Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* linux/drivers/usb/gadget/s3c-hsotg.c
   2 *
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16*/
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/spinlock.h>
  21#include <linux/interrupt.h>
  22#include <linux/platform_device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/debugfs.h>
  25#include <linux/seq_file.h>
  26#include <linux/delay.h>
  27#include <linux/io.h>
  28#include <linux/slab.h>
  29#include <linux/clk.h>
  30
  31#include <linux/usb/ch9.h>
  32#include <linux/usb/gadget.h>
  33
  34#include <mach/map.h>
  35
  36#include <plat/regs-usb-hsotg-phy.h>
  37#include <plat/regs-usb-hsotg.h>
  38#include <mach/regs-sys.h>
  39#include <plat/udc-hs.h>
  40#include <plat/cpu.h>
  41
  42#define DMA_ADDR_INVALID (~((dma_addr_t)0))
  43
  44/* EP0_MPS_LIMIT
  45 *
  46 * Unfortunately there seems to be a limit of the amount of data that can
  47 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  48 * packets (which practically means 1 packet and 63 bytes of data) when the
  49 * MPS is set to 64.
  50 *
  51 * This means if we are wanting to move >127 bytes of data, we need to
  52 * split the transactions up, but just doing one packet at a time does
  53 * not work (this may be an implicit DATA0 PID on first packet of the
  54 * transaction) and doing 2 packets is outside the controller's limits.
  55 *
  56 * If we try to lower the MPS size for EP0, then no transfers work properly
  57 * for EP0, and the system will fail basic enumeration. As no cause for this
  58 * has currently been found, we cannot support any large IN transfers for
  59 * EP0.
  60 */
  61#define EP0_MPS_LIMIT	64
  62
  63struct s3c_hsotg;
  64struct s3c_hsotg_req;
  65
  66/**
  67 * struct s3c_hsotg_ep - driver endpoint definition.
  68 * @ep: The gadget layer representation of the endpoint.
  69 * @name: The driver generated name for the endpoint.
  70 * @queue: Queue of requests for this endpoint.
  71 * @parent: Reference back to the parent device structure.
  72 * @req: The current request that the endpoint is processing. This is
  73 *       used to indicate an request has been loaded onto the endpoint
  74 *       and has yet to be completed (maybe due to data move, or simply
  75 *	 awaiting an ack from the core all the data has been completed).
  76 * @debugfs: File entry for debugfs file for this endpoint.
  77 * @lock: State lock to protect contents of endpoint.
  78 * @dir_in: Set to true if this endpoint is of the IN direction, which
  79 *	    means that it is sending data to the Host.
  80 * @index: The index for the endpoint registers.
  81 * @name: The name array passed to the USB core.
  82 * @halted: Set if the endpoint has been halted.
  83 * @periodic: Set if this is a periodic ep, such as Interrupt
  84 * @sent_zlp: Set if we've sent a zero-length packet.
  85 * @total_data: The total number of data bytes done.
  86 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  87 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  88 * @last_load: The offset of data for the last start of request.
  89 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  90 *
  91 * This is the driver's state for each registered enpoint, allowing it
  92 * to keep track of transactions that need doing. Each endpoint has a
  93 * lock to protect the state, to try and avoid using an overall lock
  94 * for the host controller as much as possible.
  95 *
  96 * For periodic IN endpoints, we have fifo_size and fifo_load to try
  97 * and keep track of the amount of data in the periodic FIFO for each
  98 * of these as we don't have a status register that tells us how much
  99 * is in each of them. (note, this may actually be useless information
 100 * as in shared-fifo mode periodic in acts like a single-frame packet
 101 * buffer than a fifo)
 102 */
 103struct s3c_hsotg_ep {
 104	struct usb_ep		ep;
 105	struct list_head	queue;
 106	struct s3c_hsotg	*parent;
 107	struct s3c_hsotg_req	*req;
 108	struct dentry		*debugfs;
 109
 110	spinlock_t		lock;
 111
 112	unsigned long		total_data;
 113	unsigned int		size_loaded;
 114	unsigned int		last_load;
 115	unsigned int		fifo_load;
 116	unsigned short		fifo_size;
 117
 118	unsigned char		dir_in;
 119	unsigned char		index;
 120
 121	unsigned int		halted:1;
 122	unsigned int		periodic:1;
 123	unsigned int		sent_zlp:1;
 124
 125	char			name[10];
 126};
 127
 128#define S3C_HSOTG_EPS	(8+1)	/* limit to 9 for the moment */
 129
 130/**
 131 * struct s3c_hsotg - driver state.
 132 * @dev: The parent device supplied to the probe function
 133 * @driver: USB gadget driver
 134 * @plat: The platform specific configuration data.
 135 * @regs: The memory area mapped for accessing registers.
 136 * @regs_res: The resource that was allocated when claiming register space.
 137 * @irq: The IRQ number we are using
 138 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
 139 * @debug_root: root directrory for debugfs.
 140 * @debug_file: main status file for debugfs.
 141 * @debug_fifo: FIFO status file for debugfs.
 142 * @ep0_reply: Request used for ep0 reply.
 143 * @ep0_buff: Buffer for EP0 reply data, if needed.
 144 * @ctrl_buff: Buffer for EP0 control requests.
 145 * @ctrl_req: Request for EP0 control packets.
 146 * @eps: The endpoints being supplied to the gadget framework
 147 */
 148struct s3c_hsotg {
 149	struct device		 *dev;
 150	struct usb_gadget_driver *driver;
 151	struct s3c_hsotg_plat	 *plat;
 152
 153	void __iomem		*regs;
 154	struct resource		*regs_res;
 155	int			irq;
 156	struct clk		*clk;
 157
 158	unsigned int		dedicated_fifos:1;
 159
 160	struct dentry		*debug_root;
 161	struct dentry		*debug_file;
 162	struct dentry		*debug_fifo;
 163
 164	struct usb_request	*ep0_reply;
 165	struct usb_request	*ctrl_req;
 166	u8			ep0_buff[8];
 167	u8			ctrl_buff[8];
 168
 169	struct usb_gadget	gadget;
 170	struct s3c_hsotg_ep	eps[];
 171};
 172
 173/**
 174 * struct s3c_hsotg_req - data transfer request
 175 * @req: The USB gadget request
 176 * @queue: The list of requests for the endpoint this is queued for.
 177 * @in_progress: Has already had size/packets written to core
 178 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 179 */
 180struct s3c_hsotg_req {
 181	struct usb_request	req;
 182	struct list_head	queue;
 183	unsigned char		in_progress;
 184	unsigned char		mapped;
 185};
 186
 187/* conversion functions */
 188static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
 189{
 190	return container_of(req, struct s3c_hsotg_req, req);
 191}
 192
 193static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
 194{
 195	return container_of(ep, struct s3c_hsotg_ep, ep);
 196}
 197
 198static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
 199{
 200	return container_of(gadget, struct s3c_hsotg, gadget);
 201}
 202
 203static inline void __orr32(void __iomem *ptr, u32 val)
 204{
 205	writel(readl(ptr) | val, ptr);
 206}
 207
 208static inline void __bic32(void __iomem *ptr, u32 val)
 209{
 210	writel(readl(ptr) & ~val, ptr);
 211}
 212
 213/* forward decleration of functions */
 214static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
 215
 216/**
 217 * using_dma - return the DMA status of the driver.
 218 * @hsotg: The driver state.
 219 *
 220 * Return true if we're using DMA.
 221 *
 222 * Currently, we have the DMA support code worked into everywhere
 223 * that needs it, but the AMBA DMA implementation in the hardware can
 224 * only DMA from 32bit aligned addresses. This means that gadgets such
 225 * as the CDC Ethernet cannot work as they often pass packets which are
 226 * not 32bit aligned.
 227 *
 228 * Unfortunately the choice to use DMA or not is global to the controller
 229 * and seems to be only settable when the controller is being put through
 230 * a core reset. This means we either need to fix the gadgets to take
 231 * account of DMA alignment, or add bounce buffers (yuerk).
 232 *
 233 * Until this issue is sorted out, we always return 'false'.
 234 */
 235static inline bool using_dma(struct s3c_hsotg *hsotg)
 236{
 237	return false;	/* support is not complete */
 238}
 239
 240/**
 241 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 242 * @hsotg: The device state
 243 * @ints: A bitmask of the interrupts to enable
 244 */
 245static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
 246{
 247	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
 248	u32 new_gsintmsk;
 249
 250	new_gsintmsk = gsintmsk | ints;
 251
 252	if (new_gsintmsk != gsintmsk) {
 253		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 254		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
 255	}
 256}
 257
 258/**
 259 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 260 * @hsotg: The device state
 261 * @ints: A bitmask of the interrupts to enable
 262 */
 263static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
 264{
 265	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
 266	u32 new_gsintmsk;
 267
 268	new_gsintmsk = gsintmsk & ~ints;
 269
 270	if (new_gsintmsk != gsintmsk)
 271		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
 272}
 273
 274/**
 275 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 276 * @hsotg: The device state
 277 * @ep: The endpoint index
 278 * @dir_in: True if direction is in.
 279 * @en: The enable value, true to enable
 280 *
 281 * Set or clear the mask for an individual endpoint's interrupt
 282 * request.
 283 */
 284static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
 285				 unsigned int ep, unsigned int dir_in,
 286				 unsigned int en)
 287{
 288	unsigned long flags;
 289	u32 bit = 1 << ep;
 290	u32 daint;
 291
 292	if (!dir_in)
 293		bit <<= 16;
 294
 295	local_irq_save(flags);
 296	daint = readl(hsotg->regs + S3C_DAINTMSK);
 297	if (en)
 298		daint |= bit;
 299	else
 300		daint &= ~bit;
 301	writel(daint, hsotg->regs + S3C_DAINTMSK);
 302	local_irq_restore(flags);
 303}
 304
 305/**
 306 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 307 * @hsotg: The device instance.
 308 */
 309static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
 310{
 311	unsigned int ep;
 312	unsigned int addr;
 313	unsigned int size;
 314	int timeout;
 315	u32 val;
 316
 317	/* the ryu 2.6.24 release ahs
 318	   writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
 319	   writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
 320		S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
 321		hsotg->regs + S3C_GNPTXFSIZ);
 322	*/
 323
 324	/* set FIFO sizes to 2048/1024 */
 325
 326	writel(2048, hsotg->regs + S3C_GRXFSIZ);
 327	writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
 328	       S3C_GNPTXFSIZ_NPTxFDep(1024),
 329	       hsotg->regs + S3C_GNPTXFSIZ);
 330
 331	/* arange all the rest of the TX FIFOs, as some versions of this
 332	 * block have overlapping default addresses. This also ensures
 333	 * that if the settings have been changed, then they are set to
 334	 * known values. */
 335
 336	/* start at the end of the GNPTXFSIZ, rounded up */
 337	addr = 2048 + 1024;
 338	size = 768;
 339
 340	/* currently we allocate TX FIFOs for all possible endpoints,
 341	 * and assume that they are all the same size. */
 342
 343	for (ep = 0; ep <= 15; ep++) {
 344		val = addr;
 345		val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
 346		addr += size;
 347
 348		writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
 349	}
 350
 351	/* according to p428 of the design guide, we need to ensure that
 352	 * all fifos are flushed before continuing */
 353
 354	writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
 355	       S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
 356
 357	/* wait until the fifos are both flushed */
 358	timeout = 100;
 359	while (1) {
 360		val = readl(hsotg->regs + S3C_GRSTCTL);
 361
 362		if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
 363			break;
 364
 365		if (--timeout == 0) {
 366			dev_err(hsotg->dev,
 367				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 368				__func__, val);
 369		}
 370
 371		udelay(1);
 372	}
 373
 374	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 375}
 376
 377/**
 378 * @ep: USB endpoint to allocate request for.
 379 * @flags: Allocation flags
 380 *
 381 * Allocate a new USB request structure appropriate for the specified endpoint
 382 */
 383static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
 384						      gfp_t flags)
 385{
 386	struct s3c_hsotg_req *req;
 387
 388	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
 389	if (!req)
 390		return NULL;
 391
 392	INIT_LIST_HEAD(&req->queue);
 393
 394	req->req.dma = DMA_ADDR_INVALID;
 395	return &req->req;
 396}
 397
 398/**
 399 * is_ep_periodic - return true if the endpoint is in periodic mode.
 400 * @hs_ep: The endpoint to query.
 401 *
 402 * Returns true if the endpoint is in periodic mode, meaning it is being
 403 * used for an Interrupt or ISO transfer.
 404 */
 405static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
 406{
 407	return hs_ep->periodic;
 408}
 409
 410/**
 411 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 412 * @hsotg: The device state.
