Loading...
1/*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3 *
4 * (C) Copyright 2008-2010 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * SCU running in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
18 */
19#include <linux/delay.h>
20#include <linux/errno.h>
21#include <linux/init.h>
22#include <linux/sysdev.h>
23#include <linux/pm.h>
24#include <linux/pci.h>
25#include <linux/interrupt.h>
26#include <linux/sfi.h>
27#include <asm/mrst.h>
28#include <asm/intel_scu_ipc.h>
29
30/* IPC defines the following message types */
31#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
32#define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
33#define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
34#define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
35#define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
36
37/* Command id associated with message IPCMSG_PCNTRL */
38#define IPC_CMD_PCNTRL_W 0 /* Register write */
39#define IPC_CMD_PCNTRL_R 1 /* Register read */
40#define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
41
42/*
43 * IPC register summary
44 *
45 * IPC register blocks are memory mapped at fixed address of 0xFF11C000
46 * To read or write information to the SCU, driver writes to IPC-1 memory
47 * mapped registers (base address 0xFF11C000). The following is the IPC
48 * mechanism
49 *
50 * 1. IA core cDMI interface claims this transaction and converts it to a
51 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
52 *
53 * 2. South Complex cDMI block receives this message and writes it to
54 * the IPC-1 register block, causing an interrupt to the SCU
55 *
56 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
57 * message handler is called within firmware.
58 */
59
60#define IPC_BASE_ADDR 0xFF11C000 /* IPC1 base register address */
61#define IPC_MAX_ADDR 0x100 /* Maximum IPC regisers */
62#define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
63#define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
64#define IPC_I2C_BASE 0xFF12B000 /* I2C control register base address */
65#define IPC_I2C_MAX_ADDR 0x10 /* Maximum I2C regisers */
66
67static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
68static void ipc_remove(struct pci_dev *pdev);
69
70struct intel_scu_ipc_dev {
71 struct pci_dev *pdev;
72 void __iomem *ipc_base;
73 void __iomem *i2c_base;
74};
75
76static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
77
78static int platform; /* Platform type */
79
80/*
81 * IPC Read Buffer (Read Only):
82 * 16 byte buffer for receiving data from SCU, if IPC command
83 * processing results in response data
84 */
85#define IPC_READ_BUFFER 0x90
86
87#define IPC_I2C_CNTRL_ADDR 0
88#define I2C_DATA_ADDR 0x04
89
90static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
91
92/*
93 * Command Register (Write Only):
94 * A write to this register results in an interrupt to the SCU core processor
95 * Format:
96 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
97 */
98static inline void ipc_command(u32 cmd) /* Send ipc command */
99{
100 writel(cmd, ipcdev.ipc_base);
101}
102
103/*
104 * IPC Write Buffer (Write Only):
105 * 16-byte buffer for sending data associated with IPC command to
106 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
107 */
108static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
109{
110 writel(data, ipcdev.ipc_base + 0x80 + offset);
111}
112
113/*
114 * Status Register (Read Only):
115 * Driver will read this register to get the ready/busy status of the IPC
116 * block and error status of the IPC command that was just processed by SCU
117 * Format:
118 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
119 */
120
121static inline u8 ipc_read_status(void)
122{
123 return __raw_readl(ipcdev.ipc_base + 0x04);
124}
125
126static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
127{
128 return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
129}
130
131static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
132{
133 return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
134}
135
136static inline int busy_loop(void) /* Wait till scu status is busy */
137{
138 u32 status = 0;
139 u32 loop_count = 0;
140
141 status = ipc_read_status();
142 while (status & 1) {
143 udelay(1); /* scu processing time is in few u secods */
144 status = ipc_read_status();
145 loop_count++;
146 /* break if scu doesn't reset busy bit after huge retry */
147 if (loop_count > 100000) {
148 dev_err(&ipcdev.pdev->dev, "IPC timed out");
149 return -ETIMEDOUT;
150 }
151 }
152 if ((status >> 1) & 1)
153 return -EIO;
154
155 return 0;
156}
157
158/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
159static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
160{
161 int i, nc, bytes, d;
162 u32 offset = 0;
163 int err;
164 u8 cbuf[IPC_WWBUF_SIZE] = { };
165 u32 *wbuf = (u32 *)&cbuf;
166
167 mutex_lock(&ipclock);
168
169 memset(cbuf, 0, sizeof(cbuf));
170
171 if (ipcdev.pdev == NULL) {
172 mutex_unlock(&ipclock);
173 return -ENODEV;
174 }
175
176 if (platform != MRST_CPU_CHIP_PENWELL) {
177 bytes = 0;
178 d = 0;
179 for (i = 0; i < count; i++) {
180 cbuf[bytes++] = addr[i];
181 cbuf[bytes++] = addr[i] >> 8;
182 if (id != IPC_CMD_PCNTRL_R)
183 cbuf[bytes++] = data[d++];
184 if (id == IPC_CMD_PCNTRL_M)
185 cbuf[bytes++] = data[d++];
186 }
187 for (i = 0; i < bytes; i += 4)
188 ipc_data_writel(wbuf[i/4], i);
189 ipc_command(bytes << 16 | id << 12 | 0 << 8 | op);
190 } else {
191 for (nc = 0; nc < count; nc++, offset += 2) {
192 cbuf[offset] = addr[nc];
193 cbuf[offset + 1] = addr[nc] >> 8;
194 }
195
196 if (id == IPC_CMD_PCNTRL_R) {
197 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
198 ipc_data_writel(wbuf[nc], offset);
199 ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op);
200 } else if (id == IPC_CMD_PCNTRL_W) {
201 for (nc = 0; nc < count; nc++, offset += 1)
202 cbuf[offset] = data[nc];
203 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
204 ipc_data_writel(wbuf[nc], offset);
205 ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op);
206 } else if (id == IPC_CMD_PCNTRL_M) {
207 cbuf[offset] = data[0];
208 cbuf[offset + 1] = data[1];
209 ipc_data_writel(wbuf[0], 0); /* Write wbuff */
210 ipc_command(4 << 16 | id << 12 | 0 << 8 | op);
211 }
212 }
213
214 err = busy_loop();
215 if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
216 /* Workaround: values are read as 0 without memcpy_fromio */
217 memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
218 if (platform != MRST_CPU_CHIP_PENWELL) {
219 for (nc = 0, offset = 2; nc < count; nc++, offset += 3)
220 data[nc] = ipc_data_readb(offset);
221 } else {
222 for (nc = 0; nc < count; nc++)
223 data[nc] = ipc_data_readb(nc);
224 }
225 }
226 mutex_unlock(&ipclock);
227 return err;
228}
229
230/**
231 * intel_scu_ipc_ioread8 - read a word via the SCU
232 * @addr: register on SCU
233 * @data: return pointer for read byte
234 *
235 * Read a single register. Returns 0 on success or an error code. All
236 * locking between SCU accesses is handled for the caller.
