Loading...
1/*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9003_phy.h"
20#include "ar9003_eeprom.h"
21
22#define COMP_HDR_LEN 4
23#define COMP_CKSUM_LEN 2
24
25#define AR_CH0_TOP (0x00016288)
26#define AR_CH0_TOP_XPABIASLVL (0x300)
27#define AR_CH0_TOP_XPABIASLVL_S (8)
28
29#define AR_CH0_THERM (0x00016290)
30#define AR_CH0_THERM_XPABIASLVL_MSB 0x3
31#define AR_CH0_THERM_XPABIASLVL_MSB_S 0
32#define AR_CH0_THERM_XPASHORT2GND 0x4
33#define AR_CH0_THERM_XPASHORT2GND_S 2
34
35#define AR_SWITCH_TABLE_COM_ALL (0xffff)
36#define AR_SWITCH_TABLE_COM_ALL_S (0)
37
38#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
39#define AR_SWITCH_TABLE_COM2_ALL_S (0)
40
41#define AR_SWITCH_TABLE_ALL (0xfff)
42#define AR_SWITCH_TABLE_ALL_S (0)
43
44#define LE16(x) __constant_cpu_to_le16(x)
45#define LE32(x) __constant_cpu_to_le32(x)
46
47/* Local defines to distinguish between extension and control CTL's */
48#define EXT_ADDITIVE (0x8000)
49#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
50#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
51#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
52#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
53#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
54#define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
55#define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
56#define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
57
58#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
59#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
60
61#define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
62
63#define EEPROM_DATA_LEN_9485 1088
64
65static int ar9003_hw_power_interpolate(int32_t x,
66 int32_t *px, int32_t *py, u_int16_t np);
67
68
69static const struct ar9300_eeprom ar9300_default = {
70 .eepromVersion = 2,
71 .templateVersion = 2,
72 .macAddr = {0, 2, 3, 4, 5, 6},
73 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
74 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
75 .baseEepHeader = {
76 .regDmn = { LE16(0), LE16(0x1f) },
77 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
78 .opCapFlags = {
79 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
80 .eepMisc = 0,
81 },
82 .rfSilent = 0,
83 .blueToothOptions = 0,
84 .deviceCap = 0,
85 .deviceType = 5, /* takes lower byte in eeprom location */
86 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
87 .params_for_tuning_caps = {0, 0},
88 .featureEnable = 0x0c,
89 /*
90 * bit0 - enable tx temp comp - disabled
91 * bit1 - enable tx volt comp - disabled
92 * bit2 - enable fastClock - enabled
93 * bit3 - enable doubling - enabled
94 * bit4 - enable internal regulator - disabled
95 * bit5 - enable pa predistortion - disabled
96 */
97 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
98 .eepromWriteEnableGpio = 3,
99 .wlanDisableGpio = 0,
100 .wlanLedGpio = 8,
101 .rxBandSelectGpio = 0xff,
102 .txrxgain = 0,
103 .swreg = 0,
104 },
105 .modalHeader2G = {
106 /* ar9300_modal_eep_header 2g */
107 /* 4 idle,t1,t2,b(4 bits per setting) */
108 .antCtrlCommon = LE32(0x110),
109 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
110 .antCtrlCommon2 = LE32(0x22222),
111
112 /*
113 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
114 * rx1, rx12, b (2 bits each)
115 */
116 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
117
118 /*
119 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
120 * for ar9280 (0xa20c/b20c 5:0)
121 */
122 .xatten1DB = {0, 0, 0},
123
124 /*
125 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
126 * for ar9280 (0xa20c/b20c 16:12
127 */
128 .xatten1Margin = {0, 0, 0},
129 .tempSlope = 36,
130 .voltSlope = 0,
131
132 /*
133 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
134 * channels in usual fbin coding format
135 */
136 .spurChans = {0, 0, 0, 0, 0},
137
138 /*
139 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
140 * if the register is per chain
141 */
142 .noiseFloorThreshCh = {-1, 0, 0},
143 .ob = {1, 1, 1},/* 3 chain */
144 .db_stage2 = {1, 1, 1}, /* 3 chain */
145 .db_stage3 = {0, 0, 0},
146 .db_stage4 = {0, 0, 0},
147 .xpaBiasLvl = 0,
148 .txFrameToDataStart = 0x0e,
149 .txFrameToPaOn = 0x0e,
150 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
151 .antennaGain = 0,
152 .switchSettling = 0x2c,
153 .adcDesiredSize = -30,
154 .txEndToXpaOff = 0,
155 .txEndToRxOn = 0x2,
156 .txFrameToXpaOn = 0xe,
157 .thresh62 = 28,
158 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
159 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
160 .futureModal = {
161 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
162 },
163 },
164 .base_ext1 = {
165 .ant_div_control = 0,
166 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
167 },
168 .calFreqPier2G = {
169 FREQ2FBIN(2412, 1),
170 FREQ2FBIN(2437, 1),
171 FREQ2FBIN(2472, 1),
172 },
173 /* ar9300_cal_data_per_freq_op_loop 2g */
174 .calPierData2G = {
175 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
176 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
177 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
178 },
179 .calTarget_freqbin_Cck = {
180 FREQ2FBIN(2412, 1),
181 FREQ2FBIN(2484, 1),
182 },
183 .calTarget_freqbin_2G = {
184 FREQ2FBIN(2412, 1),
185 FREQ2FBIN(2437, 1),
186 FREQ2FBIN(2472, 1)
187 },
188 .calTarget_freqbin_2GHT20 = {
189 FREQ2FBIN(2412, 1),
190 FREQ2FBIN(2437, 1),
191 FREQ2FBIN(2472, 1)
192 },
193 .calTarget_freqbin_2GHT40 = {
194 FREQ2FBIN(2412, 1),
195 FREQ2FBIN(2437, 1),
196 FREQ2FBIN(2472, 1)
197 },
198 .calTargetPowerCck = {
199 /* 1L-5L,5S,11L,11S */
200 { {36, 36, 36, 36} },
201 { {36, 36, 36, 36} },
202 },
203 .calTargetPower2G = {
204 /* 6-24,36,48,54 */
205 { {32, 32, 28, 24} },
206 { {32, 32, 28, 24} },
207 { {32, 32, 28, 24} },
208 },
209 .calTargetPower2GHT20 = {
210 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
211 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
212 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
213 },
214 .calTargetPower2GHT40 = {
215 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
216 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
217 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
218 },
219 .ctlIndex_2G = {
220 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
221 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
222 },
223 .ctl_freqbin_2G = {
224 {
225 FREQ2FBIN(2412, 1),
226 FREQ2FBIN(2417, 1),
227 FREQ2FBIN(2457, 1),
228 FREQ2FBIN(2462, 1)
229 },
230 {
231 FREQ2FBIN(2412, 1),
232 FREQ2FBIN(2417, 1),
233 FREQ2FBIN(2462, 1),
234 0xFF,
235 },
236
237 {
238 FREQ2FBIN(2412, 1),
239 FREQ2FBIN(2417, 1),
240 FREQ2FBIN(2462, 1),
241 0xFF,
242 },
243 {
244 FREQ2FBIN(2422, 1),
245 FREQ2FBIN(2427, 1),
246 FREQ2FBIN(2447, 1),
247 FREQ2FBIN(2452, 1)
248 },
249
250 {
251 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
252 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
253 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
254 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
255 },
256
257 {
258 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
259 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
260 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
261 0,
262 },
263
264 {
265 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
266 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
267 FREQ2FBIN(2472, 1),
268 0,
269 },
270
271 {
272 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
273 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
274 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
275 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
276 },
277
278 {
279 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
280 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
281 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
282 },
283
284 {
285 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
286 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
287 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
288 0
289 },
290
291 {
292 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
293 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
294 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
295 0
296 },
297
298 {
299 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
300 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
301 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
302 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
303 }
304 },
305 .ctlPowerData_2G = {
306 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
307 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
308 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
309
310 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
311 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
312 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
313
314 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
315 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
316 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
317
318 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
319 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
320 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
321 },
322 .modalHeader5G = {
323 /* 4 idle,t1,t2,b (4 bits per setting) */
324 .antCtrlCommon = LE32(0x110),
325 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
326 .antCtrlCommon2 = LE32(0x22222),
327 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
328 .antCtrlChain = {
329 LE16(0x000), LE16(0x000), LE16(0x000),
330 },
331 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
332 .xatten1DB = {0, 0, 0},
333
334 /*
335 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
336 * for merlin (0xa20c/b20c 16:12
337 */
338 .xatten1Margin = {0, 0, 0},
339 .tempSlope = 68,
340 .voltSlope = 0,
341 /* spurChans spur channels in usual fbin coding format */
342 .spurChans = {0, 0, 0, 0, 0},
343 /* noiseFloorThreshCh Check if the register is per chain */
344 .noiseFloorThreshCh = {-1, 0, 0},
345 .ob = {3, 3, 3}, /* 3 chain */
346 .db_stage2 = {3, 3, 3}, /* 3 chain */
347 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
348 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
349 .xpaBiasLvl = 0,
350 .txFrameToDataStart = 0x0e,
351 .txFrameToPaOn = 0x0e,
352 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
353 .antennaGain = 0,
354 .switchSettling = 0x2d,
355 .adcDesiredSize = -30,
356 .txEndToXpaOff = 0,
357 .txEndToRxOn = 0x2,
358 .txFrameToXpaOn = 0xe,
359 .thresh62 = 28,
360 .papdRateMaskHt20 = LE32(0x0c80c080),
361 .papdRateMaskHt40 = LE32(0x0080c080),
362 .futureModal = {
363 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
364 },
365 },
366 .base_ext2 = {
367 .tempSlopeLow = 0,
368 .tempSlopeHigh = 0,
369 .xatten1DBLow = {0, 0, 0},
370 .xatten1MarginLow = {0, 0, 0},
371 .xatten1DBHigh = {0, 0, 0},
372 .xatten1MarginHigh = {0, 0, 0}
373 },
374 .calFreqPier5G = {
375 FREQ2FBIN(5180, 0),
376 FREQ2FBIN(5220, 0),
377 FREQ2FBIN(5320, 0),
378 FREQ2FBIN(5400, 0),
379 FREQ2FBIN(5500, 0),
380 FREQ2FBIN(5600, 0),
381 FREQ2FBIN(5725, 0),
382 FREQ2FBIN(5825, 0)
383 },
384 .calPierData5G = {
385 {
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 {0, 0, 0, 0, 0},
390 {0, 0, 0, 0, 0},
391 {0, 0, 0, 0, 0},
392 {0, 0, 0, 0, 0},
393 {0, 0, 0, 0, 0},
394 },
395 {
396 {0, 0, 0, 0, 0},
397 {0, 0, 0, 0, 0},
398 {0, 0, 0, 0, 0},
399 {0, 0, 0, 0, 0},
400 {0, 0, 0, 0, 0},
401 {0, 0, 0, 0, 0},
402 {0, 0, 0, 0, 0},
403 {0, 0, 0, 0, 0},
404 },
405 {
406 {0, 0, 0, 0, 0},
407 {0, 0, 0, 0, 0},
408 {0, 0, 0, 0, 0},
409 {0, 0, 0, 0, 0},
410 {0, 0, 0, 0, 0},
411 {0, 0, 0, 0, 0},
412 {0, 0, 0, 0, 0},
413 {0, 0, 0, 0, 0},
414 },
415
416 },
417 .calTarget_freqbin_5G = {
418 FREQ2FBIN(5180, 0),
419 FREQ2FBIN(5220, 0),
420 FREQ2FBIN(5320, 0),
421 FREQ2FBIN(5400, 0),
422 FREQ2FBIN(5500, 0),
423 FREQ2FBIN(5600, 0),
424 FREQ2FBIN(5725, 0),
425 FREQ2FBIN(5825, 0)
426 },
427 .calTarget_freqbin_5GHT20 = {
428 FREQ2FBIN(5180, 0),
429 FREQ2FBIN(5240, 0),
430 FREQ2FBIN(5320, 0),
431 FREQ2FBIN(5500, 0),
432 FREQ2FBIN(5700, 0),
433 FREQ2FBIN(5745, 0),
434 FREQ2FBIN(5725, 0),
435 FREQ2FBIN(5825, 0)
436 },
437 .calTarget_freqbin_5GHT40 = {
438 FREQ2FBIN(5180, 0),
439 FREQ2FBIN(5240, 0),
440 FREQ2FBIN(5320, 0),
441 FREQ2FBIN(5500, 0),
442 FREQ2FBIN(5700, 0),
443 FREQ2FBIN(5745, 0),
444 FREQ2FBIN(5725, 0),
445 FREQ2FBIN(5825, 0)
446 },
447 .calTargetPower5G = {
448 /* 6-24,36,48,54 */
449 { {20, 20, 20, 10} },
450 { {20, 20, 20, 10} },
451 { {20, 20, 20, 10} },
452 { {20, 20, 20, 10} },
453 { {20, 20, 20, 10} },
454 { {20, 20, 20, 10} },
455 { {20, 20, 20, 10} },
456 { {20, 20, 20, 10} },
457 },
458 .calTargetPower5GHT20 = {
459 /*
460 * 0_8_16,1-3_9-11_17-19,
461 * 4,5,6,7,12,13,14,15,20,21,22,23
462 */
463 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
464 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
465 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
466 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
467 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
468 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
469 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
470 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
471 },
472 .calTargetPower5GHT40 = {
473 /*
474 * 0_8_16,1-3_9-11_17-19,
475 * 4,5,6,7,12,13,14,15,20,21,22,23
476 */
477 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
478 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
479 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
480 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
481 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
482 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
483 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
484 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
485 },
486 .ctlIndex_5G = {
487 0x10, 0x16, 0x18, 0x40, 0x46,
488 0x48, 0x30, 0x36, 0x38
489 },
490 .ctl_freqbin_5G = {
491 {
492 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
493 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
494 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
495 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
496 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
497 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
498 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
499 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
500 },
501 {
502 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
503 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
504 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
505 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
506 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
507 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
508 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
509 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
510 },
511
512 {
513 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
514 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
515 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
516 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
517 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
518 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
519 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
520 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
521 },
522
523 {
524 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
525 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
526 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
527 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
528 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
529 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
530 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
531 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
532 },
533
534 {
535 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
536 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
537 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
538 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
539 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
540 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
541 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
542 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
543 },
544
545 {
546 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
547 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
548 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
549 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
550 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
551 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
552 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
553 /* Data[5].ctlEdges[7].bChannel */ 0xFF
554 },
555
556 {
557 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
558 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
559 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
560 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
561 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
562 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
563 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
564 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
565 },
566
567 {
568 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
569 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
570 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
571 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
572 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
573 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
574 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
575 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
576 },
577
578 {
579 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
580 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
581 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
582 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
583 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
584 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
585 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
586 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
587 }
588 },
589 .ctlPowerData_5G = {
590 {
591 {
592 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
593 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594 }
595 },
596 {
597 {
598 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
599 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
600 }
601 },
602 {
603 {
604 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
605 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606 }
607 },
608 {
609 {
610 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
611 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
612 }
613 },
614 {
615 {
616 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
617 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
618 }
619 },
620 {
621 {
622 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
623 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
624 }
625 },
626 {
627 {
628 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
629 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
630 }
631 },
632 {
633 {
634 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
635 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
636 }
637 },
638 {
639 {
640 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
641 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
642 }
643 },
644 }
645};
646
647static const struct ar9300_eeprom ar9300_x113 = {
648 .eepromVersion = 2,
649 .templateVersion = 6,
650 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
651 .custData = {"x113-023-f0000"},
652 .baseEepHeader = {
653 .regDmn = { LE16(0), LE16(0x1f) },
654 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
655 .opCapFlags = {
656 .opFlags = AR5416_OPFLAGS_11A,
657 .eepMisc = 0,
658 },
659 .rfSilent = 0,
660 .blueToothOptions = 0,
661 .deviceCap = 0,
662 .deviceType = 5, /* takes lower byte in eeprom location */
663 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
664 .params_for_tuning_caps = {0, 0},
665 .featureEnable = 0x0d,
666 /*
667 * bit0 - enable tx temp comp - disabled
668 * bit1 - enable tx volt comp - disabled
669 * bit2 - enable fastClock - enabled
670 * bit3 - enable doubling - enabled
671 * bit4 - enable internal regulator - disabled
672 * bit5 - enable pa predistortion - disabled
673 */
674 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
675 .eepromWriteEnableGpio = 6,
676 .wlanDisableGpio = 0,
677 .wlanLedGpio = 8,
678 .rxBandSelectGpio = 0xff,
679 .txrxgain = 0x21,
680 .swreg = 0,
681 },
682 .modalHeader2G = {
683 /* ar9300_modal_eep_header 2g */
684 /* 4 idle,t1,t2,b(4 bits per setting) */
685 .antCtrlCommon = LE32(0x110),
686 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
687 .antCtrlCommon2 = LE32(0x44444),
688
689 /*
690 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
691 * rx1, rx12, b (2 bits each)
692 */
693 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
694
695 /*
696 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
697 * for ar9280 (0xa20c/b20c 5:0)
698 */
699 .xatten1DB = {0, 0, 0},
700
701 /*
702 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
703 * for ar9280 (0xa20c/b20c 16:12
704 */
705 .xatten1Margin = {0, 0, 0},
706 .tempSlope = 25,
707 .voltSlope = 0,
708
709 /*
710 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
711 * channels in usual fbin coding format
712 */
713 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
714
715 /*
716 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
717 * if the register is per chain
718 */
719 .noiseFloorThreshCh = {-1, 0, 0},
720 .ob = {1, 1, 1},/* 3 chain */
721 .db_stage2 = {1, 1, 1}, /* 3 chain */
722 .db_stage3 = {0, 0, 0},
723 .db_stage4 = {0, 0, 0},
724 .xpaBiasLvl = 0,
725 .txFrameToDataStart = 0x0e,
726 .txFrameToPaOn = 0x0e,
727 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
728 .antennaGain = 0,
729 .switchSettling = 0x2c,
730 .adcDesiredSize = -30,
731 .txEndToXpaOff = 0,
732 .txEndToRxOn = 0x2,
733 .txFrameToXpaOn = 0xe,
734 .thresh62 = 28,
735 .papdRateMaskHt20 = LE32(0x0c80c080),
736 .papdRateMaskHt40 = LE32(0x0080c080),
737 .futureModal = {
738 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
739 },
740 },
741 .base_ext1 = {
742 .ant_div_control = 0,
743 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
744 },
745 .calFreqPier2G = {
746 FREQ2FBIN(2412, 1),
747 FREQ2FBIN(2437, 1),
748 FREQ2FBIN(2472, 1),
749 },
750 /* ar9300_cal_data_per_freq_op_loop 2g */
751 .calPierData2G = {
752 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
753 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
754 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
755 },
756 .calTarget_freqbin_Cck = {
757 FREQ2FBIN(2412, 1),
758 FREQ2FBIN(2472, 1),
759 },
760 .calTarget_freqbin_2G = {
761 FREQ2FBIN(2412, 1),
762 FREQ2FBIN(2437, 1),
763 FREQ2FBIN(2472, 1)
764 },
765 .calTarget_freqbin_2GHT20 = {
766 FREQ2FBIN(2412, 1),
767 FREQ2FBIN(2437, 1),
768 FREQ2FBIN(2472, 1)
769 },
770 .calTarget_freqbin_2GHT40 = {
771 FREQ2FBIN(2412, 1),
772 FREQ2FBIN(2437, 1),
773 FREQ2FBIN(2472, 1)
774 },
775 .calTargetPowerCck = {
776 /* 1L-5L,5S,11L,11S */
777 { {34, 34, 34, 34} },
778 { {34, 34, 34, 34} },
779 },
780 .calTargetPower2G = {
781 /* 6-24,36,48,54 */
782 { {34, 34, 32, 32} },
783 { {34, 34, 32, 32} },
784 { {34, 34, 32, 32} },
785 },
786 .calTargetPower2GHT20 = {
787 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
788 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
789 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
790 },
791 .calTargetPower2GHT40 = {
792 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
793 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
794 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
795 },
796 .ctlIndex_2G = {
797 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
798 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
799 },
800 .ctl_freqbin_2G = {
801 {
802 FREQ2FBIN(2412, 1),
803 FREQ2FBIN(2417, 1),
804 FREQ2FBIN(2457, 1),
805 FREQ2FBIN(2462, 1)
806 },
807 {
808 FREQ2FBIN(2412, 1),
809 FREQ2FBIN(2417, 1),
810 FREQ2FBIN(2462, 1),
811 0xFF,
812 },
813
814 {
815 FREQ2FBIN(2412, 1),
816 FREQ2FBIN(2417, 1),
817 FREQ2FBIN(2462, 1),
818 0xFF,
819 },
820 {
821 FREQ2FBIN(2422, 1),
822 FREQ2FBIN(2427, 1),
823 FREQ2FBIN(2447, 1),
824 FREQ2FBIN(2452, 1)
825 },
826
827 {
828 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
829 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
830 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
831 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
832 },
833
834 {
835 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
836 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
837 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
838 0,
839 },
840
841 {
842 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
843 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
844 FREQ2FBIN(2472, 1),
845 0,
846 },
847
848 {
849 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
850 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
851 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
852 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
853 },
854
855 {
856 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
857 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
858 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
859 },
860
861 {
862 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
863 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
864 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
865 0
866 },
867
868 {
869 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
870 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
871 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
872 0
873 },
874
875 {
876 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
877 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
878 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
879 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
880 }
881 },
882 .ctlPowerData_2G = {
883 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
884 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
885 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
886
887 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
888 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
889 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
890
891 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
892 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
893 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
894
895 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
896 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
897 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
898 },
899 .modalHeader5G = {
900 /* 4 idle,t1,t2,b (4 bits per setting) */
901 .antCtrlCommon = LE32(0x220),
902 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
903 .antCtrlCommon2 = LE32(0x11111),
904 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
905 .antCtrlChain = {
906 LE16(0x150), LE16(0x150), LE16(0x150),
907 },
908 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
909 .xatten1DB = {0, 0, 0},
910
911 /*
912 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
913 * for merlin (0xa20c/b20c 16:12
914 */
915 .xatten1Margin = {0, 0, 0},
916 .tempSlope = 68,
917 .voltSlope = 0,
918 /* spurChans spur channels in usual fbin coding format */
919 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
920 /* noiseFloorThreshCh Check if the register is per chain */
921 .noiseFloorThreshCh = {-1, 0, 0},
922 .ob = {3, 3, 3}, /* 3 chain */
923 .db_stage2 = {3, 3, 3}, /* 3 chain */
924 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
925 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
926 .xpaBiasLvl = 0xf,
927 .txFrameToDataStart = 0x0e,
928 .txFrameToPaOn = 0x0e,
929 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
930 .antennaGain = 0,
931 .switchSettling = 0x2d,
932 .adcDesiredSize = -30,
933 .txEndToXpaOff = 0,
934 .txEndToRxOn = 0x2,
935 .txFrameToXpaOn = 0xe,
936 .thresh62 = 28,
937 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
938 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
939 .futureModal = {
940 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
941 },
942 },
943 .base_ext2 = {
944 .tempSlopeLow = 72,
945 .tempSlopeHigh = 105,
946 .xatten1DBLow = {0, 0, 0},
947 .xatten1MarginLow = {0, 0, 0},
948 .xatten1DBHigh = {0, 0, 0},
949 .xatten1MarginHigh = {0, 0, 0}
950 },
951 .calFreqPier5G = {
952 FREQ2FBIN(5180, 0),
953 FREQ2FBIN(5240, 0),
954 FREQ2FBIN(5320, 0),
955 FREQ2FBIN(5400, 0),
956 FREQ2FBIN(5500, 0),
957 FREQ2FBIN(5600, 0),
958 FREQ2FBIN(5745, 0),
959 FREQ2FBIN(5785, 0)
960 },
961 .calPierData5G = {
962 {
963 {0, 0, 0, 0, 0},
964 {0, 0, 0, 0, 0},
965 {0, 0, 0, 0, 0},
966 {0, 0, 0, 0, 0},
967 {0, 0, 0, 0, 0},
968 {0, 0, 0, 0, 0},
969 {0, 0, 0, 0, 0},
970 {0, 0, 0, 0, 0},
971 },
972 {
973 {0, 0, 0, 0, 0},
974 {0, 0, 0, 0, 0},
975 {0, 0, 0, 0, 0},
976 {0, 0, 0, 0, 0},
977 {0, 0, 0, 0, 0},