 413 * @hs_ep: The endpoint for the request
 414 * @hs_req: The request being processed.
 415 *
 416 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 417 * of a request to ensure the buffer is ready for access by the caller.
 418*/
 419static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
 420				struct s3c_hsotg_ep *hs_ep,
 421				struct s3c_hsotg_req *hs_req)
 422{
 423	struct usb_request *req = &hs_req->req;
 424	enum dma_data_direction dir;
 425
 426	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 427
 428	/* ignore this if we're not moving any data */
 429	if (hs_req->req.length == 0)
 430		return;
 431
 432	if (hs_req->mapped) {
 433		/* we mapped this, so unmap and remove the dma */
 434
 435		dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
 436
 437		req->dma = DMA_ADDR_INVALID;
 438		hs_req->mapped = 0;
 439	} else {
 440		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
 441	}
 442}
 443
 444/**
 445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 446 * @hsotg: The controller state.
 447 * @hs_ep: The endpoint we're going to write for.
 448 * @hs_req: The request to write data for.
 449 *
 450 * This is called when the TxFIFO has some space in it to hold a new
 451 * transmission and we have something to give it. The actual setup of
 452 * the data size is done elsewhere, so all we have to do is to actually
 453 * write the data.
 454 *
 455 * The return value is zero if there is more space (or nothing was done)
 456 * otherwise -ENOSPC is returned if the FIFO space was used up.
 457 *
 458 * This routine is only needed for PIO
 459*/
 460static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
 461				struct s3c_hsotg_ep *hs_ep,
 462				struct s3c_hsotg_req *hs_req)
 463{
 464	bool periodic = is_ep_periodic(hs_ep);
 465	u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
 466	int buf_pos = hs_req->req.actual;
 467	int to_write = hs_ep->size_loaded;
 468	void *data;
 469	int can_write;
 470	int pkt_round;
 471
 472	to_write -= (buf_pos - hs_ep->last_load);
 473
 474	/* if there's nothing to write, get out early */
 475	if (to_write == 0)
 476		return 0;
 477
 478	if (periodic && !hsotg->dedicated_fifos) {
 479		u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
 480		int size_left;
 481		int size_done;
 482
 483		/* work out how much data was loaded so we can calculate
 484		 * how much data is left in the fifo. */
 485
 486		size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
 487
 488		/* if shared fifo, we cannot write anything until the
 489		 * previous data has been completely sent.
 490		 */
 491		if (hs_ep->fifo_load != 0) {
 492			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
 493			return -ENOSPC;
 494		}
 495
 496		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 497			__func__, size_left,
 498			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 499
 500		/* how much of the data has moved */
 501		size_done = hs_ep->size_loaded - size_left;
 502
 503		/* how much data is left in the fifo */
 504		can_write = hs_ep->fifo_load - size_done;
 505		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 506			__func__, can_write);
 507
 508		can_write = hs_ep->fifo_size - can_write;
 509		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 510			__func__, can_write);
 511
 512		if (can_write <= 0) {
 513			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
 514			return -ENOSPC;
 515		}
 516	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 517		can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
 518
 519		can_write &= 0xffff;
 520		can_write *= 4;
 521	} else {
 522		if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
 523			dev_dbg(hsotg->dev,
 524				"%s: no queue slots available (0x%08x)\n",
 525				__func__, gnptxsts);
 526
 527			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
 528			return -ENOSPC;
 529		}
 530
 531		can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
 532		can_write *= 4;	/* fifo size is in 32bit quantities. */
 533	}
 534
 535	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
 536		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
 537
 538	/* limit to 512 bytes of data, it seems at least on the non-periodic
 539	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 540	 * fragment of the end of the transfer in it.
 541	 */
 542	if (can_write > 512)
 543		can_write = 512;
 544
 545	/* limit the write to one max-packet size worth of data, but allow
 546	 * the transfer to return that it did not run out of fifo space
 547	 * doing it. */
 548	if (to_write > hs_ep->ep.maxpacket) {
 549		to_write = hs_ep->ep.maxpacket;
 550
 551		s3c_hsotg_en_gsint(hsotg,
 552				   periodic ? S3C_GINTSTS_PTxFEmp :
 553				   S3C_GINTSTS_NPTxFEmp);
 554	}
 555
 556	/* see if we can write data */
 557
 558	if (to_write > can_write) {
 559		to_write = can_write;
 560		pkt_round = to_write % hs_ep->ep.maxpacket;
 561
 562		/* Not sure, but we probably shouldn't be writing partial
 563		 * packets into the FIFO, so round the write down to an
 564		 * exact number of packets.
 565		 *
 566		 * Note, we do not currently check to see if we can ever
 567		 * write a full packet or not to the FIFO.
 568		 */
 569
 570		if (pkt_round)
 571			to_write -= pkt_round;
 572
 573		/* enable correct FIFO interrupt to alert us when there
 574		 * is more room left. */
 575
 576		s3c_hsotg_en_gsint(hsotg,
 577				   periodic ? S3C_GINTSTS_PTxFEmp :
 578				   S3C_GINTSTS_NPTxFEmp);
 579	}
 580
 581	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 582		 to_write, hs_req->req.length, can_write, buf_pos);
 583
 584	if (to_write <= 0)
 585		return -ENOSPC;
 586
 587	hs_req->req.actual = buf_pos + to_write;
 588	hs_ep->total_data += to_write;
 589
 590	if (periodic)
 591		hs_ep->fifo_load += to_write;
 592
 593	to_write = DIV_ROUND_UP(to_write, 4);
 594	data = hs_req->req.buf + buf_pos;
 595
 596	writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
 597
 598	return (to_write >= can_write) ? -ENOSPC : 0;
 599}
 600
 601/**
 602 * get_ep_limit - get the maximum data legnth for this endpoint
 603 * @hs_ep: The endpoint
 604 *
 605 * Return the maximum data that can be queued in one go on a given endpoint
 606 * so that transfers that are too long can be split.
 607 */
 608static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
 609{
 610	int index = hs_ep->index;
 611	unsigned maxsize;
 612	unsigned maxpkt;
 613
 614	if (index != 0) {
 615		maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
 616		maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
 617	} else {
 618		maxsize = 64+64;
 619		if (hs_ep->dir_in)
 620			maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
 621		else
 622			maxpkt = 2;
 623	}
 624
 625	/* we made the constant loading easier above by using +1 */
 626	maxpkt--;
 627	maxsize--;
 628
 629	/* constrain by packet count if maxpkts*pktsize is greater
 630	 * than the length register size. */
 631
 632	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 633		maxsize = maxpkt * hs_ep->ep.maxpacket;
 634
 635	return maxsize;
 636}
 637
 638/**
 639 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 640 * @hsotg: The controller state.
 641 * @hs_ep: The endpoint to process a request for
 642 * @hs_req: The request to start.
 643 * @continuing: True if we are doing more for the current request.
 644 *
 645 * Start the given request running by setting the endpoint registers
 646 * appropriately, and writing any data to the FIFOs.
 647 */
 648static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
 649				struct s3c_hsotg_ep *hs_ep,
 650				struct s3c_hsotg_req *hs_req,
 651				bool continuing)
 652{
 653	struct usb_request *ureq = &hs_req->req;
 654	int index = hs_ep->index;
 655	int dir_in = hs_ep->dir_in;
 656	u32 epctrl_reg;
 657	u32 epsize_reg;
 658	u32 epsize;
 659	u32 ctrl;
 660	unsigned length;
 661	unsigned packets;
 662	unsigned maxreq;
 663
 664	if (index != 0) {
 665		if (hs_ep->req && !continuing) {
 666			dev_err(hsotg->dev, "%s: active request\n", __func__);
 667			WARN_ON(1);
 668			return;
 669		} else if (hs_ep->req != hs_req && continuing) {
 670			dev_err(hsotg->dev,
 671				"%s: continue different req\n", __func__);
 672			WARN_ON(1);
 673			return;
 674		}
 675	}
 676
 677	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
 678	epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
 679
 680	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 681		__func__, readl(hsotg->regs + epctrl_reg), index,
 682		hs_ep->dir_in ? "in" : "out");
 683
 684	/* If endpoint is stalled, we will restart request later */
 685	ctrl = readl(hsotg->regs + epctrl_reg);
 686
 687	if (ctrl & S3C_DxEPCTL_Stall) {
 688		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 689		return;
 690	}
 691
 692	length = ureq->length - ureq->actual;
 693
 694	if (0)
 695		dev_dbg(hsotg->dev,
 696			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
 697			ureq->buf, length, ureq->dma,
 698			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
 699
 700	maxreq = get_ep_limit(hs_ep);
 701	if (length > maxreq) {
 702		int round = maxreq % hs_ep->ep.maxpacket;
 703
 704		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 705			__func__, length, maxreq, round);
 706
 707		/* round down to multiple of packets */
 708		if (round)
 709			maxreq -= round;
 710
 711		length = maxreq;
 712	}
 713
 714	if (length)
 715		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 716	else
 717		packets = 1;	/* send one packet if length is zero. */
 718
 719	if (dir_in && index != 0)
 720		epsize = S3C_DxEPTSIZ_MC(1);
 721	else
 722		epsize = 0;
 723
 724	if (index != 0 && ureq->zero) {
 725		/* test for the packets being exactly right for the
 726		 * transfer */
 727
 728		if (length == (packets * hs_ep->ep.maxpacket))
 729			packets++;
 730	}
 731
 732	epsize |= S3C_DxEPTSIZ_PktCnt(packets);
 733	epsize |= S3C_DxEPTSIZ_XferSize(length);
 734
 735	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 736		__func__, packets, length, ureq->length, epsize, epsize_reg);
 737
 738	/* store the request as the current one we're doing */
 739	hs_ep->req = hs_req;
 740
 741	/* write size / packets */
 742	writel(epsize, hsotg->regs + epsize_reg);
 743
 744	if (using_dma(hsotg)) {
 745		unsigned int dma_reg;
 746
 747		/* write DMA address to control register, buffer already
 748		 * synced by s3c_hsotg_ep_queue().  */
 749
 750		dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
 751		writel(ureq->dma, hsotg->regs + dma_reg);
 752
 753		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
 754			__func__, ureq->dma, dma_reg);
 755	}
 756
 757	ctrl |= S3C_DxEPCTL_EPEna;	/* ensure ep enabled */
 758	ctrl |= S3C_DxEPCTL_USBActEp;
 759	ctrl |= S3C_DxEPCTL_CNAK;	/* clear NAK set by core */
 760
 761	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 762	writel(ctrl, hsotg->regs + epctrl_reg);
 763
 764	/* set these, it seems that DMA support increments past the end
 765	 * of the packet buffer so we need to calculate the length from
 766	 * this information. */
 767	hs_ep->size_loaded = length;
 768	hs_ep->last_load = ureq->actual;
 769
 770	if (dir_in && !using_dma(hsotg)) {
 771		/* set these anyway, we may need them for non-periodic in */
 772		hs_ep->fifo_load = 0;
 773
 774		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 775	}
 776
 777	/* clear the INTknTXFEmpMsk when we start request, more as a aide
 778	 * to debugging to see what is going on. */
 779	if (dir_in)
 780		writel(S3C_DIEPMSK_INTknTXFEmpMsk,
 781		       hsotg->regs + S3C_DIEPINT(index));
 782
 783	/* Note, trying to clear the NAK here causes problems with transmit
 784	 * on the S3C6400 ending up with the TXFIFO becoming full. */
 785
 786	/* check ep is enabled */
 787	if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
 788		dev_warn(hsotg->dev,
 789			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
 790			 index, readl(hsotg->regs + epctrl_reg));
 791
 792	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
 793		__func__, readl(hsotg->regs + epctrl_reg));
 794}
 795
 796/**
 797 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 798 * @hsotg: The device state.
 799 * @hs_ep: The endpoint the request is on.
 800 * @req: The request being processed.
 801 *
 802 * We've been asked to queue a request, so ensure that the memory buffer
 803 * is correctly setup for DMA. If we've been passed an extant DMA address
 804 * then ensure the buffer has been synced to memory. If our buffer has no
 805 * DMA memory, then we map the memory and mark our request to allow us to
 806 * cleanup on completion.