237 *
238 * This function may sleep.
239 */
240int intel_scu_ipc_ioread8(u16 addr, u8 *data)
241{
242 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
243}
244EXPORT_SYMBOL(intel_scu_ipc_ioread8);
245
246/**
247 * intel_scu_ipc_ioread16 - read a word via the SCU
248 * @addr: register on SCU
249 * @data: return pointer for read word
250 *
251 * Read a register pair. Returns 0 on success or an error code. All
252 * locking between SCU accesses is handled for the caller.
253 *
254 * This function may sleep.
255 */
256int intel_scu_ipc_ioread16(u16 addr, u16 *data)
257{
258 u16 x[2] = {addr, addr + 1 };
259 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
260}
261EXPORT_SYMBOL(intel_scu_ipc_ioread16);
262
263/**
264 * intel_scu_ipc_ioread32 - read a dword via the SCU
265 * @addr: register on SCU
266 * @data: return pointer for read dword
267 *
268 * Read four registers. Returns 0 on success or an error code. All
269 * locking between SCU accesses is handled for the caller.
270 *
271 * This function may sleep.
272 */
273int intel_scu_ipc_ioread32(u16 addr, u32 *data)
274{
275 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
276 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
277}
278EXPORT_SYMBOL(intel_scu_ipc_ioread32);
279
280/**
281 * intel_scu_ipc_iowrite8 - write a byte via the SCU
282 * @addr: register on SCU
283 * @data: byte to write
284 *
285 * Write a single register. Returns 0 on success or an error code. All
286 * locking between SCU accesses is handled for the caller.
287 *
288 * This function may sleep.
289 */
290int intel_scu_ipc_iowrite8(u16 addr, u8 data)
291{
292 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
293}
294EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
295
296/**
297 * intel_scu_ipc_iowrite16 - write a word via the SCU
298 * @addr: register on SCU
299 * @data: word to write
300 *
301 * Write two registers. Returns 0 on success or an error code. All
302 * locking between SCU accesses is handled for the caller.
303 *
304 * This function may sleep.
305 */
306int intel_scu_ipc_iowrite16(u16 addr, u16 data)
307{
308 u16 x[2] = {addr, addr + 1 };
309 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
310}
311EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
312
313/**
314 * intel_scu_ipc_iowrite32 - write a dword via the SCU
315 * @addr: register on SCU
316 * @data: dword to write
317 *
318 * Write four registers. Returns 0 on success or an error code. All
319 * locking between SCU accesses is handled for the caller.
320 *
321 * This function may sleep.
322 */
323int intel_scu_ipc_iowrite32(u16 addr, u32 data)
324{
325 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
326 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
327}
328EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
329
330/**
331 * intel_scu_ipc_readvv - read a set of registers
332 * @addr: register list
333 * @data: bytes to return
334 * @len: length of array
335 *
336 * Read registers. Returns 0 on success or an error code. All
337 * locking between SCU accesses is handled for the caller.
338 *
339 * The largest array length permitted by the hardware is 5 items.
340 *
341 * This function may sleep.
342 */
343int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
344{
345 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
346}
347EXPORT_SYMBOL(intel_scu_ipc_readv);
348
349/**
350 * intel_scu_ipc_writev - write a set of registers
351 * @addr: register list
352 * @data: bytes to write
353 * @len: length of array
354 *
355 * Write registers. Returns 0 on success or an error code. All
356 * locking between SCU accesses is handled for the caller.
357 *
358 * The largest array length permitted by the hardware is 5 items.
359 *
360 * This function may sleep.
361 *
362 */
363int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
364{
365 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
366}
367EXPORT_SYMBOL(intel_scu_ipc_writev);
368
369
370/**
371 * intel_scu_ipc_update_register - r/m/w a register
372 * @addr: register address
373 * @bits: bits to update
374 * @mask: mask of bits to update
375 *
376 * Read-modify-write power control unit register. The first data argument
377 * must be register value and second is mask value
378 * mask is a bitmap that indicates which bits to update.
379 * 0 = masked. Don't modify this bit, 1 = modify this bit.
380 * returns 0 on success or an error code.
