Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * x86 instruction analysis
  4 *
  5 * Copyright (C) IBM Corporation, 2002, 2004, 2009
  6 */
  7
  8#include <linux/kernel.h>
  9#ifdef __KERNEL__
 10#include <linux/string.h>
 11#else
 12#include <string.h>
 13#endif
 14#include "../include/asm/inat.h" /* __ignore_sync_check__ */
 15#include "../include/asm/insn.h" /* __ignore_sync_check__ */
 16#include "../include/asm-generic/unaligned.h" /* __ignore_sync_check__ */
 17
 18#include <linux/errno.h>
 19#include <linux/kconfig.h>
 20
 21#include "../include/asm/emulate_prefix.h" /* __ignore_sync_check__ */
 22
 23#define leXX_to_cpu(t, r)						\
 24({									\
 25	__typeof__(t) v;						\
 26	switch (sizeof(t)) {						\
 27	case 4: v = le32_to_cpu(r); break;				\
 28	case 2: v = le16_to_cpu(r); break;				\
 29	case 1:	v = r; break;						\
 30	default:							\
 31		BUILD_BUG(); break;					\
 32	}								\
 33	v;								\
 34})
 35
 36/* Verify next sizeof(t) bytes can be on the same instruction */
 37#define validate_next(t, insn, n)	\
 38	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
 39
 40#define __get_next(t, insn)	\
 41	({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
 42
 43#define __peek_nbyte_next(t, insn, n)	\
 44	({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
 45
 46#define get_next(t, insn)	\
 47	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 48
 49#define peek_nbyte_next(t, insn, n)	\
 50	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 51
 52#define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
 53
 54/**
 55 * insn_init() - initialize struct insn
 56 * @insn:	&struct insn to be initialized
 57 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 58 * @buf_len:	length of the insn buffer at @kaddr
 59 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 60 */
 61void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
 62{
 63	/*
 64	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
 65	 * even if the input buffer is long enough to hold them.
 66	 */
 67	if (buf_len > MAX_INSN_SIZE)
 68		buf_len = MAX_INSN_SIZE;
 69
 70	memset(insn, 0, sizeof(*insn));
 71	insn->kaddr = kaddr;
 72	insn->end_kaddr = kaddr + buf_len;
 73	insn->next_byte = kaddr;
 74	insn->x86_64 = x86_64 ? 1 : 0;
 75	insn->opnd_bytes = 4;
 76	if (x86_64)
 77		insn->addr_bytes = 8;
 78	else
 79		insn->addr_bytes = 4;
 80}
 81
 82static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
 83static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
 84
 85static int __insn_get_emulate_prefix(struct insn *insn,
 86				     const insn_byte_t *prefix, size_t len)
 87{
 88	size_t i;
 89
 90	for (i = 0; i < len; i++) {
 91		if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
 92			goto err_out;
 93	}
 94
 95	insn->emulate_prefix_size = len;
 96	insn->next_byte += len;
 97
 98	return 1;
 99
100err_out:
101	return 0;
102}
103
104static void insn_get_emulate_prefix(struct insn *insn)
105{
106	if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
107		return;
108
109	__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
110}
111
112/**
113 * insn_get_prefixes - scan x86 instruction prefix bytes
114 * @insn:	&struct insn containing instruction
115 *
116 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
117 * to point to the (first) opcode.  No effect if @insn->prefixes.got
118 * is already set.