 807*/
 808static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
 809			     struct s3c_hsotg_ep *hs_ep,
 810			     struct usb_request *req)
 811{
 812	enum dma_data_direction dir;
 813	struct s3c_hsotg_req *hs_req = our_req(req);
 814
 815	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 816
 817	/* if the length is zero, ignore the DMA data */
 818	if (hs_req->req.length == 0)
 819		return 0;
 820
 821	if (req->dma == DMA_ADDR_INVALID) {
 822		dma_addr_t dma;
 823
 824		dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
 825
 826		if (unlikely(dma_mapping_error(hsotg->dev, dma)))
 827			goto dma_error;
 828
 829		if (dma & 3) {
 830			dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
 831				__func__);
 832
 833			dma_unmap_single(hsotg->dev, dma, req->length, dir);
 834			return -EINVAL;
 835		}
 836
 837		hs_req->mapped = 1;
 838		req->dma = dma;
 839	} else {
 840		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
 841		hs_req->mapped = 0;
 842	}
 843
 844	return 0;
 845
 846dma_error:
 847	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 848		__func__, req->buf, req->length);
 849
 850	return -EIO;
 851}
 852
 853static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 854			      gfp_t gfp_flags)
 855{
 856	struct s3c_hsotg_req *hs_req = our_req(req);
 857	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 858	struct s3c_hsotg *hs = hs_ep->parent;
 859	unsigned long irqflags;
 860	bool first;
 861
 862	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 863		ep->name, req, req->length, req->buf, req->no_interrupt,
 864		req->zero, req->short_not_ok);
 865
 866	/* initialise status of the request */
 867	INIT_LIST_HEAD(&hs_req->queue);
 868	req->actual = 0;
 869	req->status = -EINPROGRESS;
 870
 871	/* if we're using DMA, sync the buffers as necessary */
 872	if (using_dma(hs)) {
 873		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
 874		if (ret)
 875			return ret;
 876	}
 877
 878	spin_lock_irqsave(&hs_ep->lock, irqflags);
 879
 880	first = list_empty(&hs_ep->queue);
 881	list_add_tail(&hs_req->queue, &hs_ep->queue);
 882
 883	if (first)
 884		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
 885
 886	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
 887
 888	return 0;
 889}
 890
 891static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
 892				      struct usb_request *req)
 893{
 894	struct s3c_hsotg_req *hs_req = our_req(req);
 895
 896	kfree(hs_req);
 897}
 898
 899/**
 900 * s3c_hsotg_complete_oursetup - setup completion callback
 901 * @ep: The endpoint the request was on.
 902 * @req: The request completed.
 903 *
 904 * Called on completion of any requests the driver itself
 905 * submitted that need cleaning up.
 906 */
 907static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
 908					struct usb_request *req)
 909{
 910	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 911	struct s3c_hsotg *hsotg = hs_ep->parent;
 912
 913	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 914
 915	s3c_hsotg_ep_free_request(ep, req);
 916}
 917
 918/**
 919 * ep_from_windex - convert control wIndex value to endpoint
 920 * @hsotg: The driver state.
 921 * @windex: The control request wIndex field (in host order).
 922 *
 923 * Convert the given wIndex into a pointer to an driver endpoint
 924 * structure, or return NULL if it is not a valid endpoint.
 925*/
 926static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
 927					   u32 windex)
 928{
 929	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
 930	int dir = (windex & USB_DIR_IN) ? 1 : 0;
 931	int idx = windex & 0x7F;
 932
 933	if (windex >= 0x100)
 934		return NULL;
 935
 936	if (idx > S3C_HSOTG_EPS)
 937		return NULL;
 938
 939	if (idx && ep->dir_in != dir)
 940		return NULL;
 941
 942	return ep;
 943}
 944
 945/**
 946 * s3c_hsotg_send_reply - send reply to control request
 947 * @hsotg: The device state
 948 * @ep: Endpoint 0
 949 * @buff: Buffer for request
 950 * @length: Length of reply.
 951 *
 952 * Create a request and queue it on the given endpoint. This is useful as
 953 * an internal method of sending replies to certain control requests, etc.
 954 */
 955static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
 956				struct s3c_hsotg_ep *ep,
 957				void *buff,
 958				int length)
 959{
 960	struct usb_request *req;
 961	int ret;
 962
 963	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 964
 965	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 966	hsotg->ep0_reply = req;
 967	if (!req) {
 968		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 969		return -ENOMEM;
 970	}
 971
 972	req->buf = hsotg->ep0_buff;
 973	req->length = length;
 974	req->zero = 1; /* always do zero-length final transfer */
 975	req->complete = s3c_hsotg_complete_oursetup;
 976
 977	if (length)
 978		memcpy(req->buf, buff, length);
 979	else
 980		ep->sent_zlp = 1;
 981
 982	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
 983	if (ret) {
 984		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
 985		return ret;
 986	}
 987
 988	return 0;
 989}
 990
 991/**
 992 * s3c_hsotg_process_req_status - process request GET_STATUS
 993 * @hsotg: The device state
 994 * @ctrl: USB control request
 995 */
 996static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
 997					struct usb_ctrlrequest *ctrl)
 998{
 999	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1000	struct s3c_hsotg_ep *ep;
1001	__le16 reply;
1002	int ret;
1003
1004	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1005
1006	if (!ep0->dir_in) {
1007		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1008		return -EINVAL;
1009	}
1010
1011	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1012	case USB_RECIP_DEVICE:
1013		reply = cpu_to_le16(0); /* bit 0 => self powered,
1014					 * bit 1 => remote wakeup */
1015		break;
1016
1017	case USB_RECIP_INTERFACE:
1018		/* currently, the data result should be zero */
1019		reply = cpu_to_le16(0);
1020		break;
1021
1022	case USB_RECIP_ENDPOINT:
1023		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1024		if (!ep)
1025			return -ENOENT;
1026
1027		reply = cpu_to_le16(ep->halted ? 1 : 0);
1028		break;
1029
1030	default:
1031		return 0;
1032	}
1033
1034	if (le16_to_cpu(ctrl->wLength) != 2)
1035		return -EINVAL;
1036
1037	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1038	if (ret) {
1039		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1040		return ret;
1041	}
1042
1043	return 1;
1044}
1045
1046static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1047
1048/**
1049 * get_ep_head - return the first request on the endpoint
1050 * @hs_ep: The controller endpoint to get
1051 *
1052 * Get the first request on the endpoint.
1053 */
1054static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1055{
1056	if (list_empty(&hs_ep->queue))
1057		return NULL;
1058
1059	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1060}
1061
1062/**
1063 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1064 * @hsotg: The device state
1065 * @ctrl: USB control request
1066 */
1067static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1068					 struct usb_ctrlrequest *ctrl)
1069{
1070	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1071	struct s3c_hsotg_req *hs_req;
1072	bool restart;
1073	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1074	struct s3c_hsotg_ep *ep;
1075	int ret;
1076
1077	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1078		__func__, set ? "SET" : "CLEAR");
1079
1080	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1081		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1082		if (!ep) {
1083			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1084				__func__, le16_to_cpu(ctrl->wIndex));
1085			return -ENOENT;
1086		}
1087
1088		switch (le16_to_cpu(ctrl->wValue)) {
1089		case USB_ENDPOINT_HALT:
1090			s3c_hsotg_ep_sethalt(&ep->ep, set);
1091
1092			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1093			if (ret) {
1094				dev_err(hsotg->dev,
1095					"%s: failed to send reply\n", __func__);
1096				return ret;
1097			}
1098
1099			if (!set) {
1100				/*
1101				 * If we have request in progress,
1102				 * then complete it
1103				 */
1104				if (ep->req) {
1105					hs_req = ep->req;
1106					ep->req = NULL;
1107					list_del_init(&hs_req->queue);
1108					hs_req->req.complete(&ep->ep,
1109							     &hs_req->req);
1110				}
1111
1112				/* If we have pending request, then start it */
1113				restart = !list_empty(&ep->queue);
1114				if (restart) {
1115					hs_req = get_ep_head(ep);
1116					s3c_hsotg_start_req(hsotg, ep,
1117							    hs_req, false);
1118				}
1119			}
1120
1121			break;
1122
1123		default:
1124			return -ENOENT;
1125		}
1126	} else
1127		return -ENOENT;  /* currently only deal with endpoint */
1128
1129	return 1;
1130}
1131
1132/**
1133 * s3c_hsotg_process_control - process a control request
1134 * @hsotg: The device state
1135 * @ctrl: The control request received
1136 *
1137 * The controller has received the SETUP phase of a control request, and
1138 * needs to work out what to do next (and whether to pass it on to the
1139 * gadget driver).
1140 */
1141static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1142				      struct usb_ctrlrequest *ctrl)
1143{
1144	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1145	int ret = 0;
1146	u32 dcfg;
1147
1148	ep0->sent_zlp = 0;
1149
1150	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1151		 ctrl->bRequest, ctrl->bRequestType,
1152		 ctrl->wValue, ctrl->wLength);
1153
1154	/* record the direction of the request, for later use when enquing
1155	 * packets onto EP0. */
1156
1157	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1158	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1159
1160	/* if we've no data with this request, then the last part of the
1161	 * transaction is going to implicitly be IN. */
1162	if (ctrl->wLength == 0)
1163		ep0->dir_in = 1;
1164
1165	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1166		switch (ctrl->bRequest) {
1167		case USB_REQ_SET_ADDRESS:
1168			dcfg = readl(hsotg->regs + S3C_DCFG);
1169			dcfg &= ~S3C_DCFG_DevAddr_MASK;
1170			dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1171			writel(dcfg, hsotg->regs + S3C_DCFG);
1172
1173			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1174
1175			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1176			return;
1177
1178		case USB_REQ_GET_STATUS:
1179			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1180			break;
1181
1182		case USB_REQ_CLEAR_FEATURE:
1183		case USB_REQ_SET_FEATURE:
1184			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1185			break;
1186		}
1187	}
1188
1189	/* as a fallback, try delivering it to the driver to deal with */
1190
1191	if (ret == 0 && hsotg->driver) {
1192		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1193		if (ret < 0)
1194			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1195	}
1196
1197	/* the request is either unhandlable, or is not formatted correctly
1198	 * so respond with a STALL for the status stage to indicate failure.
1199	 */
1200
1201	if (ret < 0) {
1202		u32 reg;
1203		u32 ctrl;
1204
1205		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1206		reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1207
1208		/* S3C_DxEPCTL_Stall will be cleared by EP once it has
1209		 * taken effect, so no need to clear later. */
1210
1211		ctrl = readl(hsotg->regs + reg);
1212		ctrl |= S3C_DxEPCTL_Stall;
1213		ctrl |= S3C_DxEPCTL_CNAK;
1214		writel(ctrl, hsotg->regs + reg);
1215
1216		dev_dbg(hsotg->dev,
1217			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1218			ctrl, reg, readl(hsotg->regs + reg));
1219
1220		/* don't believe we need to anything more to get the EP
1221		 * to reply with a STALL packet */
1222	}
1223}
1224
1225static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1226
1227/**
1228 * s3c_hsotg_complete_setup - completion of a setup transfer
1229 * @ep: The endpoint the request was on.
1230 * @req: The request completed.
1231 *
1232 * Called on completion of any requests the driver itself submitted for
1233 * EP0 setup packets
1234 */
1235static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1236				     struct usb_request *req)
1237{
1238	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1239	struct s3c_hsotg *hsotg = hs_ep->parent;
1240
1241	if (req->status < 0) {
1242		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1243		return;
1244	}
1245
1246	if (req->actual == 0)
1247		s3c_hsotg_enqueue_setup(hsotg);
1248	else
1249		s3c_hsotg_process_control(hsotg, req->buf);
1250}
1251
1252/**
1253 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1254 * @hsotg: The device state.
1255 *
1256 * Enqueue a request on EP0 if necessary to received any SETUP packets
1257 * received from the host.
1258 */
1259static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1260{
1261	struct usb_request *req = hsotg->ctrl_req;
1262	struct s3c_hsotg_req *hs_req = our_req(req);
1263	int ret;
1264
1265	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1266
1267	req->zero = 0;
1268	req->length = 8;
1269	req->buf = hsotg->ctrl_buff;
1270	req->complete = s3c_hsotg_complete_setup;
1271
1272	if (!list_empty(&hs_req->queue)) {
1273		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1274		return;
1275	}
1276
1277	hsotg->eps[0].dir_in = 0;
1278
1279	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1280	if (ret < 0) {
1281		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1282		/* Don't think there's much we can do other than watch the
1283		 * driver fail. */
1284	}
1285}
1286
1287/**
1288 * s3c_hsotg_complete_request - complete a request given to us
1289 * @hsotg: The device state.
1290 * @hs_ep: The endpoint the request was on.
1291 * @hs_req: The request to complete.
1292 * @result: The result code (0 => Ok, otherwise errno)
1293 *
1294 * The given request has finished, so call the necessary completion
1295 * if it has one and then look to see if we can start a new request
1296 * on the endpoint.
1297 *
1298 * Note, expects the ep to already be locked as appropriate.