381 *
382 * This function may sleep. Locking between SCU accesses is handled
383 * for the caller.
384 */
385int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
386{
387 u8 data[2] = { bits, mask };
388 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
389}
390EXPORT_SYMBOL(intel_scu_ipc_update_register);
391
392/**
393 * intel_scu_ipc_simple_command - send a simple command
394 * @cmd: command
395 * @sub: sub type
396 *
397 * Issue a simple command to the SCU. Do not use this interface if
398 * you must then access data as any data values may be overwritten
399 * by another SCU access by the time this function returns.
400 *
401 * This function may sleep. Locking for SCU accesses is handled for
402 * the caller.
403 */
404int intel_scu_ipc_simple_command(int cmd, int sub)
405{
406 int err;
407
408 mutex_lock(&ipclock);
409 if (ipcdev.pdev == NULL) {
410 mutex_unlock(&ipclock);
411 return -ENODEV;
412 }
413 ipc_command(sub << 12 | cmd);
414 err = busy_loop();
415 mutex_unlock(&ipclock);
416 return err;
417}
418EXPORT_SYMBOL(intel_scu_ipc_simple_command);
419
420/**
421 * intel_scu_ipc_command - command with data
422 * @cmd: command
423 * @sub: sub type
424 * @in: input data
425 * @inlen: input length in dwords
426 * @out: output data
427 * @outlein: output length in dwords
428 *
429 * Issue a command to the SCU which involves data transfers. Do the
430 * data copies under the lock but leave it for the caller to interpret
431 */
432
433int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
434 u32 *out, int outlen)
435{
436 int i, err;
437
438 mutex_lock(&ipclock);
439 if (ipcdev.pdev == NULL) {
440 mutex_unlock(&ipclock);
441 return -ENODEV;
442 }
443
444 for (i = 0; i < inlen; i++)
445 ipc_data_writel(*in++, 4 * i);
446
447 ipc_command((inlen << 16) | (sub << 12) | cmd);
448 err = busy_loop();
449
450 for (i = 0; i < outlen; i++)
451 *out++ = ipc_data_readl(4 * i);
452
453 mutex_unlock(&ipclock);
454 return err;
455}
456EXPORT_SYMBOL(intel_scu_ipc_command);
457
458/*I2C commands */
459#define IPC_I2C_WRITE 1 /* I2C Write command */
460#define IPC_I2C_READ 2 /* I2C Read command */
461
462/**
463 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
464 * @addr: I2C address + command bits
465 * @data: data to read/write
466 *
467 * Perform an an I2C read/write operation via the SCU. All locking is
468 * handled for the caller. This function may sleep.
469 *
470 * Returns an error code or 0 on success.
471 *
472 * This has to be in the IPC driver for the locking.
473 */
474int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
475{
476 u32 cmd = 0;
477
478 mutex_lock(&ipclock);
479 if (ipcdev.pdev == NULL) {
480 mutex_unlock(&ipclock);
481 return -ENODEV;
482 }
483 cmd = (addr >> 24) & 0xFF;
484 if (cmd == IPC_I2C_READ) {
485 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
486 /* Write not getting updated without delay */
487 mdelay(1);
488 *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
489 } else if (cmd == IPC_I2C_WRITE) {
490 writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
491 mdelay(1);
492 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
493 } else {
494 dev_err(&ipcdev.pdev->dev,
495 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
496
497 mutex_unlock(&ipclock);
498 return -EIO;
499 }
500 mutex_unlock(&ipclock);
501 return 0;
502}
503EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
504
505#define IPC_FW_LOAD_ADDR 0xFFFC0000 /* Storage location for FW image */
506#define IPC_FW_UPDATE_MBOX_ADDR 0xFFFFDFF4 /* Mailbox between ipc and scu */
507#define IPC_MAX_FW_SIZE 262144 /* 256K storage size for loading the FW image */
508#define IPC_FW_MIP_HEADER_SIZE 2048 /* Firmware MIP header size */
509/* IPC inform SCU to get ready for update process */
510#define IPC_CMD_FW_UPDATE_READY 0x10FE
511/* IPC inform SCU to go for update process */
512#define IPC_CMD_FW_UPDATE_GO 0x20FE
513/* Status code for fw update */
514#define IPC_FW_UPDATE_SUCCESS 0x444f4e45 /* Status code 'DONE' */
515#define IPC_FW_UPDATE_BADN 0x4241444E /* Status code 'BADN' */
516#define IPC_FW_TXHIGH 0x54784849 /* Status code 'IPC_FW_TXHIGH' */
517#define IPC_FW_TXLOW 0x54784c4f /* Status code 'IPC_FW_TXLOW' */
518
519struct fw_update_mailbox {
520 u32 status;
521 u32 scu_flag;
522 u32 driver_flag;
523};
524
525
526/**
527 * intel_scu_ipc_fw_update - Firmware update utility
528 * @buffer: firmware buffer
529 * @length: size of firmware buffer
530 *
531 * This function provides an interface to load the firmware into
532 * the SCU. Returns 0 on success or -1 on failure
533 */
534int intel_scu_ipc_fw_update(u8 *buffer, u32 length)
535{
536 void __iomem *fw_update_base;
537 struct fw_update_mailbox __iomem *mailbox = NULL;
538 int retry_cnt = 0;
539 u32 status;
540
541 mutex_lock(&ipclock);
542 fw_update_base = ioremap_nocache(IPC_FW_LOAD_ADDR, (128*1024));
543 if (fw_update_base == NULL) {
544 mutex_unlock(&ipclock);
545 return -ENOMEM;
546 }
547 mailbox = ioremap_nocache(IPC_FW_UPDATE_MBOX_ADDR,
548 sizeof(struct fw_update_mailbox));
549 if (mailbox == NULL) {
550 iounmap(fw_update_base);
551 mutex_unlock(&ipclock);
552 return -ENOMEM;
553 }
554
555 ipc_command(IPC_CMD_FW_UPDATE_READY);
556
557 /* Intitialize mailbox */
558 writel(0, &mailbox->status);
559 writel(0, &mailbox->scu_flag);
560 writel(0, &mailbox->driver_flag);
561
562 /* Driver copies the 2KB MIP header to SRAM at 0xFFFC0000*/
563 memcpy_toio(fw_update_base, buffer, 0x800);
564
565 /* Driver sends "FW Update" IPC command (CMD_ID 0xFE; MSG_ID 0x02).