978 {0, 0, 0, 0, 0},
979 {0, 0, 0, 0, 0},
980 {0, 0, 0, 0, 0},
981 },
982 {
983 {0, 0, 0, 0, 0},
984 {0, 0, 0, 0, 0},
985 {0, 0, 0, 0, 0},
986 {0, 0, 0, 0, 0},
987 {0, 0, 0, 0, 0},
988 {0, 0, 0, 0, 0},
989 {0, 0, 0, 0, 0},
990 {0, 0, 0, 0, 0},
991 },
992
993 },
994 .calTarget_freqbin_5G = {
995 FREQ2FBIN(5180, 0),
996 FREQ2FBIN(5220, 0),
997 FREQ2FBIN(5320, 0),
998 FREQ2FBIN(5400, 0),
999 FREQ2FBIN(5500, 0),
1000 FREQ2FBIN(5600, 0),
1001 FREQ2FBIN(5745, 0),
1002 FREQ2FBIN(5785, 0)
1003 },
1004 .calTarget_freqbin_5GHT20 = {
1005 FREQ2FBIN(5180, 0),
1006 FREQ2FBIN(5240, 0),
1007 FREQ2FBIN(5320, 0),
1008 FREQ2FBIN(5400, 0),
1009 FREQ2FBIN(5500, 0),
1010 FREQ2FBIN(5700, 0),
1011 FREQ2FBIN(5745, 0),
1012 FREQ2FBIN(5825, 0)
1013 },
1014 .calTarget_freqbin_5GHT40 = {
1015 FREQ2FBIN(5190, 0),
1016 FREQ2FBIN(5230, 0),
1017 FREQ2FBIN(5320, 0),
1018 FREQ2FBIN(5410, 0),
1019 FREQ2FBIN(5510, 0),
1020 FREQ2FBIN(5670, 0),
1021 FREQ2FBIN(5755, 0),
1022 FREQ2FBIN(5825, 0)
1023 },
1024 .calTargetPower5G = {
1025 /* 6-24,36,48,54 */
1026 { {42, 40, 40, 34} },
1027 { {42, 40, 40, 34} },
1028 { {42, 40, 40, 34} },
1029 { {42, 40, 40, 34} },
1030 { {42, 40, 40, 34} },
1031 { {42, 40, 40, 34} },
1032 { {42, 40, 40, 34} },
1033 { {42, 40, 40, 34} },
1034 },
1035 .calTargetPower5GHT20 = {
1036 /*
1037 * 0_8_16,1-3_9-11_17-19,
1038 * 4,5,6,7,12,13,14,15,20,21,22,23
1039 */
1040 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1041 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1042 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1043 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1044 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1045 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1046 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1047 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1048 },
1049 .calTargetPower5GHT40 = {
1050 /*
1051 * 0_8_16,1-3_9-11_17-19,
1052 * 4,5,6,7,12,13,14,15,20,21,22,23
1053 */
1054 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1055 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1056 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1057 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1058 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1059 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1060 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1061 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1062 },
1063 .ctlIndex_5G = {
1064 0x10, 0x16, 0x18, 0x40, 0x46,
1065 0x48, 0x30, 0x36, 0x38
1066 },
1067 .ctl_freqbin_5G = {
1068 {
1069 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1070 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1071 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1072 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1073 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1074 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1075 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1076 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1077 },
1078 {
1079 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1080 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1081 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1082 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1083 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1084 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1085 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1086 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1087 },
1088
1089 {
1090 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1091 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1092 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1093 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1094 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1095 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1096 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1097 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1098 },
1099
1100 {
1101 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1102 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1103 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1104 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1105 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1106 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1107 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1108 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1109 },
1110
1111 {
1112 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1113 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1114 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1115 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1116 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1117 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1118 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1119 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1120 },
1121
1122 {
1123 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1124 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1125 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1126 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1127 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1128 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1129 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1130 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1131 },
1132
1133 {
1134 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1135 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1136 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1137 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1138 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1139 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1140 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1141 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1142 },
1143
1144 {
1145 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1146 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1147 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1148 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1149 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1150 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1151 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1152 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1153 },
1154
1155 {
1156 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1157 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1158 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1159 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1160 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1161 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1162 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1163 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1164 }
1165 },
1166 .ctlPowerData_5G = {
1167 {
1168 {
1169 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1170 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1171 }
1172 },
1173 {
1174 {
1175 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1176 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1177 }
1178 },
1179 {
1180 {
1181 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1182 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1183 }
1184 },
1185 {
1186 {
1187 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1188 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1189 }
1190 },
1191 {
1192 {
1193 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1194 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1195 }
1196 },
1197 {
1198 {
1199 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1200 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1201 }
1202 },
1203 {
1204 {
1205 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1206 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1207 }
1208 },
1209 {
1210 {
1211 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1212 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1213 }
1214 },
1215 {
1216 {
1217 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1218 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1219 }
1220 },
1221 }
1222};
1223
1224
1225static const struct ar9300_eeprom ar9300_h112 = {
1226 .eepromVersion = 2,
1227 .templateVersion = 3,
1228 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1229 .custData = {"h112-241-f0000"},
1230 .baseEepHeader = {
1231 .regDmn = { LE16(0), LE16(0x1f) },
1232 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1233 .opCapFlags = {
1234 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1235 .eepMisc = 0,
1236 },
1237 .rfSilent = 0,
1238 .blueToothOptions = 0,
1239 .deviceCap = 0,
1240 .deviceType = 5, /* takes lower byte in eeprom location */
1241 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1242 .params_for_tuning_caps = {0, 0},
1243 .featureEnable = 0x0d,
1244 /*
1245 * bit0 - enable tx temp comp - disabled
1246 * bit1 - enable tx volt comp - disabled
1247 * bit2 - enable fastClock - enabled
1248 * bit3 - enable doubling - enabled
1249 * bit4 - enable internal regulator - disabled
1250 * bit5 - enable pa predistortion - disabled
1251 */
1252 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1253 .eepromWriteEnableGpio = 6,
1254 .wlanDisableGpio = 0,
1255 .wlanLedGpio = 8,
1256 .rxBandSelectGpio = 0xff,
1257 .txrxgain = 0x10,
1258 .swreg = 0,
1259 },
1260 .modalHeader2G = {
1261 /* ar9300_modal_eep_header 2g */
1262 /* 4 idle,t1,t2,b(4 bits per setting) */
1263 .antCtrlCommon = LE32(0x110),
1264 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1265 .antCtrlCommon2 = LE32(0x44444),
1266
1267 /*
1268 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1269 * rx1, rx12, b (2 bits each)
1270 */
1271 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1272
1273 /*
1274 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1275 * for ar9280 (0xa20c/b20c 5:0)
1276 */
1277 .xatten1DB = {0, 0, 0},
1278
1279 /*
1280 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1281 * for ar9280 (0xa20c/b20c 16:12
1282 */
1283 .xatten1Margin = {0, 0, 0},
1284 .tempSlope = 25,
1285 .voltSlope = 0,
1286
1287 /*
1288 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1289 * channels in usual fbin coding format
1290 */
1291 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1292
1293 /*
1294 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1295 * if the register is per chain
1296 */
1297 .noiseFloorThreshCh = {-1, 0, 0},
1298 .ob = {1, 1, 1},/* 3 chain */
1299 .db_stage2 = {1, 1, 1}, /* 3 chain */
1300 .db_stage3 = {0, 0, 0},
1301 .db_stage4 = {0, 0, 0},
1302 .xpaBiasLvl = 0,
1303 .txFrameToDataStart = 0x0e,
1304 .txFrameToPaOn = 0x0e,
1305 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1306 .antennaGain = 0,
1307 .switchSettling = 0x2c,
1308 .adcDesiredSize = -30,
1309 .txEndToXpaOff = 0,
1310 .txEndToRxOn = 0x2,
1311 .txFrameToXpaOn = 0xe,
1312 .thresh62 = 28,
1313 .papdRateMaskHt20 = LE32(0x80c080),
1314 .papdRateMaskHt40 = LE32(0x80c080),
1315 .futureModal = {
1316 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1317 },
1318 },
1319 .base_ext1 = {
1320 .ant_div_control = 0,
1321 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1322 },
1323 .calFreqPier2G = {
1324 FREQ2FBIN(2412, 1),
1325 FREQ2FBIN(2437, 1),
1326 FREQ2FBIN(2472, 1),
1327 },
1328 /* ar9300_cal_data_per_freq_op_loop 2g */
1329 .calPierData2G = {
1330 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1331 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1332 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1333 },
1334 .calTarget_freqbin_Cck = {
1335 FREQ2FBIN(2412, 1),
1336 FREQ2FBIN(2484, 1),
1337 },
1338 .calTarget_freqbin_2G = {
1339 FREQ2FBIN(2412, 1),
1340 FREQ2FBIN(2437, 1),
1341 FREQ2FBIN(2472, 1)
1342 },
1343 .calTarget_freqbin_2GHT20 = {
1344 FREQ2FBIN(2412, 1),
1345 FREQ2FBIN(2437, 1),
1346 FREQ2FBIN(2472, 1)
1347 },
1348 .calTarget_freqbin_2GHT40 = {
1349 FREQ2FBIN(2412, 1),
1350 FREQ2FBIN(2437, 1),
1351 FREQ2FBIN(2472, 1)
1352 },
1353 .calTargetPowerCck = {
1354 /* 1L-5L,5S,11L,11S */
1355 { {34, 34, 34, 34} },
1356 { {34, 34, 34, 34} },
1357 },
1358 .calTargetPower2G = {
1359 /* 6-24,36,48,54 */
1360 { {34, 34, 32, 32} },
1361 { {34, 34, 32, 32} },
1362 { {34, 34, 32, 32} },
1363 },
1364 .calTargetPower2GHT20 = {
1365 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1366 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1367 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1368 },
1369 .calTargetPower2GHT40 = {
1370 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1371 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1372 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1373 },
1374 .ctlIndex_2G = {
1375 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1376 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1377 },
1378 .ctl_freqbin_2G = {
1379 {
1380 FREQ2FBIN(2412, 1),
1381 FREQ2FBIN(2417, 1),
1382 FREQ2FBIN(2457, 1),
1383 FREQ2FBIN(2462, 1)
1384 },
1385 {
1386 FREQ2FBIN(2412, 1),
1387 FREQ2FBIN(2417, 1),
1388 FREQ2FBIN(2462, 1),
1389 0xFF,
1390 },
1391
1392 {
1393 FREQ2FBIN(2412, 1),
1394 FREQ2FBIN(2417, 1),
1395 FREQ2FBIN(2462, 1),
1396 0xFF,
1397 },
1398 {
1399 FREQ2FBIN(2422, 1),
1400 FREQ2FBIN(2427, 1),
1401 FREQ2FBIN(2447, 1),
1402 FREQ2FBIN(2452, 1)
1403 },
1404
1405 {
1406 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1407 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1408 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1409 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1410 },
1411
1412 {
1413 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1414 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1415 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1416 0,
1417 },
1418
1419 {
1420 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1421 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1422 FREQ2FBIN(2472, 1),
1423 0,
1424 },
1425
1426 {
1427 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1428 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1429 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1430 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1431 },
1432
1433 {
1434 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1435 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1436 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1437 },
1438
1439 {
1440 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1441 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1442 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1443 0
1444 },
1445
1446 {
1447 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1448 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1449 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1450 0
1451 },
1452
1453 {
1454 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1455 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1456 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1457 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1458 }
1459 },
1460 .ctlPowerData_2G = {
1461 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1462 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1463 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1464
1465 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1466 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1467 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1468
1469 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1470 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1471 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1472
1473 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1474 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1475 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1476 },
1477 .modalHeader5G = {
1478 /* 4 idle,t1,t2,b (4 bits per setting) */
1479 .antCtrlCommon = LE32(0x220),
1480 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1481 .antCtrlCommon2 = LE32(0x44444),
1482 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1483 .antCtrlChain = {
1484 LE16(0x150), LE16(0x150), LE16(0x150),
1485 },
1486 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1487 .xatten1DB = {0, 0, 0},
1488
1489 /*
1490 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1491 * for merlin (0xa20c/b20c 16:12
1492 */
1493 .xatten1Margin = {0, 0, 0},
1494 .tempSlope = 45,
1495 .voltSlope = 0,
1496 /* spurChans spur channels in usual fbin coding format */
1497 .spurChans = {0, 0, 0, 0, 0},
1498 /* noiseFloorThreshCh Check if the register is per chain */
1499 .noiseFloorThreshCh = {-1, 0, 0},
1500 .ob = {3, 3, 3}, /* 3 chain */
1501 .db_stage2 = {3, 3, 3}, /* 3 chain */
1502 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
1503 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
1504 .xpaBiasLvl = 0,
1505 .txFrameToDataStart = 0x0e,
1506 .txFrameToPaOn = 0x0e,
1507 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1508 .antennaGain = 0,
1509 .switchSettling = 0x2d,
1510 .adcDesiredSize = -30,
1511 .txEndToXpaOff = 0,
1512 .txEndToRxOn = 0x2,
1513 .txFrameToXpaOn = 0xe,
1514 .thresh62 = 28,
1515 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1516 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1517 .futureModal = {
1518 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1519 },
1520 },
1521 .base_ext2 = {
1522 .tempSlopeLow = 40,
1523 .tempSlopeHigh = 50,
1524 .xatten1DBLow = {0, 0, 0},
1525 .xatten1MarginLow = {0, 0, 0},
1526 .xatten1DBHigh = {0, 0, 0},
1527 .xatten1MarginHigh = {0, 0, 0}
1528 },
1529 .calFreqPier5G = {
1530 FREQ2FBIN(5180, 0),
1531 FREQ2FBIN(5220, 0),
1532 FREQ2FBIN(5320, 0),
1533 FREQ2FBIN(5400, 0),
1534 FREQ2FBIN(5500, 0),
1535 FREQ2FBIN(5600, 0),
1536 FREQ2FBIN(5700, 0),
1537 FREQ2FBIN(5825, 0)
1538 },
1539 .calPierData5G = {
1540 {
1541 {0, 0, 0, 0, 0},
1542 {0, 0, 0, 0, 0},
1543 {0, 0, 0, 0, 0},
1544 {0, 0, 0, 0, 0},
1545 {0, 0, 0, 0, 0},
1546 {0, 0, 0, 0, 0},
1547 {0, 0, 0, 0, 0},
1548 {0, 0, 0, 0, 0},
1549 },
1550 {
1551 {0, 0, 0, 0, 0},
1552 {0, 0, 0, 0, 0},
1553 {0, 0, 0, 0, 0},
1554 {0, 0, 0, 0, 0},
1555 {0, 0, 0, 0, 0},
1556 {0, 0, 0, 0, 0},
1557 {0, 0, 0, 0, 0},
1558 {0, 0, 0, 0, 0},
1559 },
1560 {
1561 {0, 0, 0, 0, 0},
1562 {0, 0, 0, 0, 0},
1563 {0, 0, 0, 0, 0},
1564 {0, 0, 0, 0, 0},
1565 {0, 0, 0, 0, 0},
1566 {0, 0, 0, 0, 0},
1567 {0, 0, 0, 0, 0},
1568 {0, 0, 0, 0, 0},
1569 },
1570
1571 },
1572 .calTarget_freqbin_5G = {
1573 FREQ2FBIN(5180, 0),
1574 FREQ2FBIN(5240, 0),
1575 FREQ2FBIN(5320, 0),
1576 FREQ2FBIN(5400, 0),
1577 FREQ2FBIN(5500, 0),
1578 FREQ2FBIN(5600, 0),
1579 FREQ2FBIN(5700, 0),
1580 FREQ2FBIN(5825, 0)
1581 },
1582 .calTarget_freqbin_5GHT20 = {
1583 FREQ2FBIN(5180, 0),
1584 FREQ2FBIN(5240, 0),
1585 FREQ2FBIN(5320, 0),
1586 FREQ2FBIN(5400, 0),
1587 FREQ2FBIN(5500, 0),
1588 FREQ2FBIN(5700, 0),
1589 FREQ2FBIN(5745, 0),
1590 FREQ2FBIN(5825, 0)
1591 },
1592 .calTarget_freqbin_5GHT40 = {
1593 FREQ2FBIN(5180, 0),
1594 FREQ2FBIN(5240, 0),
1595 FREQ2FBIN(5320, 0),
1596 FREQ2FBIN(5400, 0),
1597 FREQ2FBIN(5500, 0),
1598 FREQ2FBIN(5700, 0),
1599 FREQ2FBIN(5745, 0),
1600 FREQ2FBIN(5825, 0)
1601 },
1602 .calTargetPower5G = {
1603 /* 6-24,36,48,54 */
1604 { {30, 30, 28, 24} },
1605 { {30, 30, 28, 24} },
1606 { {30, 30, 28, 24} },
1607 { {30, 30, 28, 24} },
1608 { {30, 30, 28, 24} },
1609 { {30, 30, 28, 24} },
1610 { {30, 30, 28, 24} },
1611 { {30, 30, 28, 24} },
1612 },
1613 .calTargetPower5GHT20 = {
1614 /*
1615 * 0_8_16,1-3_9-11_17-19,
1616 * 4,5,6,7,12,13,14,15,20,21,22,23
1617 */
1618 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1619 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1620 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1621 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1622 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1623 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1624 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1625 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1626 },
1627 .calTargetPower5GHT40 = {
1628 /*
1629 * 0_8_16,1-3_9-11_17-19,
1630 * 4,5,6,7,12,13,14,15,20,21,22,23
1631 */
1632 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1633 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1634 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1635 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1636 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1637 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1638 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1639 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1640 },
1641 .ctlIndex_5G = {
1642 0x10, 0x16, 0x18, 0x40, 0x46,
1643 0x48, 0x30, 0x36, 0x38
1644 },
1645 .ctl_freqbin_5G = {
1646 {
1647 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1648 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1649 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1650 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1651 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1652 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1653 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1654 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1655 },
1656 {
1657 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1658 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1659 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1660 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1661 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1662 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1663 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1664 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1665 },
1666
1667 {
1668 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1669 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1670 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1671 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1672 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1673 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1674 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1675 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1676 },
1677
1678 {
1679 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1680 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1681 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1682 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1683 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1684 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1685 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1686 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1687 },
1688
1689 {
1690 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1691 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1692 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1693 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1694 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1695 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1696 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1697 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1698 },
1699
1700 {
1701 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1702 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1703 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1704 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1705 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1706 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1707 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1708 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1709 },
1710
1711 {
1712 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1713 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1714 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1715 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1716 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1717 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1718 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1719 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1720 },
1721
1722 {
1723 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1724 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1725 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1726 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1727 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1728 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1729 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1730 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1731 },
1732
1733 {
1734 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1735 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1736 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1737 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1738 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1739 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1740 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1741 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1742 }
1743 },
1744 .ctlPowerData_5G = {
1745 {
1746 {
1747 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1748 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1749 }
1750 },
1751 {
1752 {
1753 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1754 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1755 }
1756 },
1757 {
1758 {
1759 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1760 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1761 }
1762 },
1763 {
1764 {
1765 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1766 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1767 }
1768 },
1769 {
1770 {
1771 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1772 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1773 }
1774 },
1775 {
1776 {
1777 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1778 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1779 }
1780 },
1781 {
1782 {
1783 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1784 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1785 }
1786 },
1787 {
1788 {
1789 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1790 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1791 }
1792 },
1793 {
1794 {
1795 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1796 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1797 }
1798 },
1799 }
1800};
1801
1802
1803static const struct ar9300_eeprom ar9300_x112 = {
1804 .eepromVersion = 2,
1805 .templateVersion = 5,
1806 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1807 .custData = {"x112-041-f0000"},
1808 .baseEepHeader = {
1809 .regDmn = { LE16(0), LE16(0x1f) },
1810 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1811 .opCapFlags = {
1812 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1813 .eepMisc = 0,
1814 },
1815 .rfSilent = 0,
1816 .blueToothOptions = 0,
1817 .deviceCap = 0,
1818 .deviceType = 5, /* takes lower byte in eeprom location */
1819 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1820 .params_for_tuning_caps = {0, 0},
1821 .featureEnable = 0x0d,
1822 /*
1823 * bit0 - enable tx temp comp - disabled
1824 * bit1 - enable tx volt comp - disabled
1825 * bit2 - enable fastclock - enabled
1826 * bit3 - enable doubling - enabled
1827 * bit4 - enable internal regulator - disabled
1828 * bit5 - enable pa predistortion - disabled
1829 */
1830 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1831 .eepromWriteEnableGpio = 6,
1832 .wlanDisableGpio = 0,
1833 .wlanLedGpio = 8,
1834 .rxBandSelectGpio = 0xff,
1835 .txrxgain = 0x0,
1836 .swreg = 0,
1837 },
1838 .modalHeader2G = {
1839 /* ar9300_modal_eep_header 2g */
1840 /* 4 idle,t1,t2,b(4 bits per setting) */
1841 .antCtrlCommon = LE32(0x110),
1842 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1843 .antCtrlCommon2 = LE32(0x22222),
1844
1845 /*
1846 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1847 * rx1, rx12, b (2 bits each)
1848 */
1849 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1850
1851 /*
1852 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1853 * for ar9280 (0xa20c/b20c 5:0)
1854 */
1855 .xatten1DB = {0x1b, 0x1b, 0x1b},
1856
1857 /*
1858 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1859 * for ar9280 (0xa20c/b20c 16:12
1860 */
1861 .xatten1Margin = {0x15, 0x15, 0x15},
1862 .tempSlope = 50,
1863 .voltSlope = 0,
1864
1865 /*
1866 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1867 * channels in usual fbin coding format
1868 */
1869 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1870
1871 /*
1872 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1873 * if the register is per chain
1874 */
1875 .noiseFloorThreshCh = {-1, 0, 0},
1876 .ob = {1, 1, 1},/* 3 chain */
1877 .db_stage2 = {1, 1, 1}, /* 3 chain */
1878 .db_stage3 = {0, 0, 0},
1879 .db_stage4 = {0, 0, 0},
1880 .xpaBiasLvl = 0,
1881 .txFrameToDataStart = 0x0e,
1882 .txFrameToPaOn = 0x0e,
1883 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1884 .antennaGain = 0,
1885 .switchSettling = 0x2c,
1886 .adcDesiredSize = -30,
1887 .txEndToXpaOff = 0,
1888 .txEndToRxOn = 0x2,
1889 .txFrameToXpaOn = 0xe,
