Loading...
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
5 * file.
6 *
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA.
26 */
27
28#include <linux/string.h>
29#include <linux/syscalls.h>
30#include <linux/pagemap.h>
31#include <linux/key.h>
32#include <linux/random.h>
33#include <linux/crypto.h>
34#include <linux/scatterlist.h>
35#include <linux/slab.h>
36#include "ecryptfs_kernel.h"
37
38/**
39 * request_key returned an error instead of a valid key address;
40 * determine the type of error, make appropriate log entries, and
41 * return an error code.
42 */
43static int process_request_key_err(long err_code)
44{
45 int rc = 0;
46
47 switch (err_code) {
48 case -ENOKEY:
49 ecryptfs_printk(KERN_WARNING, "No key\n");
50 rc = -ENOENT;
51 break;
52 case -EKEYEXPIRED:
53 ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 rc = -ETIME;
55 break;
56 case -EKEYREVOKED:
57 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 rc = -EINVAL;
59 break;
60 default:
61 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 "[0x%.16lx]\n", err_code);
63 rc = -EINVAL;
64 }
65 return rc;
66}
67
68static int process_find_global_auth_tok_for_sig_err(int err_code)
69{
70 int rc = err_code;
71
72 switch (err_code) {
73 case -ENOENT:
74 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 break;
76 case -EINVAL:
77 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 break;
79 default:
80 rc = process_request_key_err(err_code);
81 break;
82 }
83 return rc;
84}
85
86/**
87 * ecryptfs_parse_packet_length
88 * @data: Pointer to memory containing length at offset
89 * @size: This function writes the decoded size to this memory
90 * address; zero on error
91 * @length_size: The number of bytes occupied by the encoded length
92 *
93 * Returns zero on success; non-zero on error
94 */
95int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 size_t *length_size)
97{
98 int rc = 0;
99
100 (*length_size) = 0;
101 (*size) = 0;
102 if (data[0] < 192) {
103 /* One-byte length */
104 (*size) = (unsigned char)data[0];
105 (*length_size) = 1;
106 } else if (data[0] < 224) {
107 /* Two-byte length */
108 (*size) = (((unsigned char)(data[0]) - 192) * 256);
109 (*size) += ((unsigned char)(data[1]) + 192);
110 (*length_size) = 2;
111 } else if (data[0] == 255) {
112 /* Five-byte length; we're not supposed to see this */
113 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 "supported\n");
115 rc = -EINVAL;
116 goto out;
117 } else {
118 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 rc = -EINVAL;
120 goto out;
121 }
122out:
123 return rc;
124}
125
126/**
127 * ecryptfs_write_packet_length
128 * @dest: The byte array target into which to write the length. Must
129 * have at least 5 bytes allocated.
130 * @size: The length to write.
131 * @packet_size_length: The number of bytes used to encode the packet
132 * length is written to this address.
133 *
134 * Returns zero on success; non-zero on error.
135 */
136int ecryptfs_write_packet_length(char *dest, size_t size,
137 size_t *packet_size_length)
138{
139 int rc = 0;
140
141 if (size < 192) {
142 dest[0] = size;
143 (*packet_size_length) = 1;
144 } else if (size < 65536) {
145 dest[0] = (((size - 192) / 256) + 192);
146 dest[1] = ((size - 192) % 256);
147 (*packet_size_length) = 2;
148 } else {
149 rc = -EINVAL;
150 ecryptfs_printk(KERN_WARNING,
151 "Unsupported packet size: [%zd]\n", size);
152 }
153 return rc;
154}
155
156static int
157write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
158 char **packet, size_t *packet_len)
159{
160 size_t i = 0;
161 size_t data_len;
162 size_t packet_size_len;
163 char *message;
164 int rc;
165
166 /*
167 * ***** TAG 64 Packet Format *****
168 * | Content Type | 1 byte |
169 * | Key Identifier Size | 1 or 2 bytes |
170 * | Key Identifier | arbitrary |
171 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
172 * | Encrypted File Encryption Key | arbitrary |
173 */
174 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
175 + session_key->encrypted_key_size);
176 *packet = kmalloc(data_len, GFP_KERNEL);
177 message = *packet;
178 if (!message) {
179 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
180 rc = -ENOMEM;
181 goto out;
182 }
183 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
184 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
185 &packet_size_len);
186 if (rc) {
187 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
188 "header; cannot generate packet length\n");
189 goto out;
190 }
191 i += packet_size_len;
192 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
193 i += ECRYPTFS_SIG_SIZE_HEX;
194 rc = ecryptfs_write_packet_length(&message[i],
195 session_key->encrypted_key_size,
196 &packet_size_len);
197 if (rc) {
198 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
199 "header; cannot generate packet length\n");
200 goto out;
201 }
202 i += packet_size_len;
203 memcpy(&message[i], session_key->encrypted_key,
204 session_key->encrypted_key_size);
205 i += session_key->encrypted_key_size;
206 *packet_len = i;
207out:
208 return rc;
209}
210
211static int
212parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
213 struct ecryptfs_message *msg)
214{
215 size_t i = 0;
216 char *data;
217 size_t data_len;
218 size_t m_size;
219 size_t message_len;
220 u16 checksum = 0;
221 u16 expected_checksum = 0;
222 int rc;
223
224 /*
225 * ***** TAG 65 Packet Format *****
226 * | Content Type | 1 byte |
227 * | Status Indicator | 1 byte |
228 * | File Encryption Key Size | 1 or 2 bytes |
229 * | File Encryption Key | arbitrary |
230 */
231 message_len = msg->data_len;
232 data = msg->data;
233 if (message_len < 4) {
234 rc = -EIO;
235 goto out;
236 }
237 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
238 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
239 rc = -EIO;
240 goto out;
241 }
242 if (data[i++]) {
243 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
244 "[%d]\n", data[i-1]);
245 rc = -EIO;
246 goto out;
247 }
248 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
249 if (rc) {
250 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
251 "rc = [%d]\n", rc);
252 goto out;
253 }
254 i += data_len;
255 if (message_len < (i + m_size)) {
256 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
257 "is shorter than expected\n");
258 rc = -EIO;
259 goto out;
260 }
261 if (m_size < 3) {
262 ecryptfs_printk(KERN_ERR,
263 "The decrypted key is not long enough to "
264 "include a cipher code and checksum\n");
265 rc = -EIO;
266 goto out;
267 }
268 *cipher_code = data[i++];
269 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
270 session_key->decrypted_key_size = m_size - 3;
271 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
272 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
273 "the maximum key size [%d]\n",
274 session_key->decrypted_key_size,
275 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
276 rc = -EIO;
277 goto out;
278 }
279 memcpy(session_key->decrypted_key, &data[i],
280 session_key->decrypted_key_size);
281 i += session_key->decrypted_key_size;
282 expected_checksum += (unsigned char)(data[i++]) << 8;
283 expected_checksum += (unsigned char)(data[i++]);
284 for (i = 0; i < session_key->decrypted_key_size; i++)
285 checksum += session_key->decrypted_key[i];
286 if (expected_checksum != checksum) {
287 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
288 "encryption key; expected [%x]; calculated "
289 "[%x]\n", expected_checksum, checksum);
290 rc = -EIO;
291 }
292out:
293 return rc;
294}
295
296
297static int
298write_tag_66_packet(char *signature, u8 cipher_code,
299 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
300 size_t *packet_len)
301{
302 size_t i = 0;
303 size_t j;
304 size_t data_len;
305 size_t checksum = 0;
306 size_t packet_size_len;
307 char *message;
308 int rc;
309
310 /*
311 * ***** TAG 66 Packet Format *****
312 * | Content Type | 1 byte |
313 * | Key Identifier Size | 1 or 2 bytes |
314 * | Key Identifier | arbitrary |
315 * | File Encryption Key Size | 1 or 2 bytes |
316 * | File Encryption Key | arbitrary |
317 */
318 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
319 *packet = kmalloc(data_len, GFP_KERNEL);
320 message = *packet;
321 if (!message) {
322 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
323 rc = -ENOMEM;
324 goto out;
325 }
326 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
327 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
328 &packet_size_len);
329 if (rc) {
330 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
331 "header; cannot generate packet length\n");
332 goto out;
333 }
334 i += packet_size_len;
335 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
336 i += ECRYPTFS_SIG_SIZE_HEX;
337 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
338 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
339 &packet_size_len);
340 if (rc) {
341 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
342 "header; cannot generate packet length\n");
343 goto out;
344 }
345 i += packet_size_len;
346 message[i++] = cipher_code;
347 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
348 i += crypt_stat->key_size;
349 for (j = 0; j < crypt_stat->key_size; j++)
350 checksum += crypt_stat->key[j];
351 message[i++] = (checksum / 256) % 256;
352 message[i++] = (checksum % 256);
353 *packet_len = i;
354out:
355 return rc;
356}
357
358static int
359parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
360 struct ecryptfs_message *msg)
361{
362 size_t i = 0;
363 char *data;
364 size_t data_len;
365 size_t message_len;
366 int rc;
367
368 /*
369 * ***** TAG 65 Packet Format *****
370 * | Content Type | 1 byte |
371 * | Status Indicator | 1 byte |
372 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
373 * | Encrypted File Encryption Key | arbitrary |
374 */
375 message_len = msg->data_len;
376 data = msg->data;
377 /* verify that everything through the encrypted FEK size is present */
378 if (message_len < 4) {
379 rc = -EIO;
380 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
381 "message length is [%d]\n", __func__, message_len, 4);
382 goto out;
383 }
384 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
385 rc = -EIO;
386 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
387 __func__);
388 goto out;
389 }
390 if (data[i++]) {
391 rc = -EIO;
392 printk(KERN_ERR "%s: Status indicator has non zero "
393 "value [%d]\n", __func__, data[i-1]);
394
395 goto out;
396 }
397 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
398 &data_len);
399 if (rc) {
400 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
401 "rc = [%d]\n", rc);
402 goto out;
403 }
404 i += data_len;
405 if (message_len < (i + key_rec->enc_key_size)) {
406 rc = -EIO;
407 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
408 __func__, message_len, (i + key_rec->enc_key_size));
409 goto out;
410 }
411 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
412 rc = -EIO;
413 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
414 "the maximum key size [%d]\n", __func__,
415 key_rec->enc_key_size,
416 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
417 goto out;
418 }
419 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
420out:
421 return rc;
422}
423
424/**
425 * ecryptfs_verify_version
426 * @version: The version number to confirm
427 *
428 * Returns zero on good version; non-zero otherwise
429 */
430static int ecryptfs_verify_version(u16 version)
431{
432 int rc = 0;
433 unsigned char major;
434 unsigned char minor;
435
436 major = ((version >> 8) & 0xFF);
437 minor = (version & 0xFF);
438 if (major != ECRYPTFS_VERSION_MAJOR) {
439 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
440 "Expected [%d]; got [%d]\n",
441 ECRYPTFS_VERSION_MAJOR, major);
442 rc = -EINVAL;
443 goto out;
444 }
445 if (minor != ECRYPTFS_VERSION_MINOR) {
446 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
447 "Expected [%d]; got [%d]\n",
448 ECRYPTFS_VERSION_MINOR, minor);
449 rc = -EINVAL;
450 goto out;
451 }
452out:
453 return rc;
454}
455
456/**
457 * ecryptfs_verify_auth_tok_from_key
458 * @auth_tok_key: key containing the authentication token
459 * @auth_tok: authentication token
460 *
461 * Returns zero on valid auth tok; -EINVAL otherwise
462 */
463static int
464ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
465 struct ecryptfs_auth_tok **auth_tok)
466{
467 int rc = 0;
468
469 (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
470 if (ecryptfs_verify_version((*auth_tok)->version)) {
471 printk(KERN_ERR "Data structure version mismatch. Userspace "
472 "tools must match eCryptfs kernel module with major "
473 "version [%d] and minor version [%d]\n",
474 ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
475 rc = -EINVAL;
476 goto out;
477 }
478 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
479 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
480 printk(KERN_ERR "Invalid auth_tok structure "
481 "returned from key query\n");
482 rc = -EINVAL;
483 goto out;
484 }
485out:
486 return rc;
487}
488
489static int
490ecryptfs_find_global_auth_tok_for_sig(
491 struct key **auth_tok_key,
492 struct ecryptfs_auth_tok **auth_tok,
493 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
494{
495 struct ecryptfs_global_auth_tok *walker;
496 int rc = 0;
497
498 (*auth_tok_key) = NULL;
499 (*auth_tok) = NULL;
500 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
501 list_for_each_entry(walker,
502 &mount_crypt_stat->global_auth_tok_list,
503 mount_crypt_stat_list) {
504 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
505 continue;
506
507 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
508 rc = -EINVAL;
509 goto out;
510 }
511
512 rc = key_validate(walker->global_auth_tok_key);
513 if (rc) {
514 if (rc == -EKEYEXPIRED)
515 goto out;
516 goto out_invalid_auth_tok;
517 }
518
519 down_write(&(walker->global_auth_tok_key->sem));
520 rc = ecryptfs_verify_auth_tok_from_key(
521 walker->global_auth_tok_key, auth_tok);
522 if (rc)
523 goto out_invalid_auth_tok_unlock;
524
525 (*auth_tok_key) = walker->global_auth_tok_key;
526 key_get(*auth_tok_key);
527 goto out;
528 }
529 rc = -ENOENT;
530 goto out;
531out_invalid_auth_tok_unlock:
532 up_write(&(walker->global_auth_tok_key->sem));
533out_invalid_auth_tok:
534 printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
535 walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
536 key_put(walker->global_auth_tok_key);
537 walker->global_auth_tok_key = NULL;
538out:
539 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
540 return rc;
541}
542
543/**
544 * ecryptfs_find_auth_tok_for_sig
545 * @auth_tok: Set to the matching auth_tok; NULL if not found
546 * @crypt_stat: inode crypt_stat crypto context
547 * @sig: Sig of auth_tok to find
548 *
549 * For now, this function simply looks at the registered auth_tok's
550 * linked off the mount_crypt_stat, so all the auth_toks that can be
551 * used must be registered at mount time. This function could
552 * potentially try a lot harder to find auth_tok's (e.g., by calling
553 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
554 * that static registration of auth_tok's will no longer be necessary.
555 *
556 * Returns zero on no error; non-zero on error
557 */
558static int
559ecryptfs_find_auth_tok_for_sig(
560 struct key **auth_tok_key,
561 struct ecryptfs_auth_tok **auth_tok,
562 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
563 char *sig)
564{
565 int rc = 0;
566
567 rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
568 mount_crypt_stat, sig);
569 if (rc == -ENOENT) {
570 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
571 * mount_crypt_stat structure, we prevent to use auth toks that
572 * are not inserted through the ecryptfs_add_global_auth_tok
573 * function.
574 */
575 if (mount_crypt_stat->flags
576 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
577 return -EINVAL;
578
579 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
580 sig);
581 }
582 return rc;
583}
584
585/**
586 * write_tag_70_packet can gobble a lot of stack space. We stuff most
587 * of the function's parameters in a kmalloc'd struct to help reduce
588 * eCryptfs' overall stack usage.
589 */
590struct ecryptfs_write_tag_70_packet_silly_stack {
591 u8 cipher_code;
592 size_t max_packet_size;
593 size_t packet_size_len;
594 size_t block_aligned_filename_size;
595 size_t block_size;
596 size_t i;
597 size_t j;
598 size_t num_rand_bytes;
599 struct mutex *tfm_mutex;
600 char *block_aligned_filename;
601 struct ecryptfs_auth_tok *auth_tok;
602 struct scatterlist src_sg[2];
603 struct scatterlist dst_sg[2];
604 struct blkcipher_desc desc;
605 char iv[ECRYPTFS_MAX_IV_BYTES];
606 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
607 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
608 struct hash_desc hash_desc;
609 struct scatterlist hash_sg;
610};
611
612/**
613 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
614 * @filename: NULL-terminated filename string
615 *
616 * This is the simplest mechanism for achieving filename encryption in
617 * eCryptfs. It encrypts the given filename with the mount-wide
618 * filename encryption key (FNEK) and stores it in a packet to @dest,
619 * which the callee will encode and write directly into the dentry
620 * name.