566 * Upon receiving this command, SCU will write the 2K MIP header
567 * from 0xFFFC0000 into NAND.
568 * SCU will write a status code into the Mailbox, and then set scu_flag.
569 */
570
571 ipc_command(IPC_CMD_FW_UPDATE_GO);
572
573 /*Driver stalls until scu_flag is set */
574 while (readl(&mailbox->scu_flag) != 1) {
575 rmb();
576 mdelay(1);
577 }
578
579 /* Driver checks Mailbox status.
580 * If the status is 'BADN', then abort (bad NAND).
581 * If the status is 'IPC_FW_TXLOW', then continue.
582 */
583 while (readl(&mailbox->status) != IPC_FW_TXLOW) {
584 rmb();
585 mdelay(10);
586 }
587 mdelay(10);
588
589update_retry:
590 if (retry_cnt > 5)
591 goto update_end;
592
593 if (readl(&mailbox->status) != IPC_FW_TXLOW)
594 goto update_end;
595 buffer = buffer + 0x800;
596 memcpy_toio(fw_update_base, buffer, 0x20000);
597 writel(1, &mailbox->driver_flag);
598 while (readl(&mailbox->scu_flag) == 1) {
599 rmb();
600 mdelay(1);
601 }
602
603 /* check for 'BADN' */
604 if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
605 goto update_end;
606
607 while (readl(&mailbox->status) != IPC_FW_TXHIGH) {
608 rmb();
609 mdelay(10);
610 }
611 mdelay(10);
612
613 if (readl(&mailbox->status) != IPC_FW_TXHIGH)
614 goto update_end;
615
616 buffer = buffer + 0x20000;
617 memcpy_toio(fw_update_base, buffer, 0x20000);
618 writel(0, &mailbox->driver_flag);
619
620 while (mailbox->scu_flag == 0) {
621 rmb();
622 mdelay(1);
623 }
624
625 /* check for 'BADN' */
626 if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
627 goto update_end;
628
629 if (readl(&mailbox->status) == IPC_FW_TXLOW) {
630 ++retry_cnt;
631 goto update_retry;
632 }
633
634update_end:
635 status = readl(&mailbox->status);
636
637 iounmap(fw_update_base);
638 iounmap(mailbox);
639 mutex_unlock(&ipclock);
640
641 if (status == IPC_FW_UPDATE_SUCCESS)
642 return 0;
643 return -EIO;
644}
645EXPORT_SYMBOL(intel_scu_ipc_fw_update);
646
647/*
648 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
649 * When ioc bit is set to 1, caller api must wait for interrupt handler called
650 * which in turn unlocks the caller api. Currently this is not used
651 *
652 * This is edge triggered so we need take no action to clear anything
653 */
654static irqreturn_t ioc(int irq, void *dev_id)
655{
656 return IRQ_HANDLED;
657}
658
659/**
660 * ipc_probe - probe an Intel SCU IPC
661 * @dev: the PCI device matching
662 * @id: entry in the match table
663 *
664 * Enable and install an intel SCU IPC. This appears in the PCI space
665 * but uses some hard coded addresses as well.
666 */
667static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
668{
669 int err;
670 resource_size_t pci_resource;
671
672 if (ipcdev.pdev) /* We support only one SCU */
673 return -EBUSY;
674
675 ipcdev.pdev = pci_dev_get(dev);
676
677 err = pci_enable_device(dev);
678 if (err)
679 return err;
680
681 err = pci_request_regions(dev, "intel_scu_ipc");
682 if (err)
683 return err;
684
685 pci_resource = pci_resource_start(dev, 0);
686 if (!pci_resource)
687 return -ENOMEM;
688
689 if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
690 return -EBUSY;
691
692 ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR);
693 if (!ipcdev.ipc_base)
694 return -ENOMEM;
695
696 ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR);
697 if (!ipcdev.i2c_base) {
698 iounmap(ipcdev.ipc_base);
699 return -ENOMEM;
700 }
701
702 intel_scu_devices_create();
703
704 return 0;
705}
706
707/**
708 * ipc_remove - remove a bound IPC device
709 * @pdev: PCI device
710 *
711 * In practice the SCU is not removable but this function is also
712 * called for each device on a module unload or cleanup which is the
713 * path that will get used.