1890 .thresh62 = 28,
1891 .papdRateMaskHt20 = LE32(0x0c80c080),
1892 .papdRateMaskHt40 = LE32(0x0080c080),
1893 .futureModal = {
1894 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1895 },
1896 },
1897 .base_ext1 = {
1898 .ant_div_control = 0,
1899 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1900 },
1901 .calFreqPier2G = {
1902 FREQ2FBIN(2412, 1),
1903 FREQ2FBIN(2437, 1),
1904 FREQ2FBIN(2472, 1),
1905 },
1906 /* ar9300_cal_data_per_freq_op_loop 2g */
1907 .calPierData2G = {
1908 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1909 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1910 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1911 },
1912 .calTarget_freqbin_Cck = {
1913 FREQ2FBIN(2412, 1),
1914 FREQ2FBIN(2472, 1),
1915 },
1916 .calTarget_freqbin_2G = {
1917 FREQ2FBIN(2412, 1),
1918 FREQ2FBIN(2437, 1),
1919 FREQ2FBIN(2472, 1)
1920 },
1921 .calTarget_freqbin_2GHT20 = {
1922 FREQ2FBIN(2412, 1),
1923 FREQ2FBIN(2437, 1),
1924 FREQ2FBIN(2472, 1)
1925 },
1926 .calTarget_freqbin_2GHT40 = {
1927 FREQ2FBIN(2412, 1),
1928 FREQ2FBIN(2437, 1),
1929 FREQ2FBIN(2472, 1)
1930 },
1931 .calTargetPowerCck = {
1932 /* 1L-5L,5S,11L,11s */
1933 { {38, 38, 38, 38} },
1934 { {38, 38, 38, 38} },
1935 },
1936 .calTargetPower2G = {
1937 /* 6-24,36,48,54 */
1938 { {38, 38, 36, 34} },
1939 { {38, 38, 36, 34} },
1940 { {38, 38, 34, 32} },
1941 },
1942 .calTargetPower2GHT20 = {
1943 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1944 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1945 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1946 },
1947 .calTargetPower2GHT40 = {
1948 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1949 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1950 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1951 },
1952 .ctlIndex_2G = {
1953 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1954 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1955 },
1956 .ctl_freqbin_2G = {
1957 {
1958 FREQ2FBIN(2412, 1),
1959 FREQ2FBIN(2417, 1),
1960 FREQ2FBIN(2457, 1),
1961 FREQ2FBIN(2462, 1)
1962 },
1963 {
1964 FREQ2FBIN(2412, 1),
1965 FREQ2FBIN(2417, 1),
1966 FREQ2FBIN(2462, 1),
1967 0xFF,
1968 },
1969
1970 {
1971 FREQ2FBIN(2412, 1),
1972 FREQ2FBIN(2417, 1),
1973 FREQ2FBIN(2462, 1),
1974 0xFF,
1975 },
1976 {
1977 FREQ2FBIN(2422, 1),
1978 FREQ2FBIN(2427, 1),
1979 FREQ2FBIN(2447, 1),
1980 FREQ2FBIN(2452, 1)
1981 },
1982
1983 {
1984 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1985 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1986 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1987 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1988 },
1989
1990 {
1991 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1992 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1993 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1994 0,
1995 },
1996
1997 {
1998 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 FREQ2FBIN(2472, 1),
2001 0,
2002 },
2003
2004 {
2005 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2006 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2007 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2008 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2009 },
2010
2011 {
2012 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2013 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2014 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2015 },
2016
2017 {
2018 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2019 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2020 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2021 0
2022 },
2023
2024 {
2025 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2026 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2027 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2028 0
2029 },
2030
2031 {
2032 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2033 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2034 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2035 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2036 }
2037 },
2038 .ctlPowerData_2G = {
2039 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2040 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2041 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2042
2043 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2044 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2045 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2046
2047 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2048 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2049 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2050
2051 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2052 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2053 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2054 },
2055 .modalHeader5G = {
2056 /* 4 idle,t1,t2,b (4 bits per setting) */
2057 .antCtrlCommon = LE32(0x110),
2058 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2059 .antCtrlCommon2 = LE32(0x22222),
2060 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2061 .antCtrlChain = {
2062 LE16(0x0), LE16(0x0), LE16(0x0),
2063 },
2064 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2065 .xatten1DB = {0x13, 0x19, 0x17},
2066
2067 /*
2068 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2069 * for merlin (0xa20c/b20c 16:12
2070 */
2071 .xatten1Margin = {0x19, 0x19, 0x19},
2072 .tempSlope = 70,
2073 .voltSlope = 15,
2074 /* spurChans spur channels in usual fbin coding format */
2075 .spurChans = {0, 0, 0, 0, 0},
2076 /* noiseFloorThreshch check if the register is per chain */
2077 .noiseFloorThreshCh = {-1, 0, 0},
2078 .ob = {3, 3, 3}, /* 3 chain */
2079 .db_stage2 = {3, 3, 3}, /* 3 chain */
2080 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2081 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
2082 .xpaBiasLvl = 0,
2083 .txFrameToDataStart = 0x0e,
2084 .txFrameToPaOn = 0x0e,
2085 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2086 .antennaGain = 0,
2087 .switchSettling = 0x2d,
2088 .adcDesiredSize = -30,
2089 .txEndToXpaOff = 0,
2090 .txEndToRxOn = 0x2,
2091 .txFrameToXpaOn = 0xe,
2092 .thresh62 = 28,
2093 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2094 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2095 .futureModal = {
2096 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2097 },
2098 },
2099 .base_ext2 = {
2100 .tempSlopeLow = 72,
2101 .tempSlopeHigh = 105,
2102 .xatten1DBLow = {0x10, 0x14, 0x10},
2103 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2104 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2105 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2106 },
2107 .calFreqPier5G = {
2108 FREQ2FBIN(5180, 0),
2109 FREQ2FBIN(5220, 0),
2110 FREQ2FBIN(5320, 0),
2111 FREQ2FBIN(5400, 0),
2112 FREQ2FBIN(5500, 0),
2113 FREQ2FBIN(5600, 0),
2114 FREQ2FBIN(5700, 0),
2115 FREQ2FBIN(5785, 0)
2116 },
2117 .calPierData5G = {
2118 {
2119 {0, 0, 0, 0, 0},
2120 {0, 0, 0, 0, 0},
2121 {0, 0, 0, 0, 0},
2122 {0, 0, 0, 0, 0},
2123 {0, 0, 0, 0, 0},
2124 {0, 0, 0, 0, 0},
2125 {0, 0, 0, 0, 0},
2126 {0, 0, 0, 0, 0},
2127 },
2128 {
2129 {0, 0, 0, 0, 0},
2130 {0, 0, 0, 0, 0},
2131 {0, 0, 0, 0, 0},
2132 {0, 0, 0, 0, 0},
2133 {0, 0, 0, 0, 0},
2134 {0, 0, 0, 0, 0},
2135 {0, 0, 0, 0, 0},
2136 {0, 0, 0, 0, 0},
2137 },
2138 {
2139 {0, 0, 0, 0, 0},
2140 {0, 0, 0, 0, 0},
2141 {0, 0, 0, 0, 0},
2142 {0, 0, 0, 0, 0},
2143 {0, 0, 0, 0, 0},
2144 {0, 0, 0, 0, 0},
2145 {0, 0, 0, 0, 0},
2146 {0, 0, 0, 0, 0},
2147 },
2148
2149 },
2150 .calTarget_freqbin_5G = {
2151 FREQ2FBIN(5180, 0),
2152 FREQ2FBIN(5220, 0),
2153 FREQ2FBIN(5320, 0),
2154 FREQ2FBIN(5400, 0),
2155 FREQ2FBIN(5500, 0),
2156 FREQ2FBIN(5600, 0),
2157 FREQ2FBIN(5725, 0),
2158 FREQ2FBIN(5825, 0)
2159 },
2160 .calTarget_freqbin_5GHT20 = {
2161 FREQ2FBIN(5180, 0),
2162 FREQ2FBIN(5220, 0),
2163 FREQ2FBIN(5320, 0),
2164 FREQ2FBIN(5400, 0),
2165 FREQ2FBIN(5500, 0),
2166 FREQ2FBIN(5600, 0),
2167 FREQ2FBIN(5725, 0),
2168 FREQ2FBIN(5825, 0)
2169 },
2170 .calTarget_freqbin_5GHT40 = {
2171 FREQ2FBIN(5180, 0),
2172 FREQ2FBIN(5220, 0),
2173 FREQ2FBIN(5320, 0),
2174 FREQ2FBIN(5400, 0),
2175 FREQ2FBIN(5500, 0),
2176 FREQ2FBIN(5600, 0),
2177 FREQ2FBIN(5725, 0),
2178 FREQ2FBIN(5825, 0)
2179 },
2180 .calTargetPower5G = {
2181 /* 6-24,36,48,54 */
2182 { {32, 32, 28, 26} },
2183 { {32, 32, 28, 26} },
2184 { {32, 32, 28, 26} },
2185 { {32, 32, 26, 24} },
2186 { {32, 32, 26, 24} },
2187 { {32, 32, 24, 22} },
2188 { {30, 30, 24, 22} },
2189 { {30, 30, 24, 22} },
2190 },
2191 .calTargetPower5GHT20 = {
2192 /*
2193 * 0_8_16,1-3_9-11_17-19,
2194 * 4,5,6,7,12,13,14,15,20,21,22,23
2195 */
2196 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2197 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2198 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2199 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2200 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2201 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2202 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2203 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2204 },
2205 .calTargetPower5GHT40 = {
2206 /*
2207 * 0_8_16,1-3_9-11_17-19,
2208 * 4,5,6,7,12,13,14,15,20,21,22,23
2209 */
2210 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2211 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2212 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2213 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2214 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2215 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2216 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2217 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2218 },
2219 .ctlIndex_5G = {
2220 0x10, 0x16, 0x18, 0x40, 0x46,
2221 0x48, 0x30, 0x36, 0x38
2222 },
2223 .ctl_freqbin_5G = {
2224 {
2225 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2226 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2227 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2228 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2229 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2230 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2231 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2232 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2233 },
2234 {
2235 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2236 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2237 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2238 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2239 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2240 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2241 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2242 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2243 },
2244
2245 {
2246 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2247 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2248 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2249 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2250 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2251 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2252 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2253 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2254 },
2255
2256 {
2257 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2258 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2259 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2260 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2261 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2262 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2263 /* Data[3].ctledges[6].bchannel */ 0xFF,
2264 /* Data[3].ctledges[7].bchannel */ 0xFF,
2265 },
2266
2267 {
2268 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2269 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2270 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2271 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2272 /* Data[4].ctledges[4].bchannel */ 0xFF,
2273 /* Data[4].ctledges[5].bchannel */ 0xFF,
2274 /* Data[4].ctledges[6].bchannel */ 0xFF,
2275 /* Data[4].ctledges[7].bchannel */ 0xFF,
2276 },
2277
2278 {
2279 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2280 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2281 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2282 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2283 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2284 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2285 /* Data[5].ctledges[6].bchannel */ 0xFF,
2286 /* Data[5].ctledges[7].bchannel */ 0xFF
2287 },
2288
2289 {
2290 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2291 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2292 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2293 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2294 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2295 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2296 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2297 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2298 },
2299
2300 {
2301 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2302 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2303 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2304 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2305 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2306 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2307 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2308 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2309 },
2310
2311 {
2312 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2313 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2314 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2315 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2316 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2317 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2318 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2319 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2320 }
2321 },
2322 .ctlPowerData_5G = {
2323 {
2324 {
2325 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2326 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2327 }
2328 },
2329 {
2330 {
2331 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2332 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2333 }
2334 },
2335 {
2336 {
2337 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2338 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2339 }
2340 },
2341 {
2342 {
2343 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2344 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2345 }
2346 },
2347 {
2348 {
2349 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2350 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2351 }
2352 },
2353 {
2354 {
2355 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2356 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2357 }
2358 },
2359 {
2360 {
2361 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2362 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2363 }
2364 },
2365 {
2366 {
2367 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2368 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2369 }
2370 },
2371 {
2372 {
2373 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2374 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2375 }
2376 },
2377 }
2378};
2379
2380static const struct ar9300_eeprom ar9300_h116 = {
2381 .eepromVersion = 2,
2382 .templateVersion = 4,
2383 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2384 .custData = {"h116-041-f0000"},
2385 .baseEepHeader = {
2386 .regDmn = { LE16(0), LE16(0x1f) },
2387 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2388 .opCapFlags = {
2389 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2390 .eepMisc = 0,
2391 },
2392 .rfSilent = 0,
2393 .blueToothOptions = 0,
2394 .deviceCap = 0,
2395 .deviceType = 5, /* takes lower byte in eeprom location */
2396 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2397 .params_for_tuning_caps = {0, 0},
2398 .featureEnable = 0x0d,
2399 /*
2400 * bit0 - enable tx temp comp - disabled
2401 * bit1 - enable tx volt comp - disabled
2402 * bit2 - enable fastClock - enabled
2403 * bit3 - enable doubling - enabled
2404 * bit4 - enable internal regulator - disabled
2405 * bit5 - enable pa predistortion - disabled
2406 */
2407 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2408 .eepromWriteEnableGpio = 6,
2409 .wlanDisableGpio = 0,
2410 .wlanLedGpio = 8,
2411 .rxBandSelectGpio = 0xff,
2412 .txrxgain = 0x10,
2413 .swreg = 0,
2414 },
2415 .modalHeader2G = {
2416 /* ar9300_modal_eep_header 2g */
2417 /* 4 idle,t1,t2,b(4 bits per setting) */
2418 .antCtrlCommon = LE32(0x110),
2419 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2420 .antCtrlCommon2 = LE32(0x44444),
2421
2422 /*
2423 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2424 * rx1, rx12, b (2 bits each)
2425 */
2426 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2427
2428 /*
2429 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2430 * for ar9280 (0xa20c/b20c 5:0)
2431 */
2432 .xatten1DB = {0x1f, 0x1f, 0x1f},
2433
2434 /*
2435 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2436 * for ar9280 (0xa20c/b20c 16:12
2437 */
2438 .xatten1Margin = {0x12, 0x12, 0x12},
2439 .tempSlope = 25,
2440 .voltSlope = 0,
2441
2442 /*
2443 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2444 * channels in usual fbin coding format
2445 */
2446 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2447
2448 /*
2449 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2450 * if the register is per chain
2451 */
2452 .noiseFloorThreshCh = {-1, 0, 0},
2453 .ob = {1, 1, 1},/* 3 chain */
2454 .db_stage2 = {1, 1, 1}, /* 3 chain */
2455 .db_stage3 = {0, 0, 0},
2456 .db_stage4 = {0, 0, 0},
2457 .xpaBiasLvl = 0,
2458 .txFrameToDataStart = 0x0e,
2459 .txFrameToPaOn = 0x0e,
2460 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2461 .antennaGain = 0,
2462 .switchSettling = 0x2c,
2463 .adcDesiredSize = -30,
2464 .txEndToXpaOff = 0,
2465 .txEndToRxOn = 0x2,
2466 .txFrameToXpaOn = 0xe,
2467 .thresh62 = 28,
2468 .papdRateMaskHt20 = LE32(0x0c80C080),
2469 .papdRateMaskHt40 = LE32(0x0080C080),
2470 .futureModal = {
2471 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2472 },
2473 },
2474 .base_ext1 = {
2475 .ant_div_control = 0,
2476 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2477 },
2478 .calFreqPier2G = {
2479 FREQ2FBIN(2412, 1),
2480 FREQ2FBIN(2437, 1),
2481 FREQ2FBIN(2472, 1),
2482 },
2483 /* ar9300_cal_data_per_freq_op_loop 2g */
2484 .calPierData2G = {
2485 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2486 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2487 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2488 },
2489 .calTarget_freqbin_Cck = {
2490 FREQ2FBIN(2412, 1),
2491 FREQ2FBIN(2472, 1),
2492 },
2493 .calTarget_freqbin_2G = {
2494 FREQ2FBIN(2412, 1),
2495 FREQ2FBIN(2437, 1),
2496 FREQ2FBIN(2472, 1)
2497 },
2498 .calTarget_freqbin_2GHT20 = {
2499 FREQ2FBIN(2412, 1),
2500 FREQ2FBIN(2437, 1),
2501 FREQ2FBIN(2472, 1)
2502 },
2503 .calTarget_freqbin_2GHT40 = {
2504 FREQ2FBIN(2412, 1),
2505 FREQ2FBIN(2437, 1),
2506 FREQ2FBIN(2472, 1)
2507 },
2508 .calTargetPowerCck = {
2509 /* 1L-5L,5S,11L,11S */
2510 { {34, 34, 34, 34} },
2511 { {34, 34, 34, 34} },
2512 },
2513 .calTargetPower2G = {
2514 /* 6-24,36,48,54 */
2515 { {34, 34, 32, 32} },
2516 { {34, 34, 32, 32} },
2517 { {34, 34, 32, 32} },
2518 },
2519 .calTargetPower2GHT20 = {
2520 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2521 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2522 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2523 },
2524 .calTargetPower2GHT40 = {
2525 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2526 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2527 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2528 },
2529 .ctlIndex_2G = {
2530 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2531 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2532 },
2533 .ctl_freqbin_2G = {
2534 {
2535 FREQ2FBIN(2412, 1),
2536 FREQ2FBIN(2417, 1),
2537 FREQ2FBIN(2457, 1),
2538 FREQ2FBIN(2462, 1)
2539 },
2540 {
2541 FREQ2FBIN(2412, 1),
2542 FREQ2FBIN(2417, 1),
2543 FREQ2FBIN(2462, 1),
2544 0xFF,
2545 },
2546
2547 {
2548 FREQ2FBIN(2412, 1),
2549 FREQ2FBIN(2417, 1),
2550 FREQ2FBIN(2462, 1),
2551 0xFF,
2552 },
2553 {
2554 FREQ2FBIN(2422, 1),
2555 FREQ2FBIN(2427, 1),
2556 FREQ2FBIN(2447, 1),
2557 FREQ2FBIN(2452, 1)
2558 },
2559
2560 {
2561 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2562 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2563 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2564 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2565 },
2566
2567 {
2568 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2569 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2570 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2571 0,
2572 },
2573
2574 {
2575 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2576 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2577 FREQ2FBIN(2472, 1),
2578 0,
2579 },
2580
2581 {
2582 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2583 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2584 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2585 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2586 },
2587
2588 {
2589 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2590 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2591 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2592 },
2593
2594 {
2595 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2596 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2597 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2598 0
2599 },
2600
2601 {
2602 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2603 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2604 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2605 0
2606 },
2607
2608 {
2609 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2610 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2611 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2612 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2613 }
2614 },
2615 .ctlPowerData_2G = {
2616 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2617 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2618 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2619
2620 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2621 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2622 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2623
2624 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2625 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2626 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2627
2628 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2629 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2630 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2631 },
2632 .modalHeader5G = {
2633 /* 4 idle,t1,t2,b (4 bits per setting) */
2634 .antCtrlCommon = LE32(0x220),
2635 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2636 .antCtrlCommon2 = LE32(0x44444),
2637 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2638 .antCtrlChain = {
2639 LE16(0x150), LE16(0x150), LE16(0x150),
2640 },
2641 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2642 .xatten1DB = {0x19, 0x19, 0x19},
2643
2644 /*
2645 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2646 * for merlin (0xa20c/b20c 16:12
2647 */
2648 .xatten1Margin = {0x14, 0x14, 0x14},
2649 .tempSlope = 70,
2650 .voltSlope = 0,
2651 /* spurChans spur channels in usual fbin coding format */
2652 .spurChans = {0, 0, 0, 0, 0},
2653 /* noiseFloorThreshCh Check if the register is per chain */
2654 .noiseFloorThreshCh = {-1, 0, 0},
2655 .ob = {3, 3, 3}, /* 3 chain */
2656 .db_stage2 = {3, 3, 3}, /* 3 chain */
2657 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2658 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
2659 .xpaBiasLvl = 0,
2660 .txFrameToDataStart = 0x0e,
2661 .txFrameToPaOn = 0x0e,
2662 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2663 .antennaGain = 0,
2664 .switchSettling = 0x2d,
2665 .adcDesiredSize = -30,
2666 .txEndToXpaOff = 0,
2667 .txEndToRxOn = 0x2,
2668 .txFrameToXpaOn = 0xe,
2669 .thresh62 = 28,
2670 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2671 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2672 .futureModal = {
2673 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2674 },
2675 },
2676 .base_ext2 = {
2677 .tempSlopeLow = 35,
2678 .tempSlopeHigh = 50,
2679 .xatten1DBLow = {0, 0, 0},
2680 .xatten1MarginLow = {0, 0, 0},
2681 .xatten1DBHigh = {0, 0, 0},
2682 .xatten1MarginHigh = {0, 0, 0}
2683 },
2684 .calFreqPier5G = {
2685 FREQ2FBIN(5180, 0),
2686 FREQ2FBIN(5220, 0),
2687 FREQ2FBIN(5320, 0),
2688 FREQ2FBIN(5400, 0),
2689 FREQ2FBIN(5500, 0),
2690 FREQ2FBIN(5600, 0),
2691 FREQ2FBIN(5700, 0),
2692 FREQ2FBIN(5785, 0)
2693 },
2694 .calPierData5G = {
2695 {
2696 {0, 0, 0, 0, 0},
2697 {0, 0, 0, 0, 0},
2698 {0, 0, 0, 0, 0},
2699 {0, 0, 0, 0, 0},
2700 {0, 0, 0, 0, 0},
2701 {0, 0, 0, 0, 0},
2702 {0, 0, 0, 0, 0},
2703 {0, 0, 0, 0, 0},
2704 },
2705 {
2706 {0, 0, 0, 0, 0},
2707 {0, 0, 0, 0, 0},
2708 {0, 0, 0, 0, 0},
2709 {0, 0, 0, 0, 0},
2710 {0, 0, 0, 0, 0},
2711 {0, 0, 0, 0, 0},
2712 {0, 0, 0, 0, 0},
2713 {0, 0, 0, 0, 0},
2714 },
2715 {
2716 {0, 0, 0, 0, 0},
2717 {0, 0, 0, 0, 0},
2718 {0, 0, 0, 0, 0},
2719 {0, 0, 0, 0, 0},
2720 {0, 0, 0, 0, 0},
2721 {0, 0, 0, 0, 0},
2722 {0, 0, 0, 0, 0},
2723 {0, 0, 0, 0, 0},
2724 },
2725
2726 },
2727 .calTarget_freqbin_5G = {
2728 FREQ2FBIN(5180, 0),
2729 FREQ2FBIN(5240, 0),
2730 FREQ2FBIN(5320, 0),
2731 FREQ2FBIN(5400, 0),
2732 FREQ2FBIN(5500, 0),
2733 FREQ2FBIN(5600, 0),
2734 FREQ2FBIN(5700, 0),
2735 FREQ2FBIN(5825, 0)
2736 },
2737 .calTarget_freqbin_5GHT20 = {
2738 FREQ2FBIN(5180, 0),
2739 FREQ2FBIN(5240, 0),
2740 FREQ2FBIN(5320, 0),
2741 FREQ2FBIN(5400, 0),
2742 FREQ2FBIN(5500, 0),
2743 FREQ2FBIN(5700, 0),
2744 FREQ2FBIN(5745, 0),
2745 FREQ2FBIN(5825, 0)
2746 },
2747 .calTarget_freqbin_5GHT40 = {
2748 FREQ2FBIN(5180, 0),
2749 FREQ2FBIN(5240, 0),
2750 FREQ2FBIN(5320, 0),
2751 FREQ2FBIN(5400, 0),
2752 FREQ2FBIN(5500, 0),
2753 FREQ2FBIN(5700, 0),
2754 FREQ2FBIN(5745, 0),
2755 FREQ2FBIN(5825, 0)
2756 },
2757 .calTargetPower5G = {
2758 /* 6-24,36,48,54 */
2759 { {30, 30, 28, 24} },
2760 { {30, 30, 28, 24} },
2761 { {30, 30, 28, 24} },
2762 { {30, 30, 28, 24} },
2763 { {30, 30, 28, 24} },
2764 { {30, 30, 28, 24} },
2765 { {30, 30, 28, 24} },
2766 { {30, 30, 28, 24} },
2767 },
2768 .calTargetPower5GHT20 = {
2769 /*
2770 * 0_8_16,1-3_9-11_17-19,
2771 * 4,5,6,7,12,13,14,15,20,21,22,23
2772 */
2773 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2774 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2775 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2776 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2777 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2778 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2779 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2780 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2781 },
2782 .calTargetPower5GHT40 = {
2783 /*
2784 * 0_8_16,1-3_9-11_17-19,
2785 * 4,5,6,7,12,13,14,15,20,21,22,23
2786 */
2787 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2788 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2789 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2790 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2791 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2792 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2793 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2794 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2795 },
2796 .ctlIndex_5G = {
2797 0x10, 0x16, 0x18, 0x40, 0x46,
2798 0x48, 0x30, 0x36, 0x38
2799 },
2800 .ctl_freqbin_5G = {
2801 {
2802 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2803 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2804 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2805 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2806 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2807 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2808 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2809 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2810 },
2811 {
2812 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2813 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2814 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2815 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2816 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2817 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2818 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2819 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2820 },
2821
2822 {
2823 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2824 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2825 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2826 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2827 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2828 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2829 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2830 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2831 },
