_request_from_bio(struct request *req, struct bio *bio)
1204{
1205	req->cpu = bio->bi_comp_cpu;
1206	req->cmd_type = REQ_TYPE_FS;
1207
1208	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1209	if (bio->bi_rw & REQ_RAHEAD)
1210		req->cmd_flags |= REQ_FAILFAST_MASK;
1211
1212	req->errors = 0;
1213	req->__sector = bio->bi_sector;
1214	req->ioprio = bio_prio(bio);
1215	blk_rq_bio_prep(req->q, req, bio);
1216}
1217
1218static int __make_request(struct request_queue *q, struct bio *bio)
1219{
1220	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1221	struct blk_plug *plug;
1222	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1223	struct request *req;
1224	unsigned int request_count = 0;
1225
1226	/*
1227	 * low level driver can indicate that it wants pages above a
1228	 * certain limit bounced to low memory (ie for highmem, or even
1229	 * ISA dma in theory)
1230	 */
1231	blk_queue_bounce(q, &bio);
1232
1233	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1234		spin_lock_irq(q->queue_lock);
1235		where = ELEVATOR_INSERT_FLUSH;
1236		goto get_rq;
1237	}
1238
1239	/*
1240	 * Check if we can merge with the plugged list before grabbing
1241	 * any locks.
1242	 */
1243	if (attempt_plug_merge(current, q, bio, &request_count))
1244		goto out;
1245
1246	spin_lock_irq(q->queue_lock);
1247
1248	el_ret = elv_merge(q, &req, bio);
1249	if (el_ret == ELEVATOR_BACK_MERGE) {
1250		if (bio_attempt_back_merge(q, req, bio)) {
1251			if (!attempt_back_merge(q, req))
1252				elv_merged_request(q, req, el_ret);
1253			goto out_unlock;
1254		}
1255	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1256		if (bio_attempt_front_merge(q, req, bio)) {
1257			if (!attempt_front_merge(q, req))
1258				elv_merged_request(q, req, el_ret);
1259			goto out_unlock;
1260		}
1261	}
1262
1263get_rq:
1264	/*
1265	 * This sync check and mask will be re-done in init_request_from_bio(),
1266	 * but we need to set it earlier to expose the sync flag to the
1267	 * rq allocator and io schedulers.
1268	 */
1269	rw_flags = bio_data_dir(bio);
1270	if (sync)
1271		rw_flags |= REQ_SYNC;
1272
1273	/*
1274	 * Grab a free request. This is might sleep but can not fail.
1275	 * Returns with the queue unlocked.
1276	 */
1277	req = get_request_wait(q, rw_flags, bio);
1278
1279	/*
1280	 * After dropping the lock and possibly sleeping here, our request
1281	 * may now be mergeable after it had proven unmergeable (above).
1282	 * We don't worry about that case for efficiency. It won't happen
1283	 * often, and the elevators are able to handle it.
1284	 */
1285	init_request_from_bio(req, bio);
1286
1287	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1288	    bio_flagged(bio, BIO_CPU_AFFINE))
1289		req->cpu = raw_smp_processor_id();
1290
1291	plug = current->plug;
1292	if (plug) {
1293		/*
1294		 * If this is the first request added after a plug, fire
1295		 * of a plug trace. If others have been added before, check
1296		 * if we have multiple devices in this plug. If so, make a
1297		 * note to sort the list before dispatch.
1298		 */
1299		if (list_empty(&plug->list))
1300			trace_block_plug(q);
1301		else if (!plug->should_sort) {
1302			struct request *__rq;
1303
1304			__rq = list_entry_rq(plug->list.prev);
1305			if (__rq->q != q)
1306				plug->should_sort = 1;
1307		}
1308		if (request_count >= BLK_MAX_REQUEST_COUNT)
1309			blk_flush_plug_list(plug, false);
1310		list_add_tail(&req->queuelist, &plug->list);
1311		drive_stat_acct(req, 1);
1312	} else {
1313		spin_lock_irq(q->queue_lock);
1314		add_acct_request(q, req, where);
1315		__blk_run_queue(q);
1316out_unlock:
1317		spin_unlock_irq(q->queue_lock);
1318	}
1319out:
1320	return 0;
1321}
1322
1323/*
1324 * If bio->bi_dev is a partition, remap the location
1325 */
1326static inline void blk_partition_remap(struct bio *bio)
1327{
1328	struct block_device *bdev = bio->bi_bdev;
1329
1330	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1331		struct hd_struct *p = bdev->bd_part;
1332
1333		bio->bi_sector += p->start_sect;
1334		bio->bi_bdev = bdev->bd_contains;
1335
1336		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1337				      bdev->bd_dev,
1338				      bio->bi_sector - p->start_sect);
1339	}
1340}
1341
1342static void handle_bad_sector(struct bio *bio)
1343{
1344	char b[BDEVNAME_SIZE];
1345
1346	printk(KERN_INFO "attempt to access beyond end of device\n");
1347	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1348			bdevname(bio->bi_bdev, b),
1349			bio->bi_rw,
1350			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1351			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1352
1353	set_bit(BIO_EOF, &bio->bi_flags);
1354}
1355
1356#ifdef CONFIG_FAIL_MAKE_REQUEST
1357
1358static DECLARE_FAULT_ATTR(fail_make_request);
1359
1360static int __init setup_fail_make_request(char *str)
1361{
1362	return setup_fault_attr(&fail_make_request, str);
1363}
1364__setup("fail_make_request=", setup_fail_make_request);
1365
1366static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1367{
1368	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1369}
1370
1371static int __init fail_make_request_debugfs(void)
1372{
1373	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1374						NULL, &fail_make_request);
1375
1376	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1377}
1378
1379late_initcall(fail_make_request_debugfs);
1380
1381#else /* CONFIG_FAIL_MAKE_REQUEST */
1382
1383static inline bool should_fail_request(struct hd_struct *part,
1384					unsigned int bytes)
1385{
1386	return false;
1387}
1388
1389#endif /* CONFIG_FAIL_MAKE_REQUEST */
1390
1391/*
1392 * Check whether this bio extends beyond the end of the device.
1393 */
1394static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1395{
1396	sector_t maxsector;
1397
1398	if (!nr_sectors)
1399		return 0;
1400
1401	/* Test device or partition size, when known. */
1402	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1403	if (maxsector) {
1404		sector_t sector = bio->bi_sector;
1405
1406		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1407			/*
1408			 * This may well happen - the kernel calls bread()
1409			 * without checking the size of the device, e.g., when
1410			 * mounting a device.
1411			 */
1412			handle_bad_sector(bio);
1413			return 1;
1414		}
1415	}
1416
1417	return 0;
1418}
1419
1420/**
1421 * generic_make_request - hand a buffer to its device driver for I/O
1422 * @bio:  The bio describing the location in memory and on the device.
1423 *
1424 * generic_make_request() is used to make I/O requests of block
1425 * devices. It is passed a &struct bio, which describes the I/O that needs
1426 * to be done.
1427 *
1428 * generic_make_request() does not return any status.  The
1429 * success/failure status of the request, along with notification of
1430 * completion, is delivered asynchronously through the bio->bi_end_io
1431 * function described (one day) else where.
1432 *
1433 * The caller of generic_make_request must make sure that bi_io_vec
1434 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1435 * set to describe the device address, and the
1436 * bi_end_io and optionally bi_private are set to describe how
1437 * completion notification should be signaled.
1438 *
1439 * generic_make_request and the drivers it calls may use bi_next if this
1440 * bio happens to be merged with someone else, and may change bi_dev and
1441 * bi_sector for remaps as it sees fit.  So the values of these fields
1442 * should NOT be depended on after the call to generic_make_request.
1443 */
1444static inline void __generic_make_request(struct bio *bio)
1445{
1446	struct request_queue *q;
1447	sector_t old_sector;
1448	int ret, nr_sectors = bio_sectors(bio);
1449	dev_t old_dev;
1450	int err = -EIO;
1451
1452	might_sleep();
1453
1454	if (bio_check_eod(bio, nr_sectors))
1455		goto end_io;
1456
1457	/*
1458	 * Resolve the mapping until finished. (drivers are
1459	 * still free to implement/resolve their own stacking
1460	 * by explicitly returning 0)
1461	 *
1462	 * NOTE: we don't repeat the blk_size check for each new device.
1463	 * Stacking drivers are expected to know what they are doing.
1464	 */
1465	old_sector = -1;
1466	old_dev = 0;
1467	do {
1468		char b[BDEVNAME_SIZE];
1469		struct hd_struct *part;
1470
1471		q = bdev_get_queue(bio->bi_bdev);
1472		if (unlikely(!q)) {
1473			printk(KERN_ERR
1474			       "generic_make_request: Trying to access "
1475				"nonexistent block-device %s (%Lu)\n",
1476				bdevname(bio->bi_bdev, b),
1477				(long long) bio->bi_sector);
1478			goto end_io;
1479		}
1480
1481		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1482			     nr_sectors > queue_max_hw_sectors(q))) {
1483			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1484			       bdevname(bio->bi_bdev, b),
1485			       bio_sectors(bio),
1486			       queue_max_hw_sectors(q));
1487			goto end_io;
1488		}
1489
1490		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1491			goto end_io;
1492
1493		part = bio->bi_bdev->bd_part;
1494		if (should_fail_request(part, bio->bi_size) ||
1495		    should_fail_request(&part_to_disk(part)->part0,
1496					bio->bi_size))
1497			goto end_io;
1498
1499		/*
1500		 * If this device has partitions, remap block n
1501		 * of partition p to block n+start(p) of the disk.
1502		 */
1503		blk_partition_remap(bio);
1504
1505		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1506			goto end_io;
1507
1508		if (old_sector != -1)
1509			trace_block_bio_remap(q, bio, old_dev, old_sector);
1510
1511		old_sector = bio->bi_sector;
1512		old_dev = bio->bi_bdev->bd_dev;
1513
1514		if (bio_check_eod(bio, nr_sectors))
1515			goto end_io;
1516
 