1299*/
1300static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1301				       struct s3c_hsotg_ep *hs_ep,
1302				       struct s3c_hsotg_req *hs_req,
1303				       int result)
1304{
1305	bool restart;
1306
1307	if (!hs_req) {
1308		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1309		return;
1310	}
1311
1312	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1313		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1314
1315	/* only replace the status if we've not already set an error
1316	 * from a previous transaction */
1317
1318	if (hs_req->req.status == -EINPROGRESS)
1319		hs_req->req.status = result;
1320
1321	hs_ep->req = NULL;
1322	list_del_init(&hs_req->queue);
1323
1324	if (using_dma(hsotg))
1325		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1326
1327	/* call the complete request with the locks off, just in case the
1328	 * request tries to queue more work for this endpoint. */
1329
1330	if (hs_req->req.complete) {
1331		spin_unlock(&hs_ep->lock);
1332		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1333		spin_lock(&hs_ep->lock);
1334	}
1335
1336	/* Look to see if there is anything else to do. Note, the completion
1337	 * of the previous request may have caused a new request to be started
1338	 * so be careful when doing this. */
1339
1340	if (!hs_ep->req && result >= 0) {
1341		restart = !list_empty(&hs_ep->queue);
1342		if (restart) {
1343			hs_req = get_ep_head(hs_ep);
1344			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1345		}
1346	}
1347}
1348
1349/**
1350 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1351 * @hsotg: The device state.
1352 * @hs_ep: The endpoint the request was on.
1353 * @hs_req: The request to complete.
1354 * @result: The result code (0 => Ok, otherwise errno)
1355 *
1356 * See s3c_hsotg_complete_request(), but called with the endpoint's
1357 * lock held.
1358*/
1359static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1360					    struct s3c_hsotg_ep *hs_ep,
1361					    struct s3c_hsotg_req *hs_req,
1362					    int result)
1363{
1364	unsigned long flags;
1365
1366	spin_lock_irqsave(&hs_ep->lock, flags);
1367	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1368	spin_unlock_irqrestore(&hs_ep->lock, flags);
1369}
1370
1371/**
1372 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1373 * @hsotg: The device state.
1374 * @ep_idx: The endpoint index for the data
1375 * @size: The size of data in the fifo, in bytes
1376 *
1377 * The FIFO status shows there is data to read from the FIFO for a given
1378 * endpoint, so sort out whether we need to read the data into a request
1379 * that has been made for that endpoint.
1380 */
1381static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1382{
1383	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1384	struct s3c_hsotg_req *hs_req = hs_ep->req;
1385	void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1386	int to_read;
1387	int max_req;
1388	int read_ptr;
1389
1390	if (!hs_req) {
1391		u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1392		int ptr;
1393
1394		dev_warn(hsotg->dev,
1395			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1396			 __func__, size, ep_idx, epctl);
1397
1398		/* dump the data from the FIFO, we've nothing we can do */
1399		for (ptr = 0; ptr < size; ptr += 4)
1400			(void)readl(fifo);
1401
1402		return;
1403	}
1404
1405	spin_lock(&hs_ep->lock);
1406
1407	to_read = size;
1408	read_ptr = hs_req->req.actual;
1409	max_req = hs_req->req.length - read_ptr;
1410
1411	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1412		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1413
1414	if (to_read > max_req) {
1415		/* more data appeared than we where willing
1416		 * to deal with in this request.
1417		 */
1418
1419		/* currently we don't deal this */
1420		WARN_ON_ONCE(1);
1421	}
1422
1423	hs_ep->total_data += to_read;
1424	hs_req->req.actual += to_read;
1425	to_read = DIV_ROUND_UP(to_read, 4);
1426
1427	/* note, we might over-write the buffer end by 3 bytes depending on
1428	 * alignment of the data. */
1429	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1430
1431	spin_unlock(&hs_ep->lock);
1432}
1433
1434/**
1435 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1436 * @hsotg: The device instance
1437 * @req: The request currently on this endpoint
1438 *
1439 * Generate a zero-length IN packet request for terminating a SETUP
1440 * transaction.
1441 *
1442 * Note, since we don't write any data to the TxFIFO, then it is
1443 * currently believed that we do not need to wait for any space in
1444 * the TxFIFO.
1445 */
1446static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1447			       struct s3c_hsotg_req *req)
1448{
1449	u32 ctrl;
1450
1451	if (!req) {
1452		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1453		return;
1454	}
1455
1456	if (req->req.length == 0) {
1457		hsotg->eps[0].sent_zlp = 1;
1458		s3c_hsotg_enqueue_setup(hsotg);
1459		return;
1460	}
1461
1462	hsotg->eps[0].dir_in = 1;
1463	hsotg->eps[0].sent_zlp = 1;
1464
1465	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1466
1467	/* issue a zero-sized packet to terminate this */
1468	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1469	       S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1470
1471	ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1472	ctrl |= S3C_DxEPCTL_CNAK;  /* clear NAK set by core */
1473	ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1474	ctrl |= S3C_DxEPCTL_USBActEp;
1475	writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1476}
1477
1478/**
1479 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1480 * @hsotg: The device instance
1481 * @epnum: The endpoint received from
1482 * @was_setup: Set if processing a SetupDone event.
1483 *
1484 * The RXFIFO has delivered an OutDone event, which means that the data
1485 * transfer for an OUT endpoint has been completed, either by a short
1486 * packet or by the finish of a transfer.
1487*/
1488static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1489				     int epnum, bool was_setup)
1490{
1491	u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1492	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1493	struct s3c_hsotg_req *hs_req = hs_ep->req;
1494	struct usb_request *req = &hs_req->req;
1495	unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1496	int result = 0;
1497
1498	if (!hs_req) {
1499		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1500		return;
1501	}
1502
1503	if (using_dma(hsotg)) {
1504		unsigned size_done;
1505
1506		/* Calculate the size of the transfer by checking how much
1507		 * is left in the endpoint size register and then working it
1508		 * out from the amount we loaded for the transfer.
1509		 *
1510		 * We need to do this as DMA pointers are always 32bit aligned
1511		 * so may overshoot/undershoot the transfer.
1512		 */
1513
1514		size_done = hs_ep->size_loaded - size_left;
1515		size_done += hs_ep->last_load;
1516
1517		req->actual = size_done;
1518	}
1519
1520	/* if there is more request to do, schedule new transfer */
1521	if (req->actual < req->length && size_left == 0) {
1522		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1523		return;
1524	}
1525
1526	if (req->actual < req->length && req->short_not_ok) {
1527		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1528			__func__, req->actual, req->length);
1529
1530		/* todo - what should we return here? there's no one else
1531		 * even bothering to check the status. */
1532	}
1533
1534	if (epnum == 0) {
1535		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1536			s3c_hsotg_send_zlp(hsotg, hs_req);
1537	}
1538
1539	s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1540}
1541
1542/**
1543 * s3c_hsotg_read_frameno - read current frame number
1544 * @hsotg: The device instance
1545 *
1546 * Return the current frame number
1547*/
1548static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1549{
1550	u32 dsts;
1551
1552	dsts = readl(hsotg->regs + S3C_DSTS);
1553	dsts &= S3C_DSTS_SOFFN_MASK;
1554	dsts >>= S3C_DSTS_SOFFN_SHIFT;
1555
1556	return dsts;
1557}
1558
1559/**
1560 * s3c_hsotg_handle_rx - RX FIFO has data
1561 * @hsotg: The device instance
1562 *
1563 * The IRQ handler has detected that the RX FIFO has some data in it
1564 * that requires processing, so find out what is in there and do the
1565 * appropriate read.
1566 *
1567 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1568 * chunks, so if you have x packets received on an endpoint you'll get x
1569 * FIFO events delivered, each with a packet's worth of data in it.
1570 *
1571 * When using DMA, we should not be processing events from the RXFIFO
1572 * as the actual data should be sent to the memory directly and we turn
1573 * on the completion interrupts to get notifications of transfer completion.
1574 */
1575static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1576{
1577	u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1578	u32 epnum, status, size;
1579
1580	WARN_ON(using_dma(hsotg));
1581
1582	epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1583	status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1584
1585	size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1586	size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1587
1588	if (1)
1589		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1590			__func__, grxstsr, size, epnum);
1591
1592#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1593
1594	switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1595	case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1596		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1597		break;
1598
1599	case __status(S3C_GRXSTS_PktSts_OutDone):
1600		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1601			s3c_hsotg_read_frameno(hsotg));
1602
1603		if (!using_dma(hsotg))
1604			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1605		break;
1606
1607	case __status(S3C_GRXSTS_PktSts_SetupDone):
1608		dev_dbg(hsotg->dev,
1609			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1610			s3c_hsotg_read_frameno(hsotg),
1611			readl(hsotg->regs + S3C_DOEPCTL(0)));
1612
1613		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1614		break;
1615
1616	case __status(S3C_GRXSTS_PktSts_OutRX):
1617		s3c_hsotg_rx_data(hsotg, epnum, size);
1618		break;
1619
1620	case __status(S3C_GRXSTS_PktSts_SetupRX):
1621		dev_dbg(hsotg->dev,
1622			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1623			s3c_hsotg_read_frameno(hsotg),
1624			readl(hsotg->regs + S3C_DOEPCTL(0)));
1625
1626		s3c_hsotg_rx_data(hsotg, epnum, size);
1627		break;
1628
1629	default:
1630		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1631			 __func__, grxstsr);
1632
1633		s3c_hsotg_dump(hsotg);
1634		break;
1635	}
1636}
1637
1638/**
1639 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1640 * @mps: The maximum packet size in bytes.
1641*/
1642static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1643{
1644	switch (mps) {
1645	case 64:
1646		return S3C_D0EPCTL_MPS_64;
1647	case 32:
1648		return S3C_D0EPCTL_MPS_32;
1649	case 16:
1650		return S3C_D0EPCTL_MPS_16;
1651	case 8:
1652		return S3C_D0EPCTL_MPS_8;
1653	}
1654
1655	/* bad max packet size, warn and return invalid result */
1656	WARN_ON(1);
1657	return (u32)-1;
1658}
1659
1660/**
1661 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1662 * @hsotg: The driver state.
1663 * @ep: The index number of the endpoint
1664 * @mps: The maximum packet size in bytes
1665 *
1666 * Configure the maximum packet size for the given endpoint, updating
1667 * the hardware control registers to reflect this.
1668 */
1669static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1670				       unsigned int ep, unsigned int mps)
1671{
1672	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1673	void __iomem *regs = hsotg->regs;
1674	u32 mpsval;
1675	u32 reg;
1676
1677	if (ep == 0) {
1678		/* EP0 is a special case */
1679		mpsval = s3c_hsotg_ep0_mps(mps);
1680		if (mpsval > 3)
1681			goto bad_mps;
1682	} else {
1683		if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1684			goto bad_mps;
1685
1686		mpsval = mps;
1687	}
1688
1689	hs_ep->ep.maxpacket = mps;
1690
1691	/* update both the in and out endpoint controldir_ registers, even
1692	 * if one of the directions may not be in use. */
1693
1694	reg = readl(regs + S3C_DIEPCTL(ep));
1695	reg &= ~S3C_DxEPCTL_MPS_MASK;
1696	reg |= mpsval;
1697	writel(reg, regs + S3C_DIEPCTL(ep));
1698
1699	reg = readl(regs + S3C_DOEPCTL(ep));
1700	reg &= ~S3C_DxEPCTL_MPS_MASK;
1701	reg |= mpsval;
1702	writel(reg, regs + S3C_DOEPCTL(ep));
1703
1704	return;
1705
1706bad_mps:
1707	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1708}
1709
1710/**
1711 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1712 * @hsotg: The driver state
1713 * @idx: The index for the endpoint (0..15)
1714 */
1715static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1716{
1717	int timeout;
1718	int val;
1719
1720	writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
1721		hsotg->regs + S3C_GRSTCTL);
1722
1723	/* wait until the fifo is flushed */
1724	timeout = 100;
1725
1726	while (1) {
1727		val = readl(hsotg->regs + S3C_GRSTCTL);
1728
1729		if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
1730			break;
1731
1732		if (--timeout == 0) {
1733			dev_err(hsotg->dev,
1734				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1735				__func__, val);
1736		}
1737
1738		udelay(1);
1739	}
1740}
1741
1742/**
1743 * s3c_hsotg_trytx - check to see if anything needs transmitting
1744 * @hsotg: The driver state
1745 * @hs_ep: The driver endpoint to check.
1746 *
1747 * Check to see if there is a request that has data to send, and if so
1748 * make an attempt to write data into the FIFO.
