Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3 *                   Takashi Iwai <tiwai@suse.de>
  4 * 
  5 *  Generic memory allocators
  6 *
  7 *
  8 *   This program is free software; you can redistribute it and/or modify
  9 *   it under the terms of the GNU General Public License as published by
 10 *   the Free Software Foundation; either version 2 of the License, or
 11 *   (at your option) any later version.
 12 *
 13 *   This program is distributed in the hope that it will be useful,
 14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 *   GNU General Public License for more details.
 17 *
 18 *   You should have received a copy of the GNU General Public License
 19 *   along with this program; if not, write to the Free Software
 20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/proc_fs.h>
 26#include <linux/init.h>
 27#include <linux/pci.h>
 28#include <linux/slab.h>
 29#include <linux/mm.h>
 30#include <linux/seq_file.h>
 31#include <asm/uaccess.h>
 32#include <linux/dma-mapping.h>
 33#include <linux/moduleparam.h>
 34#include <linux/mutex.h>
 
 
 
 
 
 35#include <sound/memalloc.h>
 
 36
 
 
 
 
 37
 38MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@perex.cz>");
 39MODULE_DESCRIPTION("Memory allocator for ALSA system.");
 40MODULE_LICENSE("GPL");
 41
 42
 43/*
 44 */
 45
 46static DEFINE_MUTEX(list_mutex);
 47static LIST_HEAD(mem_list_head);
 48
 49/* buffer preservation list */
 50struct snd_mem_list {
 51	struct snd_dma_buffer buffer;
 52	unsigned int id;
 53	struct list_head list;
 54};
 55
 56/* id for pre-allocated buffers */
 57#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
 58
 59/*
 60 *
 61 *  Generic memory allocators
 62 *
 63 */
 64
 65static long snd_allocated_pages; /* holding the number of allocated pages */
 66
 67static inline void inc_snd_pages(int order)
 68{
 69	snd_allocated_pages += 1 << order;
 70}
 71
 72static inline void dec_snd_pages(int order)
 73{
 74	snd_allocated_pages -= 1 << order;
 75}
 76
 77/**
 78 * snd_malloc_pages - allocate pages with the given size
 79 * @size: the size to allocate in bytes
 80 * @gfp_flags: the allocation conditions, GFP_XXX
 81 *
 82 * Allocates the physically contiguous pages with the given size.
 83 *
 84 * Returns the pointer of the buffer, or NULL if no enoguh memory.
 85 */
 86void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
 87{
 88	int pg;
 89	void *res;
 90
 91	if (WARN_ON(!size))
 92		return NULL;
 93	if (WARN_ON(!gfp_flags))
 94		return NULL;
 95	gfp_flags |= __GFP_COMP;	/* compound page lets parts be mapped */
 96	pg = get_order(size);
 97	if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
 98		inc_snd_pages(pg);
 99	return res;
100}
101
102/**
103 * snd_free_pages - release the pages
104 * @ptr: the buffer pointer to release
105 * @size: the allocated buffer size
106 *
107 * Releases the buffer allocated via snd_malloc_pages().
108 */
109void snd_free_pages(void *ptr, size_t size)
110{
111	int pg;
112
113	if (ptr == NULL)
114		return;
115	pg = get_order(size);
116	dec_snd_pages(pg);
117	free_pages((unsigned long) ptr, pg);
118}
119
120/*
121 *
122 *  Bus-specific memory allocators
123 *
124 */
125
126#ifdef CONFIG_HAS_DMA
127/* allocate the coherent DMA pages */
128static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
129{
130	int pg;
131	void *res;
132	gfp_t gfp_flags;
133
134	if (WARN_ON(!dma))
135		return NULL;
136	pg = get_order(size);
137	gfp_flags = GFP_KERNEL
138		| __GFP_COMP	/* compound page lets parts be mapped */
139		| __GFP_NORETRY /* don't trigger OOM-killer */
140		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
141	res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
142	if (res != NULL)
143		inc_snd_pages(pg);
144
145	return res;
146}
147
148/* free the coherent DMA pages */
149static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
150			       dma_addr_t dma)
151{
152	int pg;
153
154	if (ptr == NULL)
155		return;
156	pg = get_order(size);
157	dec_snd_pages(pg);
158	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
159}
160#endif /* CONFIG_HAS_DMA */
161
162/*
163 *
164 *  ALSA generic memory management
165 *
166 */
167
168
169/**
170 * snd_dma_alloc_pages - allocate the buffer area according to the given type
 
171 * @type: the DMA buffer type
172 * @device: the device pointer
 
173 * @size: the buffer size to allocate
174 * @dmab: buffer allocation record to store the allocated data
175 *
176 * Calls the memory-allocator function for the corresponding
177 * buffer type.
178 * 
179 * Returns zero if the buffer with the given size is allocated successfuly,
180 * other a negative value at error.
181 */
182int snd_dma_alloc_pages(int type, struct device *device, size_t size,
183			struct snd_dma_buffer *dmab)
 
184{
185	if (WARN_ON(!size))
186		return -ENXIO;
187	if (WARN_ON(!dmab))
188		return -ENXIO;
189
 
190	dmab->dev.type = type;
191	dmab->dev.dev = device;
 