2832
2833 {
2834 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2835 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2836 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2837 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2838 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2839 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2840 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2841 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2842 },
2843
2844 {
2845 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2846 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2847 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2848 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2849 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2850 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2851 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2852 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2853 },
2854
2855 {
2856 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2857 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2858 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2859 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2860 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2861 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2862 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2863 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2864 },
2865
2866 {
2867 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2868 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2869 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2870 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2871 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2872 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2873 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2874 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2875 },
2876
2877 {
2878 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2879 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2880 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2881 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2882 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2883 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2884 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2885 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2886 },
2887
2888 {
2889 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2890 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2891 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2892 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2893 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2894 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2895 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2896 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2897 }
2898 },
2899 .ctlPowerData_5G = {
2900 {
2901 {
2902 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2903 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2904 }
2905 },
2906 {
2907 {
2908 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2909 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2910 }
2911 },
2912 {
2913 {
2914 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2915 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2916 }
2917 },
2918 {
2919 {
2920 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2921 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2922 }
2923 },
2924 {
2925 {
2926 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2927 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2928 }
2929 },
2930 {
2931 {
2932 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2933 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2934 }
2935 },
2936 {
2937 {
2938 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2939 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2940 }
2941 },
2942 {
2943 {
2944 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2945 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2946 }
2947 },
2948 {
2949 {
2950 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2951 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2952 }
2953 },
2954 }
2955};
2956
2957
2958static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2959 &ar9300_default,
2960 &ar9300_x112,
2961 &ar9300_h116,
2962 &ar9300_h112,
2963 &ar9300_x113,
2964};
2965
2966static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2967{
2968#define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2969 int it;
2970
2971 for (it = 0; it < N_LOOP; it++)
2972 if (ar9300_eep_templates[it]->templateVersion == id)
2973 return ar9300_eep_templates[it];
2974 return NULL;
2975#undef N_LOOP
2976}
2977
2978
2979static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2980{
2981 if (fbin == AR5416_BCHAN_UNUSED)
2982 return fbin;
2983
2984 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2985}
2986
2987static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2988{
2989 return 0;
2990}
2991
2992static int interpolate(int x, int xa, int xb, int ya, int yb)
2993{
2994 int bf, factor, plus;
2995
2996 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2997 factor = bf / 2;
2998 plus = bf % 2;
2999 return ya + factor + plus;
3000}
3001
3002static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
3003 enum eeprom_param param)
3004{
3005 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3006 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3007
3008 switch (param) {
3009 case EEP_MAC_LSW:
3010 return get_unaligned_be16(eep->macAddr);
3011 case EEP_MAC_MID:
3012 return get_unaligned_be16(eep->macAddr + 2);
3013 case EEP_MAC_MSW:
3014 return get_unaligned_be16(eep->macAddr + 4);
3015 case EEP_REG_0:
3016 return le16_to_cpu(pBase->regDmn[0]);
3017 case EEP_REG_1:
3018 return le16_to_cpu(pBase->regDmn[1]);
3019 case EEP_OP_CAP:
3020 return pBase->deviceCap;
3021 case EEP_OP_MODE:
3022 return pBase->opCapFlags.opFlags;
3023 case EEP_RF_SILENT:
3024 return pBase->rfSilent;
3025 case EEP_TX_MASK:
3026 return (pBase->txrxMask >> 4) & 0xf;
3027 case EEP_RX_MASK:
3028 return pBase->txrxMask & 0xf;
3029 case EEP_DRIVE_STRENGTH:
3030#define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
3031 return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
3032 case EEP_INTERNAL_REGULATOR:
3033 /* Bit 4 is internal regulator flag */
3034 return (pBase->featureEnable & 0x10) >> 4;
3035 case EEP_SWREG:
3036 return le32_to_cpu(pBase->swreg);
3037 case EEP_PAPRD:
3038 return !!(pBase->featureEnable & BIT(5));
3039 case EEP_CHAIN_MASK_REDUCE:
3040 return (pBase->miscConfiguration >> 0x3) & 0x1;
3041 case EEP_ANT_DIV_CTL1:
3042 return eep->base_ext1.ant_div_control;
3043 default:
3044 return 0;
3045 }
3046}
3047
3048static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3049 u8 *buffer)
3050{
3051 u16 val;
3052
3053 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3054 return false;
3055
3056 *buffer = (val >> (8 * (address % 2))) & 0xff;
3057 return true;
3058}
3059
3060static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3061 u8 *buffer)
3062{
3063 u16 val;
3064
3065 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3066 return false;
3067
3068 buffer[0] = val >> 8;
3069 buffer[1] = val & 0xff;
3070
3071 return true;
3072}
3073
3074static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3075 int count)
3076{
3077 struct ath_common *common = ath9k_hw_common(ah);
3078 int i;
3079
3080 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3081 ath_dbg(common, ATH_DBG_EEPROM,
3082 "eeprom address not in range\n");
3083 return false;
3084 }
3085
3086 /*
3087 * Since we're reading the bytes in reverse order from a little-endian
3088 * word stream, an even address means we only use the lower half of
3089 * the 16-bit word at that address
3090 */
3091 if (address % 2 == 0) {
3092 if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3093 goto error;
3094
3095 count--;
3096 }
3097
3098 for (i = 0; i < count / 2; i++) {
3099 if (!ar9300_eeprom_read_word(common, address, buffer))
3100 goto error;
3101
3102 address -= 2;
3103 buffer += 2;
3104 }
3105
3106 if (count % 2)
3107 if (!ar9300_eeprom_read_byte(common, address, buffer))
3108 goto error;
3109
3110 return true;
3111
3112error:
3113 ath_dbg(common, ATH_DBG_EEPROM,
3114 "unable to read eeprom region at offset %d\n", address);
3115 return false;
3116}
3117
3118static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3119{
3120 REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3121
3122 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3123 AR9300_OTP_STATUS_VALID, 1000))
3124 return false;
3125
3126 *data = REG_READ(ah, AR9300_OTP_READ_DATA);
3127 return true;
3128}
3129
3130static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3131 int count)
3132{
3133 u32 data;
3134 int i;
3135
3136 for (i = 0; i < count; i++) {
3137 int offset = 8 * ((address - i) % 4);
3138 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3139 return false;
3140
3141 buffer[i] = (data >> offset) & 0xff;
3142 }
3143
3144 return true;
3145}
3146
3147
3148static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3149 int *length, int *major, int *minor)
3150{
3151 unsigned long value[4];
3152
3153 value[0] = best[0];
3154 value[1] = best[1];
3155 value[2] = best[2];
3156 value[3] = best[3];
3157 *code = ((value[0] >> 5) & 0x0007);
3158 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3159 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3160 *major = (value[2] & 0x000f);
3161 *minor = (value[3] & 0x00ff);
3162}
3163
3164static u16 ar9300_comp_cksum(u8 *data, int dsize)
3165{
3166 int it, checksum = 0;
3167
3168 for (it = 0; it < dsize; it++) {
3169 checksum += data[it];
3170 checksum &= 0xffff;
3171 }
3172
3173 return checksum;
3174}
3175
3176static bool ar9300_uncompress_block(struct ath_hw *ah,
3177 u8 *mptr,
3178 int mdataSize,
3179 u8 *block,
3180 int size)
3181{
3182 int it;
3183 int spot;
3184 int offset;
3185 int length;
3186 struct ath_common *common = ath9k_hw_common(ah);
3187
3188 spot = 0;
3189
3190 for (it = 0; it < size; it += (length+2)) {
3191 offset = block[it];
3192 offset &= 0xff;
3193 spot += offset;
3194 length = block[it+1];
3195 length &= 0xff;
3196
3197 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3198 ath_dbg(common, ATH_DBG_EEPROM,
3199 "Restore at %d: spot=%d offset=%d length=%d\n",
3200 it, spot, offset, length);
3201 memcpy(&mptr[spot], &block[it+2], length);
3202 spot += length;
3203 } else if (length > 0) {
3204 ath_dbg(common, ATH_DBG_EEPROM,
3205 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3206 it, spot, offset, length);
3207 return false;
3208 }
3209 }
3210 return true;
3211}
3212
3213static int ar9300_compress_decision(struct ath_hw *ah,
3214 int it,
3215 int code,
3216 int reference,
3217 u8 *mptr,
3218 u8 *word, int length, int mdata_size)
3219{
3220 struct ath_common *common = ath9k_hw_common(ah);
3221 const struct ar9300_eeprom *eep = NULL;
3222
3223 switch (code) {
3224 case _CompressNone:
3225 if (length != mdata_size) {
3226 ath_dbg(common, ATH_DBG_EEPROM,
3227 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3228 mdata_size, length);
3229 return -1;
3230 }
3231 memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3232 ath_dbg(common, ATH_DBG_EEPROM,
3233 "restored eeprom %d: uncompressed, length %d\n",
3234 it, length);
3235 break;
3236 case _CompressBlock:
3237 if (reference == 0) {
3238 } else {
3239 eep = ar9003_eeprom_struct_find_by_id(reference);
3240 if (eep == NULL) {
3241 ath_dbg(common, ATH_DBG_EEPROM,
3242 "can't find reference eeprom struct %d\n",
3243 reference);
3244 return -1;
3245 }
3246 memcpy(mptr, eep, mdata_size);
3247 }
3248 ath_dbg(common, ATH_DBG_EEPROM,
3249 "restore eeprom %d: block, reference %d, length %d\n",
3250 it, reference, length);
3251 ar9300_uncompress_block(ah, mptr, mdata_size,
3252 (u8 *) (word + COMP_HDR_LEN), length);
3253 break;
3254 default:
3255 ath_dbg(common, ATH_DBG_EEPROM,
3256 "unknown compression code %d\n", code);
3257 return -1;
3258 }
3259 return 0;
3260}
3261
3262typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3263 int count);
3264
3265static bool ar9300_check_header(void *data)
3266{
3267 u32 *word = data;
3268 return !(*word == 0 || *word == ~0);
3269}
3270
3271static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3272 int base_addr)
3273{
3274 u8 header[4];
3275
3276 if (!read(ah, base_addr, header, 4))
3277 return false;
3278
3279 return ar9300_check_header(header);
3280}
3281
3282static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3283 int mdata_size)
3284{
3285 struct ath_common *common = ath9k_hw_common(ah);
3286 u16 *data = (u16 *) mptr;
3287 int i;
3288
3289 for (i = 0; i < mdata_size / 2; i++, data++)
3290 ath9k_hw_nvram_read(common, i, data);
3291
3292 return 0;
3293}
3294/*
3295 * Read the configuration data from the eeprom.
3296 * The data can be put in any specified memory buffer.
3297 *
3298 * Returns -1 on error.
3299 * Returns address of next memory location on success.
3300 */
3301static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3302 u8 *mptr, int mdata_size)
3303{
3304#define MDEFAULT 15
3305#define MSTATE 100
3306 int cptr;
3307 u8 *word;
3308 int code;
3309 int reference, length, major, minor;
3310 int osize;
3311 int it;
3312 u16 checksum, mchecksum;
3313 struct ath_common *common = ath9k_hw_common(ah);
3314 eeprom_read_op read;
3315
3316 if (ath9k_hw_use_flash(ah))
3317 return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3318
3319 word = kzalloc(2048, GFP_KERNEL);
3320 if (!word)
3321 return -1;
3322
3323 memcpy(mptr, &ar9300_default, mdata_size);
3324
3325 read = ar9300_read_eeprom;
3326 if (AR_SREV_9485(ah))
3327 cptr = AR9300_BASE_ADDR_4K;
3328 else if (AR_SREV_9330(ah))
3329 cptr = AR9300_BASE_ADDR_512;
3330 else
3331 cptr = AR9300_BASE_ADDR;
3332 ath_dbg(common, ATH_DBG_EEPROM,
3333 "Trying EEPROM access at Address 0x%04x\n", cptr);
3334 if (ar9300_check_eeprom_header(ah, read, cptr))
3335 goto found;
3336
3337 cptr = AR9300_BASE_ADDR_512;
3338 ath_dbg(common, ATH_DBG_EEPROM,
3339 "Trying EEPROM access at Address 0x%04x\n", cptr);
3340 if (ar9300_check_eeprom_header(ah, read, cptr))
3341 goto found;
3342
3343 read = ar9300_read_otp;
3344 cptr = AR9300_BASE_ADDR;
3345 ath_dbg(common, ATH_DBG_EEPROM,
3346 "Trying OTP access at Address 0x%04x\n", cptr);
3347 if (ar9300_check_eeprom_header(ah, read, cptr))
3348 goto found;
3349
3350 cptr = AR9300_BASE_ADDR_512;
3351 ath_dbg(common, ATH_DBG_EEPROM,
3352 "Trying OTP access at Address 0x%04x\n", cptr);
3353 if (ar9300_check_eeprom_header(ah, read, cptr))
3354 goto found;
3355
3356 goto fail;
3357
3358found:
3359 ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n");
3360
3361 for (it = 0; it < MSTATE; it++) {
3362 if (!read(ah, cptr, word, COMP_HDR_LEN))
3363 goto fail;
3364
3365 if (!ar9300_check_header(word))
3366 break;
3367
3368 ar9300_comp_hdr_unpack(word, &code, &reference,
3369 &length, &major, &minor);
3370 ath_dbg(common, ATH_DBG_EEPROM,
3371 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3372 cptr, code, reference, length, major, minor);
3373 if ((!AR_SREV_9485(ah) && length >= 1024) ||
3374 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3375 ath_dbg(common, ATH_DBG_EEPROM,
3376 "Skipping bad header\n");
3377 cptr -= COMP_HDR_LEN;
3378 continue;
3379 }
3380
3381 osize = length;
3382 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3383 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3384 mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3385 ath_dbg(common, ATH_DBG_EEPROM,
3386 "checksum %x %x\n", checksum, mchecksum);
3387 if (checksum == mchecksum) {
3388 ar9300_compress_decision(ah, it, code, reference, mptr,
3389 word, length, mdata_size);
3390 } else {
3391 ath_dbg(common, ATH_DBG_EEPROM,
3392 "skipping block with bad checksum\n");
3393 }
3394 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3395 }
3396
3397 kfree(word);
3398 return cptr;
3399
3400fail:
3401 kfree(word);
3402 return -1;
3403}
3404
3405/*
3406 * Restore the configuration structure by reading the eeprom.
3407 * This function destroys any existing in-memory structure
3408 * content.
3409 */
3410static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3411{
3412 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3413
3414 if (ar9300_eeprom_restore_internal(ah, mptr,
3415 sizeof(struct ar9300_eeprom)) < 0)
3416 return false;
3417
3418 return true;
3419}
3420
3421/* XXX: review hardware docs */
3422static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3423{
3424 return ah->eeprom.ar9300_eep.eepromVersion;
3425}
3426
3427/* XXX: could be read from the eepromVersion, not sure yet */
3428static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3429{
3430 return 0;
3431}
3432
3433static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3434{
3435 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3436
3437 if (is2ghz)
3438 return eep->modalHeader2G.xpaBiasLvl;
3439 else
3440 return eep->modalHeader5G.xpaBiasLvl;
3441}
3442
3443static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3444{
3445 int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3446
3447 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3448 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3449 else {
3450 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3451 REG_RMW_FIELD(ah, AR_CH0_THERM,
3452 AR_CH0_THERM_XPABIASLVL_MSB,
3453 bias >> 2);
3454 REG_RMW_FIELD(ah, AR_CH0_THERM,
3455 AR_CH0_THERM_XPASHORT2GND, 1);
3456 }
3457}
3458
3459static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3460{
3461 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3462 __le32 val;
3463
3464 if (is2ghz)
3465 val = eep->modalHeader2G.antCtrlCommon;
3466 else
3467 val = eep->modalHeader5G.antCtrlCommon;
3468 return le32_to_cpu(val);
3469}
3470
3471static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3472{
3473 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3474 __le32 val;
3475
3476 if (is2ghz)
3477 val = eep->modalHeader2G.antCtrlCommon2;
3478 else
3479 val = eep->modalHeader5G.antCtrlCommon2;
3480 return le32_to_cpu(val);
3481}
3482
3483static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3484 int chain,
3485 bool is2ghz)
3486{
3487 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3488 __le16 val = 0;
3489
3490 if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3491 if (is2ghz)
3492 val = eep->modalHeader2G.antCtrlChain[chain];
3493 else
3494 val = eep->modalHeader5G.antCtrlChain[chain];
3495 }
3496
3497 return le16_to_cpu(val);
3498}
3499
3500static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3501{
3502 int chain;
3503 u32 regval;
3504 u32 ant_div_ctl1;
3505 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3506 AR_PHY_SWITCH_CHAIN_0,
3507 AR_PHY_SWITCH_CHAIN_1,
3508 AR_PHY_SWITCH_CHAIN_2,
3509 };
3510
3511 u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3512
3513 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
3514
3515 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3516 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3517
3518 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3519 if ((ah->rxchainmask & BIT(chain)) ||
3520 (ah->txchainmask & BIT(chain))) {
3521 value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3522 is2ghz);
3523 REG_RMW_FIELD(ah, switch_chain_reg[chain],
3524 AR_SWITCH_TABLE_ALL, value);
3525 }
3526 }
3527
3528 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3529 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3530 /*
3531 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3532 * are the fields present
3533 */
3534 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3535 regval &= (~AR_ANT_DIV_CTRL_ALL);
3536 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3537 /* enable_lnadiv */
3538 regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3539 regval |= ((value >> 6) & 0x1) <<
3540 AR_PHY_9485_ANT_DIV_LNADIV_S;
3541 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3542
3543 /*enable fast_div */
3544 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3545 regval &= (~AR_FAST_DIV_ENABLE);
3546 regval |= ((value >> 7) & 0x1) <<
3547 AR_FAST_DIV_ENABLE_S;
3548 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3549 ant_div_ctl1 =
3550 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3551 /* check whether antenna diversity is enabled */
3552 if ((ant_div_ctl1 >> 0x6) == 0x3) {
3553 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3554 /*
3555 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3556 * main_tb, alt_tb
3557 */
3558 regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3559 AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3560 AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3561 AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3562 /* by default use LNA1 for the main antenna */
3563 regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3564 AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3565 regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3566 AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3567 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3568 }
3569
3570
3571 }
3572
3573}
3574
3575static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3576{
3577 int drive_strength;
3578 unsigned long reg;
3579
3580 drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3581
3582 if (!drive_strength)
3583 return;
3584
3585 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3586 reg &= ~0x00ffffc0;
3587 reg |= 0x5 << 21;
3588 reg |= 0x5 << 18;
3589 reg |= 0x5 << 15;
3590 reg |= 0x5 << 12;
3591 reg |= 0x5 << 9;
3592 reg |= 0x5 << 6;
3593 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3594
3595 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3596 reg &= ~0xffffffe0;
3597 reg |= 0x5 << 29;
3598 reg |= 0x5 << 26;
3599 reg |= 0x5 << 23;
3600 reg |= 0x5 << 20;
3601 reg |= 0x5 << 17;
3602 reg |= 0x5 << 14;
3603 reg |= 0x5 << 11;
3604 reg |= 0x5 << 8;
3605 reg |= 0x5 << 5;
3606 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3607
3608 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3609 reg &= ~0xff800000;
3610 reg |= 0x5 << 29;
3611 reg |= 0x5 << 26;
3612 reg |= 0x5 << 23;
3613 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3614}
3615
3616static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3617 struct ath9k_channel *chan)
3618{
3619 int f[3], t[3];
3620 u16 value;
3621 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3622
3623 if (chain >= 0 && chain < 3) {
3624 if (IS_CHAN_2GHZ(chan))
3625 return eep->modalHeader2G.xatten1DB[chain];
3626 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3627 t[0] = eep->base_ext2.xatten1DBLow[chain];
3628 f[0] = 5180;
3629 t[1] = eep->modalHeader5G.xatten1DB[chain];
3630 f[1] = 5500;
3631 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3632 f[2] = 5785;
3633 value = ar9003_hw_power_interpolate((s32) chan->channel,
3634 f, t, 3);
3635 return value;
3636 } else
3637 return eep->modalHeader5G.xatten1DB[chain];
3638 }
3639
3640 return 0;
3641}
3642
3643
3644static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3645 struct ath9k_channel *chan)
3646{
3647 int f[3], t[3];
3648 u16 value;
3649 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3650
3651 if (chain >= 0 && chain < 3) {
3652 if (IS_CHAN_2GHZ(chan))
3653 return eep->modalHeader2G.xatten1Margin[chain];
3654 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3655 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3656 f[0] = 5180;
3657 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3658 f[1] = 5500;
3659 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3660 f[2] = 5785;
3661 value = ar9003_hw_power_interpolate((s32) chan->channel,
3662 f, t, 3);
3663 return value;
3664 } else
3665 return eep->modalHeader5G.xatten1Margin[chain];
3666 }
3667
3668 return 0;
3669}
3670
3671static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3672{
3673 int i;
3674 u16 value;
3675 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3676 AR_PHY_EXT_ATTEN_CTL_1,
3677 AR_PHY_EXT_ATTEN_CTL_2,
3678 };
3679
3680 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3681 for (i = 0; i < 3; i++) {
3682 if (ah->txchainmask & BIT(i)) {
3683 value = ar9003_hw_atten_chain_get(ah, i, chan);
3684 REG_RMW_FIELD(ah, ext_atten_reg[i],
3685 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3686
3687 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3688 REG_RMW_FIELD(ah, ext_atten_reg[i],
3689 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3690 value);
3691 }
3692 }
3693}
3694
3695static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3696{
3697 int timeout = 100;
3698
3699 while (pmu_set != REG_READ(ah, pmu_reg)) {
3700 if (timeout-- == 0)
3701 return false;
3702 REG_WRITE(ah, pmu_reg, pmu_set);
3703 udelay(10);
3704 }
3705
3706 return true;
3707}
3708
3709static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3710{
3711 int internal_regulator =
3712 ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3713
3714 if (internal_regulator) {
3715 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3716 int reg_pmu_set;
3717
3718 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3719 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3720 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3721 return;
3722
3723 if (AR_SREV_9330(ah)) {
3724 if (ah->is_clk_25mhz) {
3725 reg_pmu_set = (3 << 1) | (8 << 4) |
3726 (3 << 8) | (1 << 14) |
3727 (6 << 17) | (1 << 20) |
3728 (3 << 24);
3729 } else {
3730 reg_pmu_set = (4 << 1) | (7 << 4) |
3731 (3 << 8) | (1 << 14) |
3732 (6 << 17) | (1 << 20) |
3733 (3 << 24);
3734 }
3735 } else {
3736 reg_pmu_set = (5 << 1) | (7 << 4) |
3737 (2 << 8) | (2 << 14) |
3738 (6 << 17) | (1 << 20) |
3739 (3 << 24) | (1 << 28);
3740 }
3741
3742 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3743 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3744 return;
3745
3746 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3747 | (4 << 26);
3748 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3749 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3750 return;
3751
3752 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3753 | (1 << 21);
3754 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3755 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3756 return;
3757 } else {
3758 /* Internal regulator is ON. Write swreg register. */
3759 int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3760 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3761 REG_READ(ah, AR_RTC_REG_CONTROL1) &
3762 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3763 REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
3764 /* Set REG_CONTROL1.SWREG_PROGRAM */
3765 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3766 REG_READ(ah,
3767 AR_RTC_REG_CONTROL1) |
3768 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3769 }
3770 } else {
3771 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3772 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3773 while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3774 AR_PHY_PMU2_PGM))
3775 udelay(10);
3776
3777 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3778 while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3779 AR_PHY_PMU1_PWD))
3780 udelay(10);
3781 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3782 while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3783 AR_PHY_PMU2_PGM))
3784 udelay(10);
3785 } else
3786 REG_WRITE(ah, AR_RTC_SLEEP_CLK,
3787 (REG_READ(ah,
3788 AR_RTC_SLEEP_CLK) |
3789 AR_RTC_FORCE_SWREG_PRD));
3790 }
3791
3792}
3793
3794static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3795{
3796 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3797 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3798
3799 if (eep->baseEepHeader.featureEnable & 0x40) {
3800 tuning_caps_param &= 0x7f;
3801 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3802 tuning_caps_param);
3803 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3804 tuning_caps_param);
3805 }
3806}
3807
3808static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3809 struct ath9k_channel *chan)
3810{
3811 ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3812 ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3813 ar9003_hw_drive_strength_apply(ah);
3814 ar9003_hw_atten_apply(ah, chan);
3815 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3816 ar9003_hw_internal_regulator_apply(ah);
3817 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3818 ar9003_hw_apply_tuning_caps(ah);
3819}
3820
3821static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3822 struct ath9k_channel *chan)
3823{
3824}
3825
3826/*
3827 * Returns the interpolated y value corresponding to the specified x value
3828 * from the np ordered pairs of data (px,py).