1749 */
1750static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1751			   struct s3c_hsotg_ep *hs_ep)
1752{
1753	struct s3c_hsotg_req *hs_req = hs_ep->req;
1754
1755	if (!hs_ep->dir_in || !hs_req)
1756		return 0;
1757
1758	if (hs_req->req.actual < hs_req->req.length) {
1759		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1760			hs_ep->index);
1761		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1762	}
1763
1764	return 0;
1765}
1766
1767/**
1768 * s3c_hsotg_complete_in - complete IN transfer
1769 * @hsotg: The device state.
1770 * @hs_ep: The endpoint that has just completed.
1771 *
1772 * An IN transfer has been completed, update the transfer's state and then
1773 * call the relevant completion routines.
1774 */
1775static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1776				  struct s3c_hsotg_ep *hs_ep)
1777{
1778	struct s3c_hsotg_req *hs_req = hs_ep->req;
1779	u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1780	int size_left, size_done;
1781
1782	if (!hs_req) {
1783		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1784		return;
1785	}
1786
1787	/* Calculate the size of the transfer by checking how much is left
1788	 * in the endpoint size register and then working it out from
1789	 * the amount we loaded for the transfer.
1790	 *
1791	 * We do this even for DMA, as the transfer may have incremented
1792	 * past the end of the buffer (DMA transfers are always 32bit
1793	 * aligned).
1794	 */
1795
1796	size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1797
1798	size_done = hs_ep->size_loaded - size_left;
1799	size_done += hs_ep->last_load;
1800
1801	if (hs_req->req.actual != size_done)
1802		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1803			__func__, hs_req->req.actual, size_done);
1804
1805	hs_req->req.actual = size_done;
1806
1807	/* if we did all of the transfer, and there is more data left
1808	 * around, then try restarting the rest of the request */
1809
1810	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1811		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1812		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1813	} else
1814		s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1815}
1816
1817/**
1818 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1819 * @hsotg: The driver state
1820 * @idx: The index for the endpoint (0..15)
1821 * @dir_in: Set if this is an IN endpoint
1822 *
1823 * Process and clear any interrupt pending for an individual endpoint
1824*/
1825static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1826			    int dir_in)
1827{
1828	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1829	u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1830	u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1831	u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1832	u32 ints;
1833
1834	ints = readl(hsotg->regs + epint_reg);
1835
1836	/* Clear endpoint interrupts */
1837	writel(ints, hsotg->regs + epint_reg);
1838
1839	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1840		__func__, idx, dir_in ? "in" : "out", ints);
1841
1842	if (ints & S3C_DxEPINT_XferCompl) {
1843		dev_dbg(hsotg->dev,
1844			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1845			__func__, readl(hsotg->regs + epctl_reg),
1846			readl(hsotg->regs + epsiz_reg));
1847
1848		/* we get OutDone from the FIFO, so we only need to look
1849		 * at completing IN requests here */
1850		if (dir_in) {
1851			s3c_hsotg_complete_in(hsotg, hs_ep);
1852
1853			if (idx == 0 && !hs_ep->req)
1854				s3c_hsotg_enqueue_setup(hsotg);
1855		} else if (using_dma(hsotg)) {
1856			/* We're using DMA, we need to fire an OutDone here
1857			 * as we ignore the RXFIFO. */
1858
1859			s3c_hsotg_handle_outdone(hsotg, idx, false);
1860		}
1861	}
1862
1863	if (ints & S3C_DxEPINT_EPDisbld) {
1864		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1865
1866		if (dir_in) {
1867			int epctl = readl(hsotg->regs + epctl_reg);
1868
1869			s3c_hsotg_txfifo_flush(hsotg, idx);
1870
1871			if ((epctl & S3C_DxEPCTL_Stall) &&
1872				(epctl & S3C_DxEPCTL_EPType_Bulk)) {
1873				int dctl = readl(hsotg->regs + S3C_DCTL);
1874
1875				dctl |= S3C_DCTL_CGNPInNAK;
1876				writel(dctl, hsotg->regs + S3C_DCTL);
1877			}
1878		}
1879	}
1880
1881	if (ints & S3C_DxEPINT_AHBErr)
1882		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1883
1884	if (ints & S3C_DxEPINT_Setup) {  /* Setup or Timeout */
1885		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1886
1887		if (using_dma(hsotg) && idx == 0) {
1888			/* this is the notification we've received a
1889			 * setup packet. In non-DMA mode we'd get this
1890			 * from the RXFIFO, instead we need to process
1891			 * the setup here. */
1892
1893			if (dir_in)
1894				WARN_ON_ONCE(1);
1895			else
1896				s3c_hsotg_handle_outdone(hsotg, 0, true);
1897		}
1898	}
1899
1900	if (ints & S3C_DxEPINT_Back2BackSetup)
1901		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1902
1903	if (dir_in) {
1904		/* not sure if this is important, but we'll clear it anyway
1905		 */
1906		if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1907			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1908				__func__, idx);
1909		}
1910
1911		/* this probably means something bad is happening */
1912		if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1913			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1914				 __func__, idx);
1915		}
1916
1917		/* FIFO has space or is empty (see GAHBCFG) */
1918		if (hsotg->dedicated_fifos &&
1919		    ints & S3C_DIEPMSK_TxFIFOEmpty) {
1920			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1921				__func__, idx);
1922			s3c_hsotg_trytx(hsotg, hs_ep);
1923		}
1924	}
1925}
1926
1927/**
1928 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1929 * @hsotg: The device state.
1930 *
1931 * Handle updating the device settings after the enumeration phase has
1932 * been completed.
1933*/
1934static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1935{
1936	u32 dsts = readl(hsotg->regs + S3C_DSTS);
1937	int ep0_mps = 0, ep_mps;
1938
1939	/* This should signal the finish of the enumeration phase
1940	 * of the USB handshaking, so we should now know what rate
1941	 * we connected at. */
1942
1943	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1944
1945	/* note, since we're limited by the size of transfer on EP0, and
1946	 * it seems IN transfers must be a even number of packets we do
1947	 * not advertise a 64byte MPS on EP0. */
1948
1949	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1950	switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1951	case S3C_DSTS_EnumSpd_FS:
1952	case S3C_DSTS_EnumSpd_FS48:
1953		hsotg->gadget.speed = USB_SPEED_FULL;
1954		dev_info(hsotg->dev, "new device is full-speed\n");
1955
1956		ep0_mps = EP0_MPS_LIMIT;
1957		ep_mps = 64;
1958		break;
1959
1960	case S3C_DSTS_EnumSpd_HS:
1961		dev_info(hsotg->dev, "new device is high-speed\n");
1962		hsotg->gadget.speed = USB_SPEED_HIGH;
1963
1964		ep0_mps = EP0_MPS_LIMIT;
1965		ep_mps = 512;
1966		break;
1967
1968	case S3C_DSTS_EnumSpd_LS:
1969		hsotg->gadget.speed = USB_SPEED_LOW;
1970		dev_info(hsotg->dev, "new device is low-speed\n");
1971
1972		/* note, we don't actually support LS in this driver at the
1973		 * moment, and the documentation seems to imply that it isn't
1974		 * supported by the PHYs on some of the devices.
1975		 */
1976		break;
1977	}
1978
1979	/* we should now know the maximum packet size for an
1980	 * endpoint, so set the endpoints to a default value. */
1981
1982	if (ep0_mps) {
1983		int i;
1984		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1985		for (i = 1; i < S3C_HSOTG_EPS; i++)
1986			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1987	}
1988
1989	/* ensure after enumeration our EP0 is active */
1990
1991	s3c_hsotg_enqueue_setup(hsotg);
1992
1993	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1994		readl(hsotg->regs + S3C_DIEPCTL0),
1995		readl(hsotg->regs + S3C_DOEPCTL0));
1996}
1997
1998/**
1999 * kill_all_requests - remove all requests from the endpoint's queue
2000 * @hsotg: The device state.
2001 * @ep: The endpoint the requests may be on.
2002 * @result: The result code to use.
2003 * @force: Force removal of any current requests
2004 *
2005 * Go through the requests on the given endpoint and mark them
2006 * completed with the given result code.
2007 */
2008static void kill_all_requests(struct s3c_hsotg *hsotg,
2009			      struct s3c_hsotg_ep *ep,
2010			      int result, bool force)
2011{
2012	struct s3c_hsotg_req *req, *treq;
2013	unsigned long flags;
2014
2015	spin_lock_irqsave(&ep->lock, flags);
2016
2017	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2018		/* currently, we can't do much about an already
2019		 * running request on an in endpoint */
2020
2021		if (ep->req == req && ep->dir_in && !force)
2022			continue;
2023
2024		s3c_hsotg_complete_request(hsotg, ep, req,
2025					   result);
2026	}
2027
2028	spin_unlock_irqrestore(&ep->lock, flags);
2029}
2030
2031#define call_gadget(_hs, _entry) \
2032	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2033	    (_hs)->driver && (_hs)->driver->_entry)	\
2034		(_hs)->driver->_entry(&(_hs)->gadget);
2035
2036/**
2037 * s3c_hsotg_disconnect_irq - disconnect irq service
2038 * @hsotg: The device state.
2039 *
2040 * A disconnect IRQ has been received, meaning that the host has
2041 * lost contact with the bus. Remove all current transactions
2042 * and signal the gadget driver that this has happened.
2043*/
2044static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
2045{
2046	unsigned ep;
2047
2048	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2049		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2050
2051	call_gadget(hsotg, disconnect);
2052}
2053
2054/**
2055 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2056 * @hsotg: The device state:
2057 * @periodic: True if this is a periodic FIFO interrupt
2058 */
2059static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2060{
2061	struct s3c_hsotg_ep *ep;
2062	int epno, ret;
2063
2064	/* look through for any more data to transmit */
2065
2066	for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2067		ep = &hsotg->eps[epno];
2068
2069		if (!ep->dir_in)
2070			continue;
2071
2072		if ((periodic && !ep->periodic) ||
2073		    (!periodic && ep->periodic))
2074			continue;
2075
2076		ret = s3c_hsotg_trytx(hsotg, ep);
2077		if (ret < 0)
2078			break;
2079	}
2080}
2081
2082static struct s3c_hsotg *our_hsotg;
2083
2084/* IRQ flags which will trigger a retry around the IRQ loop */
2085#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2086			S3C_GINTSTS_PTxFEmp |  \
2087			S3C_GINTSTS_RxFLvl)
2088
2089/**
2090 * s3c_hsotg_irq - handle device interrupt
2091 * @irq: The IRQ number triggered
2092 * @pw: The pw value when registered the handler.
2093 */
2094static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2095{
2096	struct s3c_hsotg *hsotg = pw;
2097	int retry_count = 8;
2098	u32 gintsts;
2099	u32 gintmsk;
2100
2101irq_retry:
2102	gintsts = readl(hsotg->regs + S3C_GINTSTS);
2103	gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2104
2105	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2106		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2107
2108	gintsts &= gintmsk;
2109
2110	if (gintsts & S3C_GINTSTS_OTGInt) {
2111		u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2112
2113		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2114
2115		writel(otgint, hsotg->regs + S3C_GOTGINT);
2116	}
2117
2118	if (gintsts & S3C_GINTSTS_DisconnInt) {
2119		dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2120		writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2121
2122		s3c_hsotg_disconnect_irq(hsotg);
2123	}
2124
2125	if (gintsts & S3C_GINTSTS_SessReqInt) {
2126		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2127		writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2128	}
2129
2130	if (gintsts & S3C_GINTSTS_EnumDone) {
2131		writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2132
2133		s3c_hsotg_irq_enumdone(hsotg);
2134	}
2135
2136	if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2137		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2138			readl(hsotg->regs + S3C_DSTS),
2139			readl(hsotg->regs + S3C_GOTGCTL));
2140
2141		writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2142	}
2143
2144	if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2145		u32 daint = readl(hsotg->regs + S3C_DAINT);
2146		u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2147		u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2148		int ep;
2149
2150		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2151
2152		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2153			if (daint_out & 1)
2154				s3c_hsotg_epint(hsotg, ep, 0);
2155		}
2156
2157		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2158			if (daint_in & 1)
2159				s3c_hsotg_epint(hsotg, ep, 1);
2160		}
2161	}
2162
2163	if (gintsts & S3C_GINTSTS_USBRst) {
2164		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2165		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2166			readl(hsotg->regs + S3C_GNPTXSTS));
2167
2168		writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2169
2170		kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2171
2172		/* it seems after a reset we can end up with a situation
2173		 * where the TXFIFO still has data in it... the docs
2174		 * suggest resetting all the fifos, so use the init_fifo
2175		 * code to relayout and flush the fifos.