119 *
120 * * Returns:
121 * 0:  on success
122 * < 0: on error
123 */
124int insn_get_prefixes(struct insn *insn)
125{
126	struct insn_field *prefixes = &insn->prefixes;
127	insn_attr_t attr;
128	insn_byte_t b, lb;
129	int i, nb;
130
131	if (prefixes->got)
132		return 0;
133
134	insn_get_emulate_prefix(insn);
135
136	nb = 0;
137	lb = 0;
138	b = peek_next(insn_byte_t, insn);
139	attr = inat_get_opcode_attribute(b);
140	while (inat_is_legacy_prefix(attr)) {
141		/* Skip if same prefix */
142		for (i = 0; i < nb; i++)
143			if (prefixes->bytes[i] == b)
144				goto found;
145		if (nb == 4)
146			/* Invalid instruction */
147			break;
148		prefixes->bytes[nb++] = b;
149		if (inat_is_address_size_prefix(attr)) {
150			/* address size switches 2/4 or 4/8 */
151			if (insn->x86_64)
152				insn->addr_bytes ^= 12;
153			else
154				insn->addr_bytes ^= 6;
155		} else if (inat_is_operand_size_prefix(attr)) {
156			/* oprand size switches 2/4 */
157			insn->opnd_bytes ^= 6;
158		}
159found:
160		prefixes->nbytes++;
161		insn->next_byte++;
162		lb = b;
163		b = peek_next(insn_byte_t, insn);
164		attr = inat_get_opcode_attribute(b);
165	}
166	/* Set the last prefix */
167	if (lb && lb != insn->prefixes.bytes[3]) {
168		if (unlikely(insn->prefixes.bytes[3])) {
169			/* Swap the last prefix */
170			b = insn->prefixes.bytes[3];
171			for (i = 0; i < nb; i++)
172				if (prefixes->bytes[i] == lb)
173					insn_set_byte(prefixes, i, b);
174		}
175		insn_set_byte(&insn->prefixes, 3, lb);
176	}
177
178	/* Decode REX prefix */
179	if (insn->x86_64) {
180		b = peek_next(insn_byte_t, insn);
181		attr = inat_get_opcode_attribute(b);
182		if (inat_is_rex_prefix(attr)) {
183			insn_field_set(&insn->rex_prefix, b, 1);
184			insn->next_byte++;
185			if (X86_REX_W(b))
186				/* REX.W overrides opnd_size */
187				insn->opnd_bytes = 8;
188		}
189	}
190	insn->rex_prefix.got = 1;
191
192	/* Decode VEX prefix */
193	b = peek_next(insn_byte_t, insn);
194	attr = inat_get_opcode_attribute(b);
195	if (inat_is_vex_prefix(attr)) {
196		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
197		if (!insn->x86_64) {
198			/*
199			 * In 32-bits mode, if the [7:6] bits (mod bits of
200			 * ModRM) on the second byte are not 11b, it is
201			 * LDS or LES or BOUND.
202			 */
203			if (X86_MODRM_MOD(b2) != 3)
204				goto vex_end;
205		}
206		insn_set_byte(&insn->vex_prefix, 0, b);
207		insn_set_byte(&insn->vex_prefix, 1, b2);
208		if (inat_is_evex_prefix(attr)) {
209			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
210			insn_set_byte(&insn->vex_prefix, 2, b2);
211			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
212			insn_set_byte(&insn->vex_prefix, 3, b2);
213			insn->vex_prefix.nbytes = 4;
214			insn->next_byte += 4;
215			if (insn->x86_64 && X86_VEX_W(b2))
216				/* VEX.W overrides opnd_size */
217				insn->opnd_bytes = 8;
218		} else if (inat_is_vex3_prefix(attr)) {
219			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
220			insn_set_byte(&insn->vex_prefix, 2, b2);
221			insn->vex_prefix.nbytes = 3;
222			insn->next_byte += 3;
223			if (insn->x86_64 && X86_VEX_W(b2))
224				/* VEX.W overrides opnd_size */
225				insn->opnd_bytes = 8;
226		} else {
227			/*
228			 * For VEX2, fake VEX3-like byte#2.
229			 * Makes it easier to decode vex.W, vex.vvvv,
230			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
231			 */
232			insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
233			insn->vex_prefix.nbytes = 2;
234			insn->next_byte += 2;
235		}
236	}
237vex_end:
238	insn->vex_prefix.got = 1;
239
240	prefixes->got = 1;
241
242	return 0;
243
244err_out:
245	return -ENODATA;
246}
247
248/**
249 * insn_get_opcode - collect opcode(s)
250 * @insn:	&struct insn containing instruction
251 *
252 * Populates @insn->opcode, updates @insn->next_byte to point past the
253 * opcode byte(s), and set @insn->attr (except for groups).
254 * If necessary, first collects any preceding (prefix) bytes.
255 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
256 * is already 1.