3829 * The pairs do not have to be in any order.
3830 * If the specified x value is less than any of the px,
3831 * the returned y value is equal to the py for the lowest px.
3832 * If the specified x value is greater than any of the px,
3833 * the returned y value is equal to the py for the highest px.
3834 */
3835static int ar9003_hw_power_interpolate(int32_t x,
3836 int32_t *px, int32_t *py, u_int16_t np)
3837{
3838 int ip = 0;
3839 int lx = 0, ly = 0, lhave = 0;
3840 int hx = 0, hy = 0, hhave = 0;
3841 int dx = 0;
3842 int y = 0;
3843
3844 lhave = 0;
3845 hhave = 0;
3846
3847 /* identify best lower and higher x calibration measurement */
3848 for (ip = 0; ip < np; ip++) {
3849 dx = x - px[ip];
3850
3851 /* this measurement is higher than our desired x */
3852 if (dx <= 0) {
3853 if (!hhave || dx > (x - hx)) {
3854 /* new best higher x measurement */
3855 hx = px[ip];
3856 hy = py[ip];
3857 hhave = 1;
3858 }
3859 }
3860 /* this measurement is lower than our desired x */
3861 if (dx >= 0) {
3862 if (!lhave || dx < (x - lx)) {
3863 /* new best lower x measurement */
3864 lx = px[ip];
3865 ly = py[ip];
3866 lhave = 1;
3867 }
3868 }
3869 }
3870
3871 /* the low x is good */
3872 if (lhave) {
3873 /* so is the high x */
3874 if (hhave) {
3875 /* they're the same, so just pick one */
3876 if (hx == lx)
3877 y = ly;
3878 else /* interpolate */
3879 y = interpolate(x, lx, hx, ly, hy);
3880 } else /* only low is good, use it */
3881 y = ly;
3882 } else if (hhave) /* only high is good, use it */
3883 y = hy;
3884 else /* nothing is good,this should never happen unless np=0, ???? */
3885 y = -(1 << 30);
3886 return y;
3887}
3888
3889static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
3890 u16 rateIndex, u16 freq, bool is2GHz)
3891{
3892 u16 numPiers, i;
3893 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3894 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3895 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3896 struct cal_tgt_pow_legacy *pEepromTargetPwr;
3897 u8 *pFreqBin;
3898
3899 if (is2GHz) {
3900 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3901 pEepromTargetPwr = eep->calTargetPower2G;
3902 pFreqBin = eep->calTarget_freqbin_2G;
3903 } else {
3904 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3905 pEepromTargetPwr = eep->calTargetPower5G;
3906 pFreqBin = eep->calTarget_freqbin_5G;
3907 }
3908
3909 /*
3910 * create array of channels and targetpower from
3911 * targetpower piers stored on eeprom
3912 */
3913 for (i = 0; i < numPiers; i++) {
3914 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3915 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3916 }
3917
3918 /* interpolate to get target power for given frequency */
3919 return (u8) ar9003_hw_power_interpolate((s32) freq,
3920 freqArray,
3921 targetPowerArray, numPiers);
3922}
3923
3924static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
3925 u16 rateIndex,
3926 u16 freq, bool is2GHz)
3927{
3928 u16 numPiers, i;
3929 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3930 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3931 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3932 struct cal_tgt_pow_ht *pEepromTargetPwr;
3933 u8 *pFreqBin;
3934
3935 if (is2GHz) {
3936 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3937 pEepromTargetPwr = eep->calTargetPower2GHT20;
3938 pFreqBin = eep->calTarget_freqbin_2GHT20;
3939 } else {
3940 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3941 pEepromTargetPwr = eep->calTargetPower5GHT20;
3942 pFreqBin = eep->calTarget_freqbin_5GHT20;
3943 }
3944
3945 /*
3946 * create array of channels and targetpower
3947 * from targetpower piers stored on eeprom
3948 */
3949 for (i = 0; i < numPiers; i++) {
3950 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3951 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3952 }
3953
3954 /* interpolate to get target power for given frequency */
3955 return (u8) ar9003_hw_power_interpolate((s32) freq,
3956 freqArray,
3957 targetPowerArray, numPiers);
3958}
3959
3960static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
3961 u16 rateIndex,
3962 u16 freq, bool is2GHz)
3963{
3964 u16 numPiers, i;
3965 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
3966 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
3967 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3968 struct cal_tgt_pow_ht *pEepromTargetPwr;
3969 u8 *pFreqBin;
3970
3971 if (is2GHz) {
3972 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
3973 pEepromTargetPwr = eep->calTargetPower2GHT40;
3974 pFreqBin = eep->calTarget_freqbin_2GHT40;
3975 } else {
3976 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
3977 pEepromTargetPwr = eep->calTargetPower5GHT40;
3978 pFreqBin = eep->calTarget_freqbin_5GHT40;
3979 }
3980
3981 /*
3982 * create array of channels and targetpower from
3983 * targetpower piers stored on eeprom
3984 */
3985 for (i = 0; i < numPiers; i++) {
3986 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3987 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3988 }
3989
3990 /* interpolate to get target power for given frequency */
3991 return (u8) ar9003_hw_power_interpolate((s32) freq,
3992 freqArray,
3993 targetPowerArray, numPiers);
3994}
3995
3996static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
3997 u16 rateIndex, u16 freq)
3998{
3999 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4000 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4001 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4002 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4003 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4004 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4005
4006 /*
4007 * create array of channels and targetpower from
4008 * targetpower piers stored on eeprom
4009 */
4010 for (i = 0; i < numPiers; i++) {
4011 freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
4012 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4013 }
4014
4015 /* interpolate to get target power for given frequency */
4016 return (u8) ar9003_hw_power_interpolate((s32) freq,
4017 freqArray,
4018 targetPowerArray, numPiers);
4019}
4020
4021/* Set tx power registers to array of values passed in */
4022static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4023{
4024#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4025 /* make sure forced gain is not set */
4026 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4027
4028 /* Write the OFDM power per rate set */
4029
4030 /* 6 (LSB), 9, 12, 18 (MSB) */
4031 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4032 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4033 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4034 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4035 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4036
4037 /* 24 (LSB), 36, 48, 54 (MSB) */
4038 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4039 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4040 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4041 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4042 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4043
4044 /* Write the CCK power per rate set */
4045
4046 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4047 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4048 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4049 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4050 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4051 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4052
4053 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4054 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4055 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4056 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4057 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4058 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4059 );
4060
4061 /* Write the power for duplicated frames - HT40 */
4062
4063 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4064 REG_WRITE(ah, 0xa3e0,
4065 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4066 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4067 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4068 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4069 );
4070
4071 /* Write the HT20 power per rate set */
4072
4073 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4074 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4075 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4076 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4077 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4078 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4079 );
4080
4081 /* 6 (LSB), 7, 12, 13 (MSB) */
4082 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4083 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4084 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4085 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4086 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4087 );
4088
4089 /* 14 (LSB), 15, 20, 21 */
4090 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4091 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4092 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4093 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4094 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4095 );
4096
4097 /* Mixed HT20 and HT40 rates */
4098
4099 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4100 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4101 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4102 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4103 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4104 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4105 );
4106
4107 /*
4108 * Write the HT40 power per rate set
4109 * correct PAR difference between HT40 and HT20/LEGACY
4110 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4111 */
4112 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4113 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4114 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4115 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4116 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4117 );
4118
4119 /* 6 (LSB), 7, 12, 13 (MSB) */
4120 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4121 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4122 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4123 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4124 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4125 );
4126
4127 /* 14 (LSB), 15, 20, 21 */
4128 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4129 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4130 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4131 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4132 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4133 );
4134
4135 return 0;
4136#undef POW_SM
4137}
4138
4139static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4140 u8 *targetPowerValT2)
4141{
4142 /* XXX: hard code for now, need to get from eeprom struct */
4143 u8 ht40PowerIncForPdadc = 0;
4144 bool is2GHz = false;
4145 unsigned int i = 0;
4146 struct ath_common *common = ath9k_hw_common(ah);
4147
4148 if (freq < 4000)
4149 is2GHz = true;
4150
4151 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4152 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4153 is2GHz);
4154 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4155 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4156 is2GHz);
4157 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4158 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4159 is2GHz);
4160 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4161 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4162 is2GHz);
4163 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4164 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4165 freq);
4166 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4167 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4168 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4169 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4170 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4171 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4172 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4173 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4174 is2GHz);
4175 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4176 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4177 freq, is2GHz);
4178 targetPowerValT2[ALL_TARGET_HT20_4] =
4179 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4180 is2GHz);
4181 targetPowerValT2[ALL_TARGET_HT20_5] =
4182 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4183 is2GHz);
4184 targetPowerValT2[ALL_TARGET_HT20_6] =
4185 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4186 is2GHz);
4187 targetPowerValT2[ALL_TARGET_HT20_7] =
4188 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4189 is2GHz);
4190 targetPowerValT2[ALL_TARGET_HT20_12] =
4191 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4192 is2GHz);
4193 targetPowerValT2[ALL_TARGET_HT20_13] =
4194 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4195 is2GHz);
4196 targetPowerValT2[ALL_TARGET_HT20_14] =
4197 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4198 is2GHz);
4199 targetPowerValT2[ALL_TARGET_HT20_15] =
4200 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4201 is2GHz);
4202 targetPowerValT2[ALL_TARGET_HT20_20] =
4203 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4204 is2GHz);
4205 targetPowerValT2[ALL_TARGET_HT20_21] =
4206 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4207 is2GHz);
4208 targetPowerValT2[ALL_TARGET_HT20_22] =
4209 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4210 is2GHz);
4211 targetPowerValT2[ALL_TARGET_HT20_23] =
4212 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4213 is2GHz);
4214 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4215 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4216 is2GHz) + ht40PowerIncForPdadc;
4217 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4218 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4219 freq,
4220 is2GHz) + ht40PowerIncForPdadc;
4221 targetPowerValT2[ALL_TARGET_HT40_4] =
4222 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4223 is2GHz) + ht40PowerIncForPdadc;
4224 targetPowerValT2[ALL_TARGET_HT40_5] =
4225 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4226 is2GHz) + ht40PowerIncForPdadc;
4227 targetPowerValT2[ALL_TARGET_HT40_6] =
4228 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4229 is2GHz) + ht40PowerIncForPdadc;
4230 targetPowerValT2[ALL_TARGET_HT40_7] =
4231 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4232 is2GHz) + ht40PowerIncForPdadc;
4233 targetPowerValT2[ALL_TARGET_HT40_12] =
4234 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4235 is2GHz) + ht40PowerIncForPdadc;
4236 targetPowerValT2[ALL_TARGET_HT40_13] =
4237 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4238 is2GHz) + ht40PowerIncForPdadc;
4239 targetPowerValT2[ALL_TARGET_HT40_14] =
4240 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4241 is2GHz) + ht40PowerIncForPdadc;
4242 targetPowerValT2[ALL_TARGET_HT40_15] =
4243 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4244 is2GHz) + ht40PowerIncForPdadc;
4245 targetPowerValT2[ALL_TARGET_HT40_20] =
4246 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4247 is2GHz) + ht40PowerIncForPdadc;
4248 targetPowerValT2[ALL_TARGET_HT40_21] =
4249 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4250 is2GHz) + ht40PowerIncForPdadc;
4251 targetPowerValT2[ALL_TARGET_HT40_22] =
4252 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4253 is2GHz) + ht40PowerIncForPdadc;
4254 targetPowerValT2[ALL_TARGET_HT40_23] =
4255 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4256 is2GHz) + ht40PowerIncForPdadc;
4257
4258 for (i = 0; i < ar9300RateSize; i++) {
4259 ath_dbg(common, ATH_DBG_EEPROM,
4260 "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4261 }
4262}
4263
4264static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4265 int mode,
4266 int ipier,
4267 int ichain,
4268 int *pfrequency,
4269 int *pcorrection,
4270 int *ptemperature, int *pvoltage)
4271{
4272 u8 *pCalPier;
4273 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4274 int is2GHz;
4275 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4276 struct ath_common *common = ath9k_hw_common(ah);
4277
4278 if (ichain >= AR9300_MAX_CHAINS) {
4279 ath_dbg(common, ATH_DBG_EEPROM,
4280 "Invalid chain index, must be less than %d\n",
4281 AR9300_MAX_CHAINS);
4282 return -1;
4283 }
4284
4285 if (mode) { /* 5GHz */
4286 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4287 ath_dbg(common, ATH_DBG_EEPROM,
4288 "Invalid 5GHz cal pier index, must be less than %d\n",
4289 AR9300_NUM_5G_CAL_PIERS);
4290 return -1;
4291 }
4292 pCalPier = &(eep->calFreqPier5G[ipier]);
4293 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4294 is2GHz = 0;
4295 } else {
4296 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4297 ath_dbg(common, ATH_DBG_EEPROM,
4298 "Invalid 2GHz cal pier index, must be less than %d\n",
4299 AR9300_NUM_2G_CAL_PIERS);
4300 return -1;
4301 }
4302
4303 pCalPier = &(eep->calFreqPier2G[ipier]);
4304 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4305 is2GHz = 1;
4306 }
4307
4308 *pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4309 *pcorrection = pCalPierStruct->refPower;
4310 *ptemperature = pCalPierStruct->tempMeas;
4311 *pvoltage = pCalPierStruct->voltMeas;
4312
4313 return 0;
4314}
4315
4316static int ar9003_hw_power_control_override(struct ath_hw *ah,
4317 int frequency,
4318 int *correction,
4319 int *voltage, int *temperature)
4320{
4321 int tempSlope = 0;
4322 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4323 int f[3], t[3];
4324
4325 REG_RMW(ah, AR_PHY_TPC_11_B0,
4326 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4327 AR_PHY_TPC_OLPC_GAIN_DELTA);
4328 if (ah->caps.tx_chainmask & BIT(1))
4329 REG_RMW(ah, AR_PHY_TPC_11_B1,
4330 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4331 AR_PHY_TPC_OLPC_GAIN_DELTA);
4332 if (ah->caps.tx_chainmask & BIT(2))
4333 REG_RMW(ah, AR_PHY_TPC_11_B2,
4334 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4335 AR_PHY_TPC_OLPC_GAIN_DELTA);
4336
4337 /* enable open loop power control on chip */
4338 REG_RMW(ah, AR_PHY_TPC_6_B0,
4339 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4340 AR_PHY_TPC_6_ERROR_EST_MODE);
4341 if (ah->caps.tx_chainmask & BIT(1))
4342 REG_RMW(ah, AR_PHY_TPC_6_B1,
4343 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4344 AR_PHY_TPC_6_ERROR_EST_MODE);
4345 if (ah->caps.tx_chainmask & BIT(2))
4346 REG_RMW(ah, AR_PHY_TPC_6_B2,
4347 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4348 AR_PHY_TPC_6_ERROR_EST_MODE);
4349
4350 /*
4351 * enable temperature compensation
4352 * Need to use register names
4353 */
4354 if (frequency < 4000)
4355 tempSlope = eep->modalHeader2G.tempSlope;
4356 else if (eep->base_ext2.tempSlopeLow != 0) {
4357 t[0] = eep->base_ext2.tempSlopeLow;
4358 f[0] = 5180;
4359 t[1] = eep->modalHeader5G.tempSlope;
4360 f[1] = 5500;
4361 t[2] = eep->base_ext2.tempSlopeHigh;
4362 f[2] = 5785;
4363 tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4364 f, t, 3);
4365 } else
4366 tempSlope = eep->modalHeader5G.tempSlope;
4367
4368 REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4369 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4370 temperature[0]);
4371
4372 return 0;
4373}
4374
4375/* Apply the recorded correction values. */
4376static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4377{
4378 int ichain, ipier, npier;
4379 int mode;
4380 int lfrequency[AR9300_MAX_CHAINS],
4381 lcorrection[AR9300_MAX_CHAINS],
4382 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4383 int hfrequency[AR9300_MAX_CHAINS],
4384 hcorrection[AR9300_MAX_CHAINS],
4385 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4386 int fdiff;
4387 int correction[AR9300_MAX_CHAINS],
4388 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4389 int pfrequency, pcorrection, ptemperature, pvoltage;
4390 struct ath_common *common = ath9k_hw_common(ah);
4391
4392 mode = (frequency >= 4000);
4393 if (mode)
4394 npier = AR9300_NUM_5G_CAL_PIERS;
4395 else
4396 npier = AR9300_NUM_2G_CAL_PIERS;
4397
4398 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4399 lfrequency[ichain] = 0;
4400 hfrequency[ichain] = 100000;
4401 }
4402 /* identify best lower and higher frequency calibration measurement */
4403 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4404 for (ipier = 0; ipier < npier; ipier++) {
4405 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4406 &pfrequency, &pcorrection,
4407 &ptemperature, &pvoltage)) {
4408 fdiff = frequency - pfrequency;
4409
4410 /*
4411 * this measurement is higher than
4412 * our desired frequency
4413 */
4414 if (fdiff <= 0) {
4415 if (hfrequency[ichain] <= 0 ||
4416 hfrequency[ichain] >= 100000 ||
4417 fdiff >
4418 (frequency - hfrequency[ichain])) {
4419 /*
4420 * new best higher
4421 * frequency measurement
4422 */
4423 hfrequency[ichain] = pfrequency;
4424 hcorrection[ichain] =
4425 pcorrection;
4426 htemperature[ichain] =
4427 ptemperature;
4428 hvoltage[ichain] = pvoltage;
4429 }
4430 }
4431 if (fdiff >= 0) {
4432 if (lfrequency[ichain] <= 0
4433 || fdiff <
4434 (frequency - lfrequency[ichain])) {
4435 /*
4436 * new best lower
4437 * frequency measurement
4438 */
4439 lfrequency[ichain] = pfrequency;
4440 lcorrection[ichain] =
4441 pcorrection;
4442 ltemperature[ichain] =
4443 ptemperature;
4444 lvoltage[ichain] = pvoltage;
4445 }
4446 }
4447 }
4448 }
4449 }
4450
4451 /* interpolate */
4452 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4453 ath_dbg(common, ATH_DBG_EEPROM,
4454 "ch=%d f=%d low=%d %d h=%d %d\n",
4455 ichain, frequency, lfrequency[ichain],
4456 lcorrection[ichain], hfrequency[ichain],
4457 hcorrection[ichain]);
4458 /* they're the same, so just pick one */
4459 if (hfrequency[ichain] == lfrequency[ichain]) {
4460 correction[ichain] = lcorrection[ichain];
4461 voltage[ichain] = lvoltage[ichain];
4462 temperature[ichain] = ltemperature[ichain];
4463 }
4464 /* the low frequency is good */
4465 else if (frequency - lfrequency[ichain] < 1000) {
4466 /* so is the high frequency, interpolate */
4467 if (hfrequency[ichain] - frequency < 1000) {
4468
4469 correction[ichain] = interpolate(frequency,
4470 lfrequency[ichain],
4471 hfrequency[ichain],
4472 lcorrection[ichain],
4473 hcorrection[ichain]);
4474
4475 temperature[ichain] = interpolate(frequency,
4476 lfrequency[ichain],
4477 hfrequency[ichain],
4478 ltemperature[ichain],
4479 htemperature[ichain]);
4480
4481 voltage[ichain] = interpolate(frequency,
4482 lfrequency[ichain],
4483 hfrequency[ichain],
4484 lvoltage[ichain],
4485 hvoltage[ichain]);
4486 }
4487 /* only low is good, use it */
4488 else {
4489 correction[ichain] = lcorrection[ichain];
4490 temperature[ichain] = ltemperature[ichain];
4491 voltage[ichain] = lvoltage[ichain];
4492 }
4493 }
4494 /* only high is good, use it */
4495 else if (hfrequency[ichain] - frequency < 1000) {
4496 correction[ichain] = hcorrection[ichain];
4497 temperature[ichain] = htemperature[ichain];
4498 voltage[ichain] = hvoltage[ichain];
4499 } else { /* nothing is good, presume 0???? */
4500 correction[ichain] = 0;
4501 temperature[ichain] = 0;
4502 voltage[ichain] = 0;
4503 }
4504 }
4505
4506 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4507 temperature);
4508
4509 ath_dbg(common, ATH_DBG_EEPROM,
4510 "for frequency=%d, calibration correction = %d %d %d\n",
4511 frequency, correction[0], correction[1], correction[2]);
4512
4513 return 0;
4514}
4515
4516static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4517 int idx,
4518 int edge,
4519 bool is2GHz)
4520{
4521 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4522 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4523
4524 if (is2GHz)
4525 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4526 else
4527 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4528}
4529
4530static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4531 int idx,
4532 unsigned int edge,
4533 u16 freq,
4534 bool is2GHz)
4535{
4536 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4537 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4538
4539 u8 *ctl_freqbin = is2GHz ?