621 */
622int
623ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
624 size_t *packet_size,
625 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
626 char *filename, size_t filename_size)
627{
628 struct ecryptfs_write_tag_70_packet_silly_stack *s;
629 struct key *auth_tok_key = NULL;
630 int rc = 0;
631
632 s = kmalloc(sizeof(*s), GFP_KERNEL);
633 if (!s) {
634 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
635 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
636 rc = -ENOMEM;
637 goto out;
638 }
639 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
640 (*packet_size) = 0;
641 rc = ecryptfs_find_auth_tok_for_sig(
642 &auth_tok_key,
643 &s->auth_tok, mount_crypt_stat,
644 mount_crypt_stat->global_default_fnek_sig);
645 if (rc) {
646 printk(KERN_ERR "%s: Error attempting to find auth tok for "
647 "fnek sig [%s]; rc = [%d]\n", __func__,
648 mount_crypt_stat->global_default_fnek_sig, rc);
649 goto out;
650 }
651 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
652 &s->desc.tfm,
653 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
654 if (unlikely(rc)) {
655 printk(KERN_ERR "Internal error whilst attempting to get "
656 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
657 mount_crypt_stat->global_default_fn_cipher_name, rc);
658 goto out;
659 }
660 mutex_lock(s->tfm_mutex);
661 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
662 /* Plus one for the \0 separator between the random prefix
663 * and the plaintext filename */
664 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
665 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
666 if ((s->block_aligned_filename_size % s->block_size) != 0) {
667 s->num_rand_bytes += (s->block_size
668 - (s->block_aligned_filename_size
669 % s->block_size));
670 s->block_aligned_filename_size = (s->num_rand_bytes
671 + filename_size);
672 }
673 /* Octet 0: Tag 70 identifier
674 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
675 * and block-aligned encrypted filename size)
676 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
677 * Octet N2-N3: Cipher identifier (1 octet)
678 * Octets N3-N4: Block-aligned encrypted filename
679 * - Consists of a minimum number of random characters, a \0
680 * separator, and then the filename */
681 s->max_packet_size = (1 /* Tag 70 identifier */
682 + 3 /* Max Tag 70 packet size */
683 + ECRYPTFS_SIG_SIZE /* FNEK sig */
684 + 1 /* Cipher identifier */
685 + s->block_aligned_filename_size);
686 if (dest == NULL) {
687 (*packet_size) = s->max_packet_size;
688 goto out_unlock;
689 }
690 if (s->max_packet_size > (*remaining_bytes)) {
691 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
692 "[%zd] available\n", __func__, s->max_packet_size,
693 (*remaining_bytes));
694 rc = -EINVAL;
695 goto out_unlock;
696 }
697 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
698 GFP_KERNEL);
699 if (!s->block_aligned_filename) {
700 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
701 "kzalloc [%zd] bytes\n", __func__,
702 s->block_aligned_filename_size);
703 rc = -ENOMEM;
704 goto out_unlock;
705 }
706 s->i = 0;
707 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
708 rc = ecryptfs_write_packet_length(&dest[s->i],
709 (ECRYPTFS_SIG_SIZE
710 + 1 /* Cipher code */
711 + s->block_aligned_filename_size),
712 &s->packet_size_len);
713 if (rc) {
714 printk(KERN_ERR "%s: Error generating tag 70 packet "
715 "header; cannot generate packet length; rc = [%d]\n",
716 __func__, rc);
717 goto out_free_unlock;
718 }
719 s->i += s->packet_size_len;
720 ecryptfs_from_hex(&dest[s->i],
721 mount_crypt_stat->global_default_fnek_sig,
722 ECRYPTFS_SIG_SIZE);
723 s->i += ECRYPTFS_SIG_SIZE;
724 s->cipher_code = ecryptfs_code_for_cipher_string(
725 mount_crypt_stat->global_default_fn_cipher_name,
726 mount_crypt_stat->global_default_fn_cipher_key_bytes);
727 if (s->cipher_code == 0) {
728 printk(KERN_WARNING "%s: Unable to generate code for "
729 "cipher [%s] with key bytes [%zd]\n", __func__,
730 mount_crypt_stat->global_default_fn_cipher_name,
731 mount_crypt_stat->global_default_fn_cipher_key_bytes);
732 rc = -EINVAL;
733 goto out_free_unlock;
734 }
735 dest[s->i++] = s->cipher_code;
736 /* TODO: Support other key modules than passphrase for
737 * filename encryption */
738 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
739 rc = -EOPNOTSUPP;
740 printk(KERN_INFO "%s: Filename encryption only supports "
741 "password tokens\n", __func__);
742 goto out_free_unlock;
743 }
744 sg_init_one(
745 &s->hash_sg,
746 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
747 s->auth_tok->token.password.session_key_encryption_key_bytes);
748 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
749 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
750 CRYPTO_ALG_ASYNC);
751 if (IS_ERR(s->hash_desc.tfm)) {
752 rc = PTR_ERR(s->hash_desc.tfm);
753 printk(KERN_ERR "%s: Error attempting to "
754 "allocate hash crypto context; rc = [%d]\n",
755 __func__, rc);
756 goto out_free_unlock;
757 }
758 rc = crypto_hash_init(&s->hash_desc);
759 if (rc) {
760 printk(KERN_ERR
761 "%s: Error initializing crypto hash; rc = [%d]\n",
762 __func__, rc);
763 goto out_release_free_unlock;
764 }
765 rc = crypto_hash_update(
766 &s->hash_desc, &s->hash_sg,
767 s->auth_tok->token.password.session_key_encryption_key_bytes);
768 if (rc) {
769 printk(KERN_ERR
770 "%s: Error updating crypto hash; rc = [%d]\n",
771 __func__, rc);
772 goto out_release_free_unlock;
773 }
774 rc = crypto_hash_final(&s->hash_desc, s->hash);
775 if (rc) {
776 printk(KERN_ERR
777 "%s: Error finalizing crypto hash; rc = [%d]\n",
778 __func__, rc);
779 goto out_release_free_unlock;
780 }
781 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
782 s->block_aligned_filename[s->j] =
783 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
784 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
785 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
786 sg_init_one(&s->hash_sg, (u8 *)s->hash,
787 ECRYPTFS_TAG_70_DIGEST_SIZE);
788 rc = crypto_hash_init(&s->hash_desc);
789 if (rc) {
790 printk(KERN_ERR
791 "%s: Error initializing crypto hash; "
792 "rc = [%d]\n", __func__, rc);
793 goto out_release_free_unlock;
794 }
795 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
796 ECRYPTFS_TAG_70_DIGEST_SIZE);
797 if (rc) {
798 printk(KERN_ERR
799 "%s: Error updating crypto hash; "
800 "rc = [%d]\n", __func__, rc);
801 goto out_release_free_unlock;
802 }
803 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
804 if (rc) {
805 printk(KERN_ERR
806 "%s: Error finalizing crypto hash; "
807 "rc = [%d]\n", __func__, rc);
808 goto out_release_free_unlock;
809 }
810 memcpy(s->hash, s->tmp_hash,
811 ECRYPTFS_TAG_70_DIGEST_SIZE);
812 }
813 if (s->block_aligned_filename[s->j] == '\0')
814 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
815 }
816 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
817 filename_size);
818 rc = virt_to_scatterlist(s->block_aligned_filename,
819 s->block_aligned_filename_size, s->src_sg, 2);
820 if (rc < 1) {
821 printk(KERN_ERR "%s: Internal error whilst attempting to "
822 "convert filename memory to scatterlist; rc = [%d]. "
823 "block_aligned_filename_size = [%zd]\n", __func__, rc,
824 s->block_aligned_filename_size);
825 goto out_release_free_unlock;
826 }
827 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
828 s->dst_sg, 2);
829 if (rc < 1) {
830 printk(KERN_ERR "%s: Internal error whilst attempting to "
831 "convert encrypted filename memory to scatterlist; "
832 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
833 __func__, rc, s->block_aligned_filename_size);
834 goto out_release_free_unlock;
835 }
836 /* The characters in the first block effectively do the job
837 * of the IV here, so we just use 0's for the IV. Note the
838 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
839 * >= ECRYPTFS_MAX_IV_BYTES. */
840 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
841 s->desc.info = s->iv;
842 rc = crypto_blkcipher_setkey(
843 s->desc.tfm,
844 s->auth_tok->token.password.session_key_encryption_key,
845 mount_crypt_stat->global_default_fn_cipher_key_bytes);
846 if (rc < 0) {
847 printk(KERN_ERR "%s: Error setting key for crypto context; "
848 "rc = [%d]. s->auth_tok->token.password.session_key_"
849 "encryption_key = [0x%p]; mount_crypt_stat->"
850 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
851 rc,
852 s->auth_tok->token.password.session_key_encryption_key,
853 mount_crypt_stat->global_default_fn_cipher_key_bytes);
854 goto out_release_free_unlock;
855 }
856 rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
857 s->block_aligned_filename_size);
858 if (rc) {
859 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
860 "rc = [%d]\n", __func__, rc);
861 goto out_release_free_unlock;
862 }
863 s->i += s->block_aligned_filename_size;
864 (*packet_size) = s->i;
865 (*remaining_bytes) -= (*packet_size);
866out_release_free_unlock:
867 crypto_free_hash(s->hash_desc.tfm);
868out_free_unlock:
869 kzfree(s->block_aligned_filename);
870out_unlock:
871 mutex_unlock(s->tfm_mutex);
872out:
873 if (auth_tok_key) {
874 up_write(&(auth_tok_key->sem));
875 key_put(auth_tok_key);
876 }
877 kfree(s);
878 return rc;
879}
880
881struct ecryptfs_parse_tag_70_packet_silly_stack {
882 u8 cipher_code;
883 size_t max_packet_size;
884 size_t packet_size_len;
885 size_t parsed_tag_70_packet_size;
886 size_t block_aligned_filename_size;
887 size_t block_size;
888 size_t i;
889 struct mutex *tfm_mutex;
890 char *decrypted_filename;
891 struct ecryptfs_auth_tok *auth_tok;
892 struct scatterlist src_sg[2];
893 struct scatterlist dst_sg[2];
894 struct blkcipher_desc desc;
895 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
896 char iv[ECRYPTFS_MAX_IV_BYTES];
897 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
898};
899
900/**
901 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
902 * @filename: This function kmalloc's the memory for the filename
903 * @filename_size: This function sets this to the amount of memory
904 * kmalloc'd for the filename
905 * @packet_size: This function sets this to the the number of octets
906 * in the packet parsed
907 * @mount_crypt_stat: The mount-wide cryptographic context
908 * @data: The memory location containing the start of the tag 70
909 * packet
910 * @max_packet_size: The maximum legal size of the packet to be parsed
911 * from @data
912 *
913 * Returns zero on success; non-zero otherwise
914 */
915int
916ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
917 size_t *packet_size,
918 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
919 char *data, size_t max_packet_size)
920{
921 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
922 struct key *auth_tok_key = NULL;
923 int rc = 0;
924
925 (*packet_size) = 0;
926 (*filename_size) = 0;
927 (*filename) = NULL;
928 s = kmalloc(sizeof(*s), GFP_KERNEL);
929 if (!s) {
930 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
931 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
932 rc = -ENOMEM;
933 goto out;
934 }
935 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
936 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
937 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
938 "at least [%d]\n", __func__, max_packet_size,
939 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
940 rc = -EINVAL;
941 goto out;
942 }
943 /* Octet 0: Tag 70 identifier
944 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
945 * and block-aligned encrypted filename size)
946 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
947 * Octet N2-N3: Cipher identifier (1 octet)
948 * Octets N3-N4: Block-aligned encrypted filename
949 * - Consists of a minimum number of random numbers, a \0
950 * separator, and then the filename */
951 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
952 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
953 "tag [0x%.2x]\n", __func__,
954 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
955 rc = -EINVAL;
956 goto out;
957 }
958 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
959 &s->parsed_tag_70_packet_size,
960 &s->packet_size_len);
961 if (rc) {
962 printk(KERN_WARNING "%s: Error parsing packet length; "
963 "rc = [%d]\n", __func__, rc);
964 goto out;
965 }
966 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
967 - ECRYPTFS_SIG_SIZE - 1);
968 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
969 > max_packet_size) {
970 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
971 "size is [%zd]\n", __func__, max_packet_size,
972 (1 + s->packet_size_len + 1
973 + s->block_aligned_filename_size));
974 rc = -EINVAL;
975 goto out;
976 }
977 (*packet_size) += s->packet_size_len;
978 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
979 ECRYPTFS_SIG_SIZE);
980 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
981 (*packet_size) += ECRYPTFS_SIG_SIZE;
982 s->cipher_code = data[(*packet_size)++];
983 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
984 if (rc) {
985 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
986 __func__, s->cipher_code);
987 goto out;
988 }
989 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
990 &s->auth_tok, mount_crypt_stat,
991 s->fnek_sig_hex);
992 if (rc) {
993 printk(KERN_ERR "%s: Error attempting to find auth tok for "
994 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
995 rc);
996 goto out;
997 }
998 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
999 &s->tfm_mutex,
1000 s->cipher_string);
1001 if (unlikely(rc)) {
1002 printk(KERN_ERR "Internal error whilst attempting to get "
1003 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1004 s->cipher_string, rc);
1005 goto out;
1006 }
1007 mutex_lock(s->tfm_mutex);
1008 rc = virt_to_scatterlist(&data[(*packet_size)],
1009 s->block_aligned_filename_size, s->src_sg, 2);
1010 if (rc < 1) {
1011 printk(KERN_ERR "%s: Internal error whilst attempting to "
1012 "convert encrypted filename memory to scatterlist; "
1013 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1014 __func__, rc, s->block_aligned_filename_size);
1015 goto out_unlock;
1016 }
1017 (*packet_size) += s->block_aligned_filename_size;
1018 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1019 GFP_KERNEL);
1020 if (!s->decrypted_filename) {
1021 printk(KERN_ERR "%s: Out of memory whilst attempting to "
1022 "kmalloc [%zd] bytes\n", __func__,
1023 s->block_aligned_filename_size);
1024 rc = -ENOMEM;
1025 goto out_unlock;
1026 }
1027 rc = virt_to_scatterlist(s->decrypted_filename,
1028 s->block_aligned_filename_size, s->dst_sg, 2);
1029 if (rc < 1) {
1030 printk(KERN_ERR "%s: Internal error whilst attempting to "
1031 "convert decrypted filename memory to scatterlist; "
1032 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1033 __func__, rc, s->block_aligned_filename_size);
1034 goto out_free_unlock;
1035 }
1036 /* The characters in the first block effectively do the job of
1037 * the IV here, so we just use 0's for the IV. Note the
1038 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1039 * >= ECRYPTFS_MAX_IV_BYTES. */
1040 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1041 s->desc.info = s->iv;
1042 /* TODO: Support other key modules than passphrase for
1043 * filename encryption */
1044 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1045 rc = -EOPNOTSUPP;
1046 printk(KERN_INFO "%s: Filename encryption only supports "
1047 "password tokens\n", __func__);
1048 goto out_free_unlock;
1049 }
1050 rc = crypto_blkcipher_setkey(
1051 s->desc.tfm,
1052 s->auth_tok->token.password.session_key_encryption_key,
1053 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1054 if (rc < 0) {
1055 printk(KERN_ERR "%s: Error setting key for crypto context; "
1056 "rc = [%d]. s->auth_tok->token.password.session_key_"
1057 "encryption_key = [0x%p]; mount_crypt_stat->"
1058 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1059 rc,
1060 s->auth_tok->token.password.session_key_encryption_key,
1061 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1062 goto out_free_unlock;
1063 }
1064 rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1065 s->block_aligned_filename_size);
1066 if (rc) {
1067 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1068 "rc = [%d]\n", __func__, rc);
1069 goto out_free_unlock;
1070 }
1071 s->i = 0;
1072 while (s->decrypted_filename[s->i] != '\0'
1073 && s->i < s->block_aligned_filename_size)
1074 s->i++;
1075 if (s->i == s->block_aligned_filename_size) {
1076 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1077 "find valid separator between random characters and "
1078 "the filename\n", __func__);
1079 rc = -EINVAL;
1080 goto out_free_unlock;
1081 }
1082 s->i++;
1083 (*filename_size) = (s->block_aligned_filename_size - s->i);
1084 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1085 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1086 "invalid\n", __func__, (*filename_size));
1087 rc = -EINVAL;
1088 goto out_free_unlock;
1089 }
1090 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1091 if (!(*filename)) {
1092 printk(KERN_ERR "%s: Out of memory whilst attempting to "
1093 "kmalloc [%zd] bytes\n", __func__,
1094 ((*filename_size) + 1));
1095 rc = -ENOMEM;
1096 goto out_free_unlock;
1097 }
1098 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1099 (*filename)[(*filename_size)] = '\0';
1100out_free_unlock:
1101 kfree(s->decrypted_filename);
1102out_unlock:
1103 mutex_unlock(s->tfm_mutex);
1104out:
1105 if (rc) {
1106 (*packet_size) = 0;
1107 (*filename_size) = 0;
1108 (*filename) = NULL;
1109 }
1110 if (auth_tok_key) {
1111 up_write(&(auth_tok_key->sem));
1112 key_put(auth_tok_key);
1113 }
1114 kfree(s);
1115 return rc;
1116}
1117
1118static int
1119ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1120{
1121 int rc = 0;
1122
1123 (*sig) = NULL;
1124 switch (auth_tok->token_type) {
1125 case ECRYPTFS_PASSWORD:
1126 (*sig) = auth_tok->token.password.signature;
1127 break;
1128 case ECRYPTFS_PRIVATE_KEY:
1129 (*sig) = auth_tok->token.private_key.signature;
1130 break;
1131 default:
1132 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1133 auth_tok->token_type);
1134 rc = -EINVAL;
1135 }
1136 return rc;
1137}
1138
1139/**
1140 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1141 * @auth_tok: The key authentication token used to decrypt the session key
1142 * @crypt_stat: The cryptographic context
1143 *
1144 * Returns zero on success; non-zero error otherwise.
1145 */
1146static int
1147decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1148 struct ecryptfs_crypt_stat *crypt_stat)
1149{
1150 u8 cipher_code = 0;
1151 struct ecryptfs_msg_ctx *msg_ctx;
1152 struct ecryptfs_message *msg = NULL;
1153 char *auth_tok_sig;
1154 char *payload;
1155 size_t payload_len;
1156 int rc;
1157
1158 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1159 if (rc) {
1160 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1161 auth_tok->token_type);
1162 goto out;
1163 }
1164 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1165 &payload, &payload_len);
1166 if (rc) {
1167 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1168 goto out;
1169 }
1170 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1171 if (rc) {
1172 ecryptfs_printk(KERN_ERR, "Error sending message to "
1173 "ecryptfsd\n");
1174 goto out;
1175 }
1176 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1177 if (rc) {
1178 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1179 "from the user space daemon\n");
1180 rc = -EIO;
1181 goto out;
1182 }
1183 rc = parse_tag_65_packet(&(auth_tok->session_key),
1184 &cipher_code, msg);
1185 if (rc) {
1186 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1187 rc);
1188 goto out;
1189 }
1190 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1191 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1192 auth_tok->session_key.decrypted_key_size);
1193 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1194 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1195 if (rc) {
1196 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1197 cipher_code)
1198 goto out;
1199 }
1200 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1201 if (ecryptfs_verbosity > 0) {
1202 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1203 ecryptfs_dump_hex(crypt_stat->key,
1204 crypt_stat->key_size);
1205 }
1206out:
1207 if (msg)
1208 kfree(msg);
1209 return rc;
1210}
1211
1212static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1213{
1214 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1215 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1216
1217 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1218 auth_tok_list_head, list) {
1219 list_del(&auth_tok_list_item->list);
1220 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1221 auth_tok_list_item);
1222 }
1223}
1224
1225struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1226
1227/**
1228 * parse_tag_1_packet
1229 * @crypt_stat: The cryptographic context to modify based on packet contents
1230 * @data: The raw bytes of the packet.
1231 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1232 * a new authentication token will be placed at the
1233 * end of this list for this packet.
1234 * @new_auth_tok: Pointer to a pointer to memory that this function
1235 * allocates; sets the memory address of the pointer to
1236 * NULL on error. This object is added to the
1237 * auth_tok_list.
1238 * @packet_size: This function writes the size of the parsed packet
1239 * into this memory location; zero on error.
1240 * @max_packet_size: The maximum allowable packet size
1241 *
1242 * Returns zero on success; non-zero on error.
1243 */
1244static int
1245parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1246 unsigned char *data, struct list_head *auth_tok_list,
1247 struct ecryptfs_auth_tok **new_auth_tok,
1248 size_t *packet_size, size_t max_packet_size)
1249{
1250 size_t body_size;
1251 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1252 size_t length_size;
1253 int rc = 0;
1254
1255 (*packet_size) = 0;
1256 (*new_auth_tok) = NULL;
1257 /**
1258 * This format is inspired by OpenPGP; see RFC 2440
1259 * packet tag 1
1260 *
1261 * Tag 1 identifier (1 byte)
1262 * Max Tag 1 packet size (max 3 bytes)
1263 * Version (1 byte)
1264 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1265 * Cipher identifier (1 byte)
1266 * Encrypted key size (arbitrary)
1267 *
1268 * 12 bytes minimum packet size
1269 */
1270 if (unlikely(max_packet_size < 12)) {
1271 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1272 rc = -EINVAL;
1273 goto out;
1274 }
1275 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1276 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1277 ECRYPTFS_TAG_1_PACKET_TYPE);
1278 rc = -EINVAL;
1279 goto out;
1280 }
1281 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1282 * at end of function upon failure */
1283 auth_tok_list_item =
1284 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1285 GFP_KERNEL);
1286 if (!auth_tok_list_item) {
1287 printk(KERN_ERR "Unable to allocate memory\n");
1288 rc = -ENOMEM;
1289 goto out;
1290 }
1291 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1292 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1293 &length_size);
1294 if (rc) {
1295 printk(KERN_WARNING "Error parsing packet length; "
1296 "rc = [%d]\n", rc);
1297 goto out_free;
1298 }
1299 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1300 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1301 rc = -EINVAL;
1302 goto out_free;
1303 }
1304 (*packet_size) += length_size;
1305 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1306 printk(KERN_WARNING "Packet size exceeds max\n");
1307 rc = -EINVAL;
1308 goto out_free;
1309 }
1310 if (unlikely(data[(*packet_size)++] != 0x03)) {
1311 printk(KERN_WARNING "Unknown version number [%d]\n",
1312 data[(*packet_size) - 1]);
1313 rc = -EINVAL;
1314 goto out_free;
1315 }
1316 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1317 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1318 *packet_size += ECRYPTFS_SIG_SIZE;
1319 /* This byte is skipped because the kernel does not need to
1320 * know which public key encryption algorithm was used */
1321 (*packet_size)++;
1322 (*new_auth_tok)->session_key.encrypted_key_size =
1323 body_size - (ECRYPTFS_SIG_SIZE + 2);
1324 if ((*new_auth_tok)->session_key.encrypted_key_size
1325 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1326 printk(KERN_WARNING "Tag 1 packet contains key larger "
1327 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1328 rc = -EINVAL;
1329 goto out;
1330 }
1331 memcpy((*new_auth_tok)->session_key.encrypted_key,
1332 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1333 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1334 (*new_auth_tok)->session_key.flags &=
1335 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1336 (*new_auth_tok)->session_key.flags |=
1337 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1338 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1339 (*new_auth_tok)->flags = 0;
1340 (*new_auth_tok)->session_key.flags &=
1341 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1342 (*new_auth_tok)->session_key.flags &=
1343 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1344 list_add(&auth_tok_list_item->list, auth_tok_list);
1345 goto out;
1346out_free:
1347 (*new_auth_tok) = NULL;
1348 memset(auth_tok_list_item, 0,
1349 sizeof(struct ecryptfs_auth_tok_list_item));
1350 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1351 auth_tok_list_item);
1352out:
1353 if (rc)
1354 (*packet_size) = 0;
1355 return rc;
1356}
1357
1358/**
1359 * parse_tag_3_packet
1360 * @crypt_stat: The cryptographic context to modify based on packet
1361 * contents.