192	dmab->bytes = 0;
193	switch (type) {
194	case SNDRV_DMA_TYPE_CONTINUOUS:
195		dmab->area = snd_malloc_pages(size,
196					(__force gfp_t)(unsigned long)device);
197		dmab->addr = 0;
198		break;
199#ifdef CONFIG_HAS_DMA
200	case SNDRV_DMA_TYPE_DEV:
201		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
202		break;
203#endif
204#ifdef CONFIG_SND_DMA_SGBUF
205	case SNDRV_DMA_TYPE_DEV_SG:
206		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
207		break;
208#endif
209	default:
210		printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
211		dmab->area = NULL;
212		dmab->addr = 0;
213		return -ENXIO;
214	}
215	if (! dmab->area)
216		return -ENOMEM;
217	dmab->bytes = size;
218	return 0;
219}
 
220
221/**
222 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
223 * @type: the DMA buffer type
224 * @device: the device pointer
225 * @size: the buffer size to allocate
226 * @dmab: buffer allocation record to store the allocated data
227 *
228 * Calls the memory-allocator function for the corresponding
229 * buffer type.  When no space is left, this function reduces the size and
230 * tries to allocate again.  The size actually allocated is stored in
231 * res_size argument.
232 * 
233 * Returns zero if the buffer with the given size is allocated successfuly,
234 * other a negative value at error.
235 */
236int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
237				 struct snd_dma_buffer *dmab)
238{
239	int err;
240
241	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
242		size_t aligned_size;
243		if (err != -ENOMEM)
244			return err;
245		if (size <= PAGE_SIZE)
246			return -ENOMEM;
247		aligned_size = PAGE_SIZE << get_order(size);
248		if (size != aligned_size)
249			size = aligned_size;
250		else
251			size >>= 1;
252	}
253	if (! dmab->area)
254		return -ENOMEM;
255	return 0;
256}
257
258
259/**
260 * snd_dma_free_pages - release the allocated buffer
261 * @dmab: the buffer allocation record to release
262 *
263 * Releases the allocated buffer via snd_dma_alloc_pages().
264 */
265void snd_dma_free_pages(struct snd_dma_buffer *dmab)
266{
267	switch (dmab->dev.type) {
268	case SNDRV_DMA_TYPE_CONTINUOUS:
269		snd_free_pages(dmab->area, dmab->bytes);
270		break;
271#ifdef CONFIG_HAS_DMA
272	case SNDRV_DMA_TYPE_DEV:
273		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
274		break;
275#endif
276#ifdef CONFIG_SND_DMA_SGBUF
277	case SNDRV_DMA_TYPE_DEV_SG:
278		snd_free_sgbuf_pages(dmab);
279		break;
280#endif
281	default:
282		printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
283	}
284}
 
285
 
 
 
 
 
286
287/**
288 * snd_dma_get_reserved - get the reserved buffer for the given device
289 * @dmab: the buffer allocation record to store
290 * @id: the buffer id
 
 
291 *
292 * Looks for the reserved-buffer list and re-uses if the same buffer
293 * is found in the list.  When the buffer is found, it's removed from the free list.
294 *
295 * Returns the size of buffer if the buffer is found, or zero if not found.
 
 
 
 
296 */
297size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
 
 
298{
299	struct snd_mem_list *mem;
 
300
301	if (WARN_ON(!dmab))
302		return 0;
 
303
304	mutex_lock(&list_mutex);
305	list_for_each_entry(mem, &mem_list_head, list) {
306		if (mem->id == id &&
307		    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
308		     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
309			struct device *dev = dmab->dev.dev;
310			list_del(&mem->list);
311			*dmab = mem->buffer;
312			if (dmab->dev.dev == NULL)
313				dmab->dev.dev = dev;
314			kfree(mem);
315			mutex_unlock(&list_mutex);
316			return dmab->bytes;
317		}
318	}
319	mutex_unlock(&list_mutex);
320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321}
 
322
 
323/**
324 * snd_dma_reserve_buf - reserve the buffer
325 * @dmab: the buffer to reserve
326 * @id: the buffer id
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327 *
328 * Reserves the given buffer as a reserved buffer.
329 * 
330 * Returns zero if successful, or a negative code at error.
331 */
332int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
333{
334	struct snd_mem_list *mem;
335
336	if (WARN_ON(!dmab))
337		return -EINVAL;
338	mem = kmalloc(sizeof(*mem), GFP_KERNEL);
339	if (! mem)
340		return -ENOMEM;
341	mutex_lock(&list_mutex);
342	mem->buffer = *dmab;
343	mem->id = id;
344	list_add_tail(&mem->list, &mem_list_head);
345	mutex_unlock(&list_mutex);
346	return 0;
347}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
349/*
350 * purge all reserved buffers
351 */
352static void free_all_reserved_pages(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353{
354	struct list_head *p;
355	struct snd_mem_list *mem;
356
357	mutex_lock(&list_mutex);
358	while (! list_empty(&mem_list_head)) {
359		p = mem_list_head.next;
360		mem = list_entry(p, struct snd_mem_list, list);
361		list_del(p);
362		snd_dma_free_pages(&mem->buffer);
363		kfree(mem);
 
 
 
 
364	}
365	mutex_unlock(&list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366}
367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
369#ifdef CONFIG_PROC_FS
370/*
371 * proc file interface
372 */
373#define SND_MEM_PROC_FILE	"driver/snd-page-alloc"
374static struct proc_dir_entry *snd_mem_proc;
 