1517		/*
1518		 * Filter flush bio's early so that make_request based
1519		 * drivers without flush support don't have to worry
1520		 * about them.
1521		 */
1522		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1523			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1524			if (!nr_sectors) {
1525				err = 0;
1526				goto end_io;
1527			}
1528		}
1529
1530		if ((bio->bi_rw & REQ_DISCARD) &&
1531		    (!blk_queue_discard(q) ||
1532		     ((bio->bi_rw & REQ_SECURE) &&
1533		      !blk_queue_secdiscard(q)))) {
1534			err = -EOPNOTSUPP;
1535			goto end_io;
1536		}
1537
1538		if (blk_throtl_bio(q, &bio))
1539			goto end_io;
1540
1541		/*
1542		 * If bio = NULL, bio has been throttled and will be submitted
1543		 * later.
1544		 */
1545		if (!bio)
1546			break;
1547
1548		trace_block_bio_queue(q, bio);
1549
1550		ret = q->make_request_fn(q, bio);
1551	} while (ret);
1552
1553	return;
1554
1555end_io:
1556	bio_endio(bio, err);
1557}
1558
1559/*
1560 * We only want one ->make_request_fn to be active at a time,
1561 * else stack usage with stacked devices could be a problem.
1562 * So use current->bio_list to keep a list of requests
1563 * submited by a make_request_fn function.
1564 * current->bio_list is also used as a flag to say if
1565 * generic_make_request is currently active in this task or not.
1566 * If it is NULL, then no make_request is active.  If it is non-NULL,
1567 * then a make_request is active, and new requests should be added
1568 * at the tail
1569 */
1570void generic_make_request(struct bio *bio)
1571{
1572	struct bio_list bio_list_on_stack;
1573
1574	if (current->bio_list) {
1575		/* make_request is active */
1576		bio_list_add(current->bio_list, bio);
1577		return;
1578	}
1579	/* following loop may be a bit non-obvious, and so deserves some
1580	 * explanation.
1581	 * Before entering the loop, bio->bi_next is NULL (as all callers
1582	 * ensure that) so we have a list with a single bio.
1583	 * We pretend that we have just taken it off a longer list, so
1584	 * we assign bio_list to a pointer to the bio_list_on_stack,
1585	 * thus initialising the bio_list of new bios to be
1586	 * added.  __generic_make_request may indeed add some more bios
1587	 * through a recursive call to generic_make_request.  If it
1588	 * did, we find a non-NULL value in bio_list and re-enter the loop
1589	 * from the top.  In this case we really did just take the bio
1590	 * of the top of the list (no pretending) and so remove it from
1591	 * bio_list, and call into __generic_make_request again.
1592	 *
1593	 * The loop was structured like this to make only one call to
1594	 * __generic_make_request (which is important as it is large and
1595	 * inlined) and to keep the structure simple.
1596	 */
1597	BUG_ON(bio->bi_next);
1598	bio_list_init(&bio_list_on_stack);
1599	current->bio_list = &bio_list_on_stack;
1600	do {
1601		__generic_make_request(bio);
1602		bio = bio_list_pop(current->bio_list);
1603	} while (bio);
1604	current->bio_list = NULL; /* deactivate */
1605}
1606EXPORT_SYMBOL(generic_make_request);
1607
1608/**
1609 * submit_bio - submit a bio to the block device layer for I/O
1610 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1611 * @bio: The &struct bio which describes the I/O
1612 *
1613 * submit_bio() is very similar in purpose to generic_make_request(), and
1614 * uses that function to do most of the work. Both are fairly rough
1615 * interfaces; @bio must be presetup and ready for I/O.
1616 *
1617 */
1618void submit_bio(int rw, struct bio *bio)
1619{
1620	int count = bio_sectors(bio);
1621
1622	bio->bi_rw |= rw;
1623
1624	/*
1625	 * If it's a regular read/write or a barrier with data attached,
1626	 * go through the normal accounting stuff before submission.
1627	 */
1628	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1629		if (rw & WRITE) {
1630			count_vm_events(PGPGOUT, count);
1631		} else {
1632			task_io_account_read(bio->bi_size);
1633			count_vm_events(PGPGIN, count);
1634		}
1635
1636		if (unlikely(block_dump)) {
1637			char b[BDEVNAME_SIZE];
1638			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1639			current->comm, task_pid_nr(current),
1640				(rw & WRITE) ? "WRITE" : "READ",
1641				(unsigned long long)bio->bi_sector,
1642				bdevname(bio->bi_bdev, b),
1643				count);
1644		}
 
 
 
 
 
 
 
 
 
1645	}
1646
1647	generic_make_request(bio);
1648}
1649EXPORT_SYMBOL(submit_bio);
1650
1651/**
1652 * blk_rq_check_limits - Helper function to check a request for the queue limit
1653 * @q:  the queue
1654 * @rq: the request being checked
1655 *
1656 * Description:
1657 *    @rq may have been made based on weaker limitations of upper-level queues
1658 *    in request stacking drivers, and it may violate the limitation of @q.
1659 *    Since the block layer and the underlying device driver trust @rq
1660 *    after it is inserted to @q, it should be checked against @q before
1661 *    the insertion using this generic function.
1662 *
1663 *    This function should also be useful for request stacking drivers
1664 *    in some cases below, so export this function.
1665 *    Request stacking drivers like request-based dm may change the queue
1666 *    limits while requests are in the queue (e.g. dm's table swapping).
1667 *    Such request stacking drivers should check those requests agaist
1668 *    the new queue limits again when they dispatch those requests,
1669 *    although such checkings are also done against the old queue limits
1670 *    when submitting requests.
1671 */
1672int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1673{
1674	if (rq->cmd_flags & REQ_DISCARD)
1675		return 0;
1676
1677	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1678	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1679		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1680		return -EIO;
 
 
 
 
 
1681	}
1682
1683	/*
1684	 * queue's settings related to segment counting like q->bounce_pfn
1685	 * may differ from that of other stacking queues.
1686	 * Recalculate it to check the request correctly on this queue's
1687	 * limitation.
1688	 */
1689	blk_recalc_rq_segments(rq);
1690	if (rq->nr_phys_segments > queue_max_segments(q)) {
1691		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1692		return -EIO;
1693	}
1694
1695	return 0;
1696}
1697EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1698
1699/**
1700 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1701 * @q:  the queue to submit the request
1702 * @rq: the request being queued
1703 */
1704int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
 
1705{
1706	unsigned long flags;
1707	int where = ELEVATOR_INSERT_BACK;
1708
1709	if (blk_rq_check_limits(q, rq))
1710		return -EIO;
1711
1712	if (rq->rq_disk &&
1713	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1714		return -EIO;
1715
1716	spin_lock_irqsave(q->queue_lock, flags);
 
 
 
1717
1718	/*
1719	 * Submitting request must be dequeued before calling this function
1720	 * because it will be linked to another request_queue
 
1721	 */
1722	BUG_ON(blk_queued_rq(rq));
 
1723
1724	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1725		where = ELEVATOR_INSERT_FLUSH;
 
1726
1727	add_acct_request(q, rq, where);
1728	spin_unlock_irqrestore(q->queue_lock, flags);
1729
1730	return 0;
1731}
1732EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1733
1734/**
1735 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1736 * @rq: request to examine
1737 *
1738 * Description:
1739 *     A request could be merge of IOs which require different failure
1740 *     handling.  This function determines the number of bytes which
1741 *     can be failed from the beginning of the request without
1742 *     crossing into area which need to be retried further.
1743 *
1744 * Return:
1745 *     The number of bytes to fail.
1746 *
1747 * Context:
1748 *     queue_lock must be held.
1749 */
1750unsigned int blk_rq_err_bytes(const struct request *rq)
1751{
1752	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1753	unsigned int bytes = 0;
1754	struct bio *bio;
1755
1756	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1757		return blk_rq_bytes(rq);
1758
1759	/*
1760	 * Currently the only 'mixing' which can happen is between
1761	 * different fastfail types.  We can safely fail portions
1762	 * which have all the failfast bits that the first one has -
1763	 * the ones which are at least as eager to fail as the first
1764	 * one.
1765	 */
1766	for (bio = rq->bio; bio; bio = bio->bi_next) {
1767		if ((bio->bi_rw & ff) != ff)
1768			break;
1769		bytes += bio->bi_size;
1770	}
1771
1772	/* this could lead to infinite loop */
1773	BUG_ON(blk_rq_bytes(rq) && !bytes);
1774	return bytes;
1775}
1776EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1777
1778static void blk_account_io_completion(struct request *req, unsigned int bytes)
1779{
1780	if (blk_do_io_stat(req)) {
1781		const int rw = rq_data_dir(req);
1782		struct hd_struct *part;
1783		int cpu;
1784
1785		cpu = part_stat_lock();
1786		part = req->part;
1787		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1788		part_stat_unlock();
1789	}
1790}
1791
1792static void blk_account_io_done(struct request *req)
1793{
1794	/*
1795	 * Account IO completion.  flush_rq isn't accounted as a
1796	 * normal IO on queueing nor completion.  Accounting the
1797	 * containing request is enough.
1798	 */
1799	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1800		unsigned long duration = jiffies - req->start_time;
1801		const int rw = rq_data_dir(req);
1802		struct hd_struct *part;
1803		int cpu;
1804
1805		cpu = part_stat_lock();
1806		part = req->part;
1807
1808		part_stat_inc(cpu, part, ios[rw]);
1809		part_stat_add(cpu, part, ticks[rw], duration);
1810		part_round_stats(cpu, part);
1811		part_dec_in_flight(part, rw);
1812
1813		hd_struct_put(part);
1814		part_stat_unlock();
1815	}
1816}
1817
1818/**
1819 * blk_peek_request - peek at the top of a request queue
1820 * @q: request queue to peek at
1821 *
1822 * Description:
1823 *     Return the request at the top of @q.  The returned request
1824 *     should be started using blk_start_request() before LLD starts
1825 *     processing it.
1826 *
1827 * Return:
1828 *     Pointer to the request at the top of @q if available.  Null
1829 *     otherwise.
1830 *
1831 * Context:
1832 *     queue_lock must be held.
 
 
 
 
 
 
 
 
 
 
 
 
1833 */
1834struct request *blk_peek_request(struct request_queue *q)
1835{
1836	struct request *rq;
1837	int ret;
1838
1839	while ((rq = __elv_next_request(q)) != NULL) {
1840		if (!(rq->cmd_flags & REQ_STARTED)) {
1841			/*
1842			 * This is the first time the device driver
1843			 * sees this request (possibly after
1844			 * requeueing).  Notify IO scheduler.
1845			 */
1846			if (rq->cmd_flags & REQ_SORTED)
1847				elv_activate_rq(q, rq);
1848
1849			/*
1850			 * just mark as started even if we don't start
1851			 * it, a request that has been delayed should
1852			 * not be passed by new incoming requests
1853			 */
1854			rq->cmd_flags |= REQ_STARTED;
1855			trace_block_rq_issue(q, rq);
1856		}
1857
1858		if (!q->boundary_rq || q->boundary_rq == rq) {
1859			q->end_sector = rq_end_sector(rq);
1860			q->boundary_rq = NULL;
1861		}
1862
1863		if (rq->cmd_flags & REQ_DONTPREP)
1864			break;
1865
1866		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1867			/*
1868			 * make sure space for the drain appears we
1869			 * know we can do this because max_hw_segments
1870			 * has been adjusted to be one fewer than the
1871			 * device can handle
1872			 */
1873			rq->nr_phys_segments++;
1874		}
1875
1876		if (!q->prep_rq_fn)
1877			break;
1878
1879		ret = q->prep_rq_fn(q, rq);
1880		if (ret == BLKPREP_OK) {
1881			break;
1882		} else if (ret == BLKPREP_DEFER) {
1883			/*
1884			 * the request may have been (partially) prepped.
1885			 * we need to keep this request in the front to
1886			 * avoid resource deadlock.  REQ_STARTED will
1887			 * prevent other fs requests from passing this one.
1888			 */
1889			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1890			    !(rq->cmd_flags & REQ_DONTPREP)) {
1891				/*
1892				 * remove the space for the drain we added
1893				 * so that we don't add it again
1894				 */
1895				--rq->nr_phys_segments;
1896			}
1897
1898			rq = NULL;
1899			break;
1900		} else if (ret == BLKPREP_KILL) {
1901			rq->cmd_flags |= REQ_QUIET;
1902			/*
1903			 * Mark this request as started so we don't trigger
1904			 * any debug logic in the end I/O path.
1905			 */
1906			blk_start_request(rq);
1907			__blk_end_request_all(rq, -EIO);
1908		} else {
1909			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1910			break;
1911		}
1912	}
1913
1914	return rq;
1915}
1916EXPORT_SYMBOL(blk_peek_request);
1917
1918void blk_dequeue_request(struct request *rq)
1919{
1920	struct request_queue *q = rq->q;
1921
1922	BUG_ON(list_empty(&rq->queuelist));
1923	BUG_ON(ELV_ON_HASH(rq));
1924
1925	list_del_init(&rq->queuelist);
 