1362 * @data: The raw bytes of the packet.
1363 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1364 * a new authentication token will be placed at the end
1365 * of this list for this packet.
1366 * @new_auth_tok: Pointer to a pointer to memory that this function
1367 * allocates; sets the memory address of the pointer to
1368 * NULL on error. This object is added to the
1369 * auth_tok_list.
1370 * @packet_size: This function writes the size of the parsed packet
1371 * into this memory location; zero on error.
1372 * @max_packet_size: maximum number of bytes to parse
1373 *
1374 * Returns zero on success; non-zero on error.
1375 */
1376static int
1377parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1378 unsigned char *data, struct list_head *auth_tok_list,
1379 struct ecryptfs_auth_tok **new_auth_tok,
1380 size_t *packet_size, size_t max_packet_size)
1381{
1382 size_t body_size;
1383 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1384 size_t length_size;
1385 int rc = 0;
1386
1387 (*packet_size) = 0;
1388 (*new_auth_tok) = NULL;
1389 /**
1390 *This format is inspired by OpenPGP; see RFC 2440
1391 * packet tag 3
1392 *
1393 * Tag 3 identifier (1 byte)
1394 * Max Tag 3 packet size (max 3 bytes)
1395 * Version (1 byte)
1396 * Cipher code (1 byte)
1397 * S2K specifier (1 byte)
1398 * Hash identifier (1 byte)
1399 * Salt (ECRYPTFS_SALT_SIZE)
1400 * Hash iterations (1 byte)
1401 * Encrypted key (arbitrary)
1402 *
1403 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1404 */
1405 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1406 printk(KERN_ERR "Max packet size too large\n");
1407 rc = -EINVAL;
1408 goto out;
1409 }
1410 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1411 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1412 ECRYPTFS_TAG_3_PACKET_TYPE);
1413 rc = -EINVAL;
1414 goto out;
1415 }
1416 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1417 * at end of function upon failure */
1418 auth_tok_list_item =
1419 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1420 if (!auth_tok_list_item) {
1421 printk(KERN_ERR "Unable to allocate memory\n");
1422 rc = -ENOMEM;
1423 goto out;
1424 }
1425 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1426 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1427 &length_size);
1428 if (rc) {
1429 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1430 rc);
1431 goto out_free;
1432 }
1433 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1434 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1435 rc = -EINVAL;
1436 goto out_free;
1437 }
1438 (*packet_size) += length_size;
1439 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1440 printk(KERN_ERR "Packet size exceeds max\n");
1441 rc = -EINVAL;
1442 goto out_free;
1443 }
1444 (*new_auth_tok)->session_key.encrypted_key_size =
1445 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1446 if ((*new_auth_tok)->session_key.encrypted_key_size
1447 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1448 printk(KERN_WARNING "Tag 3 packet contains key larger "
1449 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1450 rc = -EINVAL;
1451 goto out_free;
1452 }
1453 if (unlikely(data[(*packet_size)++] != 0x04)) {
1454 printk(KERN_WARNING "Unknown version number [%d]\n",
1455 data[(*packet_size) - 1]);
1456 rc = -EINVAL;
1457 goto out_free;
1458 }
1459 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1460 (u16)data[(*packet_size)]);
1461 if (rc)
1462 goto out_free;
1463 /* A little extra work to differentiate among the AES key
1464 * sizes; see RFC2440 */
1465 switch(data[(*packet_size)++]) {
1466 case RFC2440_CIPHER_AES_192:
1467 crypt_stat->key_size = 24;
1468 break;
1469 default:
1470 crypt_stat->key_size =
1471 (*new_auth_tok)->session_key.encrypted_key_size;
1472 }
1473 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1474 if (rc)
1475 goto out_free;
1476 if (unlikely(data[(*packet_size)++] != 0x03)) {
1477 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1478 rc = -ENOSYS;
1479 goto out_free;
1480 }
1481 /* TODO: finish the hash mapping */
1482 switch (data[(*packet_size)++]) {
1483 case 0x01: /* See RFC2440 for these numbers and their mappings */
1484 /* Choose MD5 */
1485 memcpy((*new_auth_tok)->token.password.salt,
1486 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1487 (*packet_size) += ECRYPTFS_SALT_SIZE;
1488 /* This conversion was taken straight from RFC2440 */
1489 (*new_auth_tok)->token.password.hash_iterations =
1490 ((u32) 16 + (data[(*packet_size)] & 15))
1491 << ((data[(*packet_size)] >> 4) + 6);
1492 (*packet_size)++;
1493 /* Friendly reminder:
1494 * (*new_auth_tok)->session_key.encrypted_key_size =
1495 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1496 memcpy((*new_auth_tok)->session_key.encrypted_key,
1497 &data[(*packet_size)],
1498 (*new_auth_tok)->session_key.encrypted_key_size);
1499 (*packet_size) +=
1500 (*new_auth_tok)->session_key.encrypted_key_size;
1501 (*new_auth_tok)->session_key.flags &=
1502 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1503 (*new_auth_tok)->session_key.flags |=
1504 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1505 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1506 break;
1507 default:
1508 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1509 "[%d]\n", data[(*packet_size) - 1]);
1510 rc = -ENOSYS;
1511 goto out_free;
1512 }
1513 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1514 /* TODO: Parametarize; we might actually want userspace to
1515 * decrypt the session key. */
1516 (*new_auth_tok)->session_key.flags &=
1517 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1518 (*new_auth_tok)->session_key.flags &=
1519 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1520 list_add(&auth_tok_list_item->list, auth_tok_list);
1521 goto out;
1522out_free:
1523 (*new_auth_tok) = NULL;
1524 memset(auth_tok_list_item, 0,
1525 sizeof(struct ecryptfs_auth_tok_list_item));
1526 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1527 auth_tok_list_item);
1528out:
1529 if (rc)
1530 (*packet_size) = 0;
1531 return rc;
1532}
1533
1534/**
1535 * parse_tag_11_packet
1536 * @data: The raw bytes of the packet
1537 * @contents: This function writes the data contents of the literal
1538 * packet into this memory location
1539 * @max_contents_bytes: The maximum number of bytes that this function
1540 * is allowed to write into contents
1541 * @tag_11_contents_size: This function writes the size of the parsed
1542 * contents into this memory location; zero on
1543 * error
1544 * @packet_size: This function writes the size of the parsed packet
1545 * into this memory location; zero on error
1546 * @max_packet_size: maximum number of bytes to parse
1547 *
1548 * Returns zero on success; non-zero on error.
1549 */
1550static int
1551parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1552 size_t max_contents_bytes, size_t *tag_11_contents_size,
1553 size_t *packet_size, size_t max_packet_size)
1554{
1555 size_t body_size;
1556 size_t length_size;
1557 int rc = 0;
1558
1559 (*packet_size) = 0;
1560 (*tag_11_contents_size) = 0;
1561 /* This format is inspired by OpenPGP; see RFC 2440
1562 * packet tag 11
1563 *
1564 * Tag 11 identifier (1 byte)
1565 * Max Tag 11 packet size (max 3 bytes)
1566 * Binary format specifier (1 byte)
1567 * Filename length (1 byte)
1568 * Filename ("_CONSOLE") (8 bytes)
1569 * Modification date (4 bytes)
1570 * Literal data (arbitrary)
1571 *
1572 * We need at least 16 bytes of data for the packet to even be
1573 * valid.
1574 */
1575 if (max_packet_size < 16) {
1576 printk(KERN_ERR "Maximum packet size too small\n");
1577 rc = -EINVAL;
1578 goto out;
1579 }
1580 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1581 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1582 rc = -EINVAL;
1583 goto out;
1584 }
1585 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1586 &length_size);
1587 if (rc) {
1588 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1589 goto out;
1590 }
1591 if (body_size < 14) {
1592 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1593 rc = -EINVAL;
1594 goto out;
1595 }
1596 (*packet_size) += length_size;
1597 (*tag_11_contents_size) = (body_size - 14);
1598 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1599 printk(KERN_ERR "Packet size exceeds max\n");
1600 rc = -EINVAL;
1601 goto out;
1602 }
1603 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1604 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1605 "expected size\n");
1606 rc = -EINVAL;
1607 goto out;
1608 }
1609 if (data[(*packet_size)++] != 0x62) {
1610 printk(KERN_WARNING "Unrecognizable packet\n");
1611 rc = -EINVAL;
1612 goto out;
1613 }
1614 if (data[(*packet_size)++] != 0x08) {
1615 printk(KERN_WARNING "Unrecognizable packet\n");
1616 rc = -EINVAL;
1617 goto out;
1618 }
1619 (*packet_size) += 12; /* Ignore filename and modification date */
1620 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1621 (*packet_size) += (*tag_11_contents_size);
1622out:
1623 if (rc) {
1624 (*packet_size) = 0;
1625 (*tag_11_contents_size) = 0;
1626 }
1627 return rc;
1628}
1629
1630int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1631 struct ecryptfs_auth_tok **auth_tok,
1632 char *sig)
1633{
1634 int rc = 0;
1635
1636 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1637 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1638 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1639 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1640 printk(KERN_ERR "Could not find key with description: [%s]\n",
1641 sig);
1642 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1643 (*auth_tok_key) = NULL;
1644 goto out;
1645 }
1646 }
1647 down_write(&(*auth_tok_key)->sem);
1648 rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1649 if (rc) {
1650 up_write(&(*auth_tok_key)->sem);
1651 key_put(*auth_tok_key);
1652 (*auth_tok_key) = NULL;
1653 goto out;
1654 }
1655out:
1656 return rc;
1657}
1658
1659/**
1660 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1661 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1662 * @crypt_stat: The cryptographic context
1663 *
1664 * Returns zero on success; non-zero error otherwise
1665 */
1666static int
1667decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1668 struct ecryptfs_crypt_stat *crypt_stat)
1669{
1670 struct scatterlist dst_sg[2];
1671 struct scatterlist src_sg[2];
1672 struct mutex *tfm_mutex;
1673 struct blkcipher_desc desc = {
1674 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1675 };
1676 int rc = 0;
1677
1678 if (unlikely(ecryptfs_verbosity > 0)) {
1679 ecryptfs_printk(
1680 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1681 auth_tok->token.password.session_key_encryption_key_bytes);
1682 ecryptfs_dump_hex(
1683 auth_tok->token.password.session_key_encryption_key,
1684 auth_tok->token.password.session_key_encryption_key_bytes);
1685 }
1686 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1687 crypt_stat->cipher);
1688 if (unlikely(rc)) {
1689 printk(KERN_ERR "Internal error whilst attempting to get "
1690 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1691 crypt_stat->cipher, rc);
1692 goto out;
1693 }
1694 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1695 auth_tok->session_key.encrypted_key_size,
1696 src_sg, 2);
1697 if (rc < 1 || rc > 2) {
1698 printk(KERN_ERR "Internal error whilst attempting to convert "
1699 "auth_tok->session_key.encrypted_key to scatterlist; "
1700 "expected rc = 1; got rc = [%d]. "
1701 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1702 auth_tok->session_key.encrypted_key_size);
1703 goto out;
1704 }
1705 auth_tok->session_key.decrypted_key_size =
1706 auth_tok->session_key.encrypted_key_size;
1707 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1708 auth_tok->session_key.decrypted_key_size,
1709 dst_sg, 2);
1710 if (rc < 1 || rc > 2) {
1711 printk(KERN_ERR "Internal error whilst attempting to convert "
1712 "auth_tok->session_key.decrypted_key to scatterlist; "
1713 "expected rc = 1; got rc = [%d]\n", rc);
1714 goto out;
1715 }
1716 mutex_lock(tfm_mutex);
1717 rc = crypto_blkcipher_setkey(
1718 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1719 crypt_stat->key_size);
1720 if (unlikely(rc < 0)) {
1721 mutex_unlock(tfm_mutex);
1722 printk(KERN_ERR "Error setting key for crypto context\n");
1723 rc = -EINVAL;
1724 goto out;
1725 }
1726 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1727 auth_tok->session_key.encrypted_key_size);
1728 mutex_unlock(tfm_mutex);
1729 if (unlikely(rc)) {
1730 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1731 goto out;
1732 }
1733 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1734 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1735 auth_tok->session_key.decrypted_key_size);
1736 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1737 if (unlikely(ecryptfs_verbosity > 0)) {
1738 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1739 crypt_stat->key_size);
1740 ecryptfs_dump_hex(crypt_stat->key,
1741 crypt_stat->key_size);
1742 }
1743out:
1744 return rc;
1745}
1746
1747/**
1748 * ecryptfs_parse_packet_set
1749 * @crypt_stat: The cryptographic context
1750 * @src: Virtual address of region of memory containing the packets
1751 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1752 *
1753 * Get crypt_stat to have the file's session key if the requisite key
1754 * is available to decrypt the session key.
1755 *
1756 * Returns Zero if a valid authentication token was retrieved and
1757 * processed; negative value for file not encrypted or for error
1758 * conditions.
1759 */
1760int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1761 unsigned char *src,
1762 struct dentry *ecryptfs_dentry)
1763{
1764 size_t i = 0;
1765 size_t found_auth_tok;
1766 size_t next_packet_is_auth_tok_packet;
1767 struct list_head auth_tok_list;
1768 struct ecryptfs_auth_tok *matching_auth_tok;
1769 struct ecryptfs_auth_tok *candidate_auth_tok;
1770 char *candidate_auth_tok_sig;
1771 size_t packet_size;
1772 struct ecryptfs_auth_tok *new_auth_tok;
1773 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1774 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1775 size_t tag_11_contents_size;
1776 size_t tag_11_packet_size;
1777 struct key *auth_tok_key = NULL;
1778 int rc = 0;
1779
1780 INIT_LIST_HEAD(&auth_tok_list);
1781 /* Parse the header to find as many packets as we can; these will be
1782 * added the our &auth_tok_list */
1783 next_packet_is_auth_tok_packet = 1;
1784 while (next_packet_is_auth_tok_packet) {
1785 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1786
1787 switch (src[i]) {
1788 case ECRYPTFS_TAG_3_PACKET_TYPE:
1789 rc = parse_tag_3_packet(crypt_stat,
1790 (unsigned char *)&src[i],
1791 &auth_tok_list, &new_auth_tok,
1792 &packet_size, max_packet_size);
1793 if (rc) {
1794 ecryptfs_printk(KERN_ERR, "Error parsing "
1795 "tag 3 packet\n");
1796 rc = -EIO;
1797 goto out_wipe_list;
1798 }
1799 i += packet_size;
1800 rc = parse_tag_11_packet((unsigned char *)&src[i],
1801 sig_tmp_space,
1802 ECRYPTFS_SIG_SIZE,
1803 &tag_11_contents_size,
1804 &tag_11_packet_size,
1805 max_packet_size);
1806 if (rc) {
1807 ecryptfs_printk(KERN_ERR, "No valid "
1808 "(ecryptfs-specific) literal "
1809 "packet containing "
1810 "authentication token "
1811 "signature found after "
1812 "tag 3 packet\n");
1813 rc = -EIO;
1814 goto out_wipe_list;
1815 }
1816 i += tag_11_packet_size;
1817 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1818 ecryptfs_printk(KERN_ERR, "Expected "
1819 "signature of size [%d]; "
1820 "read size [%zd]\n",
1821 ECRYPTFS_SIG_SIZE,
1822 tag_11_contents_size);
1823 rc = -EIO;
1824 goto out_wipe_list;
1825 }
1826 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1827 sig_tmp_space, tag_11_contents_size);
1828 new_auth_tok->token.password.signature[
1829 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1830 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1831 break;
1832 case ECRYPTFS_TAG_1_PACKET_TYPE:
1833 rc = parse_tag_1_packet(crypt_stat,
1834 (unsigned char *)&src[i],
1835 &auth_tok_list, &new_auth_tok,
1836 &packet_size, max_packet_size);
1837 if (rc) {
1838 ecryptfs_printk(KERN_ERR, "Error parsing "
1839 "tag 1 packet\n");
1840 rc = -EIO;
1841 goto out_wipe_list;
1842 }
1843 i += packet_size;
1844 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1845 break;
1846 case ECRYPTFS_TAG_11_PACKET_TYPE:
1847 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1848 "(Tag 11 not allowed by itself)\n");
1849 rc = -EIO;
1850 goto out_wipe_list;
1851 break;
1852 default:
1853 ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1854 "of the file header; hex value of "
1855 "character is [0x%.2x]\n", i, src[i]);
1856 next_packet_is_auth_tok_packet = 0;
1857 }
1858 }
1859 if (list_empty(&auth_tok_list)) {
1860 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1861 "eCryptfs file; this is not supported in this version "
1862 "of the eCryptfs kernel module\n");
1863 rc = -EINVAL;
1864 goto out;
1865 }
1866 /* auth_tok_list contains the set of authentication tokens
1867 * parsed from the metadata. We need to find a matching
1868 * authentication token that has the secret component(s)
1869 * necessary to decrypt the EFEK in the auth_tok parsed from
1870 * the metadata. There may be several potential matches, but
1871 * just one will be sufficient to decrypt to get the FEK. */
1872find_next_matching_auth_tok:
1873 found_auth_tok = 0;
1874 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1875 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1876 if (unlikely(ecryptfs_verbosity > 0)) {
1877 ecryptfs_printk(KERN_DEBUG,
1878 "Considering cadidate auth tok:\n");
1879 ecryptfs_dump_auth_tok(candidate_auth_tok);
1880 }
1881 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1882 candidate_auth_tok);
1883 if (rc) {
1884 printk(KERN_ERR
1885 "Unrecognized candidate auth tok type: [%d]\n",
1886 candidate_auth_tok->token_type);
1887 rc = -EINVAL;
1888 goto out_wipe_list;
1889 }
1890 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1891 &matching_auth_tok,
1892 crypt_stat->mount_crypt_stat,
1893 candidate_auth_tok_sig);
1894 if (!rc) {
1895 found_auth_tok = 1;
1896 goto found_matching_auth_tok;
1897 }
1898 }
1899 if (!found_auth_tok) {
1900 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1901 "authentication token\n");
1902 rc = -EIO;
1903 goto out_wipe_list;
1904 }
1905found_matching_auth_tok:
1906 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1907 memcpy(&(candidate_auth_tok->token.private_key),
1908 &(matching_auth_tok->token.private_key),
1909 sizeof(struct ecryptfs_private_key));
1910 up_write(&(auth_tok_key->sem));
1911 key_put(auth_tok_key);
1912 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1913 crypt_stat);
1914 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1915 memcpy(&(candidate_auth_tok->token.password),
1916 &(matching_auth_tok->token.password),
1917 sizeof(struct ecryptfs_password));
1918 up_write(&(auth_tok_key->sem));
1919 key_put(auth_tok_key);
1920 rc = decrypt_passphrase_encrypted_session_key(
1921 candidate_auth_tok, crypt_stat);
1922 } else {
1923 up_write(&(auth_tok_key->sem));
1924 key_put(auth_tok_key);
1925 rc = -EINVAL;
1926 }
1927 if (rc) {
1928 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1929
1930 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1931 "session key for authentication token with sig "
1932 "[%.*s]; rc = [%d]. Removing auth tok "
1933 "candidate from the list and searching for "
1934 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1935 candidate_auth_tok_sig, rc);
1936 list_for_each_entry_safe(auth_tok_list_item,
1937 auth_tok_list_item_tmp,
1938 &auth_tok_list, list) {
1939 if (candidate_auth_tok
1940 == &auth_tok_list_item->auth_tok) {
1941 list_del(&auth_tok_list_item->list);
1942 kmem_cache_free(
1943 ecryptfs_auth_tok_list_item_cache,
1944 auth_tok_list_item);
1945 goto find_next_matching_auth_tok;
1946 }
1947 }
1948 BUG();
1949 }
1950 rc = ecryptfs_compute_root_iv(crypt_stat);
1951 if (rc) {
1952 ecryptfs_printk(KERN_ERR, "Error computing "
1953 "the root IV\n");
1954 goto out_wipe_list;
1955 }
1956 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1957 if (rc) {
1958 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1959 "context for cipher [%s]; rc = [%d]\n",
1960 crypt_stat->cipher, rc);
1961 }
1962out_wipe_list:
1963 wipe_auth_tok_list(&auth_tok_list);
1964out:
1965 return rc;
1966}
1967
1968static int
1969pki_encrypt_session_key(struct key *auth_tok_key,
1970 struct ecryptfs_auth_tok *auth_tok,
1971 struct ecryptfs_crypt_stat *crypt_stat,
1972 struct ecryptfs_key_record *key_rec)
1973{
1974 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1975 char *payload = NULL;
1976 size_t payload_len = 0;
1977 struct ecryptfs_message *msg;
1978 int rc;
1979
1980 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1981 ecryptfs_code_for_cipher_string(
1982 crypt_stat->cipher,
1983 crypt_stat->key_size),
1984 crypt_stat, &payload, &payload_len);
1985 up_write(&(auth_tok_key->sem));
1986 key_put(auth_tok_key);
1987 if (rc) {
1988 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1989 goto out;
1990 }
1991 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1992 if (rc) {
1993 ecryptfs_printk(KERN_ERR, "Error sending message to "
1994 "ecryptfsd\n");
1995 goto out;
1996 }
1997 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1998 if (rc) {
1999 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2000 "from the user space daemon\n");
2001 rc = -EIO;
2002 goto out;
2003 }
2004 rc = parse_tag_67_packet(key_rec, msg);
2005 if (rc)
2006 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2007 kfree(msg);
2008out:
2009 kfree(payload);
2010 return rc;
2011}
2012/**
2013 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2014 * @dest: Buffer into which to write the packet
2015 * @remaining_bytes: Maximum number of bytes that can be writtn
2016 * @auth_tok_key: The authentication token key to unlock and put when done with
2017 * @auth_tok
2018 * @auth_tok: The authentication token used for generating the tag 1 packet
2019 * @crypt_stat: The cryptographic context
2020 * @key_rec: The key record struct for the tag 1 packet
2021 * @packet_size: This function will write the number of bytes that end
2022 * up constituting the packet; set to zero on error
2023 *
2024 * Returns zero on success; non-zero on error.