 
375
376static int snd_mem_proc_read(struct seq_file *seq, void *offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377{
378	long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
379	struct snd_mem_list *mem;
380	int devno;
381	static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG" };
382
383	mutex_lock(&list_mutex);
384	seq_printf(seq, "pages  : %li bytes (%li pages per %likB)\n",
385		   pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
386	devno = 0;
387	list_for_each_entry(mem, &mem_list_head, list) {
388		devno++;
389		seq_printf(seq, "buffer %d : ID %08x : type %s\n",
390			   devno, mem->id, types[mem->buffer.dev.type]);
391		seq_printf(seq, "  addr = 0x%lx, size = %d bytes\n",
392			   (unsigned long)mem->buffer.addr,
393			   (int)mem->buffer.bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394	}
395	mutex_unlock(&list_mutex);
396	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397}
398
399static int snd_mem_proc_open(struct inode *inode, struct file *file)
400{
401	return single_open(file, snd_mem_proc_read, NULL);
 
 
 
 
 
402}
403
404/* FIXME: for pci only - other bus? */
405#ifdef CONFIG_PCI
406#define gettoken(bufp) strsep(bufp, " \t\n")
407
408static ssize_t snd_mem_proc_write(struct file *file, const char __user * buffer,
409				  size_t count, loff_t * ppos)
410{
411	char buf[128];
412	char *token, *p;
413
414	if (count > sizeof(buf) - 1)
415		return -EINVAL;
416	if (copy_from_user(buf, buffer, count))
417		return -EFAULT;
418	buf[count] = '\0';
419
420	p = buf;
421	token = gettoken(&p);
422	if (! token || *token == '#')
423		return count;
424	if (strcmp(token, "add") == 0) {
425		char *endp;
426		int vendor, device, size, buffers;
427		long mask;
428		int i, alloced;
429		struct pci_dev *pci;
430
431		if ((token = gettoken(&p)) == NULL ||
432		    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
433		    (token = gettoken(&p)) == NULL ||
434		    (device = simple_strtol(token, NULL, 0)) <= 0 ||
435		    (token = gettoken(&p)) == NULL ||
436		    (mask = simple_strtol(token, NULL, 0)) < 0 ||
437		    (token = gettoken(&p)) == NULL ||
438		    (size = memparse(token, &endp)) < 64*1024 ||
439		    size > 16*1024*1024 /* too big */ ||
440		    (token = gettoken(&p)) == NULL ||
441		    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
442		    buffers > 4) {
443			printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
444			return count;
 
 
 
 
 
 
 
445		}
446		vendor &= 0xffff;
447		device &= 0xffff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448
449		alloced = 0;
450		pci = NULL;
451		while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
452			if (mask > 0 && mask < 0xffffffff) {
453				if (pci_set_dma_mask(pci, mask) < 0 ||
454				    pci_set_consistent_dma_mask(pci, mask) < 0) {
455					printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
456					pci_dev_put(pci);
457					return count;
458				}
459			}
460			for (i = 0; i < buffers; i++) {
461				struct snd_dma_buffer dmab;
462				memset(&dmab, 0, sizeof(dmab));
463				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
464							size, &dmab) < 0) {
465					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
466					pci_dev_put(pci);
467					return count;
468				}
469				snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
470			}
471			alloced++;
 
 
 
472		}
473		if (! alloced) {
474			for (i = 0; i < buffers; i++) {
475				struct snd_dma_buffer dmab;
476				memset(&dmab, 0, sizeof(dmab));
477				/* FIXME: We can allocate only in ZONE_DMA
478				 * without a device pointer!
479				 */
480				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
481							size, &dmab) < 0) {
482					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
483					break;
484				}
485				snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
486			}
487		}
488	} else if (strcmp(token, "erase") == 0)
489		/* FIXME: need for releasing each buffer chunk? */
490		free_all_reserved_pages();
491	else
492		printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
493	return count;
 
 
 
 
 
 
 
 
 
 
 
494}
495#endif /* CONFIG_PCI */
496
497static const struct file_operations snd_mem_proc_fops = {
498	.owner		= THIS_MODULE,
499	.open		= snd_mem_proc_open,
500	.read		= seq_read,
501#ifdef CONFIG_PCI
502	.write		= snd_mem_proc_write,
503#endif
504	.llseek		= seq_lseek,
505	.release	= single_release,
506};
507
508#endif /* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
510/*
511 * module entry
512 */
 
 
 
513
514static int __init snd_mem_init(void)
 
 
 
 
 
 
 
515{
516#ifdef CONFIG_PROC_FS
517	snd_mem_proc = proc_create(SND_MEM_PROC_FILE, 0644, NULL,
518				   &snd_mem_proc_fops);
519#endif
520	return 0;
521}
522
523static void __exit snd_mem_exit(void)
 
524{
525	remove_proc_entry(SND_MEM_PROC_FILE, NULL);
526	free_all_reserved_pages();
527	if (snd_allocated_pages > 0)
528		printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
529}
530
 
 
 
 
 
 
 
 
 
 
 
 
 
531
532module_init(snd_mem_init)
533module_exit(snd_mem_exit)
 
 
 