 
1926
1927	/*
1928	 * the time frame between a request being removed from the lists
1929	 * and to it is freed is accounted as io that is in progress at
1930	 * the driver side.
1931	 */
1932	if (blk_account_rq(rq)) {
1933		q->in_flight[rq_is_sync(rq)]++;
1934		set_io_start_time_ns(rq);
1935	}
1936}
1937
1938/**
1939 * blk_start_request - start request processing on the driver
1940 * @req: request to dequeue
1941 *
1942 * Description:
1943 *     Dequeue @req and start timeout timer on it.  This hands off the
1944 *     request to the driver.
1945 *
1946 *     Block internal functions which don't want to start timer should
1947 *     call blk_dequeue_request().
1948 *
1949 * Context:
1950 *     queue_lock must be held.
1951 */
1952void blk_start_request(struct request *req)
1953{
1954	blk_dequeue_request(req);
 
 
 
 
 
 
 
 
 
 
1955
1956	/*
1957	 * We are now handing the request to the hardware, initialize
1958	 * resid_len to full count and add the timeout handler.
 
 
1959	 */
1960	req->resid_len = blk_rq_bytes(req);
1961	if (unlikely(blk_bidi_rq(req)))
1962		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1963
1964	blk_add_timer(req);
 
1965}
1966EXPORT_SYMBOL(blk_start_request);
1967
1968/**
1969 * blk_fetch_request - fetch a request from a request queue
1970 * @q: request queue to fetch a request from
1971 *
1972 * Description:
1973 *     Return the request at the top of @q.  The request is started on
1974 *     return and LLD can start processing it immediately.
1975 *
1976 * Return:
1977 *     Pointer to the request at the top of @q if available.  Null
1978 *     otherwise.
1979 *
1980 * Context:
1981 *     queue_lock must be held.
 
 
1982 */
1983struct request *blk_fetch_request(struct request_queue *q)
1984{
1985	struct request *rq;
1986
1987	rq = blk_peek_request(q);
1988	if (rq)
1989		blk_start_request(rq);
1990	return rq;
1991}
1992EXPORT_SYMBOL(blk_fetch_request);
1993
1994/**
1995 * blk_update_request - Special helper function for request stacking drivers
1996 * @req:      the request being processed
1997 * @error:    %0 for success, < %0 for error
1998 * @nr_bytes: number of bytes to complete @req
1999 *
2000 * Description:
2001 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2002 *     the request structure even if @req doesn't have leftover.
2003 *     If @req has leftover, sets it up for the next range of segments.
2004 *
2005 *     This special helper function is only for request stacking drivers
2006 *     (e.g. request-based dm) so that they can handle partial completion.
2007 *     Actual device drivers should use blk_end_request instead.
2008 *
2009 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2010 *     %false return from this function.
2011 *
2012 * Return:
2013 *     %false - this request doesn't have any more data
2014 *     %true  - this request has more data
2015 **/
2016bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2017{
2018	int total_bytes, bio_nbytes, next_idx = 0;
2019	struct bio *bio;
2020
2021	if (!req->bio)
2022		return false;
2023
2024	trace_block_rq_complete(req->q, req);
2025
2026	/*
2027	 * For fs requests, rq is just carrier of independent bio's
2028	 * and each partial completion should be handled separately.
2029	 * Reset per-request error on each partial completion.
2030	 *
2031	 * TODO: tj: This is too subtle.  It would be better to let
2032	 * low level drivers do what they see fit.
2033	 */
2034	if (req->cmd_type == REQ_TYPE_FS)
2035		req->errors = 0;
2036
2037	if (error && req->cmd_type == REQ_TYPE_FS &&
2038	    !(req->cmd_flags & REQ_QUIET)) {
2039		char *error_type;
2040
2041		switch (error) {
2042		case -ENOLINK:
2043			error_type = "recoverable transport";
2044			break;
2045		case -EREMOTEIO:
2046			error_type = "critical target";
2047			break;
2048		case -EBADE:
2049			error_type = "critical nexus";
2050			break;
2051		case -EIO:
2052		default:
2053			error_type = "I/O";
2054			break;
2055		}
2056		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2057		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2058		       (unsigned long long)blk_rq_pos(req));
2059	}
2060
2061	blk_account_io_completion(req, nr_bytes);
2062
2063	total_bytes = bio_nbytes = 0;
2064	while ((bio = req->bio) != NULL) {
2065		int nbytes;
2066
2067		if (nr_bytes >= bio->bi_size) {
2068			req->bio = bio->bi_next;
2069			nbytes = bio->bi_size;
2070			req_bio_endio(req, bio, nbytes, error);
2071			next_idx = 0;
2072			bio_nbytes = 0;
2073		} else {
2074			int idx = bio->bi_idx + next_idx;
2075
2076			if (unlikely(idx >= bio->bi_vcnt)) {
2077				blk_dump_rq_flags(req, "__end_that");
2078				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2079				       __func__, idx, bio->bi_vcnt);
2080				break;
2081			}
2082
2083			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2084			BIO_BUG_ON(nbytes > bio->bi_size);
2085
2086			/*
2087			 * not a complete bvec done
2088			 */
2089			if (unlikely(nbytes > nr_bytes)) {
2090				bio_nbytes += nr_bytes;
2091				total_bytes += nr_bytes;
2092				break;
2093			}
2094
2095			/*
2096			 * advance to the next vector
2097			 */
2098			next_idx++;
2099			bio_nbytes += nbytes;
2100		}
2101
2102		total_bytes += nbytes;
2103		nr_bytes -= nbytes;
2104
2105		bio = req->bio;
2106		if (bio) {
2107			/*
2108			 * end more in this run, or just return 'not-done'
2109			 */
2110			if (unlikely(nr_bytes <= 0))
2111				break;
2112		}
2113	}
2114
2115	/*
2116	 * completely done
2117	 */
2118	if (!req->bio) {
 
 
 
 
2119		/*
2120		 * Reset counters so that the request stacking driver
2121		 * can find how many bytes remain in the request
2122		 * later.
2123		 */
2124		req->__data_len = 0;
2125		return false;
2126	}
2127
2128	/*
2129	 * if the request wasn't completed, update state
2130	 */
2131	if (bio_nbytes) {
2132		req_bio_endio(req, bio, bio_nbytes, error);
2133		bio->bi_idx += next_idx;
2134		bio_iovec(bio)->bv_offset += nr_bytes;
2135		bio_iovec(bio)->bv_len -= nr_bytes;
2136	}
2137
2138	req->__data_len -= total_bytes;
2139	req->buffer = bio_data(req->bio);
2140
2141	/* update sector only for requests with clear definition of sector */
2142	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2143		req->__sector += total_bytes >> 9;
2144
2145	/* mixed attributes always follow the first bio */
2146	if (req->cmd_flags & REQ_MIXED_MERGE) {
2147		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2148		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2149	}
2150
2151	/*
2152	 * If total number of sectors is less than the first segment
2153	 * size, something has gone terribly wrong.
2154	 */
2155	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2156		blk_dump_rq_flags(req, "request botched");
2157		req->__data_len = blk_rq_cur_bytes(req);
 
 
 
 
2158	}
2159
2160	/* recalculate the number of segments */
2161	blk_recalc_rq_segments(req);
 
 
2162
2163	return true;
 
 
 
 
2164}
2165EXPORT_SYMBOL_GPL(blk_update_request);
2166
2167static bool blk_update_bidi_request(struct request *rq, int error,
2168				    unsigned int nr_bytes,
2169				    unsigned int bidi_bytes)
2170{
2171	if (blk_update_request(rq, error, nr_bytes))
2172		return true;
2173
2174	/* Bidi request must be completed as a whole */
2175	if (unlikely(blk_bidi_rq(rq)) &&
2176	    blk_update_request(rq->next_rq, error, bidi_bytes))
2177		return true;
2178
2179	if (blk_queue_add_random(rq->q))
2180		add_disk_randomness(rq->rq_disk);
2181
2182	return false;
2183}
2184
2185/**
2186 * blk_unprep_request - unprepare a request
2187 * @req:	the request
2188 *
2189 * This function makes a request ready for complete resubmission (or
2190 * completion).  It happens only after all error handling is complete,
2191 * so represents the appropriate moment to deallocate any resources
2192 * that were allocated to the request in the prep_rq_fn.  The queue
2193 * lock is held when calling this.
2194 */
2195void blk_unprep_request(struct request *req)
2196{
2197	struct request_queue *q = req->q;
2198
2199	req->cmd_flags &= ~REQ_DONTPREP;
2200	if (q->unprep_rq_fn)
2201		q->unprep_rq_fn(q, req);
2202}
2203EXPORT_SYMBOL_GPL(blk_unprep_request);
2204
2205/*
2206 * queue lock must be held
2207 */
2208static void blk_finish_request(struct request *req, int error)
2209{
2210	if (blk_rq_tagged(req))
2211		blk_queue_end_tag(req->q, req);
2212
2213	BUG_ON(blk_queued_rq(req));
2214
2215	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2216		laptop_io_completion(&req->q->backing_dev_info);
2217
2218	blk_delete_timer(req);
2219
2220	if (req->cmd_flags & REQ_DONTPREP)
2221		blk_unprep_request(req);
2222
2223
2224	blk_account_io_done(req);
2225
2226	if (req->end_io)
2227		req->end_io(req, error);
2228	else {
2229		if (blk_bidi_rq(req))
2230			__blk_put_request(req->next_rq->q, req->next_rq);
2231
2232		__blk_put_request(req->q, req);
2233	}
2234}
2235
2236/**
2237 * blk_end_bidi_request - Complete a bidi request
2238 * @rq:         the request to complete
2239 * @error:      %0 for success, < %0 for error
2240 * @nr_bytes:   number of bytes to complete @rq
2241 * @bidi_bytes: number of bytes to complete @rq->next_rq
2242 *
2243 * Description:
2244 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2245 *     Drivers that supports bidi can safely call this member for any
2246 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2247 *     just ignored.
2248 *
2249 * Return:
2250 *     %false - we are done with this request
2251 *     %true  - still buffers pending for this request
2252 **/
2253static bool blk_end_bidi_request(struct request *rq, int error,
2254				 unsigned int nr_bytes, unsigned int bidi_bytes)
2255{
2256	struct request_queue *q = rq->q;
2257	unsigned long flags;
2258
2259	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2260		return true;
2261
2262	spin_lock_irqsave(q->queue_lock, flags);
2263	blk_finish_request(rq, error);
2264	spin_unlock_irqrestore(q->queue_lock, flags);
2265
2266	return false;
2267}
 