4540 &eep->ctl_freqbin_2G[idx][0] :
4541 &eep->ctl_freqbin_5G[idx][0];
4542
4543 if (is2GHz) {
4544 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4545 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4546 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4547 } else {
4548 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4549 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4550 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4551 }
4552
4553 return MAX_RATE_POWER;
4554}
4555
4556/*
4557 * Find the maximum conformance test limit for the given channel and CTL info
4558 */
4559static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4560 u16 freq, int idx, bool is2GHz)
4561{
4562 u16 twiceMaxEdgePower = MAX_RATE_POWER;
4563 u8 *ctl_freqbin = is2GHz ?
4564 &eep->ctl_freqbin_2G[idx][0] :
4565 &eep->ctl_freqbin_5G[idx][0];
4566 u16 num_edges = is2GHz ?
4567 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4568 unsigned int edge;
4569
4570 /* Get the edge power */
4571 for (edge = 0;
4572 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4573 edge++) {
4574 /*
4575 * If there's an exact channel match or an inband flag set
4576 * on the lower channel use the given rdEdgePower
4577 */
4578 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4579 twiceMaxEdgePower =
4580 ar9003_hw_get_direct_edge_power(eep, idx,
4581 edge, is2GHz);
4582 break;
4583 } else if ((edge > 0) &&
4584 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4585 is2GHz))) {
4586 twiceMaxEdgePower =
4587 ar9003_hw_get_indirect_edge_power(eep, idx,
4588 edge, freq,
4589 is2GHz);
4590 /*
4591 * Leave loop - no more affecting edges possible in
4592 * this monotonic increasing list
4593 */
4594 break;
4595 }
4596 }
4597 return twiceMaxEdgePower;
4598}
4599
4600static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4601 struct ath9k_channel *chan,
4602 u8 *pPwrArray, u16 cfgCtl,
4603 u8 twiceAntennaReduction,
4604 u8 twiceMaxRegulatoryPower,
4605 u16 powerLimit)
4606{
4607 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4608 struct ath_common *common = ath9k_hw_common(ah);
4609 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4610 u16 twiceMaxEdgePower = MAX_RATE_POWER;
4611 static const u16 tpScaleReductionTable[5] = {
4612 0, 3, 6, 9, MAX_RATE_POWER
4613 };
4614 int i;
4615 int16_t twiceLargestAntenna;
4616 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
4617 static const u16 ctlModesFor11a[] = {
4618 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4619 };
4620 static const u16 ctlModesFor11g[] = {
4621 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4622 CTL_11G_EXT, CTL_2GHT40
4623 };
4624 u16 numCtlModes;
4625 const u16 *pCtlMode;
4626 u16 ctlMode, freq;
4627 struct chan_centers centers;
4628 u8 *ctlIndex;
4629 u8 ctlNum;
4630 u16 twiceMinEdgePower;
4631 bool is2ghz = IS_CHAN_2GHZ(chan);
4632
4633 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
4634
4635 /* Compute TxPower reduction due to Antenna Gain */
4636 if (is2ghz)
4637 twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
4638 else
4639 twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
4640
4641 twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
4642 twiceLargestAntenna, 0);
4643
4644 /*
4645 * scaledPower is the minimum of the user input power level
4646 * and the regulatory allowed power level
4647 */
4648 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
4649
4650 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
4651 maxRegAllowedPower -=
4652 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
4653 }
4654
4655 scaledPower = min(powerLimit, maxRegAllowedPower);
4656
4657 /*
4658 * Reduce scaled Power by number of chains active to get
4659 * to per chain tx power level
4660 */
4661 switch (ar5416_get_ntxchains(ah->txchainmask)) {
4662 case 1:
4663 break;
4664 case 2:
4665 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4666 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4667 else
4668 scaledPower = 0;
4669 break;
4670 case 3:
4671 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4672 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4673 else
4674 scaledPower = 0;
4675 break;
4676 }
4677
4678 scaledPower = max((u16)0, scaledPower);
4679
4680 /*
4681 * Get target powers from EEPROM - our baseline for TX Power
4682 */
4683 if (is2ghz) {
4684 /* Setup for CTL modes */
4685 /* CTL_11B, CTL_11G, CTL_2GHT20 */
4686 numCtlModes =
4687 ARRAY_SIZE(ctlModesFor11g) -
4688 SUB_NUM_CTL_MODES_AT_2G_40;
4689 pCtlMode = ctlModesFor11g;
4690 if (IS_CHAN_HT40(chan))
4691 /* All 2G CTL's */
4692 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4693 } else {
4694 /* Setup for CTL modes */
4695 /* CTL_11A, CTL_5GHT20 */
4696 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4697 SUB_NUM_CTL_MODES_AT_5G_40;
4698 pCtlMode = ctlModesFor11a;
4699 if (IS_CHAN_HT40(chan))
4700 /* All 5G CTL's */
4701 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4702 }
4703
4704 /*
4705 * For MIMO, need to apply regulatory caps individually across
4706 * dynamically running modes: CCK, OFDM, HT20, HT40
4707 *
4708 * The outer loop walks through each possible applicable runtime mode.
4709 * The inner loop walks through each ctlIndex entry in EEPROM.
4710 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4711 */
4712 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4713 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4714 (pCtlMode[ctlMode] == CTL_2GHT40);
4715 if (isHt40CtlMode)
4716 freq = centers.synth_center;
4717 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4718 freq = centers.ext_center;
4719 else
4720 freq = centers.ctl_center;
4721
4722 ath_dbg(common, ATH_DBG_REGULATORY,
4723 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4724 ctlMode, numCtlModes, isHt40CtlMode,
4725 (pCtlMode[ctlMode] & EXT_ADDITIVE));
4726
4727 /* walk through each CTL index stored in EEPROM */
4728 if (is2ghz) {
4729 ctlIndex = pEepData->ctlIndex_2G;
4730 ctlNum = AR9300_NUM_CTLS_2G;
4731 } else {
4732 ctlIndex = pEepData->ctlIndex_5G;
4733 ctlNum = AR9300_NUM_CTLS_5G;
4734 }
4735
4736 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4737 ath_dbg(common, ATH_DBG_REGULATORY,
4738 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4739 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4740 chan->channel);
4741
4742 /*
4743 * compare test group from regulatory
4744 * channel list with test mode from pCtlMode
4745 * list
4746 */
4747 if ((((cfgCtl & ~CTL_MODE_M) |
4748 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4749 ctlIndex[i]) ||
4750 (((cfgCtl & ~CTL_MODE_M) |
4751 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4752 ((ctlIndex[i] & CTL_MODE_M) |
4753 SD_NO_CTL))) {
4754 twiceMinEdgePower =
4755 ar9003_hw_get_max_edge_power(pEepData,
4756 freq, i,
4757 is2ghz);
4758
4759 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4760 /*
4761 * Find the minimum of all CTL
4762 * edge powers that apply to
4763 * this channel
4764 */
4765 twiceMaxEdgePower =
4766 min(twiceMaxEdgePower,
4767 twiceMinEdgePower);
4768 else {
4769 /* specific */
4770 twiceMaxEdgePower =
4771 twiceMinEdgePower;
4772 break;
4773 }
4774 }
4775 }
4776
4777 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4778
4779 ath_dbg(common, ATH_DBG_REGULATORY,
4780 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4781 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4782 scaledPower, minCtlPower);
4783
4784 /* Apply ctl mode to correct target power set */
4785 switch (pCtlMode[ctlMode]) {
4786 case CTL_11B:
4787 for (i = ALL_TARGET_LEGACY_1L_5L;
4788 i <= ALL_TARGET_LEGACY_11S; i++)
4789 pPwrArray[i] =
4790 (u8)min((u16)pPwrArray[i],
4791 minCtlPower);
4792 break;
4793 case CTL_11A:
4794 case CTL_11G:
4795 for (i = ALL_TARGET_LEGACY_6_24;
4796 i <= ALL_TARGET_LEGACY_54; i++)
4797 pPwrArray[i] =
4798 (u8)min((u16)pPwrArray[i],
4799 minCtlPower);
4800 break;
4801 case CTL_5GHT20:
4802 case CTL_2GHT20:
4803 for (i = ALL_TARGET_HT20_0_8_16;
4804 i <= ALL_TARGET_HT20_21; i++)
4805 pPwrArray[i] =
4806 (u8)min((u16)pPwrArray[i],
4807 minCtlPower);
4808 pPwrArray[ALL_TARGET_HT20_22] =
4809 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4810 minCtlPower);
4811 pPwrArray[ALL_TARGET_HT20_23] =
4812 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4813 minCtlPower);
4814 break;
4815 case CTL_5GHT40:
4816 case CTL_2GHT40:
4817 for (i = ALL_TARGET_HT40_0_8_16;
4818 i <= ALL_TARGET_HT40_23; i++)
4819 pPwrArray[i] =
4820 (u8)min((u16)pPwrArray[i],
4821 minCtlPower);
4822 break;
4823 default:
4824 break;
4825 }
4826 } /* end ctl mode checking */
4827}
4828
4829static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4830{
4831 u8 mod_idx = mcs_idx % 8;
4832
4833 if (mod_idx <= 3)
4834 return mod_idx ? (base_pwridx + 1) : base_pwridx;
4835 else
4836 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4837}
4838
4839static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4840 struct ath9k_channel *chan, u16 cfgCtl,
4841 u8 twiceAntennaReduction,
4842 u8 twiceMaxRegulatoryPower,
4843 u8 powerLimit, bool test)
4844{
4845 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4846 struct ath_common *common = ath9k_hw_common(ah);
4847 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4848 struct ar9300_modal_eep_header *modal_hdr;
4849 u8 targetPowerValT2[ar9300RateSize];
4850 u8 target_power_val_t2_eep[ar9300RateSize];
4851 unsigned int i = 0, paprd_scale_factor = 0;
4852 u8 pwr_idx, min_pwridx = 0;
4853
4854 ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4855
4856 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4857 if (IS_CHAN_2GHZ(chan))
4858 modal_hdr = &eep->modalHeader2G;
4859 else
4860 modal_hdr = &eep->modalHeader5G;
4861
4862 ah->paprd_ratemask =
4863 le32_to_cpu(modal_hdr->papdRateMaskHt20) &
4864 AR9300_PAPRD_RATE_MASK;
4865
4866 ah->paprd_ratemask_ht40 =
4867 le32_to_cpu(modal_hdr->papdRateMaskHt40) &
4868 AR9300_PAPRD_RATE_MASK;
4869
4870 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
4871 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
4872 ALL_TARGET_HT20_0_8_16;
4873
4874 if (!ah->paprd_table_write_done) {
4875 memcpy(target_power_val_t2_eep, targetPowerValT2,
4876 sizeof(targetPowerValT2));
4877 for (i = 0; i < 24; i++) {
4878 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
4879 if (ah->paprd_ratemask & (1 << i)) {
4880 if (targetPowerValT2[pwr_idx] &&
4881 targetPowerValT2[pwr_idx] ==
4882 target_power_val_t2_eep[pwr_idx])
4883 targetPowerValT2[pwr_idx] -=
4884 paprd_scale_factor;
4885 }
4886 }
4887 }
4888 memcpy(target_power_val_t2_eep, targetPowerValT2,
4889 sizeof(targetPowerValT2));
4890 }
4891
4892 ar9003_hw_set_power_per_rate_table(ah, chan,
4893 targetPowerValT2, cfgCtl,
4894 twiceAntennaReduction,
4895 twiceMaxRegulatoryPower,
4896 powerLimit);
4897
4898 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4899 for (i = 0; i < ar9300RateSize; i++) {
4900 if ((ah->paprd_ratemask & (1 << i)) &&
4901 (abs(targetPowerValT2[i] -
4902 target_power_val_t2_eep[i]) >
4903 paprd_scale_factor)) {
4904 ah->paprd_ratemask &= ~(1 << i);
4905 ath_dbg(common, ATH_DBG_EEPROM,
4906 "paprd disabled for mcs %d\n", i);
4907 }
4908 }
4909 }
4910
4911 regulatory->max_power_level = 0;
4912 for (i = 0; i < ar9300RateSize; i++) {
4913 if (targetPowerValT2[i] > regulatory->max_power_level)
4914 regulatory->max_power_level = targetPowerValT2[i];
4915 }
4916
4917 if (test)
4918 return;
4919
4920 for (i = 0; i < ar9300RateSize; i++) {
4921 ath_dbg(common, ATH_DBG_EEPROM,
4922 "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4923 }
4924
4925 /*
4926 * This is the TX power we send back to driver core,
4927 * and it can use to pass to userspace to display our
4928 * currently configured TX power setting.
4929 *
4930 * Since power is rate dependent, use one of the indices
4931 * from the AR9300_Rates enum to select an entry from
4932 * targetPowerValT2[] to report. Currently returns the
4933 * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
4934 * as CCK power is less interesting (?).
4935 */
4936 i = ALL_TARGET_LEGACY_6_24; /* legacy */
4937 if (IS_CHAN_HT40(chan))
4938 i = ALL_TARGET_HT40_0_8_16; /* ht40 */
4939 else if (IS_CHAN_HT20(chan))
4940 i = ALL_TARGET_HT20_0_8_16; /* ht20 */
4941
4942 ah->txpower_limit = targetPowerValT2[i];
4943 regulatory->max_power_level = targetPowerValT2[i];
4944
4945 /* Write target power array to registers */
4946 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
4947 ar9003_hw_calibration_apply(ah, chan->channel);
4948
4949 if (IS_CHAN_2GHZ(chan)) {
4950 if (IS_CHAN_HT40(chan))
4951 i = ALL_TARGET_HT40_0_8_16;
4952 else
4953 i = ALL_TARGET_HT20_0_8_16;
4954 } else {
4955 if (IS_CHAN_HT40(chan))
4956 i = ALL_TARGET_HT40_7;
4957 else
4958 i = ALL_TARGET_HT20_7;
4959 }
4960 ah->paprd_target_power = targetPowerValT2[i];
4961}
4962
4963static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
4964 u16 i, bool is2GHz)
4965{
4966 return AR_NO_SPUR;
4967}
4968
4969s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
4970{
4971 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4972
4973 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
4974}
4975
4976s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
4977{
4978 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4979
4980 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
4981}
4982
4983u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
4984{
4985 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4986
4987 if (is_2ghz)
4988 return eep->modalHeader2G.spurChans;
4989 else
4990 return eep->modalHeader5G.spurChans;
4991}
4992
4993unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
4994 struct ath9k_channel *chan)
4995{
4996 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4997
4998 if (IS_CHAN_2GHZ(chan))
4999 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5000 AR9300_PAPRD_SCALE_1);
5001 else {
5002 if (chan->channel >= 5700)
5003 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5004 AR9300_PAPRD_SCALE_1);
5005 else if (chan->channel >= 5400)
5006 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5007 AR9300_PAPRD_SCALE_2);
5008 else
5009 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5010 AR9300_PAPRD_SCALE_1);
5011 }
5012}
5013
5014const struct eeprom_ops eep_ar9300_ops = {
5015 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
5016 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
5017 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5018 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5019 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5020 .set_board_values = ath9k_hw_ar9300_set_board_values,
5021 .set_addac = ath9k_hw_ar9300_set_addac,
5022 .set_txpower = ath9k_hw_ar9300_set_txpower,
5023 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5024};
1/*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include <linux/kernel.h>
19#include "hw.h"
20#include "ar9003_phy.h"
21#include "ar9003_eeprom.h"
22#include "ar9003_mci.h"
23
24#define COMP_HDR_LEN 4
25#define COMP_CKSUM_LEN 2
26
27#define LE16(x) cpu_to_le16(x)
28#define LE32(x) cpu_to_le32(x)
29
30/* Local defines to distinguish between extension and control CTL's */
31#define EXT_ADDITIVE (0x8000)
32#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
33#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
34#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
35
36#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
37#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
38
39#define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
40
41#define EEPROM_DATA_LEN_9485 1088
42
43static int ar9003_hw_power_interpolate(int32_t x,
44 int32_t *px, int32_t *py, u_int16_t np);
45
46static const struct ar9300_eeprom ar9300_default = {
47 .eepromVersion = 2,
48 .templateVersion = 2,
49 .macAddr = {0, 2, 3, 4, 5, 6},
50 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
51 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
52 .baseEepHeader = {
53 .regDmn = { LE16(0), LE16(0x1f) },
54 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
55 .opCapFlags = {
56 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
57 .eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
58 },
59 .rfSilent = 0,
60 .blueToothOptions = 0,
61 .deviceCap = 0,
62 .deviceType = 5, /* takes lower byte in eeprom location */
63 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
64 .params_for_tuning_caps = {0, 0},
65 .featureEnable = 0x0c,
66 /*
67 * bit0 - enable tx temp comp - disabled
68 * bit1 - enable tx volt comp - disabled
69 * bit2 - enable fastClock - enabled
70 * bit3 - enable doubling - enabled
71 * bit4 - enable internal regulator - disabled
72 * bit5 - enable pa predistortion - disabled
73 */
74 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
75 .eepromWriteEnableGpio = 3,
76 .wlanDisableGpio = 0,
77 .wlanLedGpio = 8,
78 .rxBandSelectGpio = 0xff,
79 .txrxgain = 0,
80 .swreg = 0,
81 },
82 .modalHeader2G = {
83 /* ar9300_modal_eep_header 2g */
84 /* 4 idle,t1,t2,b(4 bits per setting) */
85 .antCtrlCommon = LE32(0x110),
86 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
87 .antCtrlCommon2 = LE32(0x22222),
88
89 /*
90 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
91 * rx1, rx12, b (2 bits each)
92 */
93 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
94
95 /*
96 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
97 * for ar9280 (0xa20c/b20c 5:0)
98 */
99 .xatten1DB = {0, 0, 0},
100
101 /*
102 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
103 * for ar9280 (0xa20c/b20c 16:12
104 */
105 .xatten1Margin = {0, 0, 0},
106 .tempSlope = 36,
107 .voltSlope = 0,
108
109 /*
110 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
111 * channels in usual fbin coding format
112 */
113 .spurChans = {0, 0, 0, 0, 0},
114
115 /*
116 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
117 * if the register is per chain
118 */
119 .noiseFloorThreshCh = {-1, 0, 0},
120 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
121 .quick_drop = 0,
122 .xpaBiasLvl = 0,
123 .txFrameToDataStart = 0x0e,
124 .txFrameToPaOn = 0x0e,
125 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
126 .antennaGain = 0,
127 .switchSettling = 0x2c,
128 .adcDesiredSize = -30,
129 .txEndToXpaOff = 0,
130 .txEndToRxOn = 0x2,
131 .txFrameToXpaOn = 0xe,
132 .thresh62 = 28,
133 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
134 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
135 .switchcomspdt = 0,
136 .xlna_bias_strength = 0,
137 .futureModal = {
138 0, 0, 0, 0, 0, 0, 0,
139 },
140 },
141 .base_ext1 = {
142 .ant_div_control = 0,
143 .future = {0, 0},
144 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
145 },
146 .calFreqPier2G = {
147 FREQ2FBIN(2412, 1),
148 FREQ2FBIN(2437, 1),
149 FREQ2FBIN(2472, 1),
150 },
151 /* ar9300_cal_data_per_freq_op_loop 2g */
152 .calPierData2G = {
153 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
156 },
157 .calTarget_freqbin_Cck = {
158 FREQ2FBIN(2412, 1),
159 FREQ2FBIN(2484, 1),
160 },
161 .calTarget_freqbin_2G = {
162 FREQ2FBIN(2412, 1),
163 FREQ2FBIN(2437, 1),
164 FREQ2FBIN(2472, 1)
165 },
166 .calTarget_freqbin_2GHT20 = {
167 FREQ2FBIN(2412, 1),
168 FREQ2FBIN(2437, 1),
169 FREQ2FBIN(2472, 1)
170 },
171 .calTarget_freqbin_2GHT40 = {
172 FREQ2FBIN(2412, 1),
173 FREQ2FBIN(2437, 1),
174 FREQ2FBIN(2472, 1)
175 },
176 .calTargetPowerCck = {
177 /* 1L-5L,5S,11L,11S */
178 { {36, 36, 36, 36} },
179 { {36, 36, 36, 36} },
180 },
181 .calTargetPower2G = {
182 /* 6-24,36,48,54 */
183 { {32, 32, 28, 24} },
184 { {32, 32, 28, 24} },
185 { {32, 32, 28, 24} },
186 },
187 .calTargetPower2GHT20 = {
188 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 },
192 .calTargetPower2GHT40 = {
193 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
196 },
197 .ctlIndex_2G = {
198 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
199 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
200 },
201 .ctl_freqbin_2G = {
202 {
203 FREQ2FBIN(2412, 1),
204 FREQ2FBIN(2417, 1),
205 FREQ2FBIN(2457, 1),
206 FREQ2FBIN(2462, 1)
207 },
208 {
209 FREQ2FBIN(2412, 1),
210 FREQ2FBIN(2417, 1),
211 FREQ2FBIN(2462, 1),
212 0xFF,
213 },
214
215 {
216 FREQ2FBIN(2412, 1),
217 FREQ2FBIN(2417, 1),
218 FREQ2FBIN(2462, 1),
219 0xFF,
220 },
221 {
222 FREQ2FBIN(2422, 1),
223 FREQ2FBIN(2427, 1),
224 FREQ2FBIN(2447, 1),
225 FREQ2FBIN(2452, 1)
226 },
227
228 {
229 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
230 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
231 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
232 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
233 },
234
235 {
236 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
237 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
238 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
239 0,
240 },
241
242 {
243 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
244 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
245 FREQ2FBIN(2472, 1),
246 0,
247 },
248
249 {
250 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
251 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
252 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
253 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
254 },
255
256 {
257 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
258 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
259 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
260 },
261
262 {
263 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
264 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
265 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
266 0
267 },
268
269 {
270 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
271 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
272 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
273 0
274 },
275
276 {
277 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
278 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
279 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
280 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
281 }
282 },
283 .ctlPowerData_2G = {
284 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
285 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
286 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
287
288 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
289 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291
292 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
293 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295
296 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
297 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
298 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
299 },
300 .modalHeader5G = {
301 /* 4 idle,t1,t2,b (4 bits per setting) */
302 .antCtrlCommon = LE32(0x110),
303 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
304 .antCtrlCommon2 = LE32(0x22222),
305 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
306 .antCtrlChain = {
307 LE16(0x000), LE16(0x000), LE16(0x000),
308 },
309 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
310 .xatten1DB = {0, 0, 0},
311
312 /*
313 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
314 * for merlin (0xa20c/b20c 16:12
315 */
316 .xatten1Margin = {0, 0, 0},
317 .tempSlope = 68,
318 .voltSlope = 0,
319 /* spurChans spur channels in usual fbin coding format */
320 .spurChans = {0, 0, 0, 0, 0},
321 /* noiseFloorThreshCh Check if the register is per chain */
322 .noiseFloorThreshCh = {-1, 0, 0},
323 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
324 .quick_drop = 0,
325 .xpaBiasLvl = 0,
326 .txFrameToDataStart = 0x0e,
327 .txFrameToPaOn = 0x0e,
328 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
329 .antennaGain = 0,
330 .switchSettling = 0x2d,
331 .adcDesiredSize = -30,
332 .txEndToXpaOff = 0,
333 .txEndToRxOn = 0x2,
334 .txFrameToXpaOn = 0xe,
335 .thresh62 = 28,
336 .papdRateMaskHt20 = LE32(0x0c80c080),
337 .papdRateMaskHt40 = LE32(0x0080c080),
338 .switchcomspdt = 0,
339 .xlna_bias_strength = 0,
340 .futureModal = {
341 0, 0, 0, 0, 0, 0, 0,
342 },
343 },
344 .base_ext2 = {
345 .tempSlopeLow = 0,
346 .tempSlopeHigh = 0,
347 .xatten1DBLow = {0, 0, 0},
348 .xatten1MarginLow = {0, 0, 0},
349 .xatten1DBHigh = {0, 0, 0},
350 .xatten1MarginHigh = {0, 0, 0}
351 },
352 .calFreqPier5G = {
353 FREQ2FBIN(5180, 0),
354 FREQ2FBIN(5220, 0),
355 FREQ2FBIN(5320, 0),
356 FREQ2FBIN(5400, 0),
357 FREQ2FBIN(5500, 0),
358 FREQ2FBIN(5600, 0),
359 FREQ2FBIN(5725, 0),
360 FREQ2FBIN(5825, 0)
361 },
362 .calPierData5G = {
363 {
364 {0, 0, 0, 0, 0},
365 {0, 0, 0, 0, 0},
366 {0, 0, 0, 0, 0},
367 {0, 0, 0, 0, 0},
368 {0, 0, 0, 0, 0},
369 {0, 0, 0, 0, 0},
370 {0, 0, 0, 0, 0},
371 {0, 0, 0, 0, 0},
372 },
373 {
374 {0, 0, 0, 0, 0},
375 {0, 0, 0, 0, 0},
376 {0, 0, 0, 0, 0},
377 {0, 0, 0, 0, 0},
378 {0, 0, 0, 0, 0},
379 {0, 0, 0, 0, 0},
380 {0, 0, 0, 0, 0},
381 {0, 0, 0, 0, 0},
382 },
383 {
384 {0, 0, 0, 0, 0},
385 {0, 0, 0, 0, 0},
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 {0, 0, 0, 0, 0},
390 {0, 0, 0, 0, 0},
391 {0, 0, 0, 0, 0},
392 },
393
394 },
395 .calTarget_freqbin_5G = {
396 FREQ2FBIN(5180, 0),
397 FREQ2FBIN(5220, 0),
398 FREQ2FBIN(5320, 0),
399 FREQ2FBIN(5400, 0),
400 FREQ2FBIN(5500, 0),
401 FREQ2FBIN(5600, 0),
402 FREQ2FBIN(5725, 0),
403 FREQ2FBIN(5825, 0)
404 },
405 .calTarget_freqbin_5GHT20 = {
406 FREQ2FBIN(5180, 0),
407 FREQ2FBIN(5240, 0),
408 FREQ2FBIN(5320, 0),
409 FREQ2FBIN(5500, 0),
410 FREQ2FBIN(5700, 0),
411 FREQ2FBIN(5745, 0),
412 FREQ2FBIN(5725, 0),
413 FREQ2FBIN(5825, 0)
414 },
415 .calTarget_freqbin_5GHT40 = {
416 FREQ2FBIN(5180, 0),
417 FREQ2FBIN(5240, 0),
418 FREQ2FBIN(5320, 0),
419 FREQ2FBIN(5500, 0),
420 FREQ2FBIN(5700, 0),
421 FREQ2FBIN(5745, 0),
422 FREQ2FBIN(5725, 0),
423 FREQ2FBIN(5825, 0)
424 },
425 .calTargetPower5G = {
426 /* 6-24,36,48,54 */