 
534
 
535
536/*
537 * exports
538 */
539EXPORT_SYMBOL(snd_dma_alloc_pages);
540EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
541EXPORT_SYMBOL(snd_dma_free_pages);
542
543EXPORT_SYMBOL(snd_dma_get_reserved_buf);
544EXPORT_SYMBOL(snd_dma_reserve_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545
546EXPORT_SYMBOL(snd_malloc_pages);
547EXPORT_SYMBOL(snd_free_pages);
 
 
 
 
 
 
 
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4 *                   Takashi Iwai <tiwai@suse.de>
  5 * 
  6 *  Generic memory allocators
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8
 
 
 
 
  9#include <linux/slab.h>
 10#include <linux/mm.h>
 
 
 11#include <linux/dma-mapping.h>
 12#include <linux/dma-map-ops.h>
 13#include <linux/genalloc.h>
 14#include <linux/highmem.h>
 15#include <linux/vmalloc.h>
 16#ifdef CONFIG_X86
 17#include <asm/set_memory.h>
 18#endif
 19#include <sound/memalloc.h>
 20#include "memalloc_local.h"
 21
 22#define DEFAULT_GFP \
 23	(GFP_KERNEL | \
 24	 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
 25	 __GFP_NOWARN)   /* no stack trace print - this call is non-critical */
 26
 27static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29#ifdef CONFIG_SND_DMA_SGBUF
 30static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
 31#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
 
 
 34{
 35	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
 
 
 36
 37	if (WARN_ON_ONCE(!ops || !ops->alloc))
 38		return NULL;
 39	return ops->alloc(dmab, size);
 
 
 
 
 
 
 
 
 
 40}
 41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42/**
 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
 44 *	type and direction
 45 * @type: the DMA buffer type
 46 * @device: the device pointer
 47 * @dir: DMA direction
 48 * @size: the buffer size to allocate
 49 * @dmab: buffer allocation record to store the allocated data
 50 *
 51 * Calls the memory-allocator function for the corresponding
 52 * buffer type.
 53 *
 54 * Return: Zero if the buffer with the given size is allocated successfully,
 55 * otherwise a negative value on error.
 56 */
 57int snd_dma_alloc_dir_pages(int type, struct device *device,
 58			    enum dma_data_direction dir, size_t size,
 59			    struct snd_dma_buffer *dmab)
 60{
 61	if (WARN_ON(!size))
 62		return -ENXIO;
 63	if (WARN_ON(!dmab))
 64		return -ENXIO;
 65
 66	size = PAGE_ALIGN(size);
 67	dmab->dev.type = type;
 68	dmab->dev.dev = device;
 69	dmab->dev.dir = dir;
 70	dmab->bytes = 0;
 71	dmab->addr = 0;
 72	dmab->private_data = NULL;
 73	dmab->area = __snd_dma_alloc_pages(dmab, size);
 74	if (!dmab->area)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75		return -ENOMEM;
 76	dmab->bytes = size;
 77	return 0;
 78}
 79EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
 80
 81/**
 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
 83 * @type: the DMA buffer type
 84 * @device: the device pointer
 85 * @size: the buffer size to allocate
 86 * @dmab: buffer allocation record to store the allocated data
 87 *
 88 * Calls the memory-allocator function for the corresponding
 89 * buffer type.  When no space is left, this function reduces the size and
 90 * tries to allocate again.  The size actually allocated is stored in
 91 * res_size argument.
 92 *
 93 * Return: Zero if the buffer with the given size is allocated successfully,
 94 * otherwise a negative value on error.
 95 */
 96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
 97				 struct snd_dma_buffer *dmab)
 98{
 99	int err;
100
101	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
 
102		if (err != -ENOMEM)
103			return err;
104		if (size <= PAGE_SIZE)
105			return -ENOMEM;
106		size >>= 1;
107		size = PAGE_SIZE << get_order(size);
 
 
 
108	}
109	if (! dmab->area)
110		return -ENOMEM;
111	return 0;
112}
113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115/**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
121void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122{
123	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125	if (ops && ops->free)
126		ops->free(dmab);
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
128EXPORT_SYMBOL(snd_dma_free_pages);
129
130/* called by devres */
131static void __snd_release_pages(struct device *dev, void *res)
132{
133	snd_dma_free_pages(res);
134}
135
136/**
137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
138 * @dev: the device pointer
139 * @type: the DMA buffer type
140 * @dir: DMA direction
141 * @size: the buffer size to allocate
142 *
143 * Allocate buffer pages depending on the given type and manage using devres.
144 * The pages will be released automatically at the device removal.
145 *
146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
148 * SNDRV_DMA_TYPE_VMALLOC type.
149 *
150 * Return: the snd_dma_buffer object at success, or NULL if failed
151 */
152struct snd_dma_buffer *
153snd_devm_alloc_dir_pages(struct device *dev, int type,
154			 enum dma_data_direction dir, size_t size)
155{
156	struct snd_dma_buffer *dmab;
157	int err;
158
159	if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
160		    type == SNDRV_DMA_TYPE_VMALLOC))
161		return NULL;
162
163	dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
164	if (!dmab)
165		return NULL;
166
167	err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
168	if (err < 0) {
169		devres_free(dmab);
170		return NULL;
 
 
 
 
 