2268
2269/**
2270 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2271 * @rq:         the request to complete
2272 * @error:      %0 for success, < %0 for error
2273 * @nr_bytes:   number of bytes to complete @rq
2274 * @bidi_bytes: number of bytes to complete @rq->next_rq
2275 *
2276 * Description:
2277 *     Identical to blk_end_bidi_request() except that queue lock is
2278 *     assumed to be locked on entry and remains so on return.
2279 *
2280 * Return:
2281 *     %false - we are done with this request
2282 *     %true  - still buffers pending for this request
2283 **/
2284bool __blk_end_bidi_request(struct request *rq, int error,
2285				   unsigned int nr_bytes, unsigned int bidi_bytes)
2286{
2287	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2288		return true;
2289
2290	blk_finish_request(rq, error);
2291
2292	return false;
2293}
2294
2295/**
2296 * blk_end_request - Helper function for drivers to complete the request.
2297 * @rq:       the request being processed
2298 * @error:    %0 for success, < %0 for error
2299 * @nr_bytes: number of bytes to complete
2300 *
2301 * Description:
2302 *     Ends I/O on a number of bytes attached to @rq.
2303 *     If @rq has leftover, sets it up for the next range of segments.
2304 *
2305 * Return:
2306 *     %false - we are done with this request
2307 *     %true  - still buffers pending for this request
2308 **/
2309bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2310{
2311	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2312}
2313EXPORT_SYMBOL(blk_end_request);
2314
2315/**
2316 * blk_end_request_all - Helper function for drives to finish the request.
2317 * @rq: the request to finish
2318 * @error: %0 for success, < %0 for error
2319 *
2320 * Description:
2321 *     Completely finish @rq.
2322 */
2323void blk_end_request_all(struct request *rq, int error)
2324{
2325	bool pending;
2326	unsigned int bidi_bytes = 0;
2327
2328	if (unlikely(blk_bidi_rq(rq)))
2329		bidi_bytes = blk_rq_bytes(rq->next_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2332	BUG_ON(pending);
 
 
 
2333}
2334EXPORT_SYMBOL(blk_end_request_all);
2335
2336/**
2337 * blk_end_request_cur - Helper function to finish the current request chunk.
2338 * @rq: the request to finish the current chunk for
2339 * @error: %0 for success, < %0 for error
2340 *
2341 * Description:
2342 *     Complete the current consecutively mapped chunk from @rq.
2343 *
2344 * Return:
2345 *     %false - we are done with this request
2346 *     %true  - still buffers pending for this request
2347 */
2348bool blk_end_request_cur(struct request *rq, int error)
 
2349{
2350	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2351}
2352EXPORT_SYMBOL(blk_end_request_cur);
2353
2354/**
2355 * blk_end_request_err - Finish a request till the next failure boundary.
2356 * @rq: the request to finish till the next failure boundary for
2357 * @error: must be negative errno
2358 *
2359 * Description:
2360 *     Complete @rq till the next failure boundary.
2361 *
2362 * Return:
2363 *     %false - we are done with this request
2364 *     %true  - still buffers pending for this request
2365 */
2366bool blk_end_request_err(struct request *rq, int error)
2367{
2368	WARN_ON(error >= 0);
2369	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2370}
2371EXPORT_SYMBOL_GPL(blk_end_request_err);
 
 
 
 
 
 
 
2372
2373/**
2374 * __blk_end_request - Helper function for drivers to complete the request.
2375 * @rq:       the request being processed
2376 * @error:    %0 for success, < %0 for error
2377 * @nr_bytes: number of bytes to complete
2378 *
2379 * Description:
2380 *     Must be called with queue lock held unlike blk_end_request().
2381 *
2382 * Return:
2383 *     %false - we are done with this request
2384 *     %true  - still buffers pending for this request
2385 **/
2386bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2387{
2388	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2389}
2390EXPORT_SYMBOL(__blk_end_request);
2391
2392/**
2393 * __blk_end_request_all - Helper function for drives to finish the request.
2394 * @rq: the request to finish
2395 * @error: %0 for success, < %0 for error
2396 *
2397 * Description:
2398 *     Completely finish @rq.  Must be called with queue lock held.
2399 */
2400void __blk_end_request_all(struct request *rq, int error)
2401{
2402	bool pending;
2403	unsigned int bidi_bytes = 0;
2404
2405	if (unlikely(blk_bidi_rq(rq)))
2406		bidi_bytes = blk_rq_bytes(rq->next_rq);
 
 
2407
2408	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2409	BUG_ON(pending);
 
 
2410}
2411EXPORT_SYMBOL(__blk_end_request_all);
2412
2413/**
2414 * __blk_end_request_cur - Helper function to finish the current request chunk.
2415 * @rq: the request to finish the current chunk for
2416 * @error: %0 for success, < %0 for error
2417 *
2418 * Description:
2419 *     Complete the current consecutively mapped chunk from @rq.  Must
2420 *     be called with queue lock held.
2421 *
2422 * Return:
2423 *     %false - we are done with this request
2424 *     %true  - still buffers pending for this request
2425 */
2426bool __blk_end_request_cur(struct request *rq, int error)
2427{
2428	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
 
 
 
 
 
2429}
2430EXPORT_SYMBOL(__blk_end_request_cur);
2431
2432/**
2433 * __blk_end_request_err - Finish a request till the next failure boundary.
2434 * @rq: the request to finish till the next failure boundary for
2435 * @error: must be negative errno
2436 *
2437 * Description:
2438 *     Complete @rq till the next failure boundary.  Must be called
2439 *     with queue lock held.
2440 *
2441 * Return:
2442 *     %false - we are done with this request
2443 *     %true  - still buffers pending for this request
2444 */
2445bool __blk_end_request_err(struct request *rq, int error)
2446{
2447	WARN_ON(error >= 0);
2448	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2449}
2450EXPORT_SYMBOL_GPL(__blk_end_request_err);
2451
2452void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2453		     struct bio *bio)
2454{
2455	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2456	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2457
2458	if (bio_has_data(bio)) {
2459		rq->nr_phys_segments = bio_phys_segments(q, bio);
2460		rq->buffer = bio_data(bio);
2461	}
2462	rq->__data_len = bio->bi_size;
2463	rq->bio = rq->biotail = bio;
2464
2465	if (bio->bi_bdev)
2466		rq->rq_disk = bio->bi_bdev->bd_disk;
 
 
 
 
 
2467}
 
2468
2469#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2470/**
2471 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2472 * @rq: the request to be flushed
2473 *
2474 * Description:
2475 *     Flush all pages in @rq.
2476 */
2477void rq_flush_dcache_pages(struct request *rq)
2478{
2479	struct req_iterator iter;
2480	struct bio_vec *bvec;
2481
2482	rq_for_each_segment(bvec, rq, iter)
2483		flush_dcache_page(bvec->bv_page);
2484}
2485EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2486#endif
2487
2488/**
2489 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2490 * @q : the queue of the device being checked
2491 *
2492 * Description:
2493 *    Check if underlying low-level drivers of a device are busy.
2494 *    If the drivers want to export their busy state, they must set own
2495 *    exporting function using blk_queue_lld_busy() first.
2496 *
2497 *    Basically, this function is used only by request stacking drivers
2498 *    to stop dispatching requests to underlying devices when underlying
2499 *    devices are busy.  This behavior helps more I/O merging on the queue
2500 *    of the request stacking driver and prevents I/O throughput regression
2501 *    on burst I/O load.
2502 *
2503 * Return:
2504 *    0 - Not busy (The request stacking driver should dispatch request)
2505 *    1 - Busy (The request stacking driver should stop dispatching request)
2506 */
2507int blk_lld_busy(struct request_queue *q)
2508{
2509	if (q->lld_busy_fn)
2510		return q->lld_busy_fn(q);
2511
2512	return 0;
2513}
2514EXPORT_SYMBOL_GPL(blk_lld_busy);
2515
2516/**
2517 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2518 * @rq: the clone request to be cleaned up
2519 *
2520 * Description:
2521 *     Free all bios in @rq for a cloned request.
2522 */
2523void blk_rq_unprep_clone(struct request *rq)
2524{
2525	struct bio *bio;
2526
2527	while ((bio = rq->bio) != NULL) {
2528		rq->bio = bio->bi_next;
2529
2530		bio_put(bio);
2531	}
2532}
2533EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2534
2535/*
2536 * Copy attributes of the original request to the clone request.
2537 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2538 */
2539static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2540{
2541	dst->cpu = src->cpu;
2542	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2543	dst->cmd_type = src->cmd_type;
2544	dst->__sector = blk_rq_pos(src);
2545	dst->__data_len = blk_rq_bytes(src);
2546	dst->nr_phys_segments = src->nr_phys_segments;
2547	dst->ioprio = src->ioprio;
2548	dst->extra_len = src->extra_len;
2549}
2550
2551/**
2552 * blk_rq_prep_clone - Helper function to setup clone request
2553 * @rq: the request to be setup
2554 * @rq_src: original request to be cloned
2555 * @bs: bio_set that bios for clone are allocated from
2556 * @gfp_mask: memory allocation mask for bio
2557 * @bio_ctr: setup function to be called for each clone bio.
2558 *           Returns %0 for success, non %0 for failure.
2559 * @data: private data to be passed to @bio_ctr
2560 *
2561 * Description:
2562 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2563 *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2564 *     are not copied, and copying such parts is the caller's responsibility.
2565 *     Also, pages which the original bios are pointing to are not copied
2566 *     and the cloned bios just point same pages.
2567 *     So cloned bios must be completed before original bios, which means
2568 *     the caller must complete @rq before @rq_src.
2569 */
2570int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2571		      struct bio_set *bs, gfp_t gfp_mask,
2572		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2573		      void *data)
2574{
2575	struct bio *bio, *bio_src;
2576
2577	if (!bs)
2578		bs = fs_bio_set;
2579
2580	blk_rq_init(NULL, rq);
2581
2582	__rq_for_each_bio(bio_src, rq_src) {
2583		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2584		if (!bio)
2585			goto free_and_out;
2586
2587		__bio_clone(bio, bio_src);
2588
2589		if (bio_integrity(bio_src) &&
2590		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2591			goto free_and_out;
2592
2593		if (bio_ctr && bio_ctr(bio, bio_src, data))
2594			goto free_and_out;
2595
2596		if (rq->bio) {
2597			rq->biotail->bi_next = bio;
2598			rq->biotail = bio;
2599		} else
2600			rq->bio = rq->biotail = bio;
2601	}
2602
2603	__blk_rq_prep_clone(rq, rq_src);
2604
2605	return 0;
2606
2607free_and_out:
2608	if (bio)
2609		bio_free(bio, bs);
2610	blk_rq_unprep_clone(rq);
2611
2612	return -ENOMEM;
2613}
2614EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2615
2616int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2617{
2618	return queue_work(kblockd_workqueue, work);
2619}
2620EXPORT_SYMBOL(kblockd_schedule_work);
2621
2622int kblockd_schedule_delayed_work(struct request_queue *q,
2623			struct delayed_work *dwork, unsigned long delay)
2624{
2625	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2626}
2627EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2628
2629#define PLUG_MAGIC	0x91827364
2630
2631void blk_start_plug(struct blk_plug *plug)
2632{
2633	struct task_struct *tsk = current;
2634
2635	plug->magic = PLUG_MAGIC;
2636	INIT_LIST_HEAD(&plug->list);
2637	INIT_LIST_HEAD(&plug->cb_list);
2638	plug->should_sort = 0;
2639
2640	/*
2641	 * If this is a nested plug, don't actually assign it. It will be
2642	 * flushed on its own.
2643	 */
2644	if (!tsk->plug) {
2645		/*
2646		 * Store ordering should not be needed here, since a potential
2647		 * preempt will imply a full memory barrier
2648		 */
2649		tsk->plug = plug;
2650	}
2651}
2652EXPORT_SYMBOL(blk_start_plug);
2653
2654static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2655{
2656	struct request *rqa = container_of(a, struct request, queuelist);
2657	struct request *rqb = container_of(b, struct request, queuelist);
2658
2659	return !(rqa->q <= rqb->q);
2660}
2661
2662/*
2663 * If 'from_schedule' is true, then postpone the dispatch of requests
2664 * until a safe kblockd context. We due this to avoid accidental big
2665 * additional stack usage in driver dispatch, in places where the originally
2666 * plugger did not intend it.
2667 */
2668static void queue_unplugged(struct request_queue *q, unsigned int depth,
2669			    bool from_schedule)
2670	__releases(q->queue_lock)
2671{
2672	trace_block_unplug(q, depth, !from_schedule);
2673
2674	/*
2675	 * If we are punting this to kblockd, then we can safely drop
2676	 * the queue_lock before waking kblockd (which needs to take
2677	 * this lock).
2678	 */
2679	if (from_schedule) {
2680		spin_unlock(q->queue_lock);
2681		blk_run_queue_async(q);
2682	} else {
2683		__blk_run_queue(q);
2684		spin_unlock(q->queue_lock);
2685	}
2686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687}
 