427 { {20, 20, 20, 10} },
428 { {20, 20, 20, 10} },
429 { {20, 20, 20, 10} },
430 { {20, 20, 20, 10} },
431 { {20, 20, 20, 10} },
432 { {20, 20, 20, 10} },
433 { {20, 20, 20, 10} },
434 { {20, 20, 20, 10} },
435 },
436 .calTargetPower5GHT20 = {
437 /*
438 * 0_8_16,1-3_9-11_17-19,
439 * 4,5,6,7,12,13,14,15,20,21,22,23
440 */
441 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
449 },
450 .calTargetPower5GHT40 = {
451 /*
452 * 0_8_16,1-3_9-11_17-19,
453 * 4,5,6,7,12,13,14,15,20,21,22,23
454 */
455 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463 },
464 .ctlIndex_5G = {
465 0x10, 0x16, 0x18, 0x40, 0x46,
466 0x48, 0x30, 0x36, 0x38
467 },
468 .ctl_freqbin_5G = {
469 {
470 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
471 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
472 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
473 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
474 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
475 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
476 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
477 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
478 },
479 {
480 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
481 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
482 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
483 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
484 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
485 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
486 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
487 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
488 },
489
490 {
491 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
492 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
493 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
494 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
495 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
496 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
497 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
498 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
499 },
500
501 {
502 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
503 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
504 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
505 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
506 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
507 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
508 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
509 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
510 },
511
512 {
513 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
514 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
515 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
516 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
517 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
518 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
519 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
520 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
521 },
522
523 {
524 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
525 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
526 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
527 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
528 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
529 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
530 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
531 /* Data[5].ctlEdges[7].bChannel */ 0xFF
532 },
533
534 {
535 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
536 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
537 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
538 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
539 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
540 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
541 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
542 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
543 },
544
545 {
546 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
547 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
548 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
549 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
550 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
551 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
552 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
553 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
554 },
555
556 {
557 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
558 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
559 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
560 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
561 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
562 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
563 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
564 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
565 }
566 },
567 .ctlPowerData_5G = {
568 {
569 {
570 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
571 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
572 }
573 },
574 {
575 {
576 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
577 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
578 }
579 },
580 {
581 {
582 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
583 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
584 }
585 },
586 {
587 {
588 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
589 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
590 }
591 },
592 {
593 {
594 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
595 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
596 }
597 },
598 {
599 {
600 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
601 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
602 }
603 },
604 {
605 {
606 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
608 }
609 },
610 {
611 {
612 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
613 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
614 }
615 },
616 {
617 {
618 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
619 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
620 }
621 },
622 }
623};
624
625static const struct ar9300_eeprom ar9300_x113 = {
626 .eepromVersion = 2,
627 .templateVersion = 6,
628 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
629 .custData = {"x113-023-f0000"},
630 .baseEepHeader = {
631 .regDmn = { LE16(0), LE16(0x1f) },
632 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
633 .opCapFlags = {
634 .opFlags = AR5416_OPFLAGS_11A,
635 .eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
636 },
637 .rfSilent = 0,
638 .blueToothOptions = 0,
639 .deviceCap = 0,
640 .deviceType = 5, /* takes lower byte in eeprom location */
641 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
642 .params_for_tuning_caps = {0, 0},
643 .featureEnable = 0x0d,
644 /*
645 * bit0 - enable tx temp comp - disabled
646 * bit1 - enable tx volt comp - disabled
647 * bit2 - enable fastClock - enabled
648 * bit3 - enable doubling - enabled
649 * bit4 - enable internal regulator - disabled
650 * bit5 - enable pa predistortion - disabled
651 */
652 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
653 .eepromWriteEnableGpio = 6,
654 .wlanDisableGpio = 0,
655 .wlanLedGpio = 8,
656 .rxBandSelectGpio = 0xff,
657 .txrxgain = 0x21,
658 .swreg = 0,
659 },
660 .modalHeader2G = {
661 /* ar9300_modal_eep_header 2g */
662 /* 4 idle,t1,t2,b(4 bits per setting) */
663 .antCtrlCommon = LE32(0x110),
664 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
665 .antCtrlCommon2 = LE32(0x44444),
666
667 /*
668 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
669 * rx1, rx12, b (2 bits each)
670 */
671 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
672
673 /*
674 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
675 * for ar9280 (0xa20c/b20c 5:0)
676 */
677 .xatten1DB = {0, 0, 0},
678
679 /*
680 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
681 * for ar9280 (0xa20c/b20c 16:12
682 */
683 .xatten1Margin = {0, 0, 0},
684 .tempSlope = 25,
685 .voltSlope = 0,
686
687 /*
688 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
689 * channels in usual fbin coding format
690 */
691 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
692
693 /*
694 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
695 * if the register is per chain
696 */
697 .noiseFloorThreshCh = {-1, 0, 0},
698 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
699 .quick_drop = 0,
700 .xpaBiasLvl = 0,
701 .txFrameToDataStart = 0x0e,
702 .txFrameToPaOn = 0x0e,
703 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
704 .antennaGain = 0,
705 .switchSettling = 0x2c,
706 .adcDesiredSize = -30,
707 .txEndToXpaOff = 0,
708 .txEndToRxOn = 0x2,
709 .txFrameToXpaOn = 0xe,
710 .thresh62 = 28,
711 .papdRateMaskHt20 = LE32(0x0c80c080),
712 .papdRateMaskHt40 = LE32(0x0080c080),
713 .switchcomspdt = 0,
714 .xlna_bias_strength = 0,
715 .futureModal = {
716 0, 0, 0, 0, 0, 0, 0,
717 },
718 },
719 .base_ext1 = {
720 .ant_div_control = 0,
721 .future = {0, 0},
722 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
723 },
724 .calFreqPier2G = {
725 FREQ2FBIN(2412, 1),
726 FREQ2FBIN(2437, 1),
727 FREQ2FBIN(2472, 1),
728 },
729 /* ar9300_cal_data_per_freq_op_loop 2g */
730 .calPierData2G = {
731 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
732 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
733 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
734 },
735 .calTarget_freqbin_Cck = {
736 FREQ2FBIN(2412, 1),
737 FREQ2FBIN(2472, 1),
738 },
739 .calTarget_freqbin_2G = {
740 FREQ2FBIN(2412, 1),
741 FREQ2FBIN(2437, 1),
742 FREQ2FBIN(2472, 1)
743 },
744 .calTarget_freqbin_2GHT20 = {
745 FREQ2FBIN(2412, 1),
746 FREQ2FBIN(2437, 1),
747 FREQ2FBIN(2472, 1)
748 },
749 .calTarget_freqbin_2GHT40 = {
750 FREQ2FBIN(2412, 1),
751 FREQ2FBIN(2437, 1),
752 FREQ2FBIN(2472, 1)
753 },
754 .calTargetPowerCck = {
755 /* 1L-5L,5S,11L,11S */
756 { {34, 34, 34, 34} },
757 { {34, 34, 34, 34} },
758 },
759 .calTargetPower2G = {
760 /* 6-24,36,48,54 */
761 { {34, 34, 32, 32} },
762 { {34, 34, 32, 32} },
763 { {34, 34, 32, 32} },
764 },
765 .calTargetPower2GHT20 = {
766 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
767 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
768 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
769 },
770 .calTargetPower2GHT40 = {
771 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
772 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
773 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
774 },
775 .ctlIndex_2G = {
776 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
777 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
778 },
779 .ctl_freqbin_2G = {
780 {
781 FREQ2FBIN(2412, 1),
782 FREQ2FBIN(2417, 1),
783 FREQ2FBIN(2457, 1),
784 FREQ2FBIN(2462, 1)
785 },
786 {
787 FREQ2FBIN(2412, 1),
788 FREQ2FBIN(2417, 1),
789 FREQ2FBIN(2462, 1),
790 0xFF,
791 },
792
793 {
794 FREQ2FBIN(2412, 1),
795 FREQ2FBIN(2417, 1),
796 FREQ2FBIN(2462, 1),
797 0xFF,
798 },
799 {
800 FREQ2FBIN(2422, 1),
801 FREQ2FBIN(2427, 1),
802 FREQ2FBIN(2447, 1),
803 FREQ2FBIN(2452, 1)
804 },
805
806 {
807 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
808 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
809 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
810 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
811 },
812
813 {
814 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
815 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
816 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
817 0,
818 },
819
820 {
821 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
822 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
823 FREQ2FBIN(2472, 1),
824 0,
825 },
826
827 {
828 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
829 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
830 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
831 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
832 },
833
834 {
835 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
836 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
837 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
838 },
839
840 {
841 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
842 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
843 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
844 0
845 },
846
847 {
848 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
849 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
850 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
851 0
852 },
853
854 {
855 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
856 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
857 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
858 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
859 }
860 },
861 .ctlPowerData_2G = {
862 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
865
866 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
867 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869
870 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
871 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
872 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
873
874 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
875 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
876 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
877 },
878 .modalHeader5G = {
879 /* 4 idle,t1,t2,b (4 bits per setting) */
880 .antCtrlCommon = LE32(0x220),
881 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
882 .antCtrlCommon2 = LE32(0x11111),
883 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
884 .antCtrlChain = {
885 LE16(0x150), LE16(0x150), LE16(0x150),
886 },
887 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
888 .xatten1DB = {0, 0, 0},
889
890 /*
891 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
892 * for merlin (0xa20c/b20c 16:12
893 */
894 .xatten1Margin = {0, 0, 0},
895 .tempSlope = 68,
896 .voltSlope = 0,
897 /* spurChans spur channels in usual fbin coding format */
898 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
899 /* noiseFloorThreshCh Check if the register is per chain */
900 .noiseFloorThreshCh = {-1, 0, 0},
901 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
902 .quick_drop = 0,
903 .xpaBiasLvl = 0xf,
904 .txFrameToDataStart = 0x0e,
905 .txFrameToPaOn = 0x0e,
906 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
907 .antennaGain = 0,
908 .switchSettling = 0x2d,
909 .adcDesiredSize = -30,
910 .txEndToXpaOff = 0,
911 .txEndToRxOn = 0x2,
912 .txFrameToXpaOn = 0xe,
913 .thresh62 = 28,
914 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
915 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
916 .switchcomspdt = 0,
917 .xlna_bias_strength = 0,
918 .futureModal = {
919 0, 0, 0, 0, 0, 0, 0,
920 },
921 },
922 .base_ext2 = {
923 .tempSlopeLow = 72,
924 .tempSlopeHigh = 105,
925 .xatten1DBLow = {0, 0, 0},
926 .xatten1MarginLow = {0, 0, 0},
927 .xatten1DBHigh = {0, 0, 0},
928 .xatten1MarginHigh = {0, 0, 0}
929 },
930 .calFreqPier5G = {
931 FREQ2FBIN(5180, 0),
932 FREQ2FBIN(5240, 0),
933 FREQ2FBIN(5320, 0),
934 FREQ2FBIN(5400, 0),
935 FREQ2FBIN(5500, 0),
936 FREQ2FBIN(5600, 0),
937 FREQ2FBIN(5745, 0),
938 FREQ2FBIN(5785, 0)
939 },
940 .calPierData5G = {
941 {
942 {0, 0, 0, 0, 0},
943 {0, 0, 0, 0, 0},
944 {0, 0, 0, 0, 0},
945 {0, 0, 0, 0, 0},
946 {0, 0, 0, 0, 0},
947 {0, 0, 0, 0, 0},
948 {0, 0, 0, 0, 0},
949 {0, 0, 0, 0, 0},
950 },
951 {
952 {0, 0, 0, 0, 0},
953 {0, 0, 0, 0, 0},
954 {0, 0, 0, 0, 0},
955 {0, 0, 0, 0, 0},
956 {0, 0, 0, 0, 0},
957 {0, 0, 0, 0, 0},
958 {0, 0, 0, 0, 0},
959 {0, 0, 0, 0, 0},
960 },
961 {
962 {0, 0, 0, 0, 0},
963 {0, 0, 0, 0, 0},
964 {0, 0, 0, 0, 0},
965 {0, 0, 0, 0, 0},
966 {0, 0, 0, 0, 0},
967 {0, 0, 0, 0, 0},
968 {0, 0, 0, 0, 0},
969 {0, 0, 0, 0, 0},
970 },
971
972 },
973 .calTarget_freqbin_5G = {
974 FREQ2FBIN(5180, 0),
975 FREQ2FBIN(5220, 0),
976 FREQ2FBIN(5320, 0),
977 FREQ2FBIN(5400, 0),
978 FREQ2FBIN(5500, 0),
979 FREQ2FBIN(5600, 0),
980 FREQ2FBIN(5745, 0),
981 FREQ2FBIN(5785, 0)
982 },
983 .calTarget_freqbin_5GHT20 = {
984 FREQ2FBIN(5180, 0),
985 FREQ2FBIN(5240, 0),
986 FREQ2FBIN(5320, 0),
987 FREQ2FBIN(5400, 0),
988 FREQ2FBIN(5500, 0),
989 FREQ2FBIN(5700, 0),
990 FREQ2FBIN(5745, 0),
991 FREQ2FBIN(5825, 0)
992 },
993 .calTarget_freqbin_5GHT40 = {
994 FREQ2FBIN(5190, 0),
995 FREQ2FBIN(5230, 0),
996 FREQ2FBIN(5320, 0),
997 FREQ2FBIN(5410, 0),
998 FREQ2FBIN(5510, 0),
999 FREQ2FBIN(5670, 0),
1000 FREQ2FBIN(5755, 0),
1001 FREQ2FBIN(5825, 0)
1002 },
1003 .calTargetPower5G = {
1004 /* 6-24,36,48,54 */
1005 { {42, 40, 40, 34} },
1006 { {42, 40, 40, 34} },
1007 { {42, 40, 40, 34} },
1008 { {42, 40, 40, 34} },
1009 { {42, 40, 40, 34} },
1010 { {42, 40, 40, 34} },
1011 { {42, 40, 40, 34} },
1012 { {42, 40, 40, 34} },
1013 },
1014 .calTargetPower5GHT20 = {
1015 /*
1016 * 0_8_16,1-3_9-11_17-19,
1017 * 4,5,6,7,12,13,14,15,20,21,22,23
1018 */
1019 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1021 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1022 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1023 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1024 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1025 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1026 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1027 },
1028 .calTargetPower5GHT40 = {
1029 /*
1030 * 0_8_16,1-3_9-11_17-19,
1031 * 4,5,6,7,12,13,14,15,20,21,22,23
1032 */
1033 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1035 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1036 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1037 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1038 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1039 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1040 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1041 },
1042 .ctlIndex_5G = {
1043 0x10, 0x16, 0x18, 0x40, 0x46,
1044 0x48, 0x30, 0x36, 0x38
1045 },
1046 .ctl_freqbin_5G = {
1047 {
1048 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1049 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1050 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1051 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1052 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1053 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1054 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1055 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1056 },
1057 {
1058 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1059 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1060 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1061 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1062 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1063 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1064 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1065 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1066 },
1067
1068 {
1069 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1070 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1071 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1072 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1073 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1074 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1075 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1076 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1077 },
1078
1079 {
1080 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1081 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1082 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1083 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1084 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1085 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1086 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1087 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1088 },
1089
1090 {
1091 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1092 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1093 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1094 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1095 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1096 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1097 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1098 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1099 },
1100
1101 {
1102 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1103 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1104 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1105 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1106 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1107 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1108 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1109 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1110 },
1111
1112 {
1113 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1114 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1115 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1116 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1117 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1118 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1119 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1120 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1121 },
1122
1123 {
1124 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1125 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1126 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1127 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1128 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1129 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1130 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1131 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1132 },
1133
1134 {
1135 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1136 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1137 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1138 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1139 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1140 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1141 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1142 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1143 }
1144 },
1145 .ctlPowerData_5G = {
1146 {
1147 {
1148 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1149 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1150 }
1151 },
1152 {
1153 {
1154 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1155 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1156 }
1157 },
1158 {
1159 {
1160 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1161 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1162 }
1163 },
1164 {
1165 {
1166 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1167 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1168 }
1169 },
1170 {
1171 {
1172 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1173 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1174 }
1175 },
1176 {
1177 {
1178 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1180 }
1181 },
1182 {
1183 {
1184 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1185 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1186 }
1187 },
1188 {
1189 {
1190 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1191 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1192 }
1193 },
1194 {
1195 {
1196 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1197 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1198 }
1199 },
1200 }
1201};
1202
1203
1204static const struct ar9300_eeprom ar9300_h112 = {
1205 .eepromVersion = 2,
1206 .templateVersion = 3,
1207 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1208 .custData = {"h112-241-f0000"},
1209 .baseEepHeader = {
1210 .regDmn = { LE16(0), LE16(0x1f) },
1211 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1212 .opCapFlags = {
1213 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1214 .eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
1215 },
1216 .rfSilent = 0,
1217 .blueToothOptions = 0,
1218 .deviceCap = 0,
1219 .deviceType = 5, /* takes lower byte in eeprom location */
1220 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1221 .params_for_tuning_caps = {0, 0},
1222 .featureEnable = 0x0d,
1223 /*
1224 * bit0 - enable tx temp comp - disabled
1225 * bit1 - enable tx volt comp - disabled
1226 * bit2 - enable fastClock - enabled
1227 * bit3 - enable doubling - enabled
1228 * bit4 - enable internal regulator - disabled
1229 * bit5 - enable pa predistortion - disabled
1230 */
1231 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1232 .eepromWriteEnableGpio = 6,
1233 .wlanDisableGpio = 0,
1234 .wlanLedGpio = 8,
1235 .rxBandSelectGpio = 0xff,
1236 .txrxgain = 0x10,
1237 .swreg = 0,
1238 },
1239 .modalHeader2G = {
1240 /* ar9300_modal_eep_header 2g */
1241 /* 4 idle,t1,t2,b(4 bits per setting) */
1242 .antCtrlCommon = LE32(0x110),
1243 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1244 .antCtrlCommon2 = LE32(0x44444),
1245
1246 /*
1247 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1248 * rx1, rx12, b (2 bits each)
1249 */
1250 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1251
1252 /*
1253 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1254 * for ar9280 (0xa20c/b20c 5:0)
1255 */
1256 .xatten1DB = {0, 0, 0},
1257
1258 /*
1259 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1260 * for ar9280 (0xa20c/b20c 16:12
1261 */
1262 .xatten1Margin = {0, 0, 0},
1263 .tempSlope = 25,
1264 .voltSlope = 0,
1265
1266 /*
1267 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1268 * channels in usual fbin coding format
1269 */