257 *
258 * Returns:
259 * 0:  on success
260 * < 0: on error
261 */
262int insn_get_opcode(struct insn *insn)
263{
264	struct insn_field *opcode = &insn->opcode;
265	int pfx_id, ret;
266	insn_byte_t op;
267
268	if (opcode->got)
269		return 0;
270
271	if (!insn->prefixes.got) {
272		ret = insn_get_prefixes(insn);
273		if (ret)
274			return ret;
275	}
276
277	/* Get first opcode */
278	op = get_next(insn_byte_t, insn);
279	insn_set_byte(opcode, 0, op);
280	opcode->nbytes = 1;
281
282	/* Check if there is VEX prefix or not */
283	if (insn_is_avx(insn)) {
284		insn_byte_t m, p;
285		m = insn_vex_m_bits(insn);
286		p = insn_vex_p_bits(insn);
287		insn->attr = inat_get_avx_attribute(op, m, p);
288		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
289		    (!inat_accept_vex(insn->attr) &&
290		     !inat_is_group(insn->attr))) {
291			/* This instruction is bad */
292			insn->attr = 0;
293			return -EINVAL;
294		}
295		/* VEX has only 1 byte for opcode */
296		goto end;
297	}
298
299	insn->attr = inat_get_opcode_attribute(op);
300	while (inat_is_escape(insn->attr)) {
301		/* Get escaped opcode */
302		op = get_next(insn_byte_t, insn);
303		opcode->bytes[opcode->nbytes++] = op;
304		pfx_id = insn_last_prefix_id(insn);
305		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
306	}
307
308	if (inat_must_vex(insn->attr)) {
309		/* This instruction is bad */
310		insn->attr = 0;
311		return -EINVAL;
312	}
313end:
314	opcode->got = 1;
315	return 0;
316
317err_out:
318	return -ENODATA;
319}
320
321/**
322 * insn_get_modrm - collect ModRM byte, if any
323 * @insn:	&struct insn containing instruction
324 *
325 * Populates @insn->modrm and updates @insn->next_byte to point past the
326 * ModRM byte, if any.  If necessary, first collects the preceding bytes
327 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
328 *
329 * Returns:
330 * 0:  on success
331 * < 0: on error
332 */
333int insn_get_modrm(struct insn *insn)
334{
335	struct insn_field *modrm = &insn->modrm;
336	insn_byte_t pfx_id, mod;
337	int ret;
338
339	if (modrm->got)
340		return 0;
341
342	if (!insn->opcode.got) {
343		ret = insn_get_opcode(insn);
344		if (ret)
345			return ret;
346	}
347
348	if (inat_has_modrm(insn->attr)) {
349		mod = get_next(insn_byte_t, insn);
350		insn_field_set(modrm, mod, 1);
351		if (inat_is_group(insn->attr)) {
352			pfx_id = insn_last_prefix_id(insn);
353			insn->attr = inat_get_group_attribute(mod, pfx_id,
354							      insn->attr);
355			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) {
356				/* Bad insn */
357				insn->attr = 0;
358				return -EINVAL;
359			}
360		}
361	}
362
363	if (insn->x86_64 && inat_is_force64(insn->attr))
364		insn->opnd_bytes = 8;
365
366	modrm->got = 1;
367	return 0;
368
369err_out:
370	return -ENODATA;
371}
372
373
374/**
375 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
376 * @insn:	&struct insn containing instruction
377 *
378 * If necessary, first collects the instruction up to and including the
379 * ModRM byte.  No effect if @insn->x86_64 is 0.
380 */
381int insn_rip_relative(struct insn *insn)
382{
383	struct insn_field *modrm = &insn->modrm;
384	int ret;
385
386	if (!insn->x86_64)
387		return 0;
388
389	if (!modrm->got) {
390		ret = insn_get_modrm(insn);
391		if (ret)
392			return 0;
393	}
394	/*
395	 * For rip-relative instructions, the mod field (top 2 bits)
396	 * is zero and the r/m field (bottom 3 bits) is 0x5.
397	 */
398	return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
399}
400
401/**
402 * insn_get_sib() - Get the SIB byte of instruction
403 * @insn:	&struct insn containing instruction
404 *
405 * If necessary, first collects the instruction up to and including the
406 * ModRM byte.
407 *
408 * Returns:
409 * 0: if decoding succeeded
410 * < 0: otherwise.