2688
2689static void flush_plug_callbacks(struct blk_plug *plug)
2690{
2691	LIST_HEAD(callbacks);
2692
2693	if (list_empty(&plug->cb_list))
2694		return;
2695
2696	list_splice_init(&plug->cb_list, &callbacks);
2697
2698	while (!list_empty(&callbacks)) {
2699		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2700							  struct blk_plug_cb,
2701							  list);
2702		list_del(&cb->list);
2703		cb->callback(cb);
 
2704	}
2705}
2706
2707void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 
2708{
2709	struct request_queue *q;
2710	unsigned long flags;
2711	struct request *rq;
2712	LIST_HEAD(list);
2713	unsigned int depth;
2714
2715	BUG_ON(plug->magic != PLUG_MAGIC);
2716
2717	flush_plug_callbacks(plug);
2718	if (list_empty(&plug->list))
2719		return;
2720
2721	list_splice_init(&plug->list, &list);
 
 
2722
2723	if (plug->should_sort) {
2724		list_sort(NULL, &list, plug_rq_cmp);
2725		plug->should_sort = 0;
2726	}
2727
2728	q = NULL;
2729	depth = 0;
2730
2731	/*
2732	 * Save and disable interrupts here, to avoid doing it for every
2733	 * queue lock we have to take.
2734	 */
2735	local_irq_save(flags);
2736	while (!list_empty(&list)) {
2737		rq = list_entry_rq(list.next);
2738		list_del_init(&rq->queuelist);
2739		BUG_ON(!rq->q);
2740		if (rq->q != q) {
2741			/*
2742			 * This drops the queue lock
2743			 */
2744			if (q)
2745				queue_unplugged(q, depth, from_schedule);
2746			q = rq->q;
2747			depth = 0;
2748			spin_lock(q->queue_lock);
2749		}
2750		/*
2751		 * rq is already accounted, so use raw insert
2752		 */
2753		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2754			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2755		else
2756			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2757
2758		depth++;
2759	}
 
 
 
2760
 
 
 
 
 
2761	/*
2762	 * This drops the queue lock
 
 
 
2763	 */
2764	if (q)
2765		queue_unplugged(q, depth, from_schedule);
2766
2767	local_irq_restore(flags);
 
2768}
2769
 
 
 
 
 
 
 
 
 
 
2770void blk_finish_plug(struct blk_plug *plug)
2771{
2772	blk_flush_plug_list(plug, false);
2773
2774	if (plug == current->plug)
2775		current->plug = NULL;
 
2776}
2777EXPORT_SYMBOL(blk_finish_plug);
2778
 
 
 
 
 
 
 
 
 
 
 
 
2779int __init blk_dev_init(void)
2780{
2781	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2782			sizeof(((struct request *)0)->cmd_flags));
 
 
 
2783
2784	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2785	kblockd_workqueue = alloc_workqueue("kblockd",
2786					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2787	if (!kblockd_workqueue)
2788		panic("Failed to create kblockd\n");
2789
2790	request_cachep = kmem_cache_create("blkdev_requests",
2791			sizeof(struct request), 0, SLAB_PANIC, NULL);
2792
2793	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2794			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2795
2796	return 0;
2797}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *	-  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
 
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-pm.h>
  20#include <linux/blk-integrity.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/t10-pi.h>
  38#include <linux/debugfs.h>
  39#include <linux/bpf.h>
  40#include <linux/part_stat.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/blk-crypto.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/block.h>
  46
  47#include "blk.h"
  48#include "blk-mq-sched.h"
  49#include "blk-pm.h"
  50#include "blk-cgroup.h"
  51#include "blk-throttle.h"
  52#include "blk-ioprio.h"
  53
  54struct dentry *blk_debugfs_root;
  55
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  62
  63static DEFINE_IDA(blk_queue_ida);
 
 
 
 
 
  64
  65/*
  66 * For queue allocation
  67 */
  68static struct kmem_cache *blk_requestq_cachep;
  69
  70/*
  71 * Controlling structure to kblockd
  72 */
  73static struct workqueue_struct *kblockd_workqueue;
  74
  75/**
  76 * blk_queue_flag_set - atomically set a queue flag
  77 * @flag: flag to be set
  78 * @q: request queue
  79 */
  80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  81{
  82	set_bit(flag, &q->queue_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83}
  84EXPORT_SYMBOL(blk_queue_flag_set);
  85
  86/**
  87 * blk_queue_flag_clear - atomically clear a queue flag
  88 * @flag: flag to be cleared
  89 * @q: request queue
  90 */
  91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  92{
  93	clear_bit(flag, &q->queue_flags);
 
 
 
 
 
 
 
 
 
 
  94}
  95EXPORT_SYMBOL(blk_queue_flag_clear);
  96
  97/**
  98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  99 * @flag: flag to be set
 100 * @q: request queue
 
 
 101 *
 102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 103 * the flag was already set.
 104 */
 105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 106{
 107	return test_and_set_bit(flag, &q->queue_flags);
 
 
 
 
 
 108}
 109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 110
 111#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 112static const char *const blk_op_name[] = {
 113	REQ_OP_NAME(READ),
 114	REQ_OP_NAME(WRITE),
 115	REQ_OP_NAME(FLUSH),
 116	REQ_OP_NAME(DISCARD),
 117	REQ_OP_NAME(SECURE_ERASE),
 118	REQ_OP_NAME(ZONE_RESET),
 119	REQ_OP_NAME(ZONE_RESET_ALL),
 120	REQ_OP_NAME(ZONE_OPEN),
 121	REQ_OP_NAME(ZONE_CLOSE),
 122	REQ_OP_NAME(ZONE_FINISH),
 123	REQ_OP_NAME(ZONE_APPEND),
 124	REQ_OP_NAME(WRITE_ZEROES),
 125	REQ_OP_NAME(DRV_IN),
 126	REQ_OP_NAME(DRV_OUT),
 127};
 128#undef REQ_OP_NAME
 
 
 129
 130/**
 131 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 132 * @op: REQ_OP_XXX.
 133 *
 134 * Description: Centralize block layer function to convert REQ_OP_XXX into
 135 * string format. Useful in the debugging and tracing bio or request. For
 136 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 137 */
 138inline const char *blk_op_str(enum req_op op)
 139{
 140	const char *op_str = "UNKNOWN";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141
 142	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 143		op_str = blk_op_name[op];
 144
 145	return op_str;
 
 
 146}
 147EXPORT_SYMBOL_GPL(blk_op_str);
 148
 149static const struct {
 150	int		errno;
 151	const char	*name;
 152} blk_errors[] = {
 153	[BLK_STS_OK]		= { 0,		"" },
 154	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 155	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 156	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 157	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 158	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 159	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
 160	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 161	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 162	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 163	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 164	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 165	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
 166
 167	/* device mapper special case, should not leak out: */
 168	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 
 169
 170	/* zone device specific errors */
 171	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
 172	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
 
 
 173
 174	/* Command duration limit device-side timeout */
 175	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
 
 
 
 
 
 
 176
 177	/* everything else not covered above: */
 178	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 179};
 180
 181blk_status_t errno_to_blk_status(int errno)
 182{
 183	int i;
 184
 185	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 186		if (blk_errors[i].errno == errno)
 187			return (__force blk_status_t)i;
 188	}
 
 189
 190	return BLK_STS_IOERR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 191}
 192EXPORT_SYMBOL_GPL(errno_to_blk_status);
 193
 194int blk_status_to_errno(blk_status_t status)
 
 
 
 
 
 
 
 
 
 195{
 196	int idx = (__force int)status;
 197
 198	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 199		return -EIO;
 200	return blk_errors[idx].errno;
 201}
 202EXPORT_SYMBOL_GPL(blk_status_to_errno);
 203
 204const char *blk_status_to_str(blk_status_t status)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205{
 206	int idx = (__force int)status;
 207
 208	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 209		return "<null>";
 210	return blk_errors[idx].name;
 211}
 212EXPORT_SYMBOL_GPL(blk_status_to_str);
 213
 214/**
 215 * blk_sync_queue - cancel any pending callbacks on a queue
 216 * @q: the queue
 217 *
 218 * Description:
 219 *     The block layer may perform asynchronous callback activity
 220 *     on a queue, such as calling the unplug function after a timeout.
 221 *     A block device may call blk_sync_queue to ensure that any
 222 *     such activity is cancelled, thus allowing it to release resources
 223 *     that the callbacks might use. The caller must already have made sure
 224 *     that its ->submit_bio will not re-add plugging prior to calling
 225 *     this function.
 226 *
 227 *     This function does not cancel any asynchronous activity arising
 228 *     out of elevator or throttling code. That would require elevator_exit()
 229 *     and blkcg_exit_queue() to be called with queue lock initialized.
 230 *
 231 */
 232void blk_sync_queue(struct request_queue *q)
 233{
 234	del_timer_sync(&q->timeout);
 235	cancel_work_sync(&q->timeout_work);
 236}
 237EXPORT_SYMBOL(blk_sync_queue);
 238
 239/**
 240 * blk_set_pm_only - increment pm_only counter
 241 * @q: request queue pointer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242 */
 243void blk_set_pm_only(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244{
 245	atomic_inc(&q->pm_only);
 246}
 247EXPORT_SYMBOL_GPL(blk_set_pm_only);
 248
 249void blk_clear_pm_only(struct request_queue *q)
 