2176		 */
2177
2178		s3c_hsotg_init_fifo(hsotg);
2179
2180		s3c_hsotg_enqueue_setup(hsotg);
2181	}
2182
2183	/* check both FIFOs */
2184
2185	if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2186		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2187
2188		/* Disable the interrupt to stop it happening again
2189		 * unless one of these endpoint routines decides that
2190		 * it needs re-enabling */
2191
2192		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2193		s3c_hsotg_irq_fifoempty(hsotg, false);
2194	}
2195
2196	if (gintsts & S3C_GINTSTS_PTxFEmp) {
2197		dev_dbg(hsotg->dev, "PTxFEmp\n");
2198
2199		/* See note in S3C_GINTSTS_NPTxFEmp */
2200
2201		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2202		s3c_hsotg_irq_fifoempty(hsotg, true);
2203	}
2204
2205	if (gintsts & S3C_GINTSTS_RxFLvl) {
2206		/* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2207		 * we need to retry s3c_hsotg_handle_rx if this is still
2208		 * set. */
2209
2210		s3c_hsotg_handle_rx(hsotg);
2211	}
2212
2213	if (gintsts & S3C_GINTSTS_ModeMis) {
2214		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2215		writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2216	}
2217
2218	if (gintsts & S3C_GINTSTS_USBSusp) {
2219		dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2220		writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2221
2222		call_gadget(hsotg, suspend);
2223	}
2224
2225	if (gintsts & S3C_GINTSTS_WkUpInt) {
2226		dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2227		writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2228
2229		call_gadget(hsotg, resume);
2230	}
2231
2232	if (gintsts & S3C_GINTSTS_ErlySusp) {
2233		dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2234		writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2235	}
2236
2237	/* these next two seem to crop-up occasionally causing the core
2238	 * to shutdown the USB transfer, so try clearing them and logging
2239	 * the occurrence. */
2240
2241	if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2242		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2243
2244		writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2245
2246		s3c_hsotg_dump(hsotg);
2247	}
2248
2249	if (gintsts & S3C_GINTSTS_GINNakEff) {
2250		dev_info(hsotg->dev, "GINNakEff triggered\n");
2251
2252		writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2253
2254		s3c_hsotg_dump(hsotg);
2255	}
2256
2257	/* if we've had fifo events, we should try and go around the
2258	 * loop again to see if there's any point in returning yet. */
2259
2260	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2261			goto irq_retry;
2262
2263	return IRQ_HANDLED;
2264}
2265
2266/**
2267 * s3c_hsotg_ep_enable - enable the given endpoint
2268 * @ep: The USB endpint to configure
2269 * @desc: The USB endpoint descriptor to configure with.
2270 *
2271 * This is called from the USB gadget code's usb_ep_enable().
2272*/
2273static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2274			       const struct usb_endpoint_descriptor *desc)
2275{
2276	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2277	struct s3c_hsotg *hsotg = hs_ep->parent;
2278	unsigned long flags;
2279	int index = hs_ep->index;
2280	u32 epctrl_reg;
2281	u32 epctrl;
2282	u32 mps;
2283	int dir_in;
2284	int ret = 0;
2285
2286	dev_dbg(hsotg->dev,
2287		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2288		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2289		desc->wMaxPacketSize, desc->bInterval);
2290
2291	/* not to be called for EP0 */
2292	WARN_ON(index == 0);
2293
2294	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2295	if (dir_in != hs_ep->dir_in) {
2296		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2297		return -EINVAL;
2298	}
2299
2300	mps = le16_to_cpu(desc->wMaxPacketSize);
2301
2302	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2303
2304	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2305	epctrl = readl(hsotg->regs + epctrl_reg);
2306
2307	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2308		__func__, epctrl, epctrl_reg);
2309
2310	spin_lock_irqsave(&hs_ep->lock, flags);
2311
2312	epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2313	epctrl |= S3C_DxEPCTL_MPS(mps);
2314
2315	/* mark the endpoint as active, otherwise the core may ignore
2316	 * transactions entirely for this endpoint */
2317	epctrl |= S3C_DxEPCTL_USBActEp;
2318
2319	/* set the NAK status on the endpoint, otherwise we might try and
2320	 * do something with data that we've yet got a request to process
2321	 * since the RXFIFO will take data for an endpoint even if the
2322	 * size register hasn't been set.
2323	 */
2324
2325	epctrl |= S3C_DxEPCTL_SNAK;
2326
2327	/* update the endpoint state */
2328	hs_ep->ep.maxpacket = mps;
2329
2330	/* default, set to non-periodic */
2331	hs_ep->periodic = 0;
2332
2333	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2334	case USB_ENDPOINT_XFER_ISOC:
2335		dev_err(hsotg->dev, "no current ISOC support\n");
2336		ret = -EINVAL;
2337		goto out;
2338
2339	case USB_ENDPOINT_XFER_BULK:
2340		epctrl |= S3C_DxEPCTL_EPType_Bulk;
2341		break;
2342
2343	case USB_ENDPOINT_XFER_INT:
2344		if (dir_in) {
2345			/* Allocate our TxFNum by simply using the index
2346			 * of the endpoint for the moment. We could do
2347			 * something better if the host indicates how
2348			 * many FIFOs we are expecting to use. */
2349
2350			hs_ep->periodic = 1;
2351			epctrl |= S3C_DxEPCTL_TxFNum(index);
2352		}
2353
2354		epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2355		break;
2356
2357	case USB_ENDPOINT_XFER_CONTROL:
2358		epctrl |= S3C_DxEPCTL_EPType_Control;
2359		break;
2360	}
2361
2362	/* if the hardware has dedicated fifos, we must give each IN EP
2363	 * a unique tx-fifo even if it is non-periodic.
2364	 */
2365	if (dir_in && hsotg->dedicated_fifos)
2366		epctrl |= S3C_DxEPCTL_TxFNum(index);
2367
2368	/* for non control endpoints, set PID to D0 */
2369	if (index)
2370		epctrl |= S3C_DxEPCTL_SetD0PID;
2371
2372	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2373		__func__, epctrl);
2374
2375	writel(epctrl, hsotg->regs + epctrl_reg);
2376	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2377		__func__, readl(hsotg->regs + epctrl_reg));
2378
2379	/* enable the endpoint interrupt */
2380	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2381
2382out:
2383	spin_unlock_irqrestore(&hs_ep->lock, flags);
2384	return ret;
2385}
2386
2387static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2388{
2389	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2390	struct s3c_hsotg *hsotg = hs_ep->parent;
2391	int dir_in = hs_ep->dir_in;
2392	int index = hs_ep->index;
2393	unsigned long flags;
2394	u32 epctrl_reg;
2395	u32 ctrl;
2396
2397	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2398
2399	if (ep == &hsotg->eps[0].ep) {
2400		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2401		return -EINVAL;
2402	}
2403
2404	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2405
2406	/* terminate all requests with shutdown */
2407	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2408
2409	spin_lock_irqsave(&hs_ep->lock, flags);
2410
2411	ctrl = readl(hsotg->regs + epctrl_reg);
2412	ctrl &= ~S3C_DxEPCTL_EPEna;
2413	ctrl &= ~S3C_DxEPCTL_USBActEp;
2414	ctrl |= S3C_DxEPCTL_SNAK;
2415
2416	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2417	writel(ctrl, hsotg->regs + epctrl_reg);
2418
2419	/* disable endpoint interrupts */
2420	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2421
2422	spin_unlock_irqrestore(&hs_ep->lock, flags);
2423	return 0;
2424}
2425
2426/**
2427 * on_list - check request is on the given endpoint
2428 * @ep: The endpoint to check.
2429 * @test: The request to test if it is on the endpoint.
2430*/
2431static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2432{
2433	struct s3c_hsotg_req *req, *treq;
2434
2435	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2436		if (req == test)
2437			return true;
2438	}
2439
2440	return false;
2441}
2442
2443static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2444{
2445	struct s3c_hsotg_req *hs_req = our_req(req);
2446	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2447	struct s3c_hsotg *hs = hs_ep->parent;
2448	unsigned long flags;
2449
2450	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2451
2452	spin_lock_irqsave(&hs_ep->lock, flags);
2453
2454	if (!on_list(hs_ep, hs_req)) {
2455		spin_unlock_irqrestore(&hs_ep->lock, flags);
2456		return -EINVAL;
2457	}
2458
2459	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2460	spin_unlock_irqrestore(&hs_ep->lock, flags);
2461
2462	return 0;
2463}
2464
2465static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2466{
2467	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2468	struct s3c_hsotg *hs = hs_ep->parent;
2469	int index = hs_ep->index;
2470	unsigned long irqflags;
2471	u32 epreg;
2472	u32 epctl;
2473	u32 xfertype;
2474
2475	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2476
2477	spin_lock_irqsave(&hs_ep->lock, irqflags);
2478
2479	/* write both IN and OUT control registers */
2480
2481	epreg = S3C_DIEPCTL(index);
2482	epctl = readl(hs->regs + epreg);
2483
2484	if (value) {
2485		epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
2486		if (epctl & S3C_DxEPCTL_EPEna)
2487			epctl |= S3C_DxEPCTL_EPDis;
2488	} else {
2489		epctl &= ~S3C_DxEPCTL_Stall;
2490		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2491		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2492			xfertype == S3C_DxEPCTL_EPType_Intterupt)
2493				epctl |= S3C_DxEPCTL_SetD0PID;
2494	}
2495
2496	writel(epctl, hs->regs + epreg);
2497
2498	epreg = S3C_DOEPCTL(index);
2499	epctl = readl(hs->regs + epreg);
2500
2501	if (value)
2502		epctl |= S3C_DxEPCTL_Stall;
2503	else {
2504		epctl &= ~S3C_DxEPCTL_Stall;
2505		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2506		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2507			xfertype == S3C_DxEPCTL_EPType_Intterupt)
2508				epctl |= S3C_DxEPCTL_SetD0PID;
2509	}
2510
2511	writel(epctl, hs->regs + epreg);
2512
2513	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2514
2515	return 0;
2516}
2517
2518static struct usb_ep_ops s3c_hsotg_ep_ops = {
2519	.enable		= s3c_hsotg_ep_enable,
2520	.disable	= s3c_hsotg_ep_disable,
2521	.alloc_request	= s3c_hsotg_ep_alloc_request,
2522	.free_request	= s3c_hsotg_ep_free_request,
2523	.queue		= s3c_hsotg_ep_queue,
2524	.dequeue	= s3c_hsotg_ep_dequeue,
2525	.set_halt	= s3c_hsotg_ep_sethalt,
2526	/* note, don't believe we have any call for the fifo routines */
2527};
2528
2529/**
2530 * s3c_hsotg_corereset - issue softreset to the core
2531 * @hsotg: The device state
2532 *
2533 * Issue a soft reset to the core, and await the core finishing it.