 
171	}
172
173	devres_add(dev, dmab);
174	return dmab;
175}
176EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
177
178/**
179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
180 * @dmab: buffer allocation information
181 * @area: VM area information
182 *
183 * Return: zero if successful, or a negative error code
184 */
185int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
186			struct vm_area_struct *area)
187{
188	const struct snd_malloc_ops *ops;
189
190	if (!dmab)
191		return -ENOENT;
192	ops = snd_dma_get_ops(dmab);
193	if (ops && ops->mmap)
194		return ops->mmap(dmab, area);
195	else
196		return -ENOENT;
197}
198EXPORT_SYMBOL(snd_dma_buffer_mmap);
199
200#ifdef CONFIG_HAS_DMA
201/**
202 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
203 * @dmab: buffer allocation information
204 * @mode: sync mode
205 */
206void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
207			 enum snd_dma_sync_mode mode)
208{
209	const struct snd_malloc_ops *ops;
210
211	if (!dmab || !dmab->dev.need_sync)
212		return;
213	ops = snd_dma_get_ops(dmab);
214	if (ops && ops->sync)
215		ops->sync(dmab, mode);
216}
217EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
218#endif /* CONFIG_HAS_DMA */
219
220/**
221 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
222 * @dmab: buffer allocation information
223 * @offset: offset in the ring buffer
224 *
225 * Return: the physical address
 
 
226 */
227dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
228{
229	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
230
231	if (ops && ops->get_addr)
232		return ops->get_addr(dmab, offset);
233	else
234		return dmab->addr + offset;
 
 
 
 
 
 
 
235}
236EXPORT_SYMBOL(snd_sgbuf_get_addr);
237
238/**
239 * snd_sgbuf_get_page - return the physical page at the corresponding offset
240 * @dmab: buffer allocation information
241 * @offset: offset in the ring buffer
242 *
243 * Return: the page pointer
244 */
245struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
246{
247	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
248
249	if (ops && ops->get_page)
250		return ops->get_page(dmab, offset);
251	else
252		return virt_to_page(dmab->area + offset);
253}
254EXPORT_SYMBOL(snd_sgbuf_get_page);
255
256/**
257 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
258 *	on sg-buffer
259 * @dmab: buffer allocation information
260 * @ofs: offset in the ring buffer
261 * @size: the requested size
262 *
263 * Return: the chunk size
264 */
265unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
266				      unsigned int ofs, unsigned int size)
267{
268	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
269
270	if (ops && ops->get_chunk_size)
271		return ops->get_chunk_size(dmab, ofs, size);
272	else
273		return size;
274}
275EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
276
277/*
278 * Continuous pages allocator
279 */
280static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
281			    bool wc)
282{
283	void *p;
284	gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
285
286 again:
287	p = alloc_pages_exact(size, gfp);
288	if (!p)
289		return NULL;
290	*addr = page_to_phys(virt_to_page(p));
291	if (!dev)
292		return p;
293	if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
294		if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
295			gfp |= GFP_DMA32;
296			goto again;
297		}
298		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
299			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
300			goto again;
301		}
302	}
303#ifdef CONFIG_X86
304	if (wc)
305		set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
306#endif
307	return p;
308}
309
310static void do_free_pages(void *p, size_t size, bool wc)
311{
312#ifdef CONFIG_X86
313	if (wc)
314		set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
315#endif
316	free_pages_exact(p, size);
317}
318
319
320static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
321{
322	return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
323}
324
325static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
326{
327	do_free_pages(dmab->area, dmab->bytes, false);
328}
329
330static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
331				   struct vm_area_struct *area)
332{
333	return remap_pfn_range(area, area->vm_start,
334			       dmab->addr >> PAGE_SHIFT,
335			       area->vm_end - area->vm_start,
336			       area->vm_page_prot);
337}
338
339static const struct snd_malloc_ops snd_dma_continuous_ops = {
340	.alloc = snd_dma_continuous_alloc,
341	.free = snd_dma_continuous_free,
342	.mmap = snd_dma_continuous_mmap,
343};
344
345/*
346 * VMALLOC allocator
347 */
348static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
349{
350	return vmalloc(size);
351}
352
353static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
354{
355	vfree(dmab->area);
356}
357
358static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
359				struct vm_area_struct *area)
360{
361	return remap_vmalloc_range(area, dmab->area, 0);
362}
363
364#define get_vmalloc_page_addr(dmab, offset) \
365	page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
366
367static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
368					   size_t offset)
369{
370	return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
371}
372
373static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
374					     size_t offset)
375{
376	return vmalloc_to_page(dmab->area + offset);
377}
378
379static unsigned int
380snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
381			       unsigned int ofs, unsigned int size)
382{
383	unsigned int start, end;
384	unsigned long addr;
385
386	start = ALIGN_DOWN(ofs, PAGE_SIZE);
387	end = ofs + size - 1; /* the last byte address */
388	/* check page continuity */
389	addr = get_vmalloc_page_addr(dmab, start);
390	for (;;) {
391		start += PAGE_SIZE;
392		if (start > end)
393			break;
394		addr += PAGE_SIZE;
395		if (get_vmalloc_page_addr(dmab, start) != addr)
396			return start - ofs;
397	}
398	/* ok, all on continuous pages */
399	return size;
400}
401
402static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
403	.alloc = snd_dma_vmalloc_alloc,
404	.free = snd_dma_vmalloc_free,
405	.mmap = snd_dma_vmalloc_mmap,
406	.get_addr = snd_dma_vmalloc_get_addr,
407	.get_page = snd_dma_vmalloc_get_page,
408	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
409};
410
411#ifdef CONFIG_HAS_DMA
412/*
413 * IRAM allocator
414 */
415#ifdef CONFIG_GENERIC_ALLOCATOR
416static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
417{
418	struct device *dev = dmab->dev.dev;
419	struct gen_pool *pool;
420	void *p;
421
422	if (dev->of_node) {
423		pool = of_gen_pool_get(dev->of_node, "iram", 0);
424		/* Assign the pool into private_data field */
425		dmab->private_data = pool;
426
427		p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
428		if (p)
429			return p;
430	}
431
432	/* Internal memory might have limited size and no enough space,
433	 * so if we fail to malloc, try to fetch memory traditionally.
434	 */
435	dmab->dev.type = SNDRV_DMA_TYPE_DEV;
436	return __snd_dma_alloc_pages(dmab, size);
437}
438
439static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
440{
441	struct gen_pool *pool = dmab->private_data;
442
443	if (pool && dmab->area)
444		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
445}
446
447static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
448			     struct vm_area_struct *area)
449{
450	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
451	return remap_pfn_range(area, area->vm_start,
452			       dmab->addr >> PAGE_SHIFT,
453			       area->vm_end - area->vm_start,
454			       area->vm_page_prot);
455}
456
457static const struct snd_malloc_ops snd_dma_iram_ops = {
458	.alloc = snd_dma_iram_alloc,
459	.free = snd_dma_iram_free,
460	.mmap = snd_dma_iram_mmap,
461};
462#endif /* CONFIG_GENERIC_ALLOCATOR */
463
 