 
 
 
 
 
 250{
 251	int pm_only;
 
 
 
 
 
 
 
 
 
 
 
 252
 253	pm_only = atomic_dec_return(&q->pm_only);
 254	WARN_ON_ONCE(pm_only < 0);
 255	if (pm_only == 0)
 256		wake_up_all(&q->mq_freeze_wq);
 257}
 258EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 259
 260static void blk_free_queue_rcu(struct rcu_head *rcu_head)
 261{
 262	struct request_queue *q = container_of(rcu_head,
 263			struct request_queue, rcu_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264
 265	percpu_ref_exit(&q->q_usage_counter);
 266	kmem_cache_free(blk_requestq_cachep, q);
 
 
 
 
 267}
 
 268
 269static void blk_free_queue(struct request_queue *q)
 270{
 271	blk_free_queue_stats(q->stats);
 272	if (queue_is_mq(q))
 273		blk_mq_release(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275	ida_free(&blk_queue_ida, q->id);
 276	call_rcu(&q->rcu_head, blk_free_queue_rcu);
 
 
 
 
 
 
 
 
 277}
 
 278
 279/**
 280 * blk_put_queue - decrement the request_queue refcount
 281 * @q: the request_queue structure to decrement the refcount for
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282 *
 283 * Decrements the refcount of the request_queue and free it when the refcount
 284 * reaches 0.
 285 */
 286void blk_put_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287{
 288	if (refcount_dec_and_test(&q->refs))
 289		blk_free_queue(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290}
 291EXPORT_SYMBOL(blk_put_queue);
 292
 293void blk_queue_start_drain(struct request_queue *q)
 
 
 
 
 294{
 
 
 
 295	/*
 296	 * When queue DYING flag is set, we need to block new req
 297	 * entering queue, so we call blk_freeze_queue_start() to
 298	 * prevent I/O from crossing blk_queue_enter().
 299	 */
 300	blk_freeze_queue_start(q);
 301	if (queue_is_mq(q))
 302		blk_mq_wake_waiters(q);
 303	/* Make blk_queue_enter() reexamine the DYING flag. */
 304	wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305}
 306
 307/**
 308 * blk_queue_enter() - try to increase q->q_usage_counter
 309 * @q: request queue pointer
 310 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311 */
 312int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 313{
 314	const bool pm = flags & BLK_MQ_REQ_PM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315
 316	while (!blk_try_enter_queue(q, pm)) {
 317		if (flags & BLK_MQ_REQ_NOWAIT)
 318			return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319
 320		/*
 321		 * read pair of barrier in blk_freeze_queue_start(), we need to
 322		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 323		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 324		 * following wait may never return if the two reads are
 325		 * reordered.
 326		 */
 327		smp_rmb();
 328		wait_event(q->mq_freeze_wq,
 329			   (!q->mq_freeze_depth &&
 330			    blk_pm_resume_queue(pm, q)) ||
 331			   blk_queue_dying(q));
 332		if (blk_queue_dying(q))
 333			return -ENODEV;
 334	}
 335
 336	return 0;
 
 
 
 
 
 
 
 
 
 
 
 337}
 338
 339int __bio_queue_enter(struct request_queue *q, struct bio *bio)
 
 
 
 
 
 
 
 340{
 341	while (!blk_try_enter_queue(q, false)) {
 342		struct gendisk *disk = bio->bi_bdev->bd_disk;
 
 
 
 
 
 
 
 
 
 343
 344		if (bio->bi_opf & REQ_NOWAIT) {
 345			if (test_bit(GD_DEAD, &disk->state))
 346				goto dead;
 347			bio_wouldblock_error(bio);
 348			return -EAGAIN;
 349		}
 350
 351		/*
 352		 * read pair of barrier in blk_freeze_queue_start(), we need to
 353		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 354		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 355		 * following wait may never return if the two reads are
 356		 * reordered.
 357		 */
 358		smp_rmb();
 359		wait_event(q->mq_freeze_wq,
 360			   (!q->mq_freeze_depth &&
 361			    blk_pm_resume_queue(false, q)) ||
 362			   test_bit(GD_DEAD, &disk->state));
 363		if (test_bit(GD_DEAD, &disk->state))
 364			goto dead;
 365	}
 366
 367	return 0;
 368dead:
 369	bio_io_error(bio);
 370	return -ENODEV;
 371}
 372
 373void blk_queue_exit(struct request_queue *q)
 374{
 375	percpu_ref_put(&q->q_usage_counter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376}
 
 377
 378static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379{
 380	struct request_queue *q =
 381		container_of(ref, struct request_queue, q_usage_counter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	wake_up_all(&q->mq_freeze_wq);
 384}
 
 385
 386static void blk_rq_timed_out_timer(struct timer_list *t)
 
 
 
 
 
 
 
 
 
 
 387{
 388	struct request_queue *q = from_timer(q, t, timeout);
 
 
 389
 390	kblockd_schedule_work(&q->timeout_work);
 
 
 
 
 
 391}
 
 392
 393static void blk_timeout_work(struct work_struct *work)
 
 394{
 
 
 395}
 396
 397struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398{
 399	struct request_queue *q;
 400	int error;
 401
 402	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
 403				  node_id);
 404	if (!q)
 405		return ERR_PTR(-ENOMEM);
 
 
 406
 407	q->last_merge = NULL;
 408
 409	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
 410	if (q->id < 0) {
 411		error = q->id;
 412		goto fail_q;
 413	}
 414
 415	q->stats = blk_alloc_queue_stats();
 416	if (!q->stats) {
 417		error = -ENOMEM;
 418		goto fail_id;
 419	}
 420
 421	error = blk_set_default_limits(lim);
 422	if (error)
 423		goto fail_stats;
 424	q->limits = *lim;
 
 425
 426	q->node = node_id;
 
 
 
 
 427
 428	atomic_set(&q->nr_active_requests_shared_tags, 0);
 
 
 
 
 
 
 429
 430	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 431	INIT_WORK(&q->timeout_work, blk_timeout_work);
 432	INIT_LIST_HEAD(&q->icq_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434	refcount_set(&q->refs, 1);
 435	mutex_init(&q->debugfs_mutex);
 436	mutex_init(&q->sysfs_lock);
 437	mutex_init(&q->sysfs_dir_lock);
 438	mutex_init(&q->limits_lock);
 439	mutex_init(&q->rq_qos_mutex);
 440	spin_lock_init(&q->queue_lock);
 
 
 441
 442	init_waitqueue_head(&q->mq_freeze_wq);
 443	mutex_init(&q->mq_freeze_lock);
 444
 445	blkg_init_queue(q);
 
 446
 447	/*
 448	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 449	 * See blk_register_queue() for details.
 450	 */
 451	error = percpu_ref_init(&q->q_usage_counter,
 452				blk_queue_usage_counter_release,
 453				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
 454	if (error)
 455		goto fail_stats;
 
 456
 457	q->nr_requests = BLKDEV_DEFAULT_RQ;
 
 
 
 
 458
 459	return q;
 
 
 
 460
 461fail_stats:
 462	blk_free_queue_stats(q->stats);
 463fail_id:
 464	ida_free(&blk_queue_ida, q->id);
 465fail_q:
 466	kmem_cache_free(blk_requestq_cachep, q);
 467	return ERR_PTR(error);
 468}
 
 469
 470/**
 471 * blk_get_queue - increment the request_queue refcount
 472 * @q: the request_queue structure to increment the refcount for
 
 
 473 *
 474 * Increment the refcount of the request_queue kobject.
 
 
 475 *
 476 * Context: Any context.
 
 477 */
 478bool blk_get_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479{
 480	if (unlikely(blk_queue_dying(q)))
 
 
 481		return false;
 482	refcount_inc(&q->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483	return true;
 484}
 485EXPORT_SYMBOL(blk_get_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486
 487#ifdef CONFIG_FAIL_MAKE_REQUEST
 488
 489static DECLARE_FAULT_ATTR(fail_make_request);
 490
 491static int __init setup_fail_make_request(char *str)
 492{
 493	return setup_fault_attr(&fail_make_request, str);
 494}
 495__setup("fail_make_request=", setup_fail_make_request);
 496
 497bool should_fail_request(struct block_device *part, unsigned int bytes)
 498{
 499	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
 500}
 501
 502static int __init fail_make_request_debugfs(void)
 503{
 504	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 505						NULL, &fail_make_request);
 506
 507	return PTR_ERR_OR_ZERO(dir);
 508}
 509
 510late_initcall(fail_make_request_debugfs);
 
 
 
 
 
 
 
 
 
 511#endif /* CONFIG_FAIL_MAKE_REQUEST */
 512
 513static inline void bio_check_ro(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514{
 515	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 516		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 517			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519		if (bio->bi_bdev->bd_ro_warned)
 520			return;
 
 
 
 
 
 
 
 
 
 521
 522		bio->bi_bdev->bd_ro_warned = true;
 523		/*
 524		 * Use ioctl to set underlying disk of raid/dm to read-only
 525		 * will trigger this.
 
 526		 */
 527		pr_warn("Trying to write to read-only block-device %pg\n",
 528			bio->bi_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530}
 
 531
 532static noinline int should_fail_bio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 533{
 534	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 535		return -EIO;
 536	return 0;
 537}
 538ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 
 
 
 
 
 
 
 
 
 
 539
 540/*
 541 * Check whether this bio extends beyond the end of the device or partition.
 542 * This may well happen - the kernel calls bread() without checking the size of
 543 * the device, e.g., when mounting a file system.
 544 */
 545static inline int bio_check_eod(struct bio *bio)
 546{
 547	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 548	unsigned int nr_sectors = bio_sectors(bio);
 549
 550	if (nr_sectors &&
 551	    (nr_sectors > maxsector ||
 552	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 553		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
 554				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
 555				    current->comm, bio->bi_bdev, bio->bi_opf,
 556				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
 557		return -EIO;
 558	}
 559	return 0;
 
 560}
 
 561
 562/*
 563 * Remap block n of partition p to block n+start(p) of the disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564 */
 565static int blk_partition_remap(struct bio *bio)
 566{
 567	struct block_device *p = bio->bi_bdev;
 
 568
 569	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 
 
 570		return -EIO;
 571	if (bio_sectors(bio)) {
 572		bio->bi_iter.bi_sector += p->bd_start_sect;
 573		trace_block_bio_remap(bio, p->bd_dev,
 574				      bio->bi_iter.bi_sector -
 575				      p->bd_start_sect);
 576	}
 577	bio_set_flag(bio, BIO_REMAPPED);
 
 
 
 
 
 
 
 
 
 
 
 
 578	return 0;
 579}
 
 580
 581/*
 582 * Check write append to a zoned block device.
 