714 *
715 * Free up the mappings and release the PCI resources
716 */
717static void ipc_remove(struct pci_dev *pdev)
718{
719 free_irq(pdev->irq, &ipcdev);
720 pci_release_regions(pdev);
721 pci_dev_put(ipcdev.pdev);
722 iounmap(ipcdev.ipc_base);
723 iounmap(ipcdev.i2c_base);
724 ipcdev.pdev = NULL;
725 intel_scu_devices_destroy();
726}
727
728static DEFINE_PCI_DEVICE_TABLE(pci_ids) = {
729 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080e)},
730 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
731 { 0,}
732};
733MODULE_DEVICE_TABLE(pci, pci_ids);
734
735static struct pci_driver ipc_driver = {
736 .name = "intel_scu_ipc",
737 .id_table = pci_ids,
738 .probe = ipc_probe,
739 .remove = ipc_remove,
740};
741
742
743static int __init intel_scu_ipc_init(void)
744{
745 platform = mrst_identify_cpu();
746 if (platform == 0)
747 return -ENODEV;
748 return pci_register_driver(&ipc_driver);
749}
750
751static void __exit intel_scu_ipc_exit(void)
752{
753 pci_unregister_driver(&ipc_driver);
754}
755
756MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
757MODULE_DESCRIPTION("Intel SCU IPC driver");
758MODULE_LICENSE("GPL");
759
760module_init(intel_scu_ipc_init);
761module_exit(intel_scu_ipc_exit);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for the Intel SCU IPC mechanism
4 *
5 * (C) Copyright 2008-2010,2015 Intel Corporation
6 * Author: Sreedhara DS (sreedhara.ds@intel.com)
7 *
8 * SCU running in ARC processor communicates with other entity running in IA
9 * core through IPC mechanism which in turn messaging between IA core ad SCU.
10 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
11 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
12 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
13 * along with other APIs.
14 */
15
16#include <linux/delay.h>
17#include <linux/device.h>
18#include <linux/errno.h>
19#include <linux/init.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/slab.h>
25
26#include <asm/intel_scu_ipc.h>
27
28/* IPC defines the following message types */
29#define IPCMSG_PCNTRL 0xff /* Power controller unit read/write */
30
31/* Command id associated with message IPCMSG_PCNTRL */
32#define IPC_CMD_PCNTRL_W 0 /* Register write */
33#define IPC_CMD_PCNTRL_R 1 /* Register read */
34#define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
35
36/*
37 * IPC register summary
38 *
39 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
40 * To read or write information to the SCU, driver writes to IPC-1 memory
41 * mapped registers. The following is the IPC mechanism
42 *
43 * 1. IA core cDMI interface claims this transaction and converts it to a
44 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
45 *
46 * 2. South Complex cDMI block receives this message and writes it to
47 * the IPC-1 register block, causing an interrupt to the SCU
48 *
49 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
50 * message handler is called within firmware.
51 */
52
53#define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
54#define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
55#define IPC_IOC 0x100 /* IPC command register IOC bit */
56
57struct intel_scu_ipc_dev {
58 struct device dev;
59 struct resource mem;
60 struct module *owner;
61 int irq;
62 void __iomem *ipc_base;
63 struct completion cmd_complete;
64};
65
66#define IPC_STATUS 0x04
67#define IPC_STATUS_IRQ BIT(2)
68#define IPC_STATUS_ERR BIT(1)
69#define IPC_STATUS_BUSY BIT(0)
70
71/*
72 * IPC Write/Read Buffers:
73 * 16 byte buffer for sending and receiving data to and from SCU.
74 */
75#define IPC_WRITE_BUFFER 0x80
76#define IPC_READ_BUFFER 0x90
77
78/* Timeout in jiffies */
79#define IPC_TIMEOUT (10 * HZ)
80
81static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */
82static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
83
84static struct class intel_scu_ipc_class = {
85 .name = "intel_scu_ipc",
86};
87
88/**
89 * intel_scu_ipc_dev_get() - Get SCU IPC instance
90 *
91 * The recommended new API takes SCU IPC instance as parameter and this
92 * function can be called by driver to get the instance. This also makes
93 * sure the driver providing the IPC functionality cannot be unloaded
94 * while the caller has the instance.
95 *
96 * Call intel_scu_ipc_dev_put() to release the instance.
97 *
98 * Returns %NULL if SCU IPC is not currently available.
99 */
100struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void)
101{
102 struct intel_scu_ipc_dev *scu = NULL;
103
104 mutex_lock(&ipclock);
105 if (ipcdev) {
106 get_device(&ipcdev->dev);
107 /*
108 * Prevent the IPC provider from being unloaded while it
109 * is being used.
110 */
111 if (!try_module_get(ipcdev->owner))
112 put_device(&ipcdev->dev);
113 else
114 scu = ipcdev;
115 }
116
117 mutex_unlock(&ipclock);
118 return scu;
119}
120EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get);
121
122/**
123 * intel_scu_ipc_dev_put() - Put SCU IPC instance
124 * @scu: SCU IPC instance
125 *
126 * This function releases the SCU IPC instance retrieved from
127 * intel_scu_ipc_dev_get() and allows the driver providing IPC to be
128 * unloaded.
129 */
130void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu)
131{
132 if (scu) {
133 module_put(scu->owner);
134 put_device(&scu->dev);
135 }
136}
137EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put);
138
139struct intel_scu_ipc_devres {
140 struct intel_scu_ipc_dev *scu;
141};
142
143static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res)
144{
145 struct intel_scu_ipc_devres *dr = res;
146 struct intel_scu_ipc_dev *scu = dr->scu;
147
148 intel_scu_ipc_dev_put(scu);
149}
150
151/**
152 * devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device
153 * @dev: Device requesting the SCU IPC device
154 *
155 * The recommended new API takes SCU IPC instance as parameter and this
156 * function can be called by driver to get the instance. This also makes
157 * sure the driver providing the IPC functionality cannot be unloaded
158 * while the caller has the instance.