2534*/
2535static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2536{
2537	int timeout;
2538	u32 grstctl;
2539
2540	dev_dbg(hsotg->dev, "resetting core\n");
2541
2542	/* issue soft reset */
2543	writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2544
2545	timeout = 1000;
2546	do {
2547		grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2548	} while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2549
2550	if (grstctl & S3C_GRSTCTL_CSftRst) {
2551		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2552		return -EINVAL;
2553	}
2554
2555	timeout = 1000;
2556
2557	while (1) {
2558		u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2559
2560		if (timeout-- < 0) {
2561			dev_info(hsotg->dev,
2562				 "%s: reset failed, GRSTCTL=%08x\n",
2563				 __func__, grstctl);
2564			return -ETIMEDOUT;
2565		}
2566
2567		if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2568			continue;
2569
2570		break;		/* reset done */
2571	}
2572
2573	dev_dbg(hsotg->dev, "reset successful\n");
2574	return 0;
2575}
2576
2577static int s3c_hsotg_start(struct usb_gadget_driver *driver,
2578		int (*bind)(struct usb_gadget *))
2579{
2580	struct s3c_hsotg *hsotg = our_hsotg;
2581	int ret;
2582
2583	if (!hsotg) {
2584		printk(KERN_ERR "%s: called with no device\n", __func__);
2585		return -ENODEV;
2586	}
2587
2588	if (!driver) {
2589		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2590		return -EINVAL;
2591	}
2592
2593	if (driver->speed != USB_SPEED_HIGH &&
2594	    driver->speed != USB_SPEED_FULL) {
2595		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2596	}
2597
2598	if (!bind || !driver->setup) {
2599		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2600		return -EINVAL;
2601	}
2602
2603	WARN_ON(hsotg->driver);
2604
2605	driver->driver.bus = NULL;
2606	hsotg->driver = driver;
2607	hsotg->gadget.dev.driver = &driver->driver;
2608	hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2609	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2610
2611	ret = device_add(&hsotg->gadget.dev);
2612	if (ret) {
2613		dev_err(hsotg->dev, "failed to register gadget device\n");
2614		goto err;
2615	}
2616
2617	ret = bind(&hsotg->gadget);
2618	if (ret) {
2619		dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2620
2621		hsotg->gadget.dev.driver = NULL;
2622		hsotg->driver = NULL;
2623		goto err;
2624	}
2625
2626	/* we must now enable ep0 ready for host detection and then
2627	 * set configuration. */
2628
2629	s3c_hsotg_corereset(hsotg);
2630
2631	/* set the PLL on, remove the HNP/SRP and set the PHY */
2632	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2633	       (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2634
2635	/* looks like soft-reset changes state of FIFOs */
2636	s3c_hsotg_init_fifo(hsotg);
2637
2638	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2639
2640	writel(1 << 18 | S3C_DCFG_DevSpd_HS,  hsotg->regs + S3C_DCFG);
2641
2642	/* Clear any pending OTG interrupts */
2643	writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
2644
2645	/* Clear any pending interrupts */
2646	writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
2647
2648	writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2649	       S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2650	       S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2651	       S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2652	       S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2653	       S3C_GINTSTS_ErlySusp,
2654	       hsotg->regs + S3C_GINTMSK);
2655
2656	if (using_dma(hsotg))
2657		writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2658		       S3C_GAHBCFG_HBstLen_Incr4,
2659		       hsotg->regs + S3C_GAHBCFG);
2660	else
2661		writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2662
2663	/* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2664	 * up being flooded with interrupts if the host is polling the
2665	 * endpoint to try and read data. */
2666
2667	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2668	       S3C_DIEPMSK_INTknEPMisMsk |
2669	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2670	       ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2671	       hsotg->regs + S3C_DIEPMSK);
2672
2673	/* don't need XferCompl, we get that from RXFIFO in slave mode. In
2674	 * DMA mode we may need this. */
2675	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2676	       S3C_DOEPMSK_EPDisbldMsk |
2677	       (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2678				   S3C_DIEPMSK_TimeOUTMsk) : 0),
2679	       hsotg->regs + S3C_DOEPMSK);
2680
2681	writel(0, hsotg->regs + S3C_DAINTMSK);
2682
2683	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2684		readl(hsotg->regs + S3C_DIEPCTL0),
2685		readl(hsotg->regs + S3C_DOEPCTL0));
2686
2687	/* enable in and out endpoint interrupts */
2688	s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2689
2690	/* Enable the RXFIFO when in slave mode, as this is how we collect
2691	 * the data. In DMA mode, we get events from the FIFO but also
2692	 * things we cannot process, so do not use it. */
2693	if (!using_dma(hsotg))
2694		s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2695
2696	/* Enable interrupts for EP0 in and out */
2697	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2698	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2699
2700	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2701	udelay(10);  /* see openiboot */
2702	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2703
2704	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2705
2706	/* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2707	   writing to the EPCTL register.. */
2708
2709	/* set to read 1 8byte packet */
2710	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2711	       S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2712
2713	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2714	       S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2715	       S3C_DxEPCTL_USBActEp,
2716	       hsotg->regs + S3C_DOEPCTL0);
2717
2718	/* enable, but don't activate EP0in */
2719	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2720	       S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2721
2722	s3c_hsotg_enqueue_setup(hsotg);
2723
2724	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2725		readl(hsotg->regs + S3C_DIEPCTL0),
2726		readl(hsotg->regs + S3C_DOEPCTL0));
2727
2728	/* clear global NAKs */
2729	writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2730	       hsotg->regs + S3C_DCTL);
2731
2732	/* must be at-least 3ms to allow bus to see disconnect */
2733	msleep(3);
2734
2735	/* remove the soft-disconnect and let's go */
2736	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2737
2738	/* report to the user, and return */
2739
2740	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2741	return 0;
2742
2743err:
2744	hsotg->driver = NULL;
2745	hsotg->gadget.dev.driver = NULL;
2746	return ret;
2747}
2748
2749static int s3c_hsotg_stop(struct usb_gadget_driver *driver)
2750{
2751	struct s3c_hsotg *hsotg = our_hsotg;
2752	int ep;
2753
2754	if (!hsotg)
2755		return -ENODEV;
2756
2757	if (!driver || driver != hsotg->driver || !driver->unbind)
2758		return -EINVAL;
2759
2760	/* all endpoints should be shutdown */
2761	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2762		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2763
2764	call_gadget(hsotg, disconnect);
2765
2766	driver->unbind(&hsotg->gadget);
2767	hsotg->driver = NULL;
2768	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2769
2770	device_del(&hsotg->gadget.dev);
2771
2772	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2773		 driver->driver.name);
2774
2775	return 0;
2776}
2777
2778static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2779{
2780	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2781}
2782
2783static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2784	.get_frame	= s3c_hsotg_gadget_getframe,
2785	.start		= s3c_hsotg_start,
2786	.stop		= s3c_hsotg_stop,
2787};
2788
2789/**
2790 * s3c_hsotg_initep - initialise a single endpoint
2791 * @hsotg: The device state.
2792 * @hs_ep: The endpoint to be initialised.
2793 * @epnum: The endpoint number
2794 *
2795 * Initialise the given endpoint (as part of the probe and device state
2796 * creation) to give to the gadget driver. Setup the endpoint name, any
2797 * direction information and other state that may be required.
2798 */
2799static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2800				       struct s3c_hsotg_ep *hs_ep,
2801				       int epnum)
2802{
2803	u32 ptxfifo;
2804	char *dir;
2805
2806	if (epnum == 0)
2807		dir = "";
2808	else if ((epnum % 2) == 0) {
2809		dir = "out";
2810	} else {
2811		dir = "in";
2812		hs_ep->dir_in = 1;
2813	}
2814
2815	hs_ep->index = epnum;
2816
2817	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2818
2819	INIT_LIST_HEAD(&hs_ep->queue);
2820	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2821
2822	spin_lock_init(&hs_ep->lock);
2823
2824	/* add to the list of endpoints known by the gadget driver */
2825	if (epnum)
2826		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2827
2828	hs_ep->parent = hsotg;
2829	hs_ep->ep.name = hs_ep->name;
2830	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2831	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2832
2833	/* Read the FIFO size for the Periodic TX FIFO, even if we're
2834	 * an OUT endpoint, we may as well do this if in future the
2835	 * code is changed to make each endpoint's direction changeable.
2836	 */
2837
2838	ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2839	hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2840
2841	/* if we're using dma, we need to set the next-endpoint pointer
2842	 * to be something valid.
2843	 */
2844
2845	if (using_dma(hsotg)) {
2846		u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2847		writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2848		writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2849	}
2850}
2851
2852/**
2853 * s3c_hsotg_otgreset - reset the OtG phy block
2854 * @hsotg: The host state.
2855 *
2856 * Power up the phy, set the basic configuration and start the PHY.
2857 */
2858static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2859{
2860	struct clk *xusbxti;
2861	u32 pwr, osc;
2862
2863	pwr = readl(S3C_PHYPWR);
2864	pwr &= ~0x19;
2865	writel(pwr, S3C_PHYPWR);
2866	mdelay(1);
2867
2868	osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2869
2870	xusbxti = clk_get(hsotg->dev, "xusbxti");
2871	if (xusbxti && !IS_ERR(xusbxti)) {
2872		switch (clk_get_rate(xusbxti)) {
2873		case 12*MHZ:
2874			osc |= S3C_PHYCLK_CLKSEL_12M;
2875			break;
2876		case 24*MHZ:
2877			osc |= S3C_PHYCLK_CLKSEL_24M;
2878			break;
2879		default:
2880		case 48*MHZ:
2881			/* default reference clock */
2882			break;
2883		}
2884		clk_put(xusbxti);
2885	}
2886
2887	writel(osc | 0x10, S3C_PHYCLK);
2888
2889	/* issue a full set of resets to the otg and core */
2890
2891	writel(S3C_RSTCON_PHY, S3C_RSTCON);
2892	udelay(20);	/* at-least 10uS */
2893	writel(0, S3C_RSTCON);
2894}
2895
2896
2897static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2898{
2899	u32 cfg4;
2900
2901	/* unmask subset of endpoint interrupts */
2902
2903	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2904	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2905	       hsotg->regs + S3C_DIEPMSK);
2906
2907	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2908	       S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2909	       hsotg->regs + S3C_DOEPMSK);
2910
2911	writel(0, hsotg->regs + S3C_DAINTMSK);
2912
2913	/* Be in disconnected state until gadget is registered */
2914	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2915
2916	if (0) {
2917		/* post global nak until we're ready */
2918		writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2919		       hsotg->regs + S3C_DCTL);
2920	}
2921
2922	/* setup fifos */
2923
2924	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2925		readl(hsotg->regs + S3C_GRXFSIZ),
2926		readl(hsotg->regs + S3C_GNPTXFSIZ));
2927
2928	s3c_hsotg_init_fifo(hsotg);
2929
2930	/* set the PLL on, remove the HNP/SRP and set the PHY */
2931	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2932	       hsotg->regs + S3C_GUSBCFG);
2933
2934	writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2935	       hsotg->regs + S3C_GAHBCFG);
2936
2937	/* check hardware configuration */
2938
2939	cfg4 = readl(hsotg->regs + 0x50);
2940	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2941
2942	dev_info(hsotg->dev, "%s fifos\n",
2943		 hsotg->dedicated_fifos ? "dedicated" : "shared");
2944}
2945
2946static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2947{
2948#ifdef DEBUG
2949	struct device *dev = hsotg->dev;
2950	void __iomem *regs = hsotg->regs;
2951	u32 val;
2952	int idx;
2953
2954	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2955		 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2956		 readl(regs + S3C_DIEPMSK));
2957
2958	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2959		 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2960
2961	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2962		 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2963
2964	/* show periodic fifo settings */
2965
2966	for (idx = 1; idx <= 15; idx++) {
2967		val = readl(regs + S3C_DPTXFSIZn(idx));
2968		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2969			 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2970			 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2971	}
2972
2973	for (idx = 0; idx < 15; idx++) {
2974		dev_info(dev,
2975			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2976			 readl(regs + S3C_DIEPCTL(idx)),
2977			 readl(regs + S3C_DIEPTSIZ(idx)),
2978			 readl(regs + S3C_DIEPDMA(idx)));
2979
2980		val = readl(regs + S3C_DOEPCTL(idx));
2981		dev_info(dev,
2982			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2983			 idx, readl(regs + S3C_DOEPCTL(idx)),
2984			 readl(regs + S3C_DOEPTSIZ(idx)),
2985			 readl(regs + S3C_DOEPDMA(idx)));
2986
2987	}
2988
2989	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2990		 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2991#endif
2992}
2993
2994
2995/**
2996 * state_show - debugfs: show overall driver and device state.
2997 * @seq: The seq file to write to.
2998 * @v: Unused parameter.
2999 *
3000 * This debugfs entry shows the overall state of the hardware and
3001 * some general information about each of the endpoints available
3002 * to the system.
3003 */
3004static int state_show(struct seq_file *seq, void *v)
3005{
3006	struct s3c_hsotg *hsotg = seq->private;
3007	void __iomem *regs = hsotg->regs;
3008	int idx;
3009
3010	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3011		 readl(regs + S3C_DCFG),
3012		 readl(regs + S3C_DCTL),
3013		 readl(regs + S3C_DSTS));
3014
3015	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3016		   readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
3017
3018	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3019		   readl(regs + S3C_GINTMSK),
3020		   readl(regs + S3C_GINTSTS));
3021
3022	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3023		   readl(regs + S3C_DAINTMSK),
3024		   readl(regs + S3C_DAINT));
3025
3026	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3027		   readl(regs + S3C_GNPTXSTS),
3028		   readl(regs + S3C_GRXSTSR));
3029
3030	seq_printf(seq, "\nEndpoint status:\n");
3031
3032	for (idx = 0; idx < 15; idx++) {
3033		u32 in, out;
3034
3035		in = readl(regs + S3C_DIEPCTL(idx));
3036		out = readl(regs + S3C_DOEPCTL(idx));
3037
3038		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3039			   idx, in, out);
3040
3041		in = readl(regs + S3C_DIEPTSIZ(idx));
3042		out = readl(regs + S3C_DOEPTSIZ(idx));
3043
3044		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3045			   in, out);
3046
3047		seq_printf(seq, "\n");
3048	}
3049
3050	return 0;
3051}
3052
3053static int state_open(struct inode *inode, struct file *file)
3054{
3055	return single_open(file, state_show, inode->i_private);
3056}
3057
3058static const struct file_operations state_fops = {
3059	.owner		= THIS_MODULE,
3060	.open		= state_open,
3061	.read		= seq_read,
3062	.llseek		= seq_lseek,
3063	.release	= single_release,
3064};
3065
3066/**
3067 * fifo_show - debugfs: show the fifo information
3068 * @seq: The seq_file to write data to.