 
 583 */
 584static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 585						 struct bio *bio)
 586{
 587	int nr_sectors = bio_sectors(bio);
 
 588
 589	/* Only applicable to zoned block devices */
 590	if (!bdev_is_zoned(bio->bi_bdev))
 591		return BLK_STS_NOTSUPP;
 
 
 
 592
 593	/* The bio sector must point to the start of a sequential zone */
 594	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
 595	    !bio_zone_is_seq(bio))
 596		return BLK_STS_IOERR;
 597
 598	/*
 599	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 600	 * split and could result in non-contiguous sectors being written in
 601	 * different zones.
 602	 */
 603	if (nr_sectors > q->limits.chunk_sectors)
 604		return BLK_STS_IOERR;
 605
 606	/* Make sure the BIO is small enough and will not get split */
 607	if (nr_sectors > q->limits.max_zone_append_sectors)
 608		return BLK_STS_IOERR;
 609
 610	bio->bi_opf |= REQ_NOMERGE;
 
 611
 612	return BLK_STS_OK;
 613}
 
 614
 615static void __submit_bio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616{
 617	if (unlikely(!blk_crypto_bio_prep(&bio)))
 618		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 620	if (!bio->bi_bdev->bd_has_submit_bio) {
 621		blk_mq_submit_bio(bio);
 622	} else if (likely(bio_queue_enter(bio) == 0)) {
 623		struct gendisk *disk = bio->bi_bdev->bd_disk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624
 625		disk->fops->submit_bio(bio);
 626		blk_queue_exit(disk->queue);
 627	}
 628}
 629
 630/*
 631 * The loop in this function may be a bit non-obvious, and so deserves some
 632 * explanation:
 
 
 
 
 
 
 
 
 
 633 *
 634 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 635 *    that), so we have a list with a single bio.
 636 *  - We pretend that we have just taken it off a longer list, so we assign
 637 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 638 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 639 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 640 *    non-NULL value in bio_list and re-enter the loop from the top.
 641 *  - In this case we really did just take the bio of the top of the list (no
 642 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 643 *    again.
 644 *
 645 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 646 * bio_list_on_stack[1] contains bios that were submitted before the current
 647 *	->submit_bio, but that haven't been processed yet.
 648 */
 649static void __submit_bio_noacct(struct bio *bio)
 650{
 651	struct bio_list bio_list_on_stack[2];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652
 653	BUG_ON(bio->bi_next);
 
 
 
 654
 655	bio_list_init(&bio_list_on_stack[0]);
 656	current->bio_list = bio_list_on_stack;
 657
 658	do {
 659		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 660		struct bio_list lower, same;
 661
 662		/*
 663		 * Create a fresh bio_list for all subordinate requests.
 664		 */
 665		bio_list_on_stack[1] = bio_list_on_stack[0];
 666		bio_list_init(&bio_list_on_stack[0]);
 667
 668		__submit_bio(bio);
 
 669
 670		/*
 671		 * Sort new bios into those for a lower level and those for the
 672		 * same level.
 673		 */
 674		bio_list_init(&lower);
 675		bio_list_init(&same);
 676		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 677			if (q == bdev_get_queue(bio->bi_bdev))
 678				bio_list_add(&same, bio);
 679			else
 680				bio_list_add(&lower, bio);
 
 
 
 
 
 
 
 681
 682		/*
 683		 * Now assemble so we handle the lowest level first.
 684		 */
 685		bio_list_merge(&bio_list_on_stack[0], &lower);
 686		bio_list_merge(&bio_list_on_stack[0], &same);
 687		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 688	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 
 
 
 
 
 
 
 
 689
 690	current->bio_list = NULL;
 691}
 
 692
 693static void __submit_bio_noacct_mq(struct bio *bio)
 694{
 695	struct bio_list bio_list[2] = { };
 696
 697	current->bio_list = bio_list;
 
 698
 699	do {
 700		__submit_bio(bio);
 701	} while ((bio = bio_list_pop(&bio_list[0])));
 702
 703	current->bio_list = NULL;
 
 
 
 
 
 
 
 
 704}
 705
 706void submit_bio_noacct_nocheck(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707{
 708	blk_cgroup_bio_start(bio);
 709	blkcg_bio_issue_init(bio);
 710
 711	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 712		trace_block_bio_queue(bio);
 713		/*
 714		 * Now that enqueuing has been traced, we need to trace
 715		 * completion as well.
 716		 */
 717		bio_set_flag(bio, BIO_TRACE_COMPLETION);
 718	}
 719
 720	/*
 721	 * We only want one ->submit_bio to be active at a time, else stack
 722	 * usage with stacked devices could be a problem.  Use current->bio_list
 723	 * to collect a list of requests submited by a ->submit_bio method while
 724	 * it is active, and then process them after it returned.
 725	 */
 726	if (current->bio_list)
 727		bio_list_add(&current->bio_list[0], bio);
 728	else if (!bio->bi_bdev->bd_has_submit_bio)
 729		__submit_bio_noacct_mq(bio);
 730	else
 731		__submit_bio_noacct(bio);
 732}
 
 733
 734/**
 735 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 736 * @bio:  The bio describing the location in memory and on the device.
 
 
 
 
 
 
 
 
 737 *
 738 * This is a version of submit_bio() that shall only be used for I/O that is
 739 * resubmitted to lower level drivers by stacking block drivers.  All file
 740 * systems and other upper level users of the block layer should use
 741 * submit_bio() instead.
 742 */
 743void submit_bio_noacct(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744{
 745	struct block_device *bdev = bio->bi_bdev;
 746	struct request_queue *q = bdev_get_queue(bdev);
 747	blk_status_t status = BLK_STS_IOERR;
 
 
 748
 749	might_sleep();
 750
 751	/*
 752	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 753	 * if queue does not support NOWAIT.
 
 
 
 
 754	 */
 755	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
 756		goto not_supported;
 757
 758	if (should_fail_bio(bio))
 759		goto end_io;
 760	bio_check_ro(bio);
 761	if (!bio_flagged(bio, BIO_REMAPPED)) {
 762		if (unlikely(bio_check_eod(bio)))
 763			goto end_io;
 764		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
 765			goto end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766	}
 767
 768	/*
 769	 * Filter flush bio's early so that bio based drivers without flush
 770	 * support don't have to worry about them.
 771	 */
 772	if (op_is_flush(bio->bi_opf)) {
 773		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
 774				 bio_op(bio) != REQ_OP_ZONE_APPEND))
 775			goto end_io;
 776		if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 777			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 778			if (!bio_sectors(bio)) {
 779				status = BLK_STS_OK;
 780				goto end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782		}
 783	}
 784
 785	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 786		bio_clear_polled(bio);
 787
 788	switch (bio_op(bio)) {
 789	case REQ_OP_READ:
 790	case REQ_OP_WRITE:
 791		break;
 792	case REQ_OP_FLUSH:
 793		/*
 794		 * REQ_OP_FLUSH can't be submitted through bios, it is only
 795		 * synthetized in struct request by the flush state machine.
 
 796		 */
 797		goto not_supported;
 798	case REQ_OP_DISCARD:
 799		if (!bdev_max_discard_sectors(bdev))
 800			goto not_supported;
 801		break;
 802	case REQ_OP_SECURE_ERASE:
 803		if (!bdev_max_secure_erase_sectors(bdev))
 804			goto not_supported;
 805		break;
 806	case REQ_OP_ZONE_APPEND:
 807		status = blk_check_zone_append(q, bio);
 808		if (status != BLK_STS_OK)
 809			goto end_io;
 810		break;
 811	case REQ_OP_WRITE_ZEROES:
 812		if (!q->limits.max_write_zeroes_sectors)
 813			goto not_supported;
 814		break;
 815	case REQ_OP_ZONE_RESET:
 816	case REQ_OP_ZONE_OPEN:
 817	case REQ_OP_ZONE_CLOSE:
 818	case REQ_OP_ZONE_FINISH:
 819		if (!bdev_is_zoned(bio->bi_bdev))
 820			goto not_supported;
 821		break;
 822	case REQ_OP_ZONE_RESET_ALL:
 823		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
 824			goto not_supported;
 825		break;
 826	case REQ_OP_DRV_IN:
 827	case REQ_OP_DRV_OUT:
 828		/*
 829		 * Driver private operations are only used with passthrough
 830		 * requests.
 831		 */
 832		fallthrough;
 833	default:
 834		goto not_supported;
 835	}
 836
 837	if (blk_throtl_bio(bio))
 838		return;
 839	submit_bio_noacct_nocheck(bio);
 840	return;
 841
 842not_supported:
 843	status = BLK_STS_NOTSUPP;
 844end_io:
 845	bio->bi_status = status;
 846	bio_endio(bio);
 847}
 848EXPORT_SYMBOL(submit_bio_noacct);
 849
 850static void bio_set_ioprio(struct bio *bio)
 
 
 851{
 852	/* Nobody set ioprio so far? Initialize it based on task's nice value */
 853	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
 854		bio->bi_ioprio = get_current_ioprio();
 855	blkcg_set_ioprio(bio);
 
 
 
 
 
 
 
 
 856}
 857
 858/**
 859 * submit_bio - submit a bio to the block device layer for I/O
 860 * @bio: The &struct bio which describes the I/O
 861 *
 862 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 863 * fully set up &struct bio that describes the I/O that needs to be done.  The
 864 * bio will be send to the device described by the bi_bdev field.
 865 *
 866 * The success/failure status of the request, along with notification of
 867 * completion, is delivered asynchronously through the ->bi_end_io() callback
 868 * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
 869 * been called.
 870 */
 871void submit_bio(struct bio *bio)
 872{
 873	if (bio_op(bio) == REQ_OP_READ) {
 874		task_io_account_read(bio->bi_iter.bi_size);
 875		count_vm_events(PGPGIN, bio_sectors(bio));
 876	} else if (bio_op(bio) == REQ_OP_WRITE) {
 877		count_vm_events(PGPGOUT, bio_sectors(bio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878	}
 
 879
 880	bio_set_ioprio(bio);
 881	submit_bio_noacct(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882}
 883EXPORT_SYMBOL(submit_bio);
 884
 885/**
 886 * bio_poll - poll for BIO completions
 887 * @bio: bio to poll for
 888 * @iob: batches of IO
 889 * @flags: BLK_POLL_* flags that control the behavior
 
 890 *
 891 * Poll for completions on queue associated with the bio. Returns number of
 892 * completed entries found.
 