464/*
465 * Coherent device pages allocator
466 */
467static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
468{
469	return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
470}
471
472static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
473{
474	dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
475}
476
477static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
478			    struct vm_area_struct *area)
479{
480	return dma_mmap_coherent(dmab->dev.dev, area,
481				 dmab->area, dmab->addr, dmab->bytes);
482}
483
484static const struct snd_malloc_ops snd_dma_dev_ops = {
485	.alloc = snd_dma_dev_alloc,
486	.free = snd_dma_dev_free,
487	.mmap = snd_dma_dev_mmap,
488};
489
490/*
491 * Write-combined pages
492 */
493/* x86-specific allocations */
494#ifdef CONFIG_SND_DMA_SGBUF
495static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
496{
497	return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
498}
499
500static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
501{
502	do_free_pages(dmab->area, dmab->bytes, true);
503}
504
505static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
506			   struct vm_area_struct *area)
507{
508	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
509	return snd_dma_continuous_mmap(dmab, area);
510}
511#else
512static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
513{
514	return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
515}
516
517static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
518{
519	dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
520}
521
522static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523			   struct vm_area_struct *area)
524{
525	return dma_mmap_wc(dmab->dev.dev, area,
526			   dmab->area, dmab->addr, dmab->bytes);
527}
528#endif /* CONFIG_SND_DMA_SGBUF */
529
530static const struct snd_malloc_ops snd_dma_wc_ops = {
531	.alloc = snd_dma_wc_alloc,
532	.free = snd_dma_wc_free,
533	.mmap = snd_dma_wc_mmap,
534};
535
536/*
537 * Non-contiguous pages allocator
538 */
539static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
540{
541	struct sg_table *sgt;
542	void *p;
543
544#ifdef CONFIG_SND_DMA_SGBUF
545	if (cpu_feature_enabled(X86_FEATURE_XENPV))
546		return snd_dma_sg_fallback_alloc(dmab, size);
547#endif
548	sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
549				      DEFAULT_GFP, 0);
550#ifdef CONFIG_SND_DMA_SGBUF
551	if (!sgt && !get_dma_ops(dmab->dev.dev))
552		return snd_dma_sg_fallback_alloc(dmab, size);
553#endif
554	if (!sgt)
555		return NULL;
556
557	dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
558					    sg_dma_address(sgt->sgl));
559	p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
560	if (p) {
561		dmab->private_data = sgt;
562		/* store the first page address for convenience */
563		dmab->addr = snd_sgbuf_get_addr(dmab, 0);
564	} else {
565		dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
566	}
567	return p;
568}
569
570static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
571{
572	dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
573	dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
574			       dmab->dev.dir);
575}
576
577static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
578				  struct vm_area_struct *area)
579{
580	return dma_mmap_noncontiguous(dmab->dev.dev, area,
581				      dmab->bytes, dmab->private_data);
582}
583
584static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
585				   enum snd_dma_sync_mode mode)
586{
587	if (mode == SNDRV_DMA_SYNC_CPU) {
588		if (dmab->dev.dir == DMA_TO_DEVICE)
589			return;
590		invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
591		dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
592					 dmab->dev.dir);
593	} else {
594		if (dmab->dev.dir == DMA_FROM_DEVICE)
595			return;
596		flush_kernel_vmap_range(dmab->area, dmab->bytes);
597		dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
598					    dmab->dev.dir);
599	}
600}
601
602static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
603					      struct sg_page_iter *piter,
604					      size_t offset)
605{
606	struct sg_table *sgt = dmab->private_data;
607
608	__sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
609			     offset >> PAGE_SHIFT);
610}
611
612static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
613					     size_t offset)
614{
615	struct sg_dma_page_iter iter;
616
617	snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
618	__sg_page_iter_dma_next(&iter);
619	return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
620}
621
622static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
623					       size_t offset)
624{
625	struct sg_page_iter iter;
626
627	snd_dma_noncontig_iter_set(dmab, &iter, offset);
628	__sg_page_iter_next(&iter);
629	return sg_page_iter_page(&iter);
630}
631
632static unsigned int
633snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
634				 unsigned int ofs, unsigned int size)
635{
636	struct sg_dma_page_iter iter;
637	unsigned int start, end;
638	unsigned long addr;
639
640	start = ALIGN_DOWN(ofs, PAGE_SIZE);