159 *
160 * Returns %NULL if SCU IPC is not currently available.
161 */
162struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev)
163{
164 struct intel_scu_ipc_devres *dr;
165 struct intel_scu_ipc_dev *scu;
166
167 dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL);
168 if (!dr)
169 return NULL;
170
171 scu = intel_scu_ipc_dev_get();
172 if (!scu) {
173 devres_free(dr);
174 return NULL;
175 }
176
177 dr->scu = scu;
178 devres_add(dev, dr);
179
180 return scu;
181}
182EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get);
183
184/*
185 * Send ipc command
186 * Command Register (Write Only):
187 * A write to this register results in an interrupt to the SCU core processor
188 * Format:
189 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
190 */
191static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
192{
193 reinit_completion(&scu->cmd_complete);
194 writel(cmd | IPC_IOC, scu->ipc_base);
195}
196
197/*
198 * Write ipc data
199 * IPC Write Buffer (Write Only):
200 * 16-byte buffer for sending data associated with IPC command to
201 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
202 */
203static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
204{
205 writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
206}
207
208/*
209 * Status Register (Read Only):
210 * Driver will read this register to get the ready/busy status of the IPC
211 * block and error status of the IPC command that was just processed by SCU
212 * Format:
213 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
214 */
215static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
216{
217 return __raw_readl(scu->ipc_base + IPC_STATUS);
218}
219
220/* Read ipc byte data */
221static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
222{
223 return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
224}
225
226/* Read ipc u32 data */
227static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
228{
229 return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
230}
231
232/* Wait till scu status is busy */
233static inline int busy_loop(struct intel_scu_ipc_dev *scu)
234{
235 u8 status;
236 int err;
237
238 err = readx_poll_timeout(ipc_read_status, scu, status, !(status & IPC_STATUS_BUSY),
239 100, jiffies_to_usecs(IPC_TIMEOUT));
240 if (err)
241 return err;
242
243 return (status & IPC_STATUS_ERR) ? -EIO : 0;
244}
245
246/* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
247static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
248{
249 int status;
250
251 wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT);
252
253 status = ipc_read_status(scu);
254 if (status & IPC_STATUS_BUSY)
255 return -ETIMEDOUT;
256
257 if (status & IPC_STATUS_ERR)
258 return -EIO;
259
260 return 0;
261}
262
263static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
264{
265 return scu->irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
266}
267
268static struct intel_scu_ipc_dev *intel_scu_ipc_get(struct intel_scu_ipc_dev *scu)
269{
270 u8 status;
271
272 if (!scu)
273 scu = ipcdev;
274 if (!scu)
275 return ERR_PTR(-ENODEV);
276
277 status = ipc_read_status(scu);
278 if (status & IPC_STATUS_BUSY) {
279 dev_dbg(&scu->dev, "device is busy\n");
280 return ERR_PTR(-EBUSY);
281 }
282
283 return scu;
284}
285
286/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
287static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
288 u32 count, u32 op, u32 id)
289{
290 int nc;
291 u32 offset = 0;
292 int err;
293 u8 cbuf[IPC_WWBUF_SIZE];
294 u32 *wbuf = (u32 *)&cbuf;
295
296 memset(cbuf, 0, sizeof(cbuf));
297
298 mutex_lock(&ipclock);
299 scu = intel_scu_ipc_get(scu);
300 if (IS_ERR(scu)) {
301 mutex_unlock(&ipclock);
302 return PTR_ERR(scu);
303 }
304
305 for (nc = 0; nc < count; nc++, offset += 2) {
306 cbuf[offset] = addr[nc];
307 cbuf[offset + 1] = addr[nc] >> 8;
308 }
309
310 if (id == IPC_CMD_PCNTRL_R) {
311 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
312 ipc_data_writel(scu, wbuf[nc], offset);
313 ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
314 } else if (id == IPC_CMD_PCNTRL_W) {
315 for (nc = 0; nc < count; nc++, offset += 1)
316 cbuf[offset] = data[nc];
317 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
318 ipc_data_writel(scu, wbuf[nc], offset);
319 ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
320 } else if (id == IPC_CMD_PCNTRL_M) {
321 cbuf[offset] = data[0];
322 cbuf[offset + 1] = data[1];
323 ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
324 ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
325 }
326
327 err = intel_scu_ipc_check_status(scu);
328 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
329 /* Workaround: values are read as 0 without memcpy_fromio */
330 memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
331 for (nc = 0; nc < count; nc++)
332 data[nc] = ipc_data_readb(scu, nc);
333 }
334 mutex_unlock(&ipclock);
335 return err;
336}
337
338/**
339 * intel_scu_ipc_dev_ioread8() - Read a byte via the SCU
340 * @scu: Optional SCU IPC instance
341 * @addr: Register on SCU
342 * @data: Return pointer for read byte
343 *
344 * Read a single register. Returns %0 on success or an error code. All
345 * locking between SCU accesses is handled for the caller.
346 *
347 * This function may sleep.
348 */
349int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data)
350{
351 return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
352}
353EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8);
354
355/**
356 * intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU
357 * @scu: Optional SCU IPC instance
358 * @addr: Register on SCU
359 * @data: Byte to write
360 *
361 * Write a single register. Returns %0 on success or an error code. All
362 * locking between SCU accesses is handled for the caller.
363 *
364 * This function may sleep.