2025 */
2026static int
2027write_tag_1_packet(char *dest, size_t *remaining_bytes,
2028 struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2029 struct ecryptfs_crypt_stat *crypt_stat,
2030 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2031{
2032 size_t i;
2033 size_t encrypted_session_key_valid = 0;
2034 size_t packet_size_length;
2035 size_t max_packet_size;
2036 int rc = 0;
2037
2038 (*packet_size) = 0;
2039 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2040 ECRYPTFS_SIG_SIZE);
2041 encrypted_session_key_valid = 0;
2042 for (i = 0; i < crypt_stat->key_size; i++)
2043 encrypted_session_key_valid |=
2044 auth_tok->session_key.encrypted_key[i];
2045 if (encrypted_session_key_valid) {
2046 memcpy(key_rec->enc_key,
2047 auth_tok->session_key.encrypted_key,
2048 auth_tok->session_key.encrypted_key_size);
2049 up_write(&(auth_tok_key->sem));
2050 key_put(auth_tok_key);
2051 goto encrypted_session_key_set;
2052 }
2053 if (auth_tok->session_key.encrypted_key_size == 0)
2054 auth_tok->session_key.encrypted_key_size =
2055 auth_tok->token.private_key.key_size;
2056 rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2057 key_rec);
2058 if (rc) {
2059 printk(KERN_ERR "Failed to encrypt session key via a key "
2060 "module; rc = [%d]\n", rc);
2061 goto out;
2062 }
2063 if (ecryptfs_verbosity > 0) {
2064 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2065 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2066 }
2067encrypted_session_key_set:
2068 /* This format is inspired by OpenPGP; see RFC 2440
2069 * packet tag 1 */
2070 max_packet_size = (1 /* Tag 1 identifier */
2071 + 3 /* Max Tag 1 packet size */
2072 + 1 /* Version */
2073 + ECRYPTFS_SIG_SIZE /* Key identifier */
2074 + 1 /* Cipher identifier */
2075 + key_rec->enc_key_size); /* Encrypted key size */
2076 if (max_packet_size > (*remaining_bytes)) {
2077 printk(KERN_ERR "Packet length larger than maximum allowable; "
2078 "need up to [%td] bytes, but there are only [%td] "
2079 "available\n", max_packet_size, (*remaining_bytes));
2080 rc = -EINVAL;
2081 goto out;
2082 }
2083 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2084 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2085 (max_packet_size - 4),
2086 &packet_size_length);
2087 if (rc) {
2088 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2089 "header; cannot generate packet length\n");
2090 goto out;
2091 }
2092 (*packet_size) += packet_size_length;
2093 dest[(*packet_size)++] = 0x03; /* version 3 */
2094 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2095 (*packet_size) += ECRYPTFS_SIG_SIZE;
2096 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2097 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2098 key_rec->enc_key_size);
2099 (*packet_size) += key_rec->enc_key_size;
2100out:
2101 if (rc)
2102 (*packet_size) = 0;
2103 else
2104 (*remaining_bytes) -= (*packet_size);
2105 return rc;
2106}
2107
2108/**
2109 * write_tag_11_packet
2110 * @dest: Target into which Tag 11 packet is to be written
2111 * @remaining_bytes: Maximum packet length
2112 * @contents: Byte array of contents to copy in
2113 * @contents_length: Number of bytes in contents
2114 * @packet_length: Length of the Tag 11 packet written; zero on error
2115 *
2116 * Returns zero on success; non-zero on error.
2117 */
2118static int
2119write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2120 size_t contents_length, size_t *packet_length)
2121{
2122 size_t packet_size_length;
2123 size_t max_packet_size;
2124 int rc = 0;
2125
2126 (*packet_length) = 0;
2127 /* This format is inspired by OpenPGP; see RFC 2440
2128 * packet tag 11 */
2129 max_packet_size = (1 /* Tag 11 identifier */
2130 + 3 /* Max Tag 11 packet size */
2131 + 1 /* Binary format specifier */
2132 + 1 /* Filename length */
2133 + 8 /* Filename ("_CONSOLE") */
2134 + 4 /* Modification date */
2135 + contents_length); /* Literal data */
2136 if (max_packet_size > (*remaining_bytes)) {
2137 printk(KERN_ERR "Packet length larger than maximum allowable; "
2138 "need up to [%td] bytes, but there are only [%td] "
2139 "available\n", max_packet_size, (*remaining_bytes));
2140 rc = -EINVAL;
2141 goto out;
2142 }
2143 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2144 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2145 (max_packet_size - 4),
2146 &packet_size_length);
2147 if (rc) {
2148 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2149 "generate packet length. rc = [%d]\n", rc);
2150 goto out;
2151 }
2152 (*packet_length) += packet_size_length;
2153 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2154 dest[(*packet_length)++] = 8;
2155 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2156 (*packet_length) += 8;
2157 memset(&dest[(*packet_length)], 0x00, 4);
2158 (*packet_length) += 4;
2159 memcpy(&dest[(*packet_length)], contents, contents_length);
2160 (*packet_length) += contents_length;
2161 out:
2162 if (rc)
2163 (*packet_length) = 0;
2164 else
2165 (*remaining_bytes) -= (*packet_length);
2166 return rc;
2167}
2168
2169/**
2170 * write_tag_3_packet
2171 * @dest: Buffer into which to write the packet
2172 * @remaining_bytes: Maximum number of bytes that can be written
2173 * @auth_tok: Authentication token
2174 * @crypt_stat: The cryptographic context
2175 * @key_rec: encrypted key
2176 * @packet_size: This function will write the number of bytes that end
2177 * up constituting the packet; set to zero on error
2178 *
2179 * Returns zero on success; non-zero on error.
2180 */
2181static int
2182write_tag_3_packet(char *dest, size_t *remaining_bytes,
2183 struct ecryptfs_auth_tok *auth_tok,
2184 struct ecryptfs_crypt_stat *crypt_stat,
2185 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2186{
2187 size_t i;
2188 size_t encrypted_session_key_valid = 0;
2189 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2190 struct scatterlist dst_sg[2];
2191 struct scatterlist src_sg[2];
2192 struct mutex *tfm_mutex = NULL;
2193 u8 cipher_code;
2194 size_t packet_size_length;
2195 size_t max_packet_size;
2196 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2197 crypt_stat->mount_crypt_stat;
2198 struct blkcipher_desc desc = {
2199 .tfm = NULL,
2200 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2201 };
2202 int rc = 0;
2203
2204 (*packet_size) = 0;
2205 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2206 ECRYPTFS_SIG_SIZE);
2207 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2208 crypt_stat->cipher);
2209 if (unlikely(rc)) {
2210 printk(KERN_ERR "Internal error whilst attempting to get "
2211 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2212 crypt_stat->cipher, rc);
2213 goto out;
2214 }
2215 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2216 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2217
2218 printk(KERN_WARNING "No key size specified at mount; "
2219 "defaulting to [%d]\n", alg->max_keysize);
2220 mount_crypt_stat->global_default_cipher_key_size =
2221 alg->max_keysize;
2222 }
2223 if (crypt_stat->key_size == 0)
2224 crypt_stat->key_size =
2225 mount_crypt_stat->global_default_cipher_key_size;
2226 if (auth_tok->session_key.encrypted_key_size == 0)
2227 auth_tok->session_key.encrypted_key_size =
2228 crypt_stat->key_size;
2229 if (crypt_stat->key_size == 24
2230 && strcmp("aes", crypt_stat->cipher) == 0) {
2231 memset((crypt_stat->key + 24), 0, 8);
2232 auth_tok->session_key.encrypted_key_size = 32;
2233 } else
2234 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2235 key_rec->enc_key_size =
2236 auth_tok->session_key.encrypted_key_size;
2237 encrypted_session_key_valid = 0;
2238 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2239 encrypted_session_key_valid |=
2240 auth_tok->session_key.encrypted_key[i];
2241 if (encrypted_session_key_valid) {
2242 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2243 "using auth_tok->session_key.encrypted_key, "
2244 "where key_rec->enc_key_size = [%zd]\n",
2245 key_rec->enc_key_size);
2246 memcpy(key_rec->enc_key,
2247 auth_tok->session_key.encrypted_key,
2248 key_rec->enc_key_size);
2249 goto encrypted_session_key_set;
2250 }
2251 if (auth_tok->token.password.flags &
2252 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2253 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2254 "session key encryption key of size [%d]\n",
2255 auth_tok->token.password.
2256 session_key_encryption_key_bytes);
2257 memcpy(session_key_encryption_key,
2258 auth_tok->token.password.session_key_encryption_key,
2259 crypt_stat->key_size);
2260 ecryptfs_printk(KERN_DEBUG,
2261 "Cached session key encryption key:\n");
2262 if (ecryptfs_verbosity > 0)
2263 ecryptfs_dump_hex(session_key_encryption_key, 16);
2264 }
2265 if (unlikely(ecryptfs_verbosity > 0)) {
2266 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2267 ecryptfs_dump_hex(session_key_encryption_key, 16);
2268 }
2269 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2270 src_sg, 2);
2271 if (rc < 1 || rc > 2) {
2272 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2273 "for crypt_stat session key; expected rc = 1; "
2274 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2275 rc, key_rec->enc_key_size);
2276 rc = -ENOMEM;
2277 goto out;
2278 }
2279 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2280 dst_sg, 2);
2281 if (rc < 1 || rc > 2) {
2282 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2283 "for crypt_stat encrypted session key; "
2284 "expected rc = 1; got rc = [%d]. "
2285 "key_rec->enc_key_size = [%zd]\n", rc,
2286 key_rec->enc_key_size);
2287 rc = -ENOMEM;
2288 goto out;
2289 }
2290 mutex_lock(tfm_mutex);
2291 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2292 crypt_stat->key_size);
2293 if (rc < 0) {
2294 mutex_unlock(tfm_mutex);
2295 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2296 "context; rc = [%d]\n", rc);
2297 goto out;
2298 }
2299 rc = 0;
2300 ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2301 crypt_stat->key_size);
2302 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2303 (*key_rec).enc_key_size);
2304 mutex_unlock(tfm_mutex);
2305 if (rc) {
2306 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2307 goto out;
2308 }
2309 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2310 if (ecryptfs_verbosity > 0) {
2311 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2312 key_rec->enc_key_size);
2313 ecryptfs_dump_hex(key_rec->enc_key,
2314 key_rec->enc_key_size);
2315 }
2316encrypted_session_key_set:
2317 /* This format is inspired by OpenPGP; see RFC 2440
2318 * packet tag 3 */
2319 max_packet_size = (1 /* Tag 3 identifier */
2320 + 3 /* Max Tag 3 packet size */
2321 + 1 /* Version */
2322 + 1 /* Cipher code */
2323 + 1 /* S2K specifier */
2324 + 1 /* Hash identifier */
2325 + ECRYPTFS_SALT_SIZE /* Salt */
2326 + 1 /* Hash iterations */
2327 + key_rec->enc_key_size); /* Encrypted key size */
2328 if (max_packet_size > (*remaining_bytes)) {
2329 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2330 "there are only [%td] available\n", max_packet_size,
2331 (*remaining_bytes));
2332 rc = -EINVAL;
2333 goto out;
2334 }
2335 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2336 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2337 * to get the number of octets in the actual Tag 3 packet */
2338 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2339 (max_packet_size - 4),
2340 &packet_size_length);
2341 if (rc) {
2342 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2343 "generate packet length. rc = [%d]\n", rc);
2344 goto out;
2345 }
2346 (*packet_size) += packet_size_length;
2347 dest[(*packet_size)++] = 0x04; /* version 4 */
2348 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2349 * specified with strings */
2350 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2351 crypt_stat->key_size);
2352 if (cipher_code == 0) {
2353 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2354 "cipher [%s]\n", crypt_stat->cipher);
2355 rc = -EINVAL;
2356 goto out;
2357 }
2358 dest[(*packet_size)++] = cipher_code;
2359 dest[(*packet_size)++] = 0x03; /* S2K */
2360 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2361 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2362 ECRYPTFS_SALT_SIZE);
2363 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2364 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2365 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2366 key_rec->enc_key_size);
2367 (*packet_size) += key_rec->enc_key_size;
2368out:
2369 if (rc)
2370 (*packet_size) = 0;
2371 else
2372 (*remaining_bytes) -= (*packet_size);
2373 return rc;
2374}
2375
2376struct kmem_cache *ecryptfs_key_record_cache;
2377
2378/**
2379 * ecryptfs_generate_key_packet_set
2380 * @dest_base: Virtual address from which to write the key record set
2381 * @crypt_stat: The cryptographic context from which the
2382 * authentication tokens will be retrieved
2383 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2384 * for the global parameters
2385 * @len: The amount written
2386 * @max: The maximum amount of data allowed to be written
2387 *
2388 * Generates a key packet set and writes it to the virtual address
2389 * passed in.
2390 *
2391 * Returns zero on success; non-zero on error.
2392 */
2393int
2394ecryptfs_generate_key_packet_set(char *dest_base,
2395 struct ecryptfs_crypt_stat *crypt_stat,
2396 struct dentry *ecryptfs_dentry, size_t *len,
2397 size_t max)
2398{
2399 struct ecryptfs_auth_tok *auth_tok;
2400 struct key *auth_tok_key = NULL;
2401 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2402 &ecryptfs_superblock_to_private(
2403 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2404 size_t written;
2405 struct ecryptfs_key_record *key_rec;
2406 struct ecryptfs_key_sig *key_sig;
2407 int rc = 0;
2408
2409 (*len) = 0;
2410 mutex_lock(&crypt_stat->keysig_list_mutex);
2411 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2412 if (!key_rec) {
2413 rc = -ENOMEM;
2414 goto out;
2415 }
2416 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2417 crypt_stat_list) {
2418 memset(key_rec, 0, sizeof(*key_rec));
2419 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2420 &auth_tok,
2421 mount_crypt_stat,
2422 key_sig->keysig);
2423 if (rc) {
2424 printk(KERN_WARNING "Unable to retrieve auth tok with "
2425 "sig = [%s]\n", key_sig->keysig);
2426 rc = process_find_global_auth_tok_for_sig_err(rc);
2427 goto out_free;
2428 }
2429 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2430 rc = write_tag_3_packet((dest_base + (*len)),
2431 &max, auth_tok,
2432 crypt_stat, key_rec,
2433 &written);
2434 up_write(&(auth_tok_key->sem));
2435 key_put(auth_tok_key);
2436 if (rc) {
2437 ecryptfs_printk(KERN_WARNING, "Error "
2438 "writing tag 3 packet\n");
2439 goto out_free;
2440 }
2441 (*len) += written;
2442 /* Write auth tok signature packet */
2443 rc = write_tag_11_packet((dest_base + (*len)), &max,
2444 key_rec->sig,
2445 ECRYPTFS_SIG_SIZE, &written);
2446 if (rc) {
2447 ecryptfs_printk(KERN_ERR, "Error writing "
2448 "auth tok signature packet\n");
2449 goto out_free;
2450 }
2451 (*len) += written;
2452 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2453 rc = write_tag_1_packet(dest_base + (*len), &max,
2454 auth_tok_key, auth_tok,
2455 crypt_stat, key_rec, &written);
2456 if (rc) {
2457 ecryptfs_printk(KERN_WARNING, "Error "
2458 "writing tag 1 packet\n");
2459 goto out_free;
2460 }
2461 (*len) += written;
2462 } else {
2463 up_write(&(auth_tok_key->sem));
2464 key_put(auth_tok_key);
2465 ecryptfs_printk(KERN_WARNING, "Unsupported "
2466 "authentication token type\n");
2467 rc = -EINVAL;
2468 goto out_free;
2469 }
2470 }
2471 if (likely(max > 0)) {
2472 dest_base[(*len)] = 0x00;
2473 } else {
2474 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2475 rc = -EIO;
2476 }
2477out_free:
2478 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2479out:
2480 if (rc)
2481 (*len) = 0;
2482 mutex_unlock(&crypt_stat->keysig_list_mutex);
2483 return rc;
2484}
2485
2486struct kmem_cache *ecryptfs_key_sig_cache;
2487
2488int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2489{
2490 struct ecryptfs_key_sig *new_key_sig;
2491
2492 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2493 if (!new_key_sig) {
2494 printk(KERN_ERR
2495 "Error allocating from ecryptfs_key_sig_cache\n");
2496 return -ENOMEM;
2497 }
2498 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2499 new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2500 /* Caller must hold keysig_list_mutex */
2501 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2502
2503 return 0;
2504}
2505
2506struct kmem_cache *ecryptfs_global_auth_tok_cache;
2507
2508int
2509ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2510 char *sig, u32 global_auth_tok_flags)
2511{
2512 struct ecryptfs_global_auth_tok *new_auth_tok;
2513 int rc = 0;
2514
2515 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2516 GFP_KERNEL);
2517 if (!new_auth_tok) {
2518 rc = -ENOMEM;
2519 printk(KERN_ERR "Error allocating from "
2520 "ecryptfs_global_auth_tok_cache\n");
2521 goto out;
2522 }
2523 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2524 new_auth_tok->flags = global_auth_tok_flags;
2525 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2526 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2527 list_add(&new_auth_tok->mount_crypt_stat_list,
2528 &mount_crypt_stat->global_auth_tok_list);
2529 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2530out:
2531 return rc;
2532}
2533
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * eCryptfs: Linux filesystem encryption layer
4 * In-kernel key management code. Includes functions to parse and
5 * write authentication token-related packets with the underlying
6 * file.
7 *
8 * Copyright (C) 2004-2006 International Business Machines Corp.