411 */
412int insn_get_sib(struct insn *insn)
413{
414	insn_byte_t modrm;
415	int ret;
416
417	if (insn->sib.got)
418		return 0;
419
420	if (!insn->modrm.got) {
421		ret = insn_get_modrm(insn);
422		if (ret)
423			return ret;
424	}
425
426	if (insn->modrm.nbytes) {
427		modrm = insn->modrm.bytes[0];
428		if (insn->addr_bytes != 2 &&
429		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
430			insn_field_set(&insn->sib,
431				       get_next(insn_byte_t, insn), 1);
432		}
433	}
434	insn->sib.got = 1;
435
436	return 0;
437
438err_out:
439	return -ENODATA;
440}
441
442
443/**
444 * insn_get_displacement() - Get the displacement of instruction
445 * @insn:	&struct insn containing instruction
446 *
447 * If necessary, first collects the instruction up to and including the
448 * SIB byte.
449 * Displacement value is sign-expanded.
450 *
451 * * Returns:
452 * 0: if decoding succeeded
453 * < 0: otherwise.
454 */
455int insn_get_displacement(struct insn *insn)
456{
457	insn_byte_t mod, rm, base;
458	int ret;
459
460	if (insn->displacement.got)
461		return 0;
462
463	if (!insn->sib.got) {
464		ret = insn_get_sib(insn);
465		if (ret)
466			return ret;
467	}
468
469	if (insn->modrm.nbytes) {
470		/*
471		 * Interpreting the modrm byte:
472		 * mod = 00 - no displacement fields (exceptions below)
473		 * mod = 01 - 1-byte displacement field
474		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
475		 * 	address size = 2 (0x67 prefix in 32-bit mode)
476		 * mod = 11 - no memory operand
477		 *
478		 * If address size = 2...
479		 * mod = 00, r/m = 110 - displacement field is 2 bytes
480		 *
481		 * If address size != 2...
482		 * mod != 11, r/m = 100 - SIB byte exists
483		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
484		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
485		 * 	field is 4 bytes
486		 */
487		mod = X86_MODRM_MOD(insn->modrm.value);
488		rm = X86_MODRM_RM(insn->modrm.value);
489		base = X86_SIB_BASE(insn->sib.value);
490		if (mod == 3)
491			goto out;
492		if (mod == 1) {
493			insn_field_set(&insn->displacement,
494				       get_next(signed char, insn), 1);
495		} else if (insn->addr_bytes == 2) {
496			if ((mod == 0 && rm == 6) || mod == 2) {
497				insn_field_set(&insn->displacement,
498					       get_next(short, insn), 2);
499			}
500		} else {
501			if ((mod == 0 && rm == 5) || mod == 2 ||
502			    (mod == 0 && base == 5)) {
503				insn_field_set(&insn->displacement,
504					       get_next(int, insn), 4);
505			}
506		}
507	}
508out:
509	insn->displacement.got = 1;
510	return 0;
511
512err_out:
513	return -ENODATA;
514}
515
516/* Decode moffset16/32/64. Return 0 if failed */
517static int __get_moffset(struct insn *insn)
518{
519	switch (insn->addr_bytes) {
520	case 2:
521		insn_field_set(&insn->moffset1, get_next(short, insn), 2);
522		break;
523	case 4:
524		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
525		break;
526	case 8:
527		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
528		insn_field_set(&insn->moffset2, get_next(int, insn), 4);
529		break;
530	default:	/* opnd_bytes must be modified manually */
531		goto err_out;
532	}
533	insn->moffset1.got = insn->moffset2.got = 1;
534
535	return 1;
536
537err_out:
538	return 0;
539}
540
541/* Decode imm v32(Iz). Return 0 if failed */
542static int __get_immv32(struct insn *insn)
543{
544	switch (insn->opnd_bytes) {
545	case 2:
546		insn_field_set(&insn->immediate, get_next(short, insn), 2);
547		break;
548	case 4:
549	case 8:
550		insn_field_set(&insn->immediate, get_next(int, insn), 4);
551		break;
552	default:	/* opnd_bytes must be modified manually */
553		goto err_out;
554	}
555
556	return 1;
557
558err_out:
559	return 0;
560}
561
562/* Decode imm v64(Iv/Ov), Return 0 if failed */
563static int __get_immv(struct insn *insn)
564{
565	switch (insn->opnd_bytes) {
566	case 2:
567		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
568		break;
569	case 4:
570		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
571		insn->immediate1.nbytes = 4;
572		break;
573	case 8:
574		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
575		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
576		break;
577	default:	/* opnd_bytes must be modified manually */
578		goto err_out;
579	}
580	insn->immediate1.got = insn->immediate2.got = 1;
581
582	return 1;
583err_out:
584	return 0;
585}
586
587/* Decode ptr16:16/32(Ap) */
588static int __get_immptr(struct insn *insn)
589{
590	switch (insn->opnd_bytes) {
591	case 2:
592		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
593		break;
594	case 4:
595		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
596		break;
597	case 8:
598		/* ptr16:64 is not exist (no segment) */
599		return 0;
600	default:	/* opnd_bytes must be modified manually */
601		goto err_out;
602	}
603	insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
604	insn->immediate1.got = insn->immediate2.got = 1;
605
606	return 1;
607err_out:
608	return 0;
609}
610
611/**
612 * insn_get_immediate() - Get the immediate in an instruction
613 * @insn:	&struct insn containing instruction
614 *
615 * If necessary, first collects the instruction up to and including the
616 * displacement bytes.