365 */
366int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data)
367{
368 return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
369}
370EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8);
371
372/**
373 * intel_scu_ipc_dev_readv() - Read a set of registers
374 * @scu: Optional SCU IPC instance
375 * @addr: Register list
376 * @data: Bytes to return
377 * @len: Length of array
378 *
379 * Read registers. Returns %0 on success or an error code. All locking
380 * between SCU accesses is handled for the caller.
381 *
382 * The largest array length permitted by the hardware is 5 items.
383 *
384 * This function may sleep.
385 */
386int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
387 size_t len)
388{
389 return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
390}
391EXPORT_SYMBOL(intel_scu_ipc_dev_readv);
392
393/**
394 * intel_scu_ipc_dev_writev() - Write a set of registers
395 * @scu: Optional SCU IPC instance
396 * @addr: Register list
397 * @data: Bytes to write
398 * @len: Length of array
399 *
400 * Write registers. Returns %0 on success or an error code. All locking
401 * between SCU accesses is handled for the caller.
402 *
403 * The largest array length permitted by the hardware is 5 items.
404 *
405 * This function may sleep.
406 */
407int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
408 size_t len)
409{
410 return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
411}
412EXPORT_SYMBOL(intel_scu_ipc_dev_writev);
413
414/**
415 * intel_scu_ipc_dev_update() - Update a register
416 * @scu: Optional SCU IPC instance
417 * @addr: Register address
418 * @data: Bits to update
419 * @mask: Mask of bits to update
420 *
421 * Read-modify-write power control unit register. The first data argument
422 * must be register value and second is mask value mask is a bitmap that
423 * indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
424 * modify this bit. returns %0 on success or an error code.
425 *
426 * This function may sleep. Locking between SCU accesses is handled
427 * for the caller.
428 */
429int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data,
430 u8 mask)
431{
432 u8 tmp[2] = { data, mask };
433 return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
434}
435EXPORT_SYMBOL(intel_scu_ipc_dev_update);
436
437/**
438 * intel_scu_ipc_dev_simple_command() - Send a simple command
439 * @scu: Optional SCU IPC instance
440 * @cmd: Command
441 * @sub: Sub type
442 *
443 * Issue a simple command to the SCU. Do not use this interface if you must
444 * then access data as any data values may be overwritten by another SCU
445 * access by the time this function returns.
446 *
447 * This function may sleep. Locking for SCU accesses is handled for the
448 * caller.
449 */
450int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd,
451 int sub)
452{
453 u32 cmdval;
454 int err;
455
456 mutex_lock(&ipclock);
457 scu = intel_scu_ipc_get(scu);
458 if (IS_ERR(scu)) {
459 mutex_unlock(&ipclock);
460 return PTR_ERR(scu);
461 }
462
463 cmdval = sub << 12 | cmd;
464 ipc_command(scu, cmdval);
465 err = intel_scu_ipc_check_status(scu);
466 mutex_unlock(&ipclock);
467 if (err)
468 dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
469 return err;
470}
471EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command);
472
473/**
474 * intel_scu_ipc_dev_command_with_size() - Command with data
475 * @scu: Optional SCU IPC instance
476 * @cmd: Command
477 * @sub: Sub type
478 * @in: Input data
479 * @inlen: Input length in bytes
480 * @size: Input size written to the IPC command register in whatever
481 * units (dword, byte) the particular firmware requires. Normally
482 * should be the same as @inlen.
483 * @out: Output data
484 * @outlen: Output length in bytes
485 *
486 * Issue a command to the SCU which involves data transfers. Do the
487 * data copies under the lock but leave it for the caller to interpret.
488 */
489int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd,
490 int sub, const void *in, size_t inlen,
491 size_t size, void *out, size_t outlen)
492{
493 size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32));
494 size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32));
495 u32 cmdval, inbuf[4] = {};
496 int i, err;
497
498 if (inbuflen > 4 || outbuflen > 4)
499 return -EINVAL;
500
501 mutex_lock(&ipclock);
502 scu = intel_scu_ipc_get(scu);
503 if (IS_ERR(scu)) {
504 mutex_unlock(&ipclock);
505 return PTR_ERR(scu);
506 }
507
508 memcpy(inbuf, in, inlen);
509 for (i = 0; i < inbuflen; i++)
510 ipc_data_writel(scu, inbuf[i], 4 * i);
511
512 cmdval = (size << 16) | (sub << 12) | cmd;
513 ipc_command(scu, cmdval);
514 err = intel_scu_ipc_check_status(scu);
515
516 if (!err) {
517 u32 outbuf[4] = {};
518
519 for (i = 0; i < outbuflen; i++)
520 outbuf[i] = ipc_data_readl(scu, 4 * i);
521
522 memcpy(out, outbuf, outlen);
523 }
524
525 mutex_unlock(&ipclock);
526 if (err)
527 dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
528 return err;
529}
530EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size);
531
532/*
533 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
534 * When ioc bit is set to 1, caller api must wait for interrupt handler called
535 * which in turn unlocks the caller api. Currently this is not used
536 *
537 * This is edge triggered so we need take no action to clear anything
538 */
539static irqreturn_t ioc(int irq, void *dev_id)
540{
541 struct intel_scu_ipc_dev *scu = dev_id;
542 int status = ipc_read_status(scu);
543
544 writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
545 complete(&scu->cmd_complete);
546
547 return IRQ_HANDLED;
548}
549
550static void intel_scu_ipc_release(struct device *dev)
551{
552 struct intel_scu_ipc_dev *scu;
553
554 scu = container_of(dev, struct intel_scu_ipc_dev, dev);
555 if (scu->irq > 0)
556 free_irq(scu->irq, scu);
557 iounmap(scu->ipc_base);
558 release_mem_region(scu->mem.start, resource_size(&scu->mem));
559 kfree(scu);
560}
561
562/**
563 * __intel_scu_ipc_register() - Register SCU IPC device
564 * @parent: Parent device
565 * @scu_data: Data used to configure SCU IPC
566 * @owner: Module registering the SCU IPC device
567 *
568 * Call this function to register SCU IPC mechanism under @parent.