641	end = ofs + size - 1; /* the last byte address */
642	snd_dma_noncontig_iter_set(dmab, &iter.base, start);
643	if (!__sg_page_iter_dma_next(&iter))
644		return 0;
645	/* check page continuity */
646	addr = sg_page_iter_dma_address(&iter);
647	for (;;) {
648		start += PAGE_SIZE;
649		if (start > end)
650			break;
651		addr += PAGE_SIZE;
652		if (!__sg_page_iter_dma_next(&iter) ||
653		    sg_page_iter_dma_address(&iter) != addr)
654			return start - ofs;
655	}
656	/* ok, all on continuous pages */
657	return size;
658}
659
660static const struct snd_malloc_ops snd_dma_noncontig_ops = {
661	.alloc = snd_dma_noncontig_alloc,
662	.free = snd_dma_noncontig_free,
663	.mmap = snd_dma_noncontig_mmap,
664	.sync = snd_dma_noncontig_sync,
665	.get_addr = snd_dma_noncontig_get_addr,
666	.get_page = snd_dma_noncontig_get_page,
667	.get_chunk_size = snd_dma_noncontig_get_chunk_size,
668};
669
670/* x86-specific SG-buffer with WC pages */
671#ifdef CONFIG_SND_DMA_SGBUF
672#define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))
673
674static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
675{
676	void *p = snd_dma_noncontig_alloc(dmab, size);
677	struct sg_table *sgt = dmab->private_data;
678	struct sg_page_iter iter;
679
680	if (!p)
681		return NULL;
682	if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
683		return p;
684	for_each_sgtable_page(sgt, &iter, 0)
685		set_memory_wc(sg_wc_address(&iter), 1);
686	return p;
687}
688
689static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
690{
691	struct sg_table *sgt = dmab->private_data;
692	struct sg_page_iter iter;
693
694	for_each_sgtable_page(sgt, &iter, 0)
695		set_memory_wb(sg_wc_address(&iter), 1);
696	snd_dma_noncontig_free(dmab);
697}
698
699static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
700			      struct vm_area_struct *area)
701{
702	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
703	return dma_mmap_noncontiguous(dmab->dev.dev, area,
704				      dmab->bytes, dmab->private_data);
705}
706
707static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
708	.alloc = snd_dma_sg_wc_alloc,
709	.free = snd_dma_sg_wc_free,
710	.mmap = snd_dma_sg_wc_mmap,
711	.sync = snd_dma_noncontig_sync,
712	.get_addr = snd_dma_noncontig_get_addr,
713	.get_page = snd_dma_noncontig_get_page,
714	.get_chunk_size = snd_dma_noncontig_get_chunk_size,
715};
716
717/* Fallback SG-buffer allocations for x86 */
718struct snd_dma_sg_fallback {
719	bool use_dma_alloc_coherent;
720	size_t count;
721	struct page **pages;
722	/* DMA address array; the first page contains #pages in ~PAGE_MASK */
723	dma_addr_t *addrs;
724};
725
726static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
727				       struct snd_dma_sg_fallback *sgbuf)
728{
729	size_t i, size;
730
731	if (sgbuf->pages && sgbuf->addrs) {
732		i = 0;
733		while (i < sgbuf->count) {
734			if (!sgbuf->pages[i] || !sgbuf->addrs[i])
735				break;
736			size = sgbuf->addrs[i] & ~PAGE_MASK;
737			if (WARN_ON(!size))
738				break;
739			if (sgbuf->use_dma_alloc_coherent)
740				dma_free_coherent(dmab->dev.dev, size << PAGE_SHIFT,
741						  page_address(sgbuf->pages[i]),
742						  sgbuf->addrs[i] & PAGE_MASK);
743			else
744				do_free_pages(page_address(sgbuf->pages[i]),
745					      size << PAGE_SHIFT, false);
746			i += size;
747		}
748	}
749	kvfree(sgbuf->pages);
750	kvfree(sgbuf->addrs);
751	kfree(sgbuf);
752}
753
754static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
755{
756	struct snd_dma_sg_fallback *sgbuf;
757	struct page **pagep, *curp;
758	size_t chunk, npages;
759	dma_addr_t *addrp;
760	dma_addr_t addr;
761	void *p;
762
763	/* correct the type */
764	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_SG)
765		dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
766	else if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
767		dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
768
769	sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
770	if (!sgbuf)
771		return NULL;
772	sgbuf->use_dma_alloc_coherent = cpu_feature_enabled(X86_FEATURE_XENPV);
773	size = PAGE_ALIGN(size);
774	sgbuf->count = size >> PAGE_SHIFT;
775	sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
776	sgbuf->addrs = kvcalloc(sgbuf->count, sizeof(*sgbuf->addrs), GFP_KERNEL);
777	if (!sgbuf->pages || !sgbuf->addrs)
778		goto error;
779
780	pagep = sgbuf->pages;
781	addrp = sgbuf->addrs;
782	chunk = (PAGE_SIZE - 1) << PAGE_SHIFT; /* to fit in low bits in addrs */
783	while (size > 0) {
784		chunk = min(size, chunk);
785		if (sgbuf->use_dma_alloc_coherent)
786			p = dma_alloc_coherent(dmab->dev.dev, chunk, &addr, DEFAULT_GFP);
787		else
788			p = do_alloc_pages(dmab->dev.dev, chunk, &addr, false);
789		if (!p) {
790			if (chunk <= PAGE_SIZE)
791				goto error;
792			chunk >>= 1;
793			chunk = PAGE_SIZE << get_order(chunk);
794			continue;
795		}
796
797		size -= chunk;
798		/* fill pages */
799		npages = chunk >> PAGE_SHIFT;
800		*addrp = npages; /* store in lower bits */
801		curp = virt_to_page(p);
802		while (npages--) {
803			*pagep++ = curp++;
804			*addrp++ |= addr;
805			addr += PAGE_SIZE;
 