617 * Basically, most of immediates are sign-expanded. Unsigned-value can be
618 * computed by bit masking with ((1 << (nbytes * 8)) - 1)
619 *
620 * Returns:
621 * 0:  on success
622 * < 0: on error
623 */
624int insn_get_immediate(struct insn *insn)
625{
626	int ret;
627
628	if (insn->immediate.got)
629		return 0;
630
631	if (!insn->displacement.got) {
632		ret = insn_get_displacement(insn);
633		if (ret)
634			return ret;
635	}
636
637	if (inat_has_moffset(insn->attr)) {
638		if (!__get_moffset(insn))
639			goto err_out;
640		goto done;
641	}
642
643	if (!inat_has_immediate(insn->attr))
644		/* no immediates */
645		goto done;
646
647	switch (inat_immediate_size(insn->attr)) {
648	case INAT_IMM_BYTE:
649		insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
650		break;
651	case INAT_IMM_WORD:
652		insn_field_set(&insn->immediate, get_next(short, insn), 2);
653		break;
654	case INAT_IMM_DWORD:
655		insn_field_set(&insn->immediate, get_next(int, insn), 4);
656		break;
657	case INAT_IMM_QWORD:
658		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
659		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
660		break;
661	case INAT_IMM_PTR:
662		if (!__get_immptr(insn))
663			goto err_out;
664		break;
665	case INAT_IMM_VWORD32:
666		if (!__get_immv32(insn))
667			goto err_out;
668		break;
669	case INAT_IMM_VWORD:
670		if (!__get_immv(insn))
671			goto err_out;
672		break;
673	default:
674		/* Here, insn must have an immediate, but failed */
675		goto err_out;
676	}
677	if (inat_has_second_immediate(insn->attr)) {
678		insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
679	}
680done:
681	insn->immediate.got = 1;
682	return 0;
683
684err_out:
685	return -ENODATA;
686}
687
688/**
689 * insn_get_length() - Get the length of instruction
690 * @insn:	&struct insn containing instruction
691 *
692 * If necessary, first collects the instruction up to and including the
693 * immediates bytes.
694 *
695 * Returns:
696 *  - 0 on success
697 *  - < 0 on error
698*/
699int insn_get_length(struct insn *insn)
700{
701	int ret;
702
703	if (insn->length)
704		return 0;
705
706	if (!insn->immediate.got) {
707		ret = insn_get_immediate(insn);
708		if (ret)
709			return ret;
710	}
711
712	insn->length = (unsigned char)((unsigned long)insn->next_byte
713				     - (unsigned long)insn->kaddr);
714
715	return 0;
716}
717
718/* Ensure this instruction is decoded completely */
719static inline int insn_complete(struct insn *insn)
720{
721	return insn->opcode.got && insn->modrm.got && insn->sib.got &&
722		insn->displacement.got && insn->immediate.got;
723}
724
725/**
726 * insn_decode() - Decode an x86 instruction
727 * @insn:	&struct insn to be initialized
728 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
729 * @buf_len:	length of the insn buffer at @kaddr
730 * @m:		insn mode, see enum insn_mode
731 *
732 * Returns:
733 * 0: if decoding succeeded
734 * < 0: otherwise.
735 */
736int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
737{
738	int ret;
739
740#define INSN_MODE_KERN (enum insn_mode)-1 /* __ignore_sync_check__ mode is only valid in the kernel */
741
742	if (m == INSN_MODE_KERN)
743		insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
744	else
745		insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
746
747	ret = insn_get_length(insn);
748	if (ret)
749		return ret;
750
751	if (insn_complete(insn))
752		return 0;
753
754	return -EINVAL;
755}