3069 * @v: Unused parameter.
3070 *
3071 * Show the FIFO information for the overall fifo and all the
3072 * periodic transmission FIFOs.
3073*/
3074static int fifo_show(struct seq_file *seq, void *v)
3075{
3076	struct s3c_hsotg *hsotg = seq->private;
3077	void __iomem *regs = hsotg->regs;
3078	u32 val;
3079	int idx;
3080
3081	seq_printf(seq, "Non-periodic FIFOs:\n");
3082	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3083
3084	val = readl(regs + S3C_GNPTXFSIZ);
3085	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3086		   val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3087		   val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3088
3089	seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3090
3091	for (idx = 1; idx <= 15; idx++) {
3092		val = readl(regs + S3C_DPTXFSIZn(idx));
3093
3094		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3095			   val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3096			   val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3097	}
3098
3099	return 0;
3100}
3101
3102static int fifo_open(struct inode *inode, struct file *file)
3103{
3104	return single_open(file, fifo_show, inode->i_private);
3105}
3106
3107static const struct file_operations fifo_fops = {
3108	.owner		= THIS_MODULE,
3109	.open		= fifo_open,
3110	.read		= seq_read,
3111	.llseek		= seq_lseek,
3112	.release	= single_release,
3113};
3114
3115
3116static const char *decode_direction(int is_in)
3117{
3118	return is_in ? "in" : "out";
3119}
3120
3121/**
3122 * ep_show - debugfs: show the state of an endpoint.
3123 * @seq: The seq_file to write data to.
3124 * @v: Unused parameter.
3125 *
3126 * This debugfs entry shows the state of the given endpoint (one is
3127 * registered for each available).
3128*/
3129static int ep_show(struct seq_file *seq, void *v)
3130{
3131	struct s3c_hsotg_ep *ep = seq->private;
3132	struct s3c_hsotg *hsotg = ep->parent;
3133	struct s3c_hsotg_req *req;
3134	void __iomem *regs = hsotg->regs;
3135	int index = ep->index;
3136	int show_limit = 15;
3137	unsigned long flags;
3138
3139	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3140		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3141
3142	/* first show the register state */
3143
3144	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3145		   readl(regs + S3C_DIEPCTL(index)),
3146		   readl(regs + S3C_DOEPCTL(index)));
3147
3148	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3149		   readl(regs + S3C_DIEPDMA(index)),
3150		   readl(regs + S3C_DOEPDMA(index)));
3151
3152	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3153		   readl(regs + S3C_DIEPINT(index)),
3154		   readl(regs + S3C_DOEPINT(index)));
3155
3156	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3157		   readl(regs + S3C_DIEPTSIZ(index)),
3158		   readl(regs + S3C_DOEPTSIZ(index)));
3159
3160	seq_printf(seq, "\n");
3161	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3162	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3163
3164	seq_printf(seq, "request list (%p,%p):\n",
3165		   ep->queue.next, ep->queue.prev);
3166
3167	spin_lock_irqsave(&ep->lock, flags);
3168
3169	list_for_each_entry(req, &ep->queue, queue) {
3170		if (--show_limit < 0) {
3171			seq_printf(seq, "not showing more requests...\n");
3172			break;
3173		}
3174
3175		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3176			   req == ep->req ? '*' : ' ',
3177			   req, req->req.length, req->req.buf);
3178		seq_printf(seq, "%d done, res %d\n",
3179			   req->req.actual, req->req.status);
3180	}
3181
3182	spin_unlock_irqrestore(&ep->lock, flags);
3183
3184	return 0;
3185}
3186
3187static int ep_open(struct inode *inode, struct file *file)
3188{
3189	return single_open(file, ep_show, inode->i_private);
3190}
3191
3192static const struct file_operations ep_fops = {
3193	.owner		= THIS_MODULE,
3194	.open		= ep_open,
3195	.read		= seq_read,
3196	.llseek		= seq_lseek,
3197	.release	= single_release,
3198};
3199
3200/**
3201 * s3c_hsotg_create_debug - create debugfs directory and files
3202 * @hsotg: The driver state
3203 *
3204 * Create the debugfs files to allow the user to get information
3205 * about the state of the system. The directory name is created
3206 * with the same name as the device itself, in case we end up
3207 * with multiple blocks in future systems.
3208*/
3209static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3210{
3211	struct dentry *root;
3212	unsigned epidx;
3213
3214	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3215	hsotg->debug_root = root;
3216	if (IS_ERR(root)) {
3217		dev_err(hsotg->dev, "cannot create debug root\n");
3218		return;
3219	}
3220
3221	/* create general state file */
3222
3223	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3224						hsotg, &state_fops);
3225
3226	if (IS_ERR(hsotg->debug_file))
3227		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3228
3229	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3230						hsotg, &fifo_fops);
3231
3232	if (IS_ERR(hsotg->debug_fifo))
3233		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3234
3235	/* create one file for each endpoint */
3236
3237	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3238		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3239
3240		ep->debugfs = debugfs_create_file(ep->name, 0444,
3241						  root, ep, &ep_fops);
3242
3243		if (IS_ERR(ep->debugfs))
3244			dev_err(hsotg->dev, "failed to create %s debug file\n",
3245				ep->name);
3246	}
3247}
3248
3249/**
3250 * s3c_hsotg_delete_debug - cleanup debugfs entries
3251 * @hsotg: The driver state
3252 *
3253 * Cleanup (remove) the debugfs files for use on module exit.
3254*/
3255static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3256{
3257	unsigned epidx;
3258
3259	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3260		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3261		debugfs_remove(ep->debugfs);
3262	}
3263
3264	debugfs_remove(hsotg->debug_file);
3265	debugfs_remove(hsotg->debug_fifo);
3266	debugfs_remove(hsotg->debug_root);
3267}
3268
3269/**
3270 * s3c_hsotg_gate - set the hardware gate for the block
3271 * @pdev: The device we bound to
3272 * @on: On or off.
3273 *
3274 * Set the hardware gate setting into the block. If we end up on
3275 * something other than an S3C64XX, then we might need to change this
3276 * to using a platform data callback, or some other mechanism.
3277 */
3278static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3279{
3280	unsigned long flags;
3281	u32 others;
3282
3283	local_irq_save(flags);
3284
3285	others = __raw_readl(S3C64XX_OTHERS);
3286	if (on)
3287		others |= S3C64XX_OTHERS_USBMASK;
3288	else
3289		others &= ~S3C64XX_OTHERS_USBMASK;
3290	__raw_writel(others, S3C64XX_OTHERS);
3291
3292	local_irq_restore(flags);
3293}
3294
3295static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3296
3297static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3298{
3299	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3300	struct device *dev = &pdev->dev;
3301	struct s3c_hsotg *hsotg;
3302	struct resource *res;
3303	int epnum;
3304	int ret;
3305
3306	if (!plat)
3307		plat = &s3c_hsotg_default_pdata;
3308
3309	hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3310			sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3311			GFP_KERNEL);
3312	if (!hsotg) {
3313		dev_err(dev, "cannot get memory\n");
3314		return -ENOMEM;
3315	}
3316
3317	hsotg->dev = dev;
3318	hsotg->plat = plat;
3319
3320	hsotg->clk = clk_get(&pdev->dev, "otg");
3321	if (IS_ERR(hsotg->clk)) {
3322		dev_err(dev, "cannot get otg clock\n");
3323		ret = PTR_ERR(hsotg->clk);
3324		goto err_mem;
3325	}
3326
3327	platform_set_drvdata(pdev, hsotg);
3328
3329	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3330	if (!res) {
3331		dev_err(dev, "cannot find register resource 0\n");
3332		ret = -EINVAL;
3333		goto err_clk;
3334	}
3335
3336	hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3337					     dev_name(dev));
3338	if (!hsotg->regs_res) {
3339		dev_err(dev, "cannot reserve registers\n");
3340		ret = -ENOENT;
3341		goto err_clk;
3342	}
3343
3344	hsotg->regs = ioremap(res->start, resource_size(res));
3345	if (!hsotg->regs) {
3346		dev_err(dev, "cannot map registers\n");
3347		ret = -ENXIO;
3348		goto err_regs_res;
3349	}
3350
3351	ret = platform_get_irq(pdev, 0);
3352	if (ret < 0) {
3353		dev_err(dev, "cannot find IRQ\n");
3354		goto err_regs;
3355	}
3356
3357	hsotg->irq = ret;
3358
3359	ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3360	if (ret < 0) {
3361		dev_err(dev, "cannot claim IRQ\n");
3362		goto err_regs;
3363	}
3364
3365	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3366
3367	device_initialize(&hsotg->gadget.dev);
3368
3369	dev_set_name(&hsotg->gadget.dev, "gadget");
3370
3371	hsotg->gadget.is_dualspeed = 1;
3372	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3373	hsotg->gadget.name = dev_name(dev);
3374
3375	hsotg->gadget.dev.parent = dev;
3376	hsotg->gadget.dev.dma_mask = dev->dma_mask;
3377
3378	/* setup endpoint information */
3379
3380	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3381	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3382
3383	/* allocate EP0 request */
3384
3385	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3386						     GFP_KERNEL);
3387	if (!hsotg->ctrl_req) {
3388		dev_err(dev, "failed to allocate ctrl req\n");
3389		goto err_regs;
3390	}
3391
3392	/* reset the system */
3393
3394	clk_enable(hsotg->clk);
3395
3396	s3c_hsotg_gate(pdev, true);
3397
3398	s3c_hsotg_otgreset(hsotg);
3399	s3c_hsotg_corereset(hsotg);
3400	s3c_hsotg_init(hsotg);
3401
3402	/* initialise the endpoints now the core has been initialised */
3403	for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3404		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3405
3406	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3407	if (ret)
3408		goto err_add_udc;
3409
3410	s3c_hsotg_create_debug(hsotg);
3411
3412	s3c_hsotg_dump(hsotg);
3413
3414	our_hsotg = hsotg;
3415	return 0;
3416
3417err_add_udc:
3418	s3c_hsotg_gate(pdev, false);
3419	clk_disable(hsotg->clk);
3420	clk_put(hsotg->clk);
3421
3422err_regs:
3423	iounmap(hsotg->regs);
3424
3425err_regs_res:
3426	release_resource(hsotg->regs_res);
3427	kfree(hsotg->regs_res);
3428err_clk:
3429	clk_put(hsotg->clk);
3430err_mem:
3431	kfree(hsotg);
3432	return ret;
3433}
3434
3435static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3436{
3437	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3438
3439	usb_del_gadget_udc(&hsotg->gadget);
3440
3441	s3c_hsotg_delete_debug(hsotg);
3442
3443	usb_gadget_unregister_driver(hsotg->driver);
3444
3445	free_irq(hsotg->irq, hsotg);
3446	iounmap(hsotg->regs);
3447
3448	release_resource(hsotg->regs_res);
3449	kfree(hsotg->regs_res);
3450
3451	s3c_hsotg_gate(pdev, false);
3452
3453	clk_disable(hsotg->clk);
3454	clk_put(hsotg->clk);
3455
3456	kfree(hsotg);
3457	return 0;
3458}
3459
3460#if 1
3461#define s3c_hsotg_suspend NULL
3462#define s3c_hsotg_resume NULL
3463#endif
3464
3465static struct platform_driver s3c_hsotg_driver = {
3466	.driver		= {
3467		.name	= "s3c-hsotg",
3468		.owner	= THIS_MODULE,
3469	},
3470	.probe		= s3c_hsotg_probe,
3471	.remove		= __devexit_p(s3c_hsotg_remove),
3472	.suspend	= s3c_hsotg_suspend,
3473	.resume		= s3c_hsotg_resume,
3474};
3475
3476static int __init s3c_hsotg_modinit(void)
3477{
3478	return platform_driver_register(&s3c_hsotg_driver);
3479}
3480
3481static void __exit s3c_hsotg_modexit(void)
3482{
3483	platform_driver_unregister(&s3c_hsotg_driver);
3484}
3485
3486module_init(s3c_hsotg_modinit);
3487module_exit(s3c_hsotg_modexit);
3488
3489MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3490MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3491MODULE_LICENSE("GPL");
3492MODULE_ALIAS("platform:s3c-hsotg");