9 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10 * Michael C. Thompson <mcthomps@us.ibm.com>
11 * Trevor S. Highland <trevor.highland@gmail.com>
12 */
13
14#include <crypto/hash.h>
15#include <crypto/skcipher.h>
16#include <linux/string.h>
17#include <linux/pagemap.h>
18#include <linux/key.h>
19#include <linux/random.h>
20#include <linux/scatterlist.h>
21#include <linux/slab.h>
22#include "ecryptfs_kernel.h"
23
24/*
25 * request_key returned an error instead of a valid key address;
26 * determine the type of error, make appropriate log entries, and
27 * return an error code.
28 */
29static int process_request_key_err(long err_code)
30{
31 int rc = 0;
32
33 switch (err_code) {
34 case -ENOKEY:
35 ecryptfs_printk(KERN_WARNING, "No key\n");
36 rc = -ENOENT;
37 break;
38 case -EKEYEXPIRED:
39 ecryptfs_printk(KERN_WARNING, "Key expired\n");
40 rc = -ETIME;
41 break;
42 case -EKEYREVOKED:
43 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
44 rc = -EINVAL;
45 break;
46 default:
47 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
48 "[0x%.16lx]\n", err_code);
49 rc = -EINVAL;
50 }
51 return rc;
52}
53
54static int process_find_global_auth_tok_for_sig_err(int err_code)
55{
56 int rc = err_code;
57
58 switch (err_code) {
59 case -ENOENT:
60 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
61 break;
62 case -EINVAL:
63 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
64 break;
65 default:
66 rc = process_request_key_err(err_code);
67 break;
68 }
69 return rc;
70}
71
72/**
73 * ecryptfs_parse_packet_length
74 * @data: Pointer to memory containing length at offset
75 * @size: This function writes the decoded size to this memory
76 * address; zero on error
77 * @length_size: The number of bytes occupied by the encoded length
78 *
79 * Returns zero on success; non-zero on error
80 */
81int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
82 size_t *length_size)
83{
84 int rc = 0;
85
86 (*length_size) = 0;
87 (*size) = 0;
88 if (data[0] < 192) {
89 /* One-byte length */
90 (*size) = data[0];
91 (*length_size) = 1;
92 } else if (data[0] < 224) {
93 /* Two-byte length */
94 (*size) = (data[0] - 192) * 256;
95 (*size) += data[1] + 192;
96 (*length_size) = 2;
97 } else if (data[0] == 255) {
98 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
99 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
100 "supported\n");
101 rc = -EINVAL;
102 goto out;
103 } else {
104 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
105 rc = -EINVAL;
106 goto out;
107 }
108out:
109 return rc;
110}
111
112/**
113 * ecryptfs_write_packet_length
114 * @dest: The byte array target into which to write the length. Must
115 * have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116 * @size: The length to write.
117 * @packet_size_length: The number of bytes used to encode the packet
118 * length is written to this address.
119 *
120 * Returns zero on success; non-zero on error.
121 */
122int ecryptfs_write_packet_length(char *dest, size_t size,
123 size_t *packet_size_length)
124{
125 int rc = 0;
126
127 if (size < 192) {
128 dest[0] = size;
129 (*packet_size_length) = 1;
130 } else if (size < 65536) {
131 dest[0] = (((size - 192) / 256) + 192);
132 dest[1] = ((size - 192) % 256);
133 (*packet_size_length) = 2;
134 } else {
135 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
136 rc = -EINVAL;
137 ecryptfs_printk(KERN_WARNING,
138 "Unsupported packet size: [%zd]\n", size);
139 }
140 return rc;
141}
142
143static int
144write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145 char **packet, size_t *packet_len)
146{
147 size_t i = 0;
148 size_t data_len;
149 size_t packet_size_len;
150 char *message;
151 int rc;
152
153 /*
154 * ***** TAG 64 Packet Format *****
155 * | Content Type | 1 byte |
156 * | Key Identifier Size | 1 or 2 bytes |
157 * | Key Identifier | arbitrary |
158 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
159 * | Encrypted File Encryption Key | arbitrary |
160 */
161 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162 + session_key->encrypted_key_size);
163 *packet = kmalloc(data_len, GFP_KERNEL);
164 message = *packet;
165 if (!message) {
166 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
167 rc = -ENOMEM;
168 goto out;
169 }
170 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
172 &packet_size_len);
173 if (rc) {
174 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175 "header; cannot generate packet length\n");
176 goto out;
177 }
178 i += packet_size_len;
179 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180 i += ECRYPTFS_SIG_SIZE_HEX;
181 rc = ecryptfs_write_packet_length(&message[i],
182 session_key->encrypted_key_size,
183 &packet_size_len);
184 if (rc) {
185 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186 "header; cannot generate packet length\n");
187 goto out;
188 }
189 i += packet_size_len;
190 memcpy(&message[i], session_key->encrypted_key,
191 session_key->encrypted_key_size);
192 i += session_key->encrypted_key_size;
193 *packet_len = i;
194out:
195 return rc;
196}
197
198static int
199parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200 struct ecryptfs_message *msg)
201{
202 size_t i = 0;
203 char *data;
204 size_t data_len;
205 size_t m_size;
206 size_t message_len;
207 u16 checksum = 0;
208 u16 expected_checksum = 0;
209 int rc;
210
211 /*
212 * ***** TAG 65 Packet Format *****
213 * | Content Type | 1 byte |
214 * | Status Indicator | 1 byte |
215 * | File Encryption Key Size | 1 or 2 bytes |
216 * | File Encryption Key | arbitrary |
217 */
218 message_len = msg->data_len;
219 data = msg->data;
220 if (message_len < 4) {
221 rc = -EIO;
222 goto out;
223 }
224 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
226 rc = -EIO;
227 goto out;
228 }
229 if (data[i++]) {
230 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231 "[%d]\n", data[i-1]);
232 rc = -EIO;
233 goto out;
234 }
235 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
236 if (rc) {
237 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
238 "rc = [%d]\n", rc);
239 goto out;
240 }
241 i += data_len;
242 if (message_len < (i + m_size)) {
243 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244 "is shorter than expected\n");
245 rc = -EIO;
246 goto out;
247 }
248 if (m_size < 3) {
249 ecryptfs_printk(KERN_ERR,
250 "The decrypted key is not long enough to "
251 "include a cipher code and checksum\n");
252 rc = -EIO;
253 goto out;
254 }
255 *cipher_code = data[i++];
256 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257 session_key->decrypted_key_size = m_size - 3;
258 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260 "the maximum key size [%d]\n",
261 session_key->decrypted_key_size,
262 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
263 rc = -EIO;
264 goto out;
265 }
266 memcpy(session_key->decrypted_key, &data[i],
267 session_key->decrypted_key_size);
268 i += session_key->decrypted_key_size;
269 expected_checksum += (unsigned char)(data[i++]) << 8;
270 expected_checksum += (unsigned char)(data[i++]);
271 for (i = 0; i < session_key->decrypted_key_size; i++)
272 checksum += session_key->decrypted_key[i];
273 if (expected_checksum != checksum) {
274 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275 "encryption key; expected [%x]; calculated "
276 "[%x]\n", expected_checksum, checksum);
277 rc = -EIO;
278 }
279out:
280 return rc;
281}
282
283
284static int
285write_tag_66_packet(char *signature, u8 cipher_code,
286 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
287 size_t *packet_len)
288{
289 size_t i = 0;
290 size_t j;
291 size_t data_len;
292 size_t checksum = 0;
293 size_t packet_size_len;
294 char *message;
295 int rc;
296
297 /*
298 * ***** TAG 66 Packet Format *****
299 * | Content Type | 1 byte |
300 * | Key Identifier Size | 1 or 2 bytes |
301 * | Key Identifier | arbitrary |
302 * | File Encryption Key Size | 1 or 2 bytes |
303 * | File Encryption Key | arbitrary |
304 */
305 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
306 *packet = kmalloc(data_len, GFP_KERNEL);
307 message = *packet;
308 if (!message) {
309 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
310 rc = -ENOMEM;
311 goto out;
312 }
313 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
314 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
315 &packet_size_len);
316 if (rc) {
317 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
318 "header; cannot generate packet length\n");
319 goto out;
320 }
321 i += packet_size_len;
322 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
323 i += ECRYPTFS_SIG_SIZE_HEX;
324 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
325 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
326 &packet_size_len);
327 if (rc) {
328 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
329 "header; cannot generate packet length\n");
330 goto out;
331 }
332 i += packet_size_len;
333 message[i++] = cipher_code;
334 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
335 i += crypt_stat->key_size;
336 for (j = 0; j < crypt_stat->key_size; j++)
337 checksum += crypt_stat->key[j];
338 message[i++] = (checksum / 256) % 256;
339 message[i++] = (checksum % 256);
340 *packet_len = i;
341out:
342 return rc;
343}
344
345static int
346parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
347 struct ecryptfs_message *msg)
348{
349 size_t i = 0;
350 char *data;
351 size_t data_len;
352 size_t message_len;
353 int rc;
354
355 /*
356 * ***** TAG 65 Packet Format *****
357 * | Content Type | 1 byte |
358 * | Status Indicator | 1 byte |
359 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
360 * | Encrypted File Encryption Key | arbitrary |
361 */
362 message_len = msg->data_len;
363 data = msg->data;
364 /* verify that everything through the encrypted FEK size is present */
365 if (message_len < 4) {
366 rc = -EIO;
367 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
368 "message length is [%d]\n", __func__, message_len, 4);
369 goto out;
370 }
371 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
372 rc = -EIO;
373 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
374 __func__);
375 goto out;
376 }
377 if (data[i++]) {
378 rc = -EIO;
379 printk(KERN_ERR "%s: Status indicator has non zero "
380 "value [%d]\n", __func__, data[i-1]);
381
382 goto out;
383 }
384 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
385 &data_len);
386 if (rc) {
387 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
388 "rc = [%d]\n", rc);
389 goto out;
390 }
391 i += data_len;
392 if (message_len < (i + key_rec->enc_key_size)) {
393 rc = -EIO;
394 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
395 __func__, message_len, (i + key_rec->enc_key_size));
396 goto out;
397 }
398 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
399 rc = -EIO;
400 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
401 "the maximum key size [%d]\n", __func__,
402 key_rec->enc_key_size,
403 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
404 goto out;
405 }
406 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
407out:
408 return rc;
409}
410
411/**
412 * ecryptfs_verify_version
413 * @version: The version number to confirm
414 *
415 * Returns zero on good version; non-zero otherwise
416 */
417static int ecryptfs_verify_version(u16 version)
418{
419 int rc = 0;
420 unsigned char major;
421 unsigned char minor;
422
423 major = ((version >> 8) & 0xFF);
424 minor = (version & 0xFF);
425 if (major != ECRYPTFS_VERSION_MAJOR) {
426 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
427 "Expected [%d]; got [%d]\n",
428 ECRYPTFS_VERSION_MAJOR, major);
429 rc = -EINVAL;
430 goto out;
431 }
432 if (minor != ECRYPTFS_VERSION_MINOR) {
433 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
434 "Expected [%d]; got [%d]\n",
435 ECRYPTFS_VERSION_MINOR, minor);
436 rc = -EINVAL;
437 goto out;
438 }
439out:
440 return rc;
441}
442
443/**
444 * ecryptfs_verify_auth_tok_from_key
445 * @auth_tok_key: key containing the authentication token
446 * @auth_tok: authentication token
447 *
448 * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
449 * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
450 */
451static int
452ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
453 struct ecryptfs_auth_tok **auth_tok)
454{
455 int rc = 0;
456
457 (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
458 if (IS_ERR(*auth_tok)) {
459 rc = PTR_ERR(*auth_tok);
460 *auth_tok = NULL;
461 goto out;
462 }
463
464 if (ecryptfs_verify_version((*auth_tok)->version)) {
465 printk(KERN_ERR "Data structure version mismatch. Userspace "
466 "tools must match eCryptfs kernel module with major "
467 "version [%d] and minor version [%d]\n",
468 ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
469 rc = -EINVAL;
470 goto out;
471 }
472 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
473 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
474 printk(KERN_ERR "Invalid auth_tok structure "
475 "returned from key query\n");
476 rc = -EINVAL;
477 goto out;
478 }
479out:
480 return rc;
481}
482
483static int
484ecryptfs_find_global_auth_tok_for_sig(
485 struct key **auth_tok_key,
486 struct ecryptfs_auth_tok **auth_tok,
487 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
488{
489 struct ecryptfs_global_auth_tok *walker;
490 int rc = 0;
491
492 (*auth_tok_key) = NULL;
493 (*auth_tok) = NULL;
494 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
495 list_for_each_entry(walker,
496 &mount_crypt_stat->global_auth_tok_list,
497 mount_crypt_stat_list) {
498 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
499 continue;
500
501 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
502 rc = -EINVAL;
503 goto out;
504 }
505
506 rc = key_validate(walker->global_auth_tok_key);
507 if (rc) {
508 if (rc == -EKEYEXPIRED)
509 goto out;
510 goto out_invalid_auth_tok;
511 }
512
513 down_write(&(walker->global_auth_tok_key->sem));
514 rc = ecryptfs_verify_auth_tok_from_key(
515 walker->global_auth_tok_key, auth_tok);
516 if (rc)
517 goto out_invalid_auth_tok_unlock;
518
519 (*auth_tok_key) = walker->global_auth_tok_key;
520 key_get(*auth_tok_key);
521 goto out;
522 }
523 rc = -ENOENT;
524 goto out;
525out_invalid_auth_tok_unlock:
526 up_write(&(walker->global_auth_tok_key->sem));
527out_invalid_auth_tok:
528 printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
529 walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
530 key_put(walker->global_auth_tok_key);
531 walker->global_auth_tok_key = NULL;
532out:
533 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
534 return rc;
535}
536
537/**
538 * ecryptfs_find_auth_tok_for_sig
539 * @auth_tok_key: key containing the authentication token
540 * @auth_tok: Set to the matching auth_tok; NULL if not found
541 * @mount_crypt_stat: inode crypt_stat crypto context
542 * @sig: Sig of auth_tok to find
543 *
544 * For now, this function simply looks at the registered auth_tok's
545 * linked off the mount_crypt_stat, so all the auth_toks that can be
546 * used must be registered at mount time. This function could
547 * potentially try a lot harder to find auth_tok's (e.g., by calling
548 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
549 * that static registration of auth_tok's will no longer be necessary.
550 *
551 * Returns zero on no error; non-zero on error
552 */
553static int
554ecryptfs_find_auth_tok_for_sig(
555 struct key **auth_tok_key,
556 struct ecryptfs_auth_tok **auth_tok,
557 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
558 char *sig)
559{
560 int rc = 0;
561
562 rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
563 mount_crypt_stat, sig);
564 if (rc == -ENOENT) {
565 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
566 * mount_crypt_stat structure, we prevent to use auth toks that
567 * are not inserted through the ecryptfs_add_global_auth_tok
568 * function.
569 */
570 if (mount_crypt_stat->flags
571 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
572 return -EINVAL;
573
574 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
575 sig);
576 }
577 return rc;
578}
579
580/*
581 * write_tag_70_packet can gobble a lot of stack space. We stuff most
582 * of the function's parameters in a kmalloc'd struct to help reduce
583 * eCryptfs' overall stack usage.
584 */
585struct ecryptfs_write_tag_70_packet_silly_stack {
586 u8 cipher_code;
587 size_t max_packet_size;
588 size_t packet_size_len;
589 size_t block_aligned_filename_size;
590 size_t block_size;
591 size_t i;
592 size_t j;
593 size_t num_rand_bytes;
594 struct mutex *tfm_mutex;
595 char *block_aligned_filename;
596 struct ecryptfs_auth_tok *auth_tok;
597 struct scatterlist src_sg[2];
598 struct scatterlist dst_sg[2];
599 struct crypto_skcipher *skcipher_tfm;
600 struct skcipher_request *skcipher_req;
601 char iv[ECRYPTFS_MAX_IV_BYTES];
602 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
603 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
604 struct crypto_shash *hash_tfm;
605 struct shash_desc *hash_desc;
606};
607
608/*
609 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
610 * @filename: NULL-terminated filename string
611 *
612 * This is the simplest mechanism for achieving filename encryption in
613 * eCryptfs. It encrypts the given filename with the mount-wide
614 * filename encryption key (FNEK) and stores it in a packet to @dest,
615 * which the callee will encode and write directly into the dentry
616 * name.