 893 *
 894 * Note: the caller must either be the context that submitted @bio, or
 895 * be in a RCU critical section to prevent freeing of @bio.
 896 */
 897int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
 
 
 898{
 899	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
 900	struct block_device *bdev;
 901	struct request_queue *q;
 902	int ret = 0;
 
 
 
 903
 904	bdev = READ_ONCE(bio->bi_bdev);
 905	if (!bdev)
 906		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907
 908	q = bdev_get_queue(bdev);
 909	if (cookie == BLK_QC_T_NONE ||
 910	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 911		return 0;
 
 
 
 
 
 
 
 
 912
 913	/*
 914	 * As the requests that require a zone lock are not plugged in the
 915	 * first place, directly accessing the plug instead of using
 916	 * blk_mq_plug() should not have any consequences during flushing for
 917	 * zoned devices.
 918	 */
 919	blk_flush_plug(current->plug, false);
 920
 921	/*
 922	 * We need to be able to enter a frozen queue, similar to how
 923	 * timeouts also need to do that. If that is blocked, then we can
 924	 * have pending IO when a queue freeze is started, and then the
 925	 * wait for the freeze to finish will wait for polled requests to
 926	 * timeout as the poller is preventer from entering the queue and
 927	 * completing them. As long as we prevent new IO from being queued,
 928	 * that should be all that matters.
 929	 */
 930	if (!percpu_ref_tryget(&q->q_usage_counter))
 931		return 0;
 932	if (queue_is_mq(q)) {
 933		ret = blk_mq_poll(q, cookie, iob, flags);
 934	} else {
 935		struct gendisk *disk = q->disk;
 936
 937		if (disk && disk->fops->poll_bio)
 938			ret = disk->fops->poll_bio(bio, iob, flags);
 939	}
 940	blk_queue_exit(q);
 941	return ret;
 942}
 943EXPORT_SYMBOL_GPL(bio_poll);
 944
 945/*
 946 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 947 * in iocb->private, and cleared before freeing the bio.
 
 
 
 
 
 
 
 
 948 */
 949int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
 950		    unsigned int flags)
 951{
 952	struct bio *bio;
 953	int ret = 0;
 
 954
 955	/*
 956	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
 957	 * point to a freshly allocated bio at this point.  If that happens
 958	 * we have a few cases to consider:
 959	 *
 960	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
 961	 *     simply nothing in this case
 962	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
 963	 *     this and return 0
 964	 *  3) the bio points to a poll capable device, including but not
 965	 *     limited to the one that the original bio pointed to.  In this
 966	 *     case we will call into the actual poll method and poll for I/O,
 967	 *     even if we don't need to, but it won't cause harm either.
 968	 *
 969	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
 970	 * is still allocated. Because partitions hold a reference to the whole
 971	 * device bdev and thus disk, the disk is also still valid.  Grabbing
 972	 * a reference to the queue in bio_poll() ensures the hctxs and requests
 973	 * are still valid as well.
 974	 */
 975	rcu_read_lock();
 976	bio = READ_ONCE(kiocb->private);
 977	if (bio)
 978		ret = bio_poll(bio, iob, flags);
 979	rcu_read_unlock();
 980
 981	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982}
 983EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
 984
 985void update_io_ticks(struct block_device *part, unsigned long now, bool end)
 
 
 
 
 
 
 
 
 986{
 987	unsigned long stamp;
 988again:
 989	stamp = READ_ONCE(part->bd_stamp);
 990	if (unlikely(time_after(now, stamp)) &&
 991	    likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
 992	    (end || part_in_flight(part)))
 993		__part_stat_add(part, io_ticks, now - stamp);
 994
 995	if (part->bd_partno) {
 996		part = bdev_whole(part);
 997		goto again;
 998	}
 999}
 
1000
1001unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1002				 unsigned long start_time)
 
 
 
 
 
 
 
 
 
 
 
 
1003{
1004	part_stat_lock();
1005	update_io_ticks(bdev, start_time, false);
1006	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1007	part_stat_unlock();
1008
1009	return start_time;
1010}
1011EXPORT_SYMBOL(bdev_start_io_acct);
1012
1013/**
1014 * bio_start_io_acct - start I/O accounting for bio based drivers
1015 * @bio:	bio to start account for
 
1016 *
1017 * Returns the start time that should be passed back to bio_end_io_acct().
 
 
 
 
 
 
1018 */
1019unsigned long bio_start_io_acct(struct bio *bio)
1020{
1021	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
 
1022}
1023EXPORT_SYMBOL_GPL(bio_start_io_acct);
1024
1025void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1026		      unsigned int sectors, unsigned long start_time)
1027{
1028	const int sgrp = op_stat_group(op);
1029	unsigned long now = READ_ONCE(jiffies);
1030	unsigned long duration = now - start_time;
 
 
 
 
 
 
1031
1032	part_stat_lock();
1033	update_io_ticks(bdev, now, true);
1034	part_stat_inc(bdev, ios[sgrp]);
1035	part_stat_add(bdev, sectors[sgrp], sectors);
1036	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1037	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1038	part_stat_unlock();
1039}
1040EXPORT_SYMBOL(bdev_end_io_acct);
1041
1042void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1043			      struct block_device *orig_bdev)
 
 
 
 
 
 
 
1044{
1045	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
 
 
 
 
1046}
1047EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
 
1048
1049/**
1050 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1051 * @q : the queue of the device being checked
1052 *
1053 * Description:
1054 *    Check if underlying low-level drivers of a device are busy.
1055 *    If the drivers want to export their busy state, they must set own
1056 *    exporting function using blk_queue_lld_busy() first.
1057 *
1058 *    Basically, this function is used only by request stacking drivers
1059 *    to stop dispatching requests to underlying devices when underlying
1060 *    devices are busy.  This behavior helps more I/O merging on the queue
1061 *    of the request stacking driver and prevents I/O throughput regression
1062 *    on burst I/O load.
1063 *
1064 * Return:
1065 *    0 - Not busy (The request stacking driver should dispatch request)
1066 *    1 - Busy (The request stacking driver should stop dispatching request)
1067 */
1068int blk_lld_busy(struct request_queue *q)
1069{
1070	if (queue_is_mq(q) && q->mq_ops->busy)
1071		return q->mq_ops->busy(q);
1072
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(blk_lld_busy);
1076
1077int kblockd_schedule_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078{
1079	return queue_work(kblockd_workqueue, work);
1080}
1081EXPORT_SYMBOL(kblockd_schedule_work);
1082
1083int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1084				unsigned long delay)
1085{
1086	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1087}
1088EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
 
 
1089
1090void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1091{
1092	struct task_struct *tsk = current;
1093
 
 
 
 
 
1094	/*
1095	 * If this is a nested plug, don't actually assign it.
 
1096	 */
1097	if (tsk->plug)
1098		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099
1100	plug->cur_ktime = 0;
1101	plug->mq_list = NULL;
1102	plug->cached_rq = NULL;
1103	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1104	plug->rq_count = 0;
1105	plug->multiple_queues = false;
1106	plug->has_elevator = false;
1107	INIT_LIST_HEAD(&plug->cb_list);
 
 
 
1108
1109	/*
1110	 * Store ordering should not be needed here, since a potential
1111	 * preempt will imply a full memory barrier
 
1112	 */
1113	tsk->plug = plug;
1114}
 
 
 
 
 
1115
1116/**
1117 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1118 * @plug:	The &struct blk_plug that needs to be initialized
1119 *
1120 * Description:
1121 *   blk_start_plug() indicates to the block layer an intent by the caller
1122 *   to submit multiple I/O requests in a batch.  The block layer may use
1123 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1124 *   is called.  However, the block layer may choose to submit requests
1125 *   before a call to blk_finish_plug() if the number of queued I/Os
1126 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1127 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1128 *   the task schedules (see below).
1129 *
1130 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1131 *   pending I/O should the task end up blocking between blk_start_plug() and
1132 *   blk_finish_plug(). This is important from a performance perspective, but
1133 *   also ensures that we don't deadlock. For instance, if the task is blocking
1134 *   for a memory allocation, memory reclaim could end up wanting to free a
1135 *   page belonging to that request that is currently residing in our private
1136 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1137 *   this kind of deadlock.
1138 */
1139void blk_start_plug(struct blk_plug *plug)
1140{
1141	blk_start_plug_nr_ios(plug, 1);
1142}
1143EXPORT_SYMBOL(blk_start_plug);
1144
1145static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1146{
1147	LIST_HEAD(callbacks);
1148
1149	while (!list_empty(&plug->cb_list)) {
1150		list_splice_init(&plug->cb_list, &callbacks);
 
 
1151
1152		while (!list_empty(&callbacks)) {
1153			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1154							  struct blk_plug_cb,
1155							  list);
1156			list_del(&cb->list);
1157			cb->callback(cb, from_schedule);
1158		}
1159	}
1160}
1161
1162struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1163				      int size)
1164{
1165	struct blk_plug *plug = current->plug;
1166	struct blk_plug_cb *cb;
 
 
 
 
 
1167
1168	if (!plug)
1169		return NULL;
 
1170
1171	list_for_each_entry(cb, &plug->cb_list, list)
1172		if (cb->callback == unplug && cb->data == data)
1173			return cb;
1174
1175	/* Not currently on the callback list */
1176	BUG_ON(size < sizeof(*cb));
1177	cb = kzalloc(size, GFP_ATOMIC);
1178	if (cb) {
1179		cb->data = data;
1180		cb->callback = unplug;
1181		list_add(&cb->list, &plug->cb_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182	}
1183	return cb;
1184}
1185EXPORT_SYMBOL(blk_check_plugged);
1186
1187void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1188{
1189	if (!list_empty(&plug->cb_list))
1190		flush_plug_callbacks(plug, from_schedule);
1191	blk_mq_flush_plug_list(plug, from_schedule);
1192	/*
1193	 * Unconditionally flush out cached requests, even if the unplug
1194	 * event came from schedule. Since we know hold references to the
1195	 * queue for cached requests, we don't want a blocked task holding
1196	 * up a queue freeze/quiesce event.
1197	 */
1198	if (unlikely(!rq_list_empty(plug->cached_rq)))
1199		blk_mq_free_plug_rqs(plug);
1200
1201	plug->cur_ktime = 0;
1202	current->flags &= ~PF_BLOCK_TS;
1203}
1204
1205/**
1206 * blk_finish_plug - mark the end of a batch of submitted I/O
1207 * @plug:	The &struct blk_plug passed to blk_start_plug()
1208 *
1209 * Description:
1210 * Indicate that a batch of I/O submissions is complete.  This function
1211 * must be paired with an initial call to blk_start_plug().  The intent
1212 * is to allow the block layer to optimize I/O submission.  See the
1213 * documentation for blk_start_plug() for more information.
1214 */
1215void blk_finish_plug(struct blk_plug *plug)
1216{
1217	if (plug == current->plug) {
1218		__blk_flush_plug(plug, false);
 
1219		current->plug = NULL;
1220	}
1221}
1222EXPORT_SYMBOL(blk_finish_plug);
1223
1224void blk_io_schedule(void)
1225{
1226	/* Prevent hang_check timer from firing at us during very long I/O */
1227	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1228
1229	if (timeout)
1230		io_schedule_timeout(timeout);
1231	else
1232		io_schedule();
1233}
1234EXPORT_SYMBOL_GPL(blk_io_schedule);
1235
1236int __init blk_dev_init(void)
1237{
1238	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1239	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1240			sizeof_field(struct request, cmd_flags));
1241	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1242			sizeof_field(struct bio, bi_opf));
1243
1244	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1245	kblockd_workqueue = alloc_workqueue("kblockd",
1246					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1247	if (!kblockd_workqueue)
1248		panic("Failed to create kblockd\n");
1249
1250	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
 
1251
1252	blk_debugfs_root = debugfs_create_dir("block", NULL);
 
1253
1254	return 0;
1255}