569 * Returns pointer to the new SCU IPC device or ERR_PTR() in case of
570 * failure. The caller may use the returned instance if it needs to do
571 * SCU IPC calls itself.
572 */
573struct intel_scu_ipc_dev *
574__intel_scu_ipc_register(struct device *parent,
575 const struct intel_scu_ipc_data *scu_data,
576 struct module *owner)
577{
578 int err;
579 struct intel_scu_ipc_dev *scu;
580 void __iomem *ipc_base;
581
582 mutex_lock(&ipclock);
583 /* We support only one IPC */
584 if (ipcdev) {
585 err = -EBUSY;
586 goto err_unlock;
587 }
588
589 scu = kzalloc(sizeof(*scu), GFP_KERNEL);
590 if (!scu) {
591 err = -ENOMEM;
592 goto err_unlock;
593 }
594
595 scu->owner = owner;
596 scu->dev.parent = parent;
597 scu->dev.class = &intel_scu_ipc_class;
598 scu->dev.release = intel_scu_ipc_release;
599
600 if (!request_mem_region(scu_data->mem.start, resource_size(&scu_data->mem),
601 "intel_scu_ipc")) {
602 err = -EBUSY;
603 goto err_free;
604 }
605
606 ipc_base = ioremap(scu_data->mem.start, resource_size(&scu_data->mem));
607 if (!ipc_base) {
608 err = -ENOMEM;
609 goto err_release;
610 }
611
612 scu->ipc_base = ipc_base;
613 scu->mem = scu_data->mem;
614 scu->irq = scu_data->irq;
615 init_completion(&scu->cmd_complete);
616
617 if (scu->irq > 0) {
618 err = request_irq(scu->irq, ioc, 0, "intel_scu_ipc", scu);
619 if (err)
620 goto err_unmap;
621 }
622
623 /*
624 * After this point intel_scu_ipc_release() takes care of
625 * releasing the SCU IPC resources once refcount drops to zero.
626 */
627 dev_set_name(&scu->dev, "intel_scu_ipc");
628 err = device_register(&scu->dev);
629 if (err) {
630 put_device(&scu->dev);
631 goto err_unlock;
632 }
633
634 /* Assign device at last */
635 ipcdev = scu;
636 mutex_unlock(&ipclock);
637
638 return scu;
639
640err_unmap:
641 iounmap(ipc_base);
642err_release:
643 release_mem_region(scu_data->mem.start, resource_size(&scu_data->mem));
644err_free:
645 kfree(scu);
646err_unlock:
647 mutex_unlock(&ipclock);
648
649 return ERR_PTR(err);
650}
651EXPORT_SYMBOL_GPL(__intel_scu_ipc_register);
652
653/**
654 * intel_scu_ipc_unregister() - Unregister SCU IPC
655 * @scu: SCU IPC handle
656 *
657 * This unregisters the SCU IPC device and releases the acquired
658 * resources once the refcount goes to zero.
659 */
660void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu)
661{
662 mutex_lock(&ipclock);
663 if (!WARN_ON(!ipcdev)) {
664 ipcdev = NULL;
665 device_unregister(&scu->dev);
666 }
667 mutex_unlock(&ipclock);
668}
669EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister);
670
671static void devm_intel_scu_ipc_unregister(struct device *dev, void *res)
672{
673 struct intel_scu_ipc_devres *dr = res;
674 struct intel_scu_ipc_dev *scu = dr->scu;
675
676 intel_scu_ipc_unregister(scu);
677}
678
679/**
680 * __devm_intel_scu_ipc_register() - Register managed SCU IPC device
681 * @parent: Parent device
682 * @scu_data: Data used to configure SCU IPC
683 * @owner: Module registering the SCU IPC device
684 *
685 * Call this function to register managed SCU IPC mechanism under
686 * @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in
687 * case of failure. The caller may use the returned instance if it needs
688 * to do SCU IPC calls itself.
689 */
690struct intel_scu_ipc_dev *
691__devm_intel_scu_ipc_register(struct device *parent,
692 const struct intel_scu_ipc_data *scu_data,
693 struct module *owner)
694{
695 struct intel_scu_ipc_devres *dr;
696 struct intel_scu_ipc_dev *scu;
697
698 dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL);
699 if (!dr)
700 return NULL;
701
702 scu = __intel_scu_ipc_register(parent, scu_data, owner);
703 if (IS_ERR(scu)) {
704 devres_free(dr);
705 return scu;
706 }
707
708 dr->scu = scu;
709 devres_add(parent, dr);
710
711 return scu;
712}
713EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register);
714
715static int __init intel_scu_ipc_init(void)
716{
717 return class_register(&intel_scu_ipc_class);
718}
719subsys_initcall(intel_scu_ipc_init);
720
721static void __exit intel_scu_ipc_exit(void)
722{
723 class_unregister(&intel_scu_ipc_class);
724}
725module_exit(intel_scu_ipc_exit);