617 */
618int
619ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
620 size_t *packet_size,
621 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
622 char *filename, size_t filename_size)
623{
624 struct ecryptfs_write_tag_70_packet_silly_stack *s;
625 struct key *auth_tok_key = NULL;
626 int rc = 0;
627
628 s = kzalloc(sizeof(*s), GFP_KERNEL);
629 if (!s)
630 return -ENOMEM;
631
632 (*packet_size) = 0;
633 rc = ecryptfs_find_auth_tok_for_sig(
634 &auth_tok_key,
635 &s->auth_tok, mount_crypt_stat,
636 mount_crypt_stat->global_default_fnek_sig);
637 if (rc) {
638 printk(KERN_ERR "%s: Error attempting to find auth tok for "
639 "fnek sig [%s]; rc = [%d]\n", __func__,
640 mount_crypt_stat->global_default_fnek_sig, rc);
641 goto out;
642 }
643 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
644 &s->skcipher_tfm,
645 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
646 if (unlikely(rc)) {
647 printk(KERN_ERR "Internal error whilst attempting to get "
648 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
649 mount_crypt_stat->global_default_fn_cipher_name, rc);
650 goto out;
651 }
652 mutex_lock(s->tfm_mutex);
653 s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
654 /* Plus one for the \0 separator between the random prefix
655 * and the plaintext filename */
656 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
657 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
658 if ((s->block_aligned_filename_size % s->block_size) != 0) {
659 s->num_rand_bytes += (s->block_size
660 - (s->block_aligned_filename_size
661 % s->block_size));
662 s->block_aligned_filename_size = (s->num_rand_bytes
663 + filename_size);
664 }
665 /* Octet 0: Tag 70 identifier
666 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
667 * and block-aligned encrypted filename size)
668 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
669 * Octet N2-N3: Cipher identifier (1 octet)
670 * Octets N3-N4: Block-aligned encrypted filename
671 * - Consists of a minimum number of random characters, a \0
672 * separator, and then the filename */
673 s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
674 + s->block_aligned_filename_size);
675 if (!dest) {
676 (*packet_size) = s->max_packet_size;
677 goto out_unlock;
678 }
679 if (s->max_packet_size > (*remaining_bytes)) {
680 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
681 "[%zd] available\n", __func__, s->max_packet_size,
682 (*remaining_bytes));
683 rc = -EINVAL;
684 goto out_unlock;
685 }
686
687 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
688 if (!s->skcipher_req) {
689 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
690 "skcipher_request_alloc for %s\n", __func__,
691 crypto_skcipher_driver_name(s->skcipher_tfm));
692 rc = -ENOMEM;
693 goto out_unlock;
694 }
695
696 skcipher_request_set_callback(s->skcipher_req,
697 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
698
699 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
700 GFP_KERNEL);
701 if (!s->block_aligned_filename) {
702 rc = -ENOMEM;
703 goto out_unlock;
704 }
705 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
706 rc = ecryptfs_write_packet_length(&dest[s->i],
707 (ECRYPTFS_SIG_SIZE
708 + 1 /* Cipher code */
709 + s->block_aligned_filename_size),
710 &s->packet_size_len);
711 if (rc) {
712 printk(KERN_ERR "%s: Error generating tag 70 packet "
713 "header; cannot generate packet length; rc = [%d]\n",
714 __func__, rc);
715 goto out_free_unlock;
716 }
717 s->i += s->packet_size_len;
718 ecryptfs_from_hex(&dest[s->i],
719 mount_crypt_stat->global_default_fnek_sig,
720 ECRYPTFS_SIG_SIZE);
721 s->i += ECRYPTFS_SIG_SIZE;
722 s->cipher_code = ecryptfs_code_for_cipher_string(
723 mount_crypt_stat->global_default_fn_cipher_name,
724 mount_crypt_stat->global_default_fn_cipher_key_bytes);
725 if (s->cipher_code == 0) {
726 printk(KERN_WARNING "%s: Unable to generate code for "
727 "cipher [%s] with key bytes [%zd]\n", __func__,
728 mount_crypt_stat->global_default_fn_cipher_name,
729 mount_crypt_stat->global_default_fn_cipher_key_bytes);
730 rc = -EINVAL;
731 goto out_free_unlock;
732 }
733 dest[s->i++] = s->cipher_code;
734 /* TODO: Support other key modules than passphrase for
735 * filename encryption */
736 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
737 rc = -EOPNOTSUPP;
738 printk(KERN_INFO "%s: Filename encryption only supports "
739 "password tokens\n", __func__);
740 goto out_free_unlock;
741 }
742 s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
743 if (IS_ERR(s->hash_tfm)) {
744 rc = PTR_ERR(s->hash_tfm);
745 printk(KERN_ERR "%s: Error attempting to "
746 "allocate hash crypto context; rc = [%d]\n",
747 __func__, rc);
748 goto out_free_unlock;
749 }
750
751 s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
752 crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
753 if (!s->hash_desc) {
754 rc = -ENOMEM;
755 goto out_release_free_unlock;
756 }
757
758 s->hash_desc->tfm = s->hash_tfm;
759
760 rc = crypto_shash_digest(s->hash_desc,
761 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
762 s->auth_tok->token.password.session_key_encryption_key_bytes,
763 s->hash);
764 if (rc) {
765 printk(KERN_ERR
766 "%s: Error computing crypto hash; rc = [%d]\n",
767 __func__, rc);
768 goto out_release_free_unlock;
769 }
770 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
771 s->block_aligned_filename[s->j] =
772 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
773 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
774 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
775 rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
776 ECRYPTFS_TAG_70_DIGEST_SIZE,
777 s->tmp_hash);
778 if (rc) {
779 printk(KERN_ERR
780 "%s: Error computing crypto hash; "
781 "rc = [%d]\n", __func__, rc);
782 goto out_release_free_unlock;
783 }
784 memcpy(s->hash, s->tmp_hash,
785 ECRYPTFS_TAG_70_DIGEST_SIZE);
786 }
787 if (s->block_aligned_filename[s->j] == '\0')
788 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
789 }
790 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
791 filename_size);
792 rc = virt_to_scatterlist(s->block_aligned_filename,
793 s->block_aligned_filename_size, s->src_sg, 2);
794 if (rc < 1) {
795 printk(KERN_ERR "%s: Internal error whilst attempting to "
796 "convert filename memory to scatterlist; rc = [%d]. "
797 "block_aligned_filename_size = [%zd]\n", __func__, rc,
798 s->block_aligned_filename_size);
799 goto out_release_free_unlock;
800 }
801 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
802 s->dst_sg, 2);
803 if (rc < 1) {
804 printk(KERN_ERR "%s: Internal error whilst attempting to "
805 "convert encrypted filename memory to scatterlist; "
806 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
807 __func__, rc, s->block_aligned_filename_size);
808 goto out_release_free_unlock;
809 }
810 /* The characters in the first block effectively do the job
811 * of the IV here, so we just use 0's for the IV. Note the
812 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
813 * >= ECRYPTFS_MAX_IV_BYTES. */
814 rc = crypto_skcipher_setkey(
815 s->skcipher_tfm,
816 s->auth_tok->token.password.session_key_encryption_key,
817 mount_crypt_stat->global_default_fn_cipher_key_bytes);
818 if (rc < 0) {
819 printk(KERN_ERR "%s: Error setting key for crypto context; "
820 "rc = [%d]. s->auth_tok->token.password.session_key_"
821 "encryption_key = [0x%p]; mount_crypt_stat->"
822 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
823 rc,
824 s->auth_tok->token.password.session_key_encryption_key,
825 mount_crypt_stat->global_default_fn_cipher_key_bytes);
826 goto out_release_free_unlock;
827 }
828 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
829 s->block_aligned_filename_size, s->iv);
830 rc = crypto_skcipher_encrypt(s->skcipher_req);
831 if (rc) {
832 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
833 "rc = [%d]\n", __func__, rc);
834 goto out_release_free_unlock;
835 }
836 s->i += s->block_aligned_filename_size;
837 (*packet_size) = s->i;
838 (*remaining_bytes) -= (*packet_size);
839out_release_free_unlock:
840 crypto_free_shash(s->hash_tfm);
841out_free_unlock:
842 kfree_sensitive(s->block_aligned_filename);
843out_unlock:
844 mutex_unlock(s->tfm_mutex);
845out:
846 if (auth_tok_key) {
847 up_write(&(auth_tok_key->sem));
848 key_put(auth_tok_key);
849 }
850 skcipher_request_free(s->skcipher_req);
851 kfree_sensitive(s->hash_desc);
852 kfree(s);
853 return rc;
854}
855
856struct ecryptfs_parse_tag_70_packet_silly_stack {
857 u8 cipher_code;
858 size_t max_packet_size;
859 size_t packet_size_len;
860 size_t parsed_tag_70_packet_size;
861 size_t block_aligned_filename_size;
862 size_t block_size;
863 size_t i;
864 struct mutex *tfm_mutex;
865 char *decrypted_filename;
866 struct ecryptfs_auth_tok *auth_tok;
867 struct scatterlist src_sg[2];
868 struct scatterlist dst_sg[2];
869 struct crypto_skcipher *skcipher_tfm;
870 struct skcipher_request *skcipher_req;
871 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
872 char iv[ECRYPTFS_MAX_IV_BYTES];
873 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
874};
875
876/**
877 * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
878 * @filename: This function kmalloc's the memory for the filename
879 * @filename_size: This function sets this to the amount of memory
880 * kmalloc'd for the filename
881 * @packet_size: This function sets this to the the number of octets
882 * in the packet parsed
883 * @mount_crypt_stat: The mount-wide cryptographic context
884 * @data: The memory location containing the start of the tag 70
885 * packet
886 * @max_packet_size: The maximum legal size of the packet to be parsed
887 * from @data
888 *
889 * Returns zero on success; non-zero otherwise
890 */
891int
892ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
893 size_t *packet_size,
894 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
895 char *data, size_t max_packet_size)
896{
897 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
898 struct key *auth_tok_key = NULL;
899 int rc = 0;
900
901 (*packet_size) = 0;
902 (*filename_size) = 0;
903 (*filename) = NULL;
904 s = kzalloc(sizeof(*s), GFP_KERNEL);
905 if (!s)
906 return -ENOMEM;
907
908 if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
909 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
910 "at least [%d]\n", __func__, max_packet_size,
911 ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
912 rc = -EINVAL;
913 goto out;
914 }
915 /* Octet 0: Tag 70 identifier
916 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
917 * and block-aligned encrypted filename size)
918 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
919 * Octet N2-N3: Cipher identifier (1 octet)
920 * Octets N3-N4: Block-aligned encrypted filename
921 * - Consists of a minimum number of random numbers, a \0
922 * separator, and then the filename */
923 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
924 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
925 "tag [0x%.2x]\n", __func__,
926 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
927 rc = -EINVAL;
928 goto out;
929 }
930 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
931 &s->parsed_tag_70_packet_size,
932 &s->packet_size_len);
933 if (rc) {
934 printk(KERN_WARNING "%s: Error parsing packet length; "
935 "rc = [%d]\n", __func__, rc);
936 goto out;
937 }
938 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
939 - ECRYPTFS_SIG_SIZE - 1);
940 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
941 > max_packet_size) {
942 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
943 "size is [%zd]\n", __func__, max_packet_size,
944 (1 + s->packet_size_len + 1
945 + s->block_aligned_filename_size));
946 rc = -EINVAL;
947 goto out;
948 }
949 (*packet_size) += s->packet_size_len;
950 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
951 ECRYPTFS_SIG_SIZE);
952 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
953 (*packet_size) += ECRYPTFS_SIG_SIZE;
954 s->cipher_code = data[(*packet_size)++];
955 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
956 if (rc) {
957 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
958 __func__, s->cipher_code);
959 goto out;
960 }
961 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
962 &s->auth_tok, mount_crypt_stat,
963 s->fnek_sig_hex);
964 if (rc) {
965 printk(KERN_ERR "%s: Error attempting to find auth tok for "
966 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
967 rc);
968 goto out;
969 }
970 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
971 &s->tfm_mutex,
972 s->cipher_string);
973 if (unlikely(rc)) {
974 printk(KERN_ERR "Internal error whilst attempting to get "
975 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
976 s->cipher_string, rc);
977 goto out;
978 }
979 mutex_lock(s->tfm_mutex);
980 rc = virt_to_scatterlist(&data[(*packet_size)],
981 s->block_aligned_filename_size, s->src_sg, 2);
982 if (rc < 1) {
983 printk(KERN_ERR "%s: Internal error whilst attempting to "
984 "convert encrypted filename memory to scatterlist; "
985 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
986 __func__, rc, s->block_aligned_filename_size);
987 goto out_unlock;
988 }
989 (*packet_size) += s->block_aligned_filename_size;
990 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
991 GFP_KERNEL);
992 if (!s->decrypted_filename) {
993 rc = -ENOMEM;
994 goto out_unlock;
995 }
996 rc = virt_to_scatterlist(s->decrypted_filename,
997 s->block_aligned_filename_size, s->dst_sg, 2);
998 if (rc < 1) {
999 printk(KERN_ERR "%s: Internal error whilst attempting to "
1000 "convert decrypted filename memory to scatterlist; "
1001 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1002 __func__, rc, s->block_aligned_filename_size);
1003 goto out_free_unlock;
1004 }
1005
1006 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1007 if (!s->skcipher_req) {
1008 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1009 "skcipher_request_alloc for %s\n", __func__,
1010 crypto_skcipher_driver_name(s->skcipher_tfm));
1011 rc = -ENOMEM;
1012 goto out_free_unlock;
1013 }
1014
1015 skcipher_request_set_callback(s->skcipher_req,
1016 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1017
1018 /* The characters in the first block effectively do the job of
1019 * the IV here, so we just use 0's for the IV. Note the
1020 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1021 * >= ECRYPTFS_MAX_IV_BYTES. */
1022 /* TODO: Support other key modules than passphrase for
1023 * filename encryption */
1024 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1025 rc = -EOPNOTSUPP;
1026 printk(KERN_INFO "%s: Filename encryption only supports "
1027 "password tokens\n", __func__);
1028 goto out_free_unlock;
1029 }
1030 rc = crypto_skcipher_setkey(
1031 s->skcipher_tfm,
1032 s->auth_tok->token.password.session_key_encryption_key,
1033 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1034 if (rc < 0) {
1035 printk(KERN_ERR "%s: Error setting key for crypto context; "
1036 "rc = [%d]. s->auth_tok->token.password.session_key_"
1037 "encryption_key = [0x%p]; mount_crypt_stat->"
1038 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1039 rc,
1040 s->auth_tok->token.password.session_key_encryption_key,
1041 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1042 goto out_free_unlock;
1043 }
1044 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1045 s->block_aligned_filename_size, s->iv);
1046 rc = crypto_skcipher_decrypt(s->skcipher_req);
1047 if (rc) {
1048 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1049 "rc = [%d]\n", __func__, rc);
1050 goto out_free_unlock;
1051 }
1052
1053 while (s->i < s->block_aligned_filename_size &&
1054 s->decrypted_filename[s->i] != '\0')
1055 s->i++;
1056 if (s->i == s->block_aligned_filename_size) {
1057 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1058 "find valid separator between random characters and "
1059 "the filename\n", __func__);
1060 rc = -EINVAL;
1061 goto out_free_unlock;
1062 }
1063 s->i++;
1064 (*filename_size) = (s->block_aligned_filename_size - s->i);
1065 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1066 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1067 "invalid\n", __func__, (*filename_size));
1068 rc = -EINVAL;
1069 goto out_free_unlock;
1070 }
1071 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1072 if (!(*filename)) {
1073 rc = -ENOMEM;
1074 goto out_free_unlock;
1075 }
1076 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1077 (*filename)[(*filename_size)] = '\0';
1078out_free_unlock:
1079 kfree(s->decrypted_filename);
1080out_unlock:
1081 mutex_unlock(s->tfm_mutex);
1082out:
1083 if (rc) {
1084 (*packet_size) = 0;
1085 (*filename_size) = 0;
1086 (*filename) = NULL;
1087 }
1088 if (auth_tok_key) {
1089 up_write(&(auth_tok_key->sem));
1090 key_put(auth_tok_key);
1091 }
1092 skcipher_request_free(s->skcipher_req);
1093 kfree(s);
1094 return rc;
1095}
1096
1097static int
1098ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1099{
1100 int rc = 0;
1101
1102 (*sig) = NULL;
1103 switch (auth_tok->token_type) {
1104 case ECRYPTFS_PASSWORD:
1105 (*sig) = auth_tok->token.password.signature;
1106 break;
1107 case ECRYPTFS_PRIVATE_KEY:
1108 (*sig) = auth_tok->token.private_key.signature;
1109 break;
1110 default:
1111 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1112 auth_tok->token_type);
1113 rc = -EINVAL;
1114 }
1115 return rc;
1116}
1117
1118/**
1119 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1120 * @auth_tok: The key authentication token used to decrypt the session key
1121 * @crypt_stat: The cryptographic context
1122 *
1123 * Returns zero on success; non-zero error otherwise.
1124 */
1125static int
1126decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1127 struct ecryptfs_crypt_stat *crypt_stat)
1128{
1129 u8 cipher_code = 0;
1130 struct ecryptfs_msg_ctx *msg_ctx;
1131 struct ecryptfs_message *msg = NULL;
1132 char *auth_tok_sig;
1133 char *payload = NULL;
1134 size_t payload_len = 0;
1135 int rc;
1136
1137 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1138 if (rc) {
1139 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1140 auth_tok->token_type);
1141 goto out;
1142 }
1143 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1144 &payload, &payload_len);
1145 if (rc) {
1146 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1147 goto out;
1148 }
1149 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1150 if (rc) {
1151 ecryptfs_printk(KERN_ERR, "Error sending message to "
1152 "ecryptfsd: %d\n", rc);
1153 goto out;
1154 }
1155 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1156 if (rc) {
1157 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1158 "from the user space daemon\n");
1159 rc = -EIO;
1160 goto out;
1161 }
1162 rc = parse_tag_65_packet(&(auth_tok->session_key),
1163 &cipher_code, msg);
1164 if (rc) {
1165 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1166 rc);
1167 goto out;
1168 }
1169 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1170 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1171 auth_tok->session_key.decrypted_key_size);
1172 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1173 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1174 if (rc) {
1175 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1176 cipher_code);
1177 goto out;
1178 }
1179 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1180 if (ecryptfs_verbosity > 0) {
1181 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1182 ecryptfs_dump_hex(crypt_stat->key,
1183 crypt_stat->key_size);
1184 }
1185out:
1186 kfree(msg);
1187 kfree(payload);
1188 return rc;
1189}
1190
1191static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1192{
1193 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1194 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1195
1196 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1197 auth_tok_list_head, list) {
1198 list_del(&auth_tok_list_item->list);
1199 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1200 auth_tok_list_item);
1201 }
1202}
1203
1204struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1205
1206/**
1207 * parse_tag_1_packet
1208 * @crypt_stat: The cryptographic context to modify based on packet contents
1209 * @data: The raw bytes of the packet.
1210 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1211 * a new authentication token will be placed at the
1212 * end of this list for this packet.
1213 * @new_auth_tok: Pointer to a pointer to memory that this function
1214 * allocates; sets the memory address of the pointer to
1215 * NULL on error. This object is added to the
1216 * auth_tok_list.
1217 * @packet_size: This function writes the size of the parsed packet
1218 * into this memory location; zero on error.
1219 * @max_packet_size: The maximum allowable packet size
1220 *
1221 * Returns zero on success; non-zero on error.
1222 */
1223static int
1224parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1225 unsigned char *data, struct list_head *auth_tok_list,
1226 struct ecryptfs_auth_tok **new_auth_tok,
1227 size_t *packet_size, size_t max_packet_size)
1228{
1229 size_t body_size;
1230 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1231 size_t length_size;
1232 int rc = 0;
1233
1234 (*packet_size) = 0;
1235 (*new_auth_tok) = NULL;
1236 /**
1237 * This format is inspired by OpenPGP; see RFC 2440
1238 * packet tag 1
1239 *
1240 * Tag 1 identifier (1 byte)
1241 * Max Tag 1 packet size (max 3 bytes)
1242 * Version (1 byte)
1243 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1244 * Cipher identifier (1 byte)
1245 * Encrypted key size (arbitrary)
1246 *
1247 * 12 bytes minimum packet size
1248 */
1249 if (unlikely(max_packet_size < 12)) {
1250 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1251 rc = -EINVAL;
1252 goto out;
1253 }
1254 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1255 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1256 ECRYPTFS_TAG_1_PACKET_TYPE);
1257 rc = -EINVAL;
1258 goto out;
1259 }
1260 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1261 * at end of function upon failure */
1262 auth_tok_list_item =
1263 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1264 GFP_KERNEL);
1265 if (!auth_tok_list_item) {
1266 printk(KERN_ERR "Unable to allocate memory\n");
1267 rc = -ENOMEM;
1268 goto out;
1269 }
1270 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1271 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1272 &length_size);
1273 if (rc) {
1274 printk(KERN_WARNING "Error parsing packet length; "
1275 "rc = [%d]\n", rc);
1276 goto out_free;
1277 }
1278 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1279 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1280 rc = -EINVAL;
1281 goto out_free;
1282 }
1283 (*packet_size) += length_size;
1284 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1285 printk(KERN_WARNING "Packet size exceeds max\n");
1286 rc = -EINVAL;
1287 goto out_free;
1288 }
1289 if (unlikely(data[(*packet_size)++] != 0x03)) {
1290 printk(KERN_WARNING "Unknown version number [%d]\n",
1291 data[(*packet_size) - 1]);
1292 rc = -EINVAL;
1293 goto out_free;
1294 }
1295 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1296 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1297 *packet_size += ECRYPTFS_SIG_SIZE;
1298 /* This byte is skipped because the kernel does not need to
1299 * know which public key encryption algorithm was used */
1300 (*packet_size)++;
1301 (*new_auth_tok)->session_key.encrypted_key_size =
1302 body_size - (ECRYPTFS_SIG_SIZE + 2);
1303 if ((*new_auth_tok)->session_key.encrypted_key_size
1304 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1305 printk(KERN_WARNING "Tag 1 packet contains key larger "
1306 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1307 rc = -EINVAL;
1308 goto out_free;
1309 }
1310 memcpy((*new_auth_tok)->session_key.encrypted_key,
1311 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1312 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1313 (*new_auth_tok)->session_key.flags &=
1314 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1315 (*new_auth_tok)->session_key.flags |=
1316 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1317 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1318 (*new_auth_tok)->flags = 0;
1319 (*new_auth_tok)->session_key.flags &=
1320 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1321 (*new_auth_tok)->session_key.flags &=
1322 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1323 list_add(&auth_tok_list_item->list, auth_tok_list);
1324 goto out;
1325out_free:
1326 (*new_auth_tok) = NULL;
1327 memset(auth_tok_list_item, 0,
1328 sizeof(struct ecryptfs_auth_tok_list_item));
1329 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1330 auth_tok_list_item);
1331out:
1332 if (rc)
1333 (*packet_size) = 0;
1334 return rc;
1335}
1336
1337/**
1338 * parse_tag_3_packet
1339 * @crypt_stat: The cryptographic context to modify based on packet
1340 * contents.
1341 * @data: The raw bytes of the packet.
1342 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1343 * a new authentication token will be placed at the end
1344 * of this list for this packet.
1345 * @new_auth_tok: Pointer to a pointer to memory that this function
1346 * allocates; sets the memory address of the pointer to
1347 * NULL on error. This object is added to the
1348 * auth_tok_list.
1349 * @packet_size: This function writes the size of the parsed packet
1350 * into this memory location; zero on error.