 
 
 
806		}
807	}
808
809	p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
810	if (!p)
811		goto error;
812
813	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
814		set_pages_array_wc(sgbuf->pages, sgbuf->count);
815
816	dmab->private_data = sgbuf;
817	/* store the first page address for convenience */
818	dmab->addr = sgbuf->addrs[0] & PAGE_MASK;
819	return p;
820
821 error:
822	__snd_dma_sg_fallback_free(dmab, sgbuf);
823	return NULL;
824}
 
825
826static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
827{
828	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
 
 
 
 
 
 
 
829
830	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
831		set_pages_array_wb(sgbuf->pages, sgbuf->count);
832	vunmap(dmab->area);
833	__snd_dma_sg_fallback_free(dmab, dmab->private_data);
834}
835
836static dma_addr_t snd_dma_sg_fallback_get_addr(struct snd_dma_buffer *dmab,
837					       size_t offset)
838{
839	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
840	size_t index = offset >> PAGE_SHIFT;
841
842	return (sgbuf->addrs[index] & PAGE_MASK) | (offset & ~PAGE_MASK);
843}
844
845static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
846				    struct vm_area_struct *area)
847{
848	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
849
850	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
851		area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
852	return vm_map_pages(area, sgbuf->pages, sgbuf->count);
853}
854
855static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
856	.alloc = snd_dma_sg_fallback_alloc,
857	.free = snd_dma_sg_fallback_free,
858	.mmap = snd_dma_sg_fallback_mmap,
859	.get_addr = snd_dma_sg_fallback_get_addr,
860	/* reuse vmalloc helpers */
861	.get_page = snd_dma_vmalloc_get_page,
862	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
863};
864#endif /* CONFIG_SND_DMA_SGBUF */
865
866/*
867 * Non-coherent pages allocator
868 */
869static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
870{
871	void *p;
872
873	p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
874				  dmab->dev.dir, DEFAULT_GFP);
875	if (p)
876		dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
877	return p;
878}
879
880static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
881{
882	dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
883			     dmab->addr, dmab->dev.dir);
 
 
 
884}
885
886static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
887				    struct vm_area_struct *area)
888{
889	area->vm_page_prot = vm_get_page_prot(area->vm_flags);
890	return dma_mmap_pages(dmab->dev.dev, area,
891			      area->vm_end - area->vm_start,
892			      virt_to_page(dmab->area));
893}
894
895static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
896				     enum snd_dma_sync_mode mode)
897{
898	if (mode == SNDRV_DMA_SYNC_CPU) {
899		if (dmab->dev.dir != DMA_TO_DEVICE)
900			dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
901						dmab->bytes, dmab->dev.dir);
902	} else {
903		if (dmab->dev.dir != DMA_FROM_DEVICE)
904			dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
905						   dmab->bytes, dmab->dev.dir);
906	}
907}
908
909static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
910	.alloc = snd_dma_noncoherent_alloc,
911	.free = snd_dma_noncoherent_free,
912	.mmap = snd_dma_noncoherent_mmap,
913	.sync = snd_dma_noncoherent_sync,
914};
915
916#endif /* CONFIG_HAS_DMA */
917
918/*
919 * Entry points
920 */
921static const struct snd_malloc_ops *snd_dma_ops[] = {
922	[SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
923	[SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
924#ifdef CONFIG_HAS_DMA
925	[SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
926	[SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
927	[SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
928	[SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
929#ifdef CONFIG_SND_DMA_SGBUF
930	[SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
931#endif
932#ifdef CONFIG_GENERIC_ALLOCATOR
933	[SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
934#endif /* CONFIG_GENERIC_ALLOCATOR */
935#ifdef CONFIG_SND_DMA_SGBUF
936	[SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
937	[SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
938#endif
939#endif /* CONFIG_HAS_DMA */
940};
941
942static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
943{
944	if (WARN_ON_ONCE(!dmab))
945		return NULL;
946	if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
947			 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
948		return NULL;
949	return snd_dma_ops[dmab->dev.type];
950}