1351 * @max_packet_size: maximum number of bytes to parse
1352 *
1353 * Returns zero on success; non-zero on error.
1354 */
1355static int
1356parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1357 unsigned char *data, struct list_head *auth_tok_list,
1358 struct ecryptfs_auth_tok **new_auth_tok,
1359 size_t *packet_size, size_t max_packet_size)
1360{
1361 size_t body_size;
1362 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1363 size_t length_size;
1364 int rc = 0;
1365
1366 (*packet_size) = 0;
1367 (*new_auth_tok) = NULL;
1368 /**
1369 *This format is inspired by OpenPGP; see RFC 2440
1370 * packet tag 3
1371 *
1372 * Tag 3 identifier (1 byte)
1373 * Max Tag 3 packet size (max 3 bytes)
1374 * Version (1 byte)
1375 * Cipher code (1 byte)
1376 * S2K specifier (1 byte)
1377 * Hash identifier (1 byte)
1378 * Salt (ECRYPTFS_SALT_SIZE)
1379 * Hash iterations (1 byte)
1380 * Encrypted key (arbitrary)
1381 *
1382 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1383 */
1384 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1385 printk(KERN_ERR "Max packet size too large\n");
1386 rc = -EINVAL;
1387 goto out;
1388 }
1389 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1390 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1391 ECRYPTFS_TAG_3_PACKET_TYPE);
1392 rc = -EINVAL;
1393 goto out;
1394 }
1395 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1396 * at end of function upon failure */
1397 auth_tok_list_item =
1398 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1399 if (!auth_tok_list_item) {
1400 printk(KERN_ERR "Unable to allocate memory\n");
1401 rc = -ENOMEM;
1402 goto out;
1403 }
1404 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1405 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1406 &length_size);
1407 if (rc) {
1408 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1409 rc);
1410 goto out_free;
1411 }
1412 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1413 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1414 rc = -EINVAL;
1415 goto out_free;
1416 }
1417 (*packet_size) += length_size;
1418 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1419 printk(KERN_ERR "Packet size exceeds max\n");
1420 rc = -EINVAL;
1421 goto out_free;
1422 }
1423 (*new_auth_tok)->session_key.encrypted_key_size =
1424 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1425 if ((*new_auth_tok)->session_key.encrypted_key_size
1426 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1427 printk(KERN_WARNING "Tag 3 packet contains key larger "
1428 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1429 rc = -EINVAL;
1430 goto out_free;
1431 }
1432 if (unlikely(data[(*packet_size)++] != 0x04)) {
1433 printk(KERN_WARNING "Unknown version number [%d]\n",
1434 data[(*packet_size) - 1]);
1435 rc = -EINVAL;
1436 goto out_free;
1437 }
1438 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1439 (u16)data[(*packet_size)]);
1440 if (rc)
1441 goto out_free;
1442 /* A little extra work to differentiate among the AES key
1443 * sizes; see RFC2440 */
1444 switch(data[(*packet_size)++]) {
1445 case RFC2440_CIPHER_AES_192:
1446 crypt_stat->key_size = 24;
1447 break;
1448 default:
1449 crypt_stat->key_size =
1450 (*new_auth_tok)->session_key.encrypted_key_size;
1451 }
1452 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1453 if (rc)
1454 goto out_free;
1455 if (unlikely(data[(*packet_size)++] != 0x03)) {
1456 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1457 rc = -ENOSYS;
1458 goto out_free;
1459 }
1460 /* TODO: finish the hash mapping */
1461 switch (data[(*packet_size)++]) {
1462 case 0x01: /* See RFC2440 for these numbers and their mappings */
1463 /* Choose MD5 */
1464 memcpy((*new_auth_tok)->token.password.salt,
1465 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1466 (*packet_size) += ECRYPTFS_SALT_SIZE;
1467 /* This conversion was taken straight from RFC2440 */
1468 (*new_auth_tok)->token.password.hash_iterations =
1469 ((u32) 16 + (data[(*packet_size)] & 15))
1470 << ((data[(*packet_size)] >> 4) + 6);
1471 (*packet_size)++;
1472 /* Friendly reminder:
1473 * (*new_auth_tok)->session_key.encrypted_key_size =
1474 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1475 memcpy((*new_auth_tok)->session_key.encrypted_key,
1476 &data[(*packet_size)],
1477 (*new_auth_tok)->session_key.encrypted_key_size);
1478 (*packet_size) +=
1479 (*new_auth_tok)->session_key.encrypted_key_size;
1480 (*new_auth_tok)->session_key.flags &=
1481 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1482 (*new_auth_tok)->session_key.flags |=
1483 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1484 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1485 break;
1486 default:
1487 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1488 "[%d]\n", data[(*packet_size) - 1]);
1489 rc = -ENOSYS;
1490 goto out_free;
1491 }
1492 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1493 /* TODO: Parametarize; we might actually want userspace to
1494 * decrypt the session key. */
1495 (*new_auth_tok)->session_key.flags &=
1496 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1497 (*new_auth_tok)->session_key.flags &=
1498 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1499 list_add(&auth_tok_list_item->list, auth_tok_list);
1500 goto out;
1501out_free:
1502 (*new_auth_tok) = NULL;
1503 memset(auth_tok_list_item, 0,
1504 sizeof(struct ecryptfs_auth_tok_list_item));
1505 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1506 auth_tok_list_item);
1507out:
1508 if (rc)
1509 (*packet_size) = 0;
1510 return rc;
1511}
1512
1513/**
1514 * parse_tag_11_packet
1515 * @data: The raw bytes of the packet
1516 * @contents: This function writes the data contents of the literal
1517 * packet into this memory location
1518 * @max_contents_bytes: The maximum number of bytes that this function
1519 * is allowed to write into contents
1520 * @tag_11_contents_size: This function writes the size of the parsed
1521 * contents into this memory location; zero on
1522 * error
1523 * @packet_size: This function writes the size of the parsed packet
1524 * into this memory location; zero on error
1525 * @max_packet_size: maximum number of bytes to parse
1526 *
1527 * Returns zero on success; non-zero on error.
1528 */
1529static int
1530parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1531 size_t max_contents_bytes, size_t *tag_11_contents_size,
1532 size_t *packet_size, size_t max_packet_size)
1533{
1534 size_t body_size;
1535 size_t length_size;
1536 int rc = 0;
1537
1538 (*packet_size) = 0;
1539 (*tag_11_contents_size) = 0;
1540 /* This format is inspired by OpenPGP; see RFC 2440
1541 * packet tag 11
1542 *
1543 * Tag 11 identifier (1 byte)
1544 * Max Tag 11 packet size (max 3 bytes)
1545 * Binary format specifier (1 byte)
1546 * Filename length (1 byte)
1547 * Filename ("_CONSOLE") (8 bytes)
1548 * Modification date (4 bytes)
1549 * Literal data (arbitrary)
1550 *
1551 * We need at least 16 bytes of data for the packet to even be
1552 * valid.
1553 */
1554 if (max_packet_size < 16) {
1555 printk(KERN_ERR "Maximum packet size too small\n");
1556 rc = -EINVAL;
1557 goto out;
1558 }
1559 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1560 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1561 rc = -EINVAL;
1562 goto out;
1563 }
1564 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1565 &length_size);
1566 if (rc) {
1567 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1568 goto out;
1569 }
1570 if (body_size < 14) {
1571 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1572 rc = -EINVAL;
1573 goto out;
1574 }
1575 (*packet_size) += length_size;
1576 (*tag_11_contents_size) = (body_size - 14);
1577 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1578 printk(KERN_ERR "Packet size exceeds max\n");
1579 rc = -EINVAL;
1580 goto out;
1581 }
1582 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1583 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1584 "expected size\n");
1585 rc = -EINVAL;
1586 goto out;
1587 }
1588 if (data[(*packet_size)++] != 0x62) {
1589 printk(KERN_WARNING "Unrecognizable packet\n");
1590 rc = -EINVAL;
1591 goto out;
1592 }
1593 if (data[(*packet_size)++] != 0x08) {
1594 printk(KERN_WARNING "Unrecognizable packet\n");
1595 rc = -EINVAL;
1596 goto out;
1597 }
1598 (*packet_size) += 12; /* Ignore filename and modification date */
1599 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1600 (*packet_size) += (*tag_11_contents_size);
1601out:
1602 if (rc) {
1603 (*packet_size) = 0;
1604 (*tag_11_contents_size) = 0;
1605 }
1606 return rc;
1607}
1608
1609int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1610 struct ecryptfs_auth_tok **auth_tok,
1611 char *sig)
1612{
1613 int rc = 0;
1614
1615 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1616 if (IS_ERR(*auth_tok_key)) {
1617 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1618 if (IS_ERR(*auth_tok_key)) {
1619 printk(KERN_ERR "Could not find key with description: [%s]\n",
1620 sig);
1621 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1622 (*auth_tok_key) = NULL;
1623 goto out;
1624 }
1625 }
1626 down_write(&(*auth_tok_key)->sem);
1627 rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1628 if (rc) {
1629 up_write(&(*auth_tok_key)->sem);
1630 key_put(*auth_tok_key);
1631 (*auth_tok_key) = NULL;
1632 goto out;
1633 }
1634out:
1635 return rc;
1636}
1637
1638/**
1639 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1640 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1641 * @crypt_stat: The cryptographic context
1642 *
1643 * Returns zero on success; non-zero error otherwise
1644 */
1645static int
1646decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1647 struct ecryptfs_crypt_stat *crypt_stat)
1648{
1649 struct scatterlist dst_sg[2];
1650 struct scatterlist src_sg[2];
1651 struct mutex *tfm_mutex;
1652 struct crypto_skcipher *tfm;
1653 struct skcipher_request *req = NULL;
1654 int rc = 0;
1655
1656 if (unlikely(ecryptfs_verbosity > 0)) {
1657 ecryptfs_printk(
1658 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1659 auth_tok->token.password.session_key_encryption_key_bytes);
1660 ecryptfs_dump_hex(
1661 auth_tok->token.password.session_key_encryption_key,
1662 auth_tok->token.password.session_key_encryption_key_bytes);
1663 }
1664 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1665 crypt_stat->cipher);
1666 if (unlikely(rc)) {
1667 printk(KERN_ERR "Internal error whilst attempting to get "
1668 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1669 crypt_stat->cipher, rc);
1670 goto out;
1671 }
1672 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1673 auth_tok->session_key.encrypted_key_size,
1674 src_sg, 2);
1675 if (rc < 1 || rc > 2) {
1676 printk(KERN_ERR "Internal error whilst attempting to convert "
1677 "auth_tok->session_key.encrypted_key to scatterlist; "
1678 "expected rc = 1; got rc = [%d]. "
1679 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1680 auth_tok->session_key.encrypted_key_size);
1681 goto out;
1682 }
1683 auth_tok->session_key.decrypted_key_size =
1684 auth_tok->session_key.encrypted_key_size;
1685 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1686 auth_tok->session_key.decrypted_key_size,
1687 dst_sg, 2);
1688 if (rc < 1 || rc > 2) {
1689 printk(KERN_ERR "Internal error whilst attempting to convert "
1690 "auth_tok->session_key.decrypted_key to scatterlist; "
1691 "expected rc = 1; got rc = [%d]\n", rc);
1692 goto out;
1693 }
1694 mutex_lock(tfm_mutex);
1695 req = skcipher_request_alloc(tfm, GFP_KERNEL);
1696 if (!req) {
1697 mutex_unlock(tfm_mutex);
1698 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1699 "skcipher_request_alloc for %s\n", __func__,
1700 crypto_skcipher_driver_name(tfm));
1701 rc = -ENOMEM;
1702 goto out;
1703 }
1704
1705 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1706 NULL, NULL);
1707 rc = crypto_skcipher_setkey(
1708 tfm, auth_tok->token.password.session_key_encryption_key,
1709 crypt_stat->key_size);
1710 if (unlikely(rc < 0)) {
1711 mutex_unlock(tfm_mutex);
1712 printk(KERN_ERR "Error setting key for crypto context\n");
1713 rc = -EINVAL;
1714 goto out;
1715 }
1716 skcipher_request_set_crypt(req, src_sg, dst_sg,
1717 auth_tok->session_key.encrypted_key_size,
1718 NULL);
1719 rc = crypto_skcipher_decrypt(req);
1720 mutex_unlock(tfm_mutex);
1721 if (unlikely(rc)) {
1722 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1723 goto out;
1724 }
1725 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1726 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1727 auth_tok->session_key.decrypted_key_size);
1728 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1729 if (unlikely(ecryptfs_verbosity > 0)) {
1730 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1731 crypt_stat->key_size);
1732 ecryptfs_dump_hex(crypt_stat->key,
1733 crypt_stat->key_size);
1734 }
1735out:
1736 skcipher_request_free(req);
1737 return rc;
1738}
1739
1740/**
1741 * ecryptfs_parse_packet_set
1742 * @crypt_stat: The cryptographic context
1743 * @src: Virtual address of region of memory containing the packets
1744 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1745 *
1746 * Get crypt_stat to have the file's session key if the requisite key
1747 * is available to decrypt the session key.
1748 *
1749 * Returns Zero if a valid authentication token was retrieved and
1750 * processed; negative value for file not encrypted or for error
1751 * conditions.
1752 */
1753int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1754 unsigned char *src,
1755 struct dentry *ecryptfs_dentry)
1756{
1757 size_t i = 0;
1758 size_t found_auth_tok;
1759 size_t next_packet_is_auth_tok_packet;
1760 struct list_head auth_tok_list;
1761 struct ecryptfs_auth_tok *matching_auth_tok;
1762 struct ecryptfs_auth_tok *candidate_auth_tok;
1763 char *candidate_auth_tok_sig;
1764 size_t packet_size;
1765 struct ecryptfs_auth_tok *new_auth_tok;
1766 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1767 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1768 size_t tag_11_contents_size;
1769 size_t tag_11_packet_size;
1770 struct key *auth_tok_key = NULL;
1771 int rc = 0;
1772
1773 INIT_LIST_HEAD(&auth_tok_list);
1774 /* Parse the header to find as many packets as we can; these will be
1775 * added the our &auth_tok_list */
1776 next_packet_is_auth_tok_packet = 1;
1777 while (next_packet_is_auth_tok_packet) {
1778 size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1779
1780 switch (src[i]) {
1781 case ECRYPTFS_TAG_3_PACKET_TYPE:
1782 rc = parse_tag_3_packet(crypt_stat,
1783 (unsigned char *)&src[i],
1784 &auth_tok_list, &new_auth_tok,
1785 &packet_size, max_packet_size);
1786 if (rc) {
1787 ecryptfs_printk(KERN_ERR, "Error parsing "
1788 "tag 3 packet\n");
1789 rc = -EIO;
1790 goto out_wipe_list;
1791 }
1792 i += packet_size;
1793 rc = parse_tag_11_packet((unsigned char *)&src[i],
1794 sig_tmp_space,
1795 ECRYPTFS_SIG_SIZE,
1796 &tag_11_contents_size,
1797 &tag_11_packet_size,
1798 max_packet_size);
1799 if (rc) {
1800 ecryptfs_printk(KERN_ERR, "No valid "
1801 "(ecryptfs-specific) literal "
1802 "packet containing "
1803 "authentication token "
1804 "signature found after "
1805 "tag 3 packet\n");
1806 rc = -EIO;
1807 goto out_wipe_list;
1808 }
1809 i += tag_11_packet_size;
1810 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1811 ecryptfs_printk(KERN_ERR, "Expected "
1812 "signature of size [%d]; "
1813 "read size [%zd]\n",
1814 ECRYPTFS_SIG_SIZE,
1815 tag_11_contents_size);
1816 rc = -EIO;
1817 goto out_wipe_list;
1818 }
1819 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1820 sig_tmp_space, tag_11_contents_size);
1821 new_auth_tok->token.password.signature[
1822 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1823 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1824 break;
1825 case ECRYPTFS_TAG_1_PACKET_TYPE:
1826 rc = parse_tag_1_packet(crypt_stat,
1827 (unsigned char *)&src[i],
1828 &auth_tok_list, &new_auth_tok,
1829 &packet_size, max_packet_size);
1830 if (rc) {
1831 ecryptfs_printk(KERN_ERR, "Error parsing "
1832 "tag 1 packet\n");
1833 rc = -EIO;
1834 goto out_wipe_list;
1835 }
1836 i += packet_size;
1837 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1838 break;
1839 case ECRYPTFS_TAG_11_PACKET_TYPE:
1840 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1841 "(Tag 11 not allowed by itself)\n");
1842 rc = -EIO;
1843 goto out_wipe_list;
1844 default:
1845 ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1846 "of the file header; hex value of "
1847 "character is [0x%.2x]\n", i, src[i]);
1848 next_packet_is_auth_tok_packet = 0;
1849 }
1850 }
1851 if (list_empty(&auth_tok_list)) {
1852 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1853 "eCryptfs file; this is not supported in this version "
1854 "of the eCryptfs kernel module\n");
1855 rc = -EINVAL;
1856 goto out;
1857 }
1858 /* auth_tok_list contains the set of authentication tokens
1859 * parsed from the metadata. We need to find a matching
1860 * authentication token that has the secret component(s)
1861 * necessary to decrypt the EFEK in the auth_tok parsed from
1862 * the metadata. There may be several potential matches, but
1863 * just one will be sufficient to decrypt to get the FEK. */
1864find_next_matching_auth_tok:
1865 found_auth_tok = 0;
1866 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1867 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1868 if (unlikely(ecryptfs_verbosity > 0)) {
1869 ecryptfs_printk(KERN_DEBUG,
1870 "Considering candidate auth tok:\n");
1871 ecryptfs_dump_auth_tok(candidate_auth_tok);
1872 }
1873 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1874 candidate_auth_tok);
1875 if (rc) {
1876 printk(KERN_ERR
1877 "Unrecognized candidate auth tok type: [%d]\n",
1878 candidate_auth_tok->token_type);
1879 rc = -EINVAL;
1880 goto out_wipe_list;
1881 }
1882 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1883 &matching_auth_tok,
1884 crypt_stat->mount_crypt_stat,
1885 candidate_auth_tok_sig);
1886 if (!rc) {
1887 found_auth_tok = 1;
1888 goto found_matching_auth_tok;
1889 }
1890 }
1891 if (!found_auth_tok) {
1892 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1893 "authentication token\n");
1894 rc = -EIO;
1895 goto out_wipe_list;
1896 }
1897found_matching_auth_tok:
1898 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1899 memcpy(&(candidate_auth_tok->token.private_key),
1900 &(matching_auth_tok->token.private_key),
1901 sizeof(struct ecryptfs_private_key));
1902 up_write(&(auth_tok_key->sem));
1903 key_put(auth_tok_key);
1904 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1905 crypt_stat);
1906 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1907 memcpy(&(candidate_auth_tok->token.password),
1908 &(matching_auth_tok->token.password),
1909 sizeof(struct ecryptfs_password));
1910 up_write(&(auth_tok_key->sem));
1911 key_put(auth_tok_key);
1912 rc = decrypt_passphrase_encrypted_session_key(
1913 candidate_auth_tok, crypt_stat);
1914 } else {
1915 up_write(&(auth_tok_key->sem));
1916 key_put(auth_tok_key);
1917 rc = -EINVAL;
1918 }
1919 if (rc) {
1920 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1921
1922 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1923 "session key for authentication token with sig "
1924 "[%.*s]; rc = [%d]. Removing auth tok "
1925 "candidate from the list and searching for "
1926 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1927 candidate_auth_tok_sig, rc);
1928 list_for_each_entry_safe(auth_tok_list_item,
1929 auth_tok_list_item_tmp,
1930 &auth_tok_list, list) {
1931 if (candidate_auth_tok
1932 == &auth_tok_list_item->auth_tok) {
1933 list_del(&auth_tok_list_item->list);
1934 kmem_cache_free(
1935 ecryptfs_auth_tok_list_item_cache,
1936 auth_tok_list_item);
1937 goto find_next_matching_auth_tok;
1938 }
1939 }
1940 BUG();
1941 }
1942 rc = ecryptfs_compute_root_iv(crypt_stat);
1943 if (rc) {
1944 ecryptfs_printk(KERN_ERR, "Error computing "
1945 "the root IV\n");
1946 goto out_wipe_list;
1947 }
1948 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1949 if (rc) {
1950 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1951 "context for cipher [%s]; rc = [%d]\n",
1952 crypt_stat->cipher, rc);
1953 }
1954out_wipe_list:
1955 wipe_auth_tok_list(&auth_tok_list);
1956out:
1957 return rc;
1958}
1959
1960static int
1961pki_encrypt_session_key(struct key *auth_tok_key,
1962 struct ecryptfs_auth_tok *auth_tok,
1963 struct ecryptfs_crypt_stat *crypt_stat,
1964 struct ecryptfs_key_record *key_rec)
1965{
1966 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1967 char *payload = NULL;
1968 size_t payload_len = 0;
1969 struct ecryptfs_message *msg;
1970 int rc;
1971
1972 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1973 ecryptfs_code_for_cipher_string(
1974 crypt_stat->cipher,
1975 crypt_stat->key_size),
1976 crypt_stat, &payload, &payload_len);
1977 up_write(&(auth_tok_key->sem));
1978 key_put(auth_tok_key);
1979 if (rc) {
1980 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1981 goto out;
1982 }
1983 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1984 if (rc) {
1985 ecryptfs_printk(KERN_ERR, "Error sending message to "
1986 "ecryptfsd: %d\n", rc);
1987 goto out;
1988 }
1989 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1990 if (rc) {
1991 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1992 "from the user space daemon\n");
1993 rc = -EIO;
1994 goto out;
1995 }
1996 rc = parse_tag_67_packet(key_rec, msg);
1997 if (rc)
1998 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1999 kfree(msg);
2000out:
2001 kfree(payload);
2002 return rc;
2003}
2004/**
2005 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2006 * @dest: Buffer into which to write the packet
2007 * @remaining_bytes: Maximum number of bytes that can be writtn
2008 * @auth_tok_key: The authentication token key to unlock and put when done with
2009 * @auth_tok
2010 * @auth_tok: The authentication token used for generating the tag 1 packet
2011 * @crypt_stat: The cryptographic context
2012 * @key_rec: The key record struct for the tag 1 packet
2013 * @packet_size: This function will write the number of bytes that end
2014 * up constituting the packet; set to zero on error
2015 *
2016 * Returns zero on success; non-zero on error.
2017 */
2018static int
2019write_tag_1_packet(char *dest, size_t *remaining_bytes,
2020 struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2021 struct ecryptfs_crypt_stat *crypt_stat,
2022 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2023{
2024 size_t i;
2025 size_t encrypted_session_key_valid = 0;
2026 size_t packet_size_length;
2027 size_t max_packet_size;
2028 int rc = 0;
2029
2030 (*packet_size) = 0;
2031 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2032 ECRYPTFS_SIG_SIZE);
2033 encrypted_session_key_valid = 0;
2034 for (i = 0; i < crypt_stat->key_size; i++)
2035 encrypted_session_key_valid |=
2036 auth_tok->session_key.encrypted_key[i];
2037 if (encrypted_session_key_valid) {
2038 memcpy(key_rec->enc_key,
2039 auth_tok->session_key.encrypted_key,
2040 auth_tok->session_key.encrypted_key_size);
2041 up_write(&(auth_tok_key->sem));
2042 key_put(auth_tok_key);
2043 goto encrypted_session_key_set;
2044 }
2045 if (auth_tok->session_key.encrypted_key_size == 0)
2046 auth_tok->session_key.encrypted_key_size =
2047 auth_tok->token.private_key.key_size;
2048 rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2049 key_rec);
2050 if (rc) {
2051 printk(KERN_ERR "Failed to encrypt session key via a key "
2052 "module; rc = [%d]\n", rc);
2053 goto out;
2054 }
2055 if (ecryptfs_verbosity > 0) {
2056 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2057 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2058 }
2059encrypted_session_key_set:
2060 /* This format is inspired by OpenPGP; see RFC 2440
2061 * packet tag 1 */
2062 max_packet_size = (1 /* Tag 1 identifier */
2063 + 3 /* Max Tag 1 packet size */
2064 + 1 /* Version */
2065 + ECRYPTFS_SIG_SIZE /* Key identifier */
2066 + 1 /* Cipher identifier */
2067 + key_rec->enc_key_size); /* Encrypted key size */
2068 if (max_packet_size > (*remaining_bytes)) {
2069 printk(KERN_ERR "Packet length larger than maximum allowable; "
2070 "need up to [%td] bytes, but there are only [%td] "
2071 "available\n", max_packet_size, (*remaining_bytes));
2072 rc = -EINVAL;
2073 goto out;
2074 }
2075 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2076 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2077 (max_packet_size - 4),
2078 &packet_size_length);
2079 if (rc) {
2080 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2081 "header; cannot generate packet length\n");
2082 goto out;
2083 }
2084 (*packet_size) += packet_size_length;
2085 dest[(*packet_size)++] = 0x03; /* version 3 */
2086 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2087 (*packet_size) += ECRYPTFS_SIG_SIZE;
2088 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2089 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2090 key_rec->enc_key_size);
2091 (*packet_size) += key_rec->enc_key_size;
2092out:
2093 if (rc)
2094 (*packet_size) = 0;
2095 else
2096 (*remaining_bytes) -= (*packet_size);
2097 return rc;
2098}
2099
2100/**
2101 * write_tag_11_packet
2102 * @dest: Target into which Tag 11 packet is to be written
2103 * @remaining_bytes: Maximum packet length
2104 * @contents: Byte array of contents to copy in
2105 * @contents_length: Number of bytes in contents
2106 * @packet_length: Length of the Tag 11 packet written; zero on error
2107 *
2108 * Returns zero on success; non-zero on error.
2109 */
2110static int
2111write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2112 size_t contents_length, size_t *packet_length)
2113{
2114 size_t packet_size_length;
2115 size_t max_packet_size;
2116 int rc = 0;
2117
2118 (*packet_length) = 0;
2119 /* This format is inspired by OpenPGP; see RFC 2440
2120 * packet tag 11 */
2121 max_packet_size = (1 /* Tag 11 identifier */
2122 + 3 /* Max Tag 11 packet size */
2123 + 1 /* Binary format specifier */
2124 + 1 /* Filename length */
2125 + 8 /* Filename ("_CONSOLE") */
2126 + 4 /* Modification date */
2127 + contents_length); /* Literal data */
2128 if (max_packet_size > (*remaining_bytes)) {
2129 printk(KERN_ERR "Packet length larger than maximum allowable; "
2130 "need up to [%td] bytes, but there are only [%td] "
2131 "available\n", max_packet_size, (*remaining_bytes));
2132 rc = -EINVAL;
2133 goto out;
2134 }
2135 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2136 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2137 (max_packet_size - 4),
2138 &packet_size_length);
2139 if (rc) {
2140 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2141 "generate packet length. rc = [%d]\n", rc);
2142 goto out;
2143 }
2144 (*packet_length) += packet_size_length;
2145 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2146 dest[(*packet_length)++] = 8;
2147 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2148 (*packet_length) += 8;
2149 memset(&dest[(*packet_length)], 0x00, 4);
2150 (*packet_length) += 4;
2151 memcpy(&dest[(*packet_length)], contents, contents_length);
2152 (*packet_length) += contents_length;
2153 out:
2154 if (rc)
2155 (*packet_length) = 0;
2156 else
2157 (*remaining_bytes) -= (*packet_length);
2158 return rc;
2159}
2160
2161/**
2162 * write_tag_3_packet
2163 * @dest: Buffer into which to write the packet
2164 * @remaining_bytes: Maximum number of bytes that can be written
2165 * @auth_tok: Authentication token
2166 * @crypt_stat: The cryptographic context
2167 * @key_rec: encrypted key
2168 * @packet_size: This function will write the number of bytes that end
2169 * up constituting the packet; set to zero on error
2170 *
2171 * Returns zero on success; non-zero on error.
2172 */
2173static int
2174write_tag_3_packet(char *dest, size_t *remaining_bytes,
2175 struct ecryptfs_auth_tok *auth_tok,
2176 struct ecryptfs_crypt_stat *crypt_stat,
2177 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2178{
2179 size_t i;
2180 size_t encrypted_session_key_valid = 0;
2181 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2182 struct scatterlist dst_sg[2];
2183 struct scatterlist src_sg[2];
2184 struct mutex *tfm_mutex = NULL;
2185 u8 cipher_code;
2186 size_t packet_size_length;
2187 size_t max_packet_size;
2188 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2189 crypt_stat->mount_crypt_stat;
2190 struct crypto_skcipher *tfm;
2191 struct skcipher_request *req;
2192 int rc = 0;
2193
2194 (*packet_size) = 0;
2195 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2196 ECRYPTFS_SIG_SIZE);
2197 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2198 crypt_stat->cipher);
2199 if (unlikely(rc)) {
2200 printk(KERN_ERR "Internal error whilst attempting to get "
2201 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2202 crypt_stat->cipher, rc);
2203 goto out;
2204 }
2205 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2206 printk(KERN_WARNING "No key size specified at mount; "
2207 "defaulting to [%d]\n",
2208 crypto_skcipher_max_keysize(tfm));
2209 mount_crypt_stat->global_default_cipher_key_size =
2210 crypto_skcipher_max_keysize(tfm);
2211 }
2212 if (crypt_stat->key_size == 0)
2213 crypt_stat->key_size =
2214 mount_crypt_stat->global_default_cipher_key_size;
2215 if (auth_tok->session_key.encrypted_key_size == 0)
2216 auth_tok->session_key.encrypted_key_size =
2217 crypt_stat->key_size;
2218 if (crypt_stat->key_size == 24
2219 && strcmp("aes", crypt_stat->cipher) == 0) {
2220 memset((crypt_stat->key + 24), 0, 8);
2221 auth_tok->session_key.encrypted_key_size = 32;
2222 } else
2223 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2224 key_rec->enc_key_size =
2225 auth_tok->session_key.encrypted_key_size;
2226 encrypted_session_key_valid = 0;
2227 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2228 encrypted_session_key_valid |=
2229 auth_tok->session_key.encrypted_key[i];
2230 if (encrypted_session_key_valid) {
2231 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2232 "using auth_tok->session_key.encrypted_key, "
2233 "where key_rec->enc_key_size = [%zd]\n",
2234 key_rec->enc_key_size);
2235 memcpy(key_rec->enc_key,
2236 auth_tok->session_key.encrypted_key,
2237 key_rec->enc_key_size);
2238 goto encrypted_session_key_set;
2239 }
2240 if (auth_tok->token.password.flags &
2241 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2242 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2243 "session key encryption key of size [%d]\n",
2244 auth_tok->token.password.
2245 session_key_encryption_key_bytes);
2246 memcpy(session_key_encryption_key,
2247 auth_tok->token.password.session_key_encryption_key,
2248 crypt_stat->key_size);
2249 ecryptfs_printk(KERN_DEBUG,
2250 "Cached session key encryption key:\n");
2251 if (ecryptfs_verbosity > 0)
2252 ecryptfs_dump_hex(session_key_encryption_key, 16);
2253 }
2254 if (unlikely(ecryptfs_verbosity > 0)) {
2255 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2256 ecryptfs_dump_hex(session_key_encryption_key, 16);
2257 }
2258 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2259 src_sg, 2);
2260 if (rc < 1 || rc > 2) {
2261 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2262 "for crypt_stat session key; expected rc = 1; "
2263 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2264 rc, key_rec->enc_key_size);
2265 rc = -ENOMEM;
2266 goto out;
2267 }
2268 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2269 dst_sg, 2);
2270 if (rc < 1 || rc > 2) {
2271 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2272 "for crypt_stat encrypted session key; "
2273 "expected rc = 1; got rc = [%d]. "
2274 "key_rec->enc_key_size = [%zd]\n", rc,
2275 key_rec->enc_key_size);
2276 rc = -ENOMEM;
2277 goto out;
2278 }
2279 mutex_lock(tfm_mutex);
2280 rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2281 crypt_stat->key_size);
2282 if (rc < 0) {
2283 mutex_unlock(tfm_mutex);
2284 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2285 "context; rc = [%d]\n", rc);
2286 goto out;
2287 }
2288
2289 req = skcipher_request_alloc(tfm, GFP_KERNEL);
2290 if (!req) {
2291 mutex_unlock(tfm_mutex);
2292 ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2293 "attempting to skcipher_request_alloc for "
2294 "%s\n", crypto_skcipher_driver_name(tfm));
2295 rc = -ENOMEM;
2296 goto out;
2297 }
2298
2299 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2300 NULL, NULL);
2301
2302 rc = 0;
2303 ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2304 crypt_stat->key_size);
2305 skcipher_request_set_crypt(req, src_sg, dst_sg,
2306 (*key_rec).enc_key_size, NULL);
2307 rc = crypto_skcipher_encrypt(req);
2308 mutex_unlock(tfm_mutex);
2309 skcipher_request_free(req);
2310 if (rc) {
2311 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2312 goto out;
2313 }
2314 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2315 if (ecryptfs_verbosity > 0) {
2316 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2317 key_rec->enc_key_size);
2318 ecryptfs_dump_hex(key_rec->enc_key,
2319 key_rec->enc_key_size);
2320 }
2321encrypted_session_key_set:
2322 /* This format is inspired by OpenPGP; see RFC 2440
2323 * packet tag 3 */
2324 max_packet_size = (1 /* Tag 3 identifier */
2325 + 3 /* Max Tag 3 packet size */
2326 + 1 /* Version */
2327 + 1 /* Cipher code */
2328 + 1 /* S2K specifier */
2329 + 1 /* Hash identifier */
2330 + ECRYPTFS_SALT_SIZE /* Salt */
2331 + 1 /* Hash iterations */
2332 + key_rec->enc_key_size); /* Encrypted key size */
2333 if (max_packet_size > (*remaining_bytes)) {
2334 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2335 "there are only [%td] available\n", max_packet_size,
2336 (*remaining_bytes));
2337 rc = -EINVAL;
2338 goto out;
2339 }
2340 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2341 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2342 * to get the number of octets in the actual Tag 3 packet */
2343 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2344 (max_packet_size - 4),
2345 &packet_size_length);
2346 if (rc) {
2347 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2348 "generate packet length. rc = [%d]\n", rc);
2349 goto out;
2350 }
2351 (*packet_size) += packet_size_length;
2352 dest[(*packet_size)++] = 0x04; /* version 4 */
2353 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2354 * specified with strings */
2355 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2356 crypt_stat->key_size);
2357 if (cipher_code == 0) {
2358 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2359 "cipher [%s]\n", crypt_stat->cipher);
2360 rc = -EINVAL;
2361 goto out;
2362 }
2363 dest[(*packet_size)++] = cipher_code;
2364 dest[(*packet_size)++] = 0x03; /* S2K */
2365 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2366 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2367 ECRYPTFS_SALT_SIZE);
2368 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2369 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2370 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2371 key_rec->enc_key_size);
2372 (*packet_size) += key_rec->enc_key_size;
2373out:
2374 if (rc)
2375 (*packet_size) = 0;
2376 else
2377 (*remaining_bytes) -= (*packet_size);
2378 return rc;
2379}
2380
2381struct kmem_cache *ecryptfs_key_record_cache;
2382
2383/**
2384 * ecryptfs_generate_key_packet_set
2385 * @dest_base: Virtual address from which to write the key record set
2386 * @crypt_stat: The cryptographic context from which the
2387 * authentication tokens will be retrieved
2388 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2389 * for the global parameters
2390 * @len: The amount written
2391 * @max: The maximum amount of data allowed to be written
2392 *
2393 * Generates a key packet set and writes it to the virtual address
2394 * passed in.
2395 *
2396 * Returns zero on success; non-zero on error.
2397 */
2398int
2399ecryptfs_generate_key_packet_set(char *dest_base,
2400 struct ecryptfs_crypt_stat *crypt_stat,
2401 struct dentry *ecryptfs_dentry, size_t *len,
2402 size_t max)
2403{
2404 struct ecryptfs_auth_tok *auth_tok;
2405 struct key *auth_tok_key = NULL;
2406 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2407 &ecryptfs_superblock_to_private(
2408 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2409 size_t written;
2410 struct ecryptfs_key_record *key_rec;
2411 struct ecryptfs_key_sig *key_sig;
2412 int rc = 0;
2413
2414 (*len) = 0;
2415 mutex_lock(&crypt_stat->keysig_list_mutex);
2416 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2417 if (!key_rec) {
2418 rc = -ENOMEM;
2419 goto out;
2420 }
2421 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2422 crypt_stat_list) {
2423 memset(key_rec, 0, sizeof(*key_rec));
2424 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2425 &auth_tok,
2426 mount_crypt_stat,
2427 key_sig->keysig);
2428 if (rc) {
2429 printk(KERN_WARNING "Unable to retrieve auth tok with "
2430 "sig = [%s]\n", key_sig->keysig);
2431 rc = process_find_global_auth_tok_for_sig_err(rc);
2432 goto out_free;
2433 }
2434 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2435 rc = write_tag_3_packet((dest_base + (*len)),
2436 &max, auth_tok,
2437 crypt_stat, key_rec,
2438 &written);
2439 up_write(&(auth_tok_key->sem));
2440 key_put(auth_tok_key);
2441 if (rc) {
2442 ecryptfs_printk(KERN_WARNING, "Error "
2443 "writing tag 3 packet\n");
2444 goto out_free;
2445 }
2446 (*len) += written;
2447 /* Write auth tok signature packet */
2448 rc = write_tag_11_packet((dest_base + (*len)), &max,
2449 key_rec->sig,
2450 ECRYPTFS_SIG_SIZE, &written);
2451 if (rc) {
2452 ecryptfs_printk(KERN_ERR, "Error writing "
2453 "auth tok signature packet\n");
2454 goto out_free;
2455 }
2456 (*len) += written;
2457 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2458 rc = write_tag_1_packet(dest_base + (*len), &max,
2459 auth_tok_key, auth_tok,
2460 crypt_stat, key_rec, &written);
2461 if (rc) {
2462 ecryptfs_printk(KERN_WARNING, "Error "
2463 "writing tag 1 packet\n");
2464 goto out_free;
2465 }
2466 (*len) += written;
2467 } else {
2468 up_write(&(auth_tok_key->sem));
2469 key_put(auth_tok_key);
2470 ecryptfs_printk(KERN_WARNING, "Unsupported "
2471 "authentication token type\n");
2472 rc = -EINVAL;
2473 goto out_free;
2474 }
2475 }
2476 if (likely(max > 0)) {
2477 dest_base[(*len)] = 0x00;
2478 } else {
2479 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2480 rc = -EIO;
2481 }
2482out_free:
2483 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2484out:
2485 if (rc)
2486 (*len) = 0;
2487 mutex_unlock(&crypt_stat->keysig_list_mutex);
2488 return rc;
2489}
2490
2491struct kmem_cache *ecryptfs_key_sig_cache;
2492
2493int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2494{
2495 struct ecryptfs_key_sig *new_key_sig;
2496
2497 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2498 if (!new_key_sig)
2499 return -ENOMEM;
2500
2501 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2502 new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2503 /* Caller must hold keysig_list_mutex */
2504 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2505
2506 return 0;
2507}
2508
2509struct kmem_cache *ecryptfs_global_auth_tok_cache;
2510
2511int
2512ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2513 char *sig, u32 global_auth_tok_flags)
2514{
2515 struct ecryptfs_global_auth_tok *new_auth_tok;
2516
2517 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2518 GFP_KERNEL);
2519 if (!new_auth_tok)
2520 return -ENOMEM;
2521
2522 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2523 new_auth_tok->flags = global_auth_tok_flags;
2524 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2525 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2526 list_add(&new_auth_tok->mount_crypt_stat_list,
2527 &mount_crypt_stat->global_auth_tok_list);
2528 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2529 return 0;
2530}
2531