1270 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1271
1272 /*
1273 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1274 * if the register is per chain
1275 */
1276 .noiseFloorThreshCh = {-1, 0, 0},
1277 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1278 .quick_drop = 0,
1279 .xpaBiasLvl = 0,
1280 .txFrameToDataStart = 0x0e,
1281 .txFrameToPaOn = 0x0e,
1282 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1283 .antennaGain = 0,
1284 .switchSettling = 0x2c,
1285 .adcDesiredSize = -30,
1286 .txEndToXpaOff = 0,
1287 .txEndToRxOn = 0x2,
1288 .txFrameToXpaOn = 0xe,
1289 .thresh62 = 28,
1290 .papdRateMaskHt20 = LE32(0x0c80c080),
1291 .papdRateMaskHt40 = LE32(0x0080c080),
1292 .switchcomspdt = 0,
1293 .xlna_bias_strength = 0,
1294 .futureModal = {
1295 0, 0, 0, 0, 0, 0, 0,
1296 },
1297 },
1298 .base_ext1 = {
1299 .ant_div_control = 0,
1300 .future = {0, 0},
1301 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1302 },
1303 .calFreqPier2G = {
1304 FREQ2FBIN(2412, 1),
1305 FREQ2FBIN(2437, 1),
1306 FREQ2FBIN(2462, 1),
1307 },
1308 /* ar9300_cal_data_per_freq_op_loop 2g */
1309 .calPierData2G = {
1310 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1311 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1312 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1313 },
1314 .calTarget_freqbin_Cck = {
1315 FREQ2FBIN(2412, 1),
1316 FREQ2FBIN(2472, 1),
1317 },
1318 .calTarget_freqbin_2G = {
1319 FREQ2FBIN(2412, 1),
1320 FREQ2FBIN(2437, 1),
1321 FREQ2FBIN(2472, 1)
1322 },
1323 .calTarget_freqbin_2GHT20 = {
1324 FREQ2FBIN(2412, 1),
1325 FREQ2FBIN(2437, 1),
1326 FREQ2FBIN(2472, 1)
1327 },
1328 .calTarget_freqbin_2GHT40 = {
1329 FREQ2FBIN(2412, 1),
1330 FREQ2FBIN(2437, 1),
1331 FREQ2FBIN(2472, 1)
1332 },
1333 .calTargetPowerCck = {
1334 /* 1L-5L,5S,11L,11S */
1335 { {34, 34, 34, 34} },
1336 { {34, 34, 34, 34} },
1337 },
1338 .calTargetPower2G = {
1339 /* 6-24,36,48,54 */
1340 { {34, 34, 32, 32} },
1341 { {34, 34, 32, 32} },
1342 { {34, 34, 32, 32} },
1343 },
1344 .calTargetPower2GHT20 = {
1345 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1346 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1347 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1348 },
1349 .calTargetPower2GHT40 = {
1350 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1351 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1352 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1353 },
1354 .ctlIndex_2G = {
1355 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1356 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1357 },
1358 .ctl_freqbin_2G = {
1359 {
1360 FREQ2FBIN(2412, 1),
1361 FREQ2FBIN(2417, 1),
1362 FREQ2FBIN(2457, 1),
1363 FREQ2FBIN(2462, 1)
1364 },
1365 {
1366 FREQ2FBIN(2412, 1),
1367 FREQ2FBIN(2417, 1),
1368 FREQ2FBIN(2462, 1),
1369 0xFF,
1370 },
1371
1372 {
1373 FREQ2FBIN(2412, 1),
1374 FREQ2FBIN(2417, 1),
1375 FREQ2FBIN(2462, 1),
1376 0xFF,
1377 },
1378 {
1379 FREQ2FBIN(2422, 1),
1380 FREQ2FBIN(2427, 1),
1381 FREQ2FBIN(2447, 1),
1382 FREQ2FBIN(2452, 1)
1383 },
1384
1385 {
1386 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1387 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1388 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1389 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1390 },
1391
1392 {
1393 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1394 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1395 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1396 0,
1397 },
1398
1399 {
1400 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1401 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1402 FREQ2FBIN(2472, 1),
1403 0,
1404 },
1405
1406 {
1407 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1408 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1409 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1410 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1411 },
1412
1413 {
1414 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1417 },
1418
1419 {
1420 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1421 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1422 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1423 0
1424 },
1425
1426 {
1427 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1428 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1429 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1430 0
1431 },
1432
1433 {
1434 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1435 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1436 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1437 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1438 }
1439 },
1440 .ctlPowerData_2G = {
1441 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1444
1445 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1446 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1447 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448
1449 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1450 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1451 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1452
1453 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1454 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1455 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1456 },
1457 .modalHeader5G = {
1458 /* 4 idle,t1,t2,b (4 bits per setting) */
1459 .antCtrlCommon = LE32(0x220),
1460 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1461 .antCtrlCommon2 = LE32(0x44444),
1462 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1463 .antCtrlChain = {
1464 LE16(0x150), LE16(0x150), LE16(0x150),
1465 },
1466 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1467 .xatten1DB = {0, 0, 0},
1468
1469 /*
1470 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1471 * for merlin (0xa20c/b20c 16:12
1472 */
1473 .xatten1Margin = {0, 0, 0},
1474 .tempSlope = 45,
1475 .voltSlope = 0,
1476 /* spurChans spur channels in usual fbin coding format */
1477 .spurChans = {0, 0, 0, 0, 0},
1478 /* noiseFloorThreshCh Check if the register is per chain */
1479 .noiseFloorThreshCh = {-1, 0, 0},
1480 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1481 .quick_drop = 0,
1482 .xpaBiasLvl = 0,
1483 .txFrameToDataStart = 0x0e,
1484 .txFrameToPaOn = 0x0e,
1485 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1486 .antennaGain = 0,
1487 .switchSettling = 0x2d,
1488 .adcDesiredSize = -30,
1489 .txEndToXpaOff = 0,
1490 .txEndToRxOn = 0x2,
1491 .txFrameToXpaOn = 0xe,
1492 .thresh62 = 28,
1493 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1494 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1495 .switchcomspdt = 0,
1496 .xlna_bias_strength = 0,
1497 .futureModal = {
1498 0, 0, 0, 0, 0, 0, 0,
1499 },
1500 },
1501 .base_ext2 = {
1502 .tempSlopeLow = 40,
1503 .tempSlopeHigh = 50,
1504 .xatten1DBLow = {0, 0, 0},
1505 .xatten1MarginLow = {0, 0, 0},
1506 .xatten1DBHigh = {0, 0, 0},
1507 .xatten1MarginHigh = {0, 0, 0}
1508 },
1509 .calFreqPier5G = {
1510 FREQ2FBIN(5180, 0),
1511 FREQ2FBIN(5220, 0),
1512 FREQ2FBIN(5320, 0),
1513 FREQ2FBIN(5400, 0),
1514 FREQ2FBIN(5500, 0),
1515 FREQ2FBIN(5600, 0),
1516 FREQ2FBIN(5700, 0),
1517 FREQ2FBIN(5785, 0)
1518 },
1519 .calPierData5G = {
1520 {
1521 {0, 0, 0, 0, 0},
1522 {0, 0, 0, 0, 0},
1523 {0, 0, 0, 0, 0},
1524 {0, 0, 0, 0, 0},
1525 {0, 0, 0, 0, 0},
1526 {0, 0, 0, 0, 0},
1527 {0, 0, 0, 0, 0},
1528 {0, 0, 0, 0, 0},
1529 },
1530 {
1531 {0, 0, 0, 0, 0},
1532 {0, 0, 0, 0, 0},
1533 {0, 0, 0, 0, 0},
1534 {0, 0, 0, 0, 0},
1535 {0, 0, 0, 0, 0},
1536 {0, 0, 0, 0, 0},
1537 {0, 0, 0, 0, 0},
1538 {0, 0, 0, 0, 0},
1539 },
1540 {
1541 {0, 0, 0, 0, 0},
1542 {0, 0, 0, 0, 0},
1543 {0, 0, 0, 0, 0},
1544 {0, 0, 0, 0, 0},
1545 {0, 0, 0, 0, 0},
1546 {0, 0, 0, 0, 0},
1547 {0, 0, 0, 0, 0},
1548 {0, 0, 0, 0, 0},
1549 },
1550
1551 },
1552 .calTarget_freqbin_5G = {
1553 FREQ2FBIN(5180, 0),
1554 FREQ2FBIN(5240, 0),
1555 FREQ2FBIN(5320, 0),
1556 FREQ2FBIN(5400, 0),
1557 FREQ2FBIN(5500, 0),
1558 FREQ2FBIN(5600, 0),
1559 FREQ2FBIN(5700, 0),
1560 FREQ2FBIN(5825, 0)
1561 },
1562 .calTarget_freqbin_5GHT20 = {
1563 FREQ2FBIN(5180, 0),
1564 FREQ2FBIN(5240, 0),
1565 FREQ2FBIN(5320, 0),
1566 FREQ2FBIN(5400, 0),
1567 FREQ2FBIN(5500, 0),
1568 FREQ2FBIN(5700, 0),
1569 FREQ2FBIN(5745, 0),
1570 FREQ2FBIN(5825, 0)
1571 },
1572 .calTarget_freqbin_5GHT40 = {
1573 FREQ2FBIN(5180, 0),
1574 FREQ2FBIN(5240, 0),
1575 FREQ2FBIN(5320, 0),
1576 FREQ2FBIN(5400, 0),
1577 FREQ2FBIN(5500, 0),
1578 FREQ2FBIN(5700, 0),
1579 FREQ2FBIN(5745, 0),
1580 FREQ2FBIN(5825, 0)
1581 },
1582 .calTargetPower5G = {
1583 /* 6-24,36,48,54 */
1584 { {30, 30, 28, 24} },
1585 { {30, 30, 28, 24} },
1586 { {30, 30, 28, 24} },
1587 { {30, 30, 28, 24} },
1588 { {30, 30, 28, 24} },
1589 { {30, 30, 28, 24} },
1590 { {30, 30, 28, 24} },
1591 { {30, 30, 28, 24} },
1592 },
1593 .calTargetPower5GHT20 = {
1594 /*
1595 * 0_8_16,1-3_9-11_17-19,
1596 * 4,5,6,7,12,13,14,15,20,21,22,23
1597 */
1598 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1599 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1600 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1601 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1602 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1603 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1604 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1605 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1606 },
1607 .calTargetPower5GHT40 = {
1608 /*
1609 * 0_8_16,1-3_9-11_17-19,
1610 * 4,5,6,7,12,13,14,15,20,21,22,23
1611 */
1612 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1613 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1614 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1615 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1616 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1617 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1618 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1619 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1620 },
1621 .ctlIndex_5G = {
1622 0x10, 0x16, 0x18, 0x40, 0x46,
1623 0x48, 0x30, 0x36, 0x38
1624 },
1625 .ctl_freqbin_5G = {
1626 {
1627 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1628 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1629 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1630 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1631 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1632 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1633 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1634 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1635 },
1636 {
1637 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1638 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1639 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1640 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1641 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1642 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1643 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1644 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1645 },
1646
1647 {
1648 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1649 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1650 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1651 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1652 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1653 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1654 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1655 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1656 },
1657
1658 {
1659 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1660 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1661 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1662 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1663 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1664 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1665 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1666 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1667 },
1668
1669 {
1670 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1671 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1672 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1673 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1674 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1675 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1676 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1677 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1678 },
1679
1680 {
1681 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1682 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1683 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1684 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1685 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1686 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1687 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1688 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1689 },
1690
1691 {
1692 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1693 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1694 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1695 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1696 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1697 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1698 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1699 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1700 },
1701
1702 {
1703 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1704 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1705 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1706 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1707 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1708 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1709 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1710 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1711 },
1712
1713 {
1714 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1715 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1716 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1717 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1718 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1719 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1720 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1721 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1722 }
1723 },
1724 .ctlPowerData_5G = {
1725 {
1726 {
1727 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1728 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1729 }
1730 },
1731 {
1732 {
1733 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1734 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1735 }
1736 },
1737 {
1738 {
1739 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1740 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1741 }
1742 },
1743 {
1744 {
1745 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1746 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1747 }
1748 },
1749 {
1750 {
1751 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1752 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1753 }
1754 },
1755 {
1756 {
1757 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1758 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1759 }
1760 },
1761 {
1762 {
1763 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1764 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1765 }
1766 },
1767 {
1768 {
1769 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1770 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1771 }
1772 },
1773 {
1774 {
1775 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1776 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1777 }
1778 },
1779 }
1780};
1781
1782
1783static const struct ar9300_eeprom ar9300_x112 = {
1784 .eepromVersion = 2,
1785 .templateVersion = 5,
1786 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1787 .custData = {"x112-041-f0000"},
1788 .baseEepHeader = {
1789 .regDmn = { LE16(0), LE16(0x1f) },
1790 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1791 .opCapFlags = {
1792 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1793 .eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
1794 },
1795 .rfSilent = 0,
1796 .blueToothOptions = 0,
1797 .deviceCap = 0,
1798 .deviceType = 5, /* takes lower byte in eeprom location */
1799 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1800 .params_for_tuning_caps = {0, 0},
1801 .featureEnable = 0x0d,
1802 /*
1803 * bit0 - enable tx temp comp - disabled
1804 * bit1 - enable tx volt comp - disabled
1805 * bit2 - enable fastclock - enabled
1806 * bit3 - enable doubling - enabled
1807 * bit4 - enable internal regulator - disabled
1808 * bit5 - enable pa predistortion - disabled
1809 */
1810 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1811 .eepromWriteEnableGpio = 6,
1812 .wlanDisableGpio = 0,
1813 .wlanLedGpio = 8,
1814 .rxBandSelectGpio = 0xff,
1815 .txrxgain = 0x0,
1816 .swreg = 0,
1817 },
1818 .modalHeader2G = {
1819 /* ar9300_modal_eep_header 2g */
1820 /* 4 idle,t1,t2,b(4 bits per setting) */
1821 .antCtrlCommon = LE32(0x110),
1822 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1823 .antCtrlCommon2 = LE32(0x22222),
1824
1825 /*
1826 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1827 * rx1, rx12, b (2 bits each)
1828 */
1829 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1830
1831 /*
1832 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1833 * for ar9280 (0xa20c/b20c 5:0)
1834 */
1835 .xatten1DB = {0x1b, 0x1b, 0x1b},
1836
1837 /*
1838 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1839 * for ar9280 (0xa20c/b20c 16:12
1840 */
1841 .xatten1Margin = {0x15, 0x15, 0x15},
1842 .tempSlope = 50,
1843 .voltSlope = 0,
1844
1845 /*
1846 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1847 * channels in usual fbin coding format
1848 */
1849 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1850
1851 /*
1852 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1853 * if the register is per chain
1854 */
1855 .noiseFloorThreshCh = {-1, 0, 0},
1856 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1857 .quick_drop = 0,
1858 .xpaBiasLvl = 0,
1859 .txFrameToDataStart = 0x0e,
1860 .txFrameToPaOn = 0x0e,
1861 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1862 .antennaGain = 0,
1863 .switchSettling = 0x2c,
1864 .adcDesiredSize = -30,
1865 .txEndToXpaOff = 0,
1866 .txEndToRxOn = 0x2,
1867 .txFrameToXpaOn = 0xe,
1868 .thresh62 = 28,
1869 .papdRateMaskHt20 = LE32(0x0c80c080),
1870 .papdRateMaskHt40 = LE32(0x0080c080),
1871 .switchcomspdt = 0,
1872 .xlna_bias_strength = 0,
1873 .futureModal = {
1874 0, 0, 0, 0, 0, 0, 0,
1875 },
1876 },
1877 .base_ext1 = {
1878 .ant_div_control = 0,
1879 .future = {0, 0},
1880 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1881 },
1882 .calFreqPier2G = {
1883 FREQ2FBIN(2412, 1),
1884 FREQ2FBIN(2437, 1),
1885 FREQ2FBIN(2472, 1),
1886 },
1887 /* ar9300_cal_data_per_freq_op_loop 2g */
1888 .calPierData2G = {
1889 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1890 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1891 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1892 },
1893 .calTarget_freqbin_Cck = {
1894 FREQ2FBIN(2412, 1),
1895 FREQ2FBIN(2472, 1),
1896 },
1897 .calTarget_freqbin_2G = {
1898 FREQ2FBIN(2412, 1),
1899 FREQ2FBIN(2437, 1),
1900 FREQ2FBIN(2472, 1)
1901 },
1902 .calTarget_freqbin_2GHT20 = {
1903 FREQ2FBIN(2412, 1),
1904 FREQ2FBIN(2437, 1),
1905 FREQ2FBIN(2472, 1)
1906 },
1907 .calTarget_freqbin_2GHT40 = {
1908 FREQ2FBIN(2412, 1),
1909 FREQ2FBIN(2437, 1),
1910 FREQ2FBIN(2472, 1)
1911 },
1912 .calTargetPowerCck = {
1913 /* 1L-5L,5S,11L,11s */
1914 { {38, 38, 38, 38} },
1915 { {38, 38, 38, 38} },
1916 },
1917 .calTargetPower2G = {
1918 /* 6-24,36,48,54 */
1919 { {38, 38, 36, 34} },
1920 { {38, 38, 36, 34} },
1921 { {38, 38, 34, 32} },
1922 },
1923 .calTargetPower2GHT20 = {
1924 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1925 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1926 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1927 },
1928 .calTargetPower2GHT40 = {
1929 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1930 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1931 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1932 },
1933 .ctlIndex_2G = {
1934 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1935 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1936 },
1937 .ctl_freqbin_2G = {
1938 {
1939 FREQ2FBIN(2412, 1),
1940 FREQ2FBIN(2417, 1),
1941 FREQ2FBIN(2457, 1),
1942 FREQ2FBIN(2462, 1)
1943 },
1944 {
1945 FREQ2FBIN(2412, 1),
1946 FREQ2FBIN(2417, 1),
1947 FREQ2FBIN(2462, 1),
1948 0xFF,
1949 },
1950
1951 {
1952 FREQ2FBIN(2412, 1),
1953 FREQ2FBIN(2417, 1),
1954 FREQ2FBIN(2462, 1),
1955 0xFF,
1956 },
1957 {
1958 FREQ2FBIN(2422, 1),
1959 FREQ2FBIN(2427, 1),
1960 FREQ2FBIN(2447, 1),
1961 FREQ2FBIN(2452, 1)
1962 },
1963
1964 {
1965 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1966 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1967 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1968 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1969 },
1970
1971 {
1972 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1973 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1974 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1975 0,
1976 },
1977
1978 {
1979 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1980 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1981 FREQ2FBIN(2472, 1),
1982 0,
1983 },
1984
1985 {
1986 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1987 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1988 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1989 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1990 },
1991
1992 {
1993 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1994 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1995 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1996 },
1997
1998 {
1999 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2000 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2001 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2002 0
2003 },
2004
2005 {
2006 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2007 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2008 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2009 0
2010 },
2011
2012 {
2013 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2014 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2015 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2016 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2017 }
2018 },
2019 .ctlPowerData_2G = {
2020 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2023
2024 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2025 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2026 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2027
2028 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2029 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2030 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2031
2032 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2033 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2034 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2035 },
2036 .modalHeader5G = {
2037 /* 4 idle,t1,t2,b (4 bits per setting) */
2038 .antCtrlCommon = LE32(0x110),
2039 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2040 .antCtrlCommon2 = LE32(0x22222),
2041 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2042 .antCtrlChain = {
2043 LE16(0x0), LE16(0x0), LE16(0x0),
2044 },
2045 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2046 .xatten1DB = {0x13, 0x19, 0x17},
2047
2048 /*
2049 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2050 * for merlin (0xa20c/b20c 16:12
2051 */
2052 .xatten1Margin = {0x19, 0x19, 0x19},
2053 .tempSlope = 70,
2054 .voltSlope = 15,
2055 /* spurChans spur channels in usual fbin coding format */
2056 .spurChans = {0, 0, 0, 0, 0},
2057 /* noiseFloorThreshch check if the register is per chain */
2058 .noiseFloorThreshCh = {-1, 0, 0},
2059 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2060 .quick_drop = 0,
2061 .xpaBiasLvl = 0,
2062 .txFrameToDataStart = 0x0e,
2063 .txFrameToPaOn = 0x0e,
2064 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2065 .antennaGain = 0,
2066 .switchSettling = 0x2d,
2067 .adcDesiredSize = -30,
2068 .txEndToXpaOff = 0,
2069 .txEndToRxOn = 0x2,
2070 .txFrameToXpaOn = 0xe,
2071 .thresh62 = 28,
2072 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2073 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2074 .switchcomspdt = 0,
2075 .xlna_bias_strength = 0,
2076 .futureModal = {
2077 0, 0, 0, 0, 0, 0, 0,
2078 },
2079 },
2080 .base_ext2 = {
2081 .tempSlopeLow = 72,
2082 .tempSlopeHigh = 105,
2083 .xatten1DBLow = {0x10, 0x14, 0x10},
2084 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2085 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2086 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2087 },
2088 .calFreqPier5G = {
2089 FREQ2FBIN(5180, 0),
2090 FREQ2FBIN(5220, 0),
2091 FREQ2FBIN(5320, 0),
2092 FREQ2FBIN(5400, 0),
2093 FREQ2FBIN(5500, 0),
2094 FREQ2FBIN(5600, 0),
2095 FREQ2FBIN(5700, 0),
2096 FREQ2FBIN(5785, 0)
2097 },
2098 .calPierData5G = {
2099 {
2100 {0, 0, 0, 0, 0},
2101 {0, 0, 0, 0, 0},
2102 {0, 0, 0, 0, 0},
2103 {0, 0, 0, 0, 0},
2104 {0, 0, 0, 0, 0},
2105 {0, 0, 0, 0, 0},
2106 {0, 0, 0, 0, 0},
2107 {0, 0, 0, 0, 0},
2108 },
2109 {
2110 {0, 0, 0, 0, 0},
2111 {0, 0, 0, 0, 0},
2112 {0, 0, 0, 0, 0},
2113 {0, 0, 0, 0, 0},
2114 {0, 0, 0, 0, 0},
2115 {0, 0, 0, 0, 0},
2116 {0, 0, 0, 0, 0},
2117 {0, 0, 0, 0, 0},
2118 },
2119 {
2120 {0, 0, 0, 0, 0},
2121 {0, 0, 0, 0, 0},
2122 {0, 0, 0, 0, 0},
2123 {0, 0, 0, 0, 0},
2124 {0, 0, 0, 0, 0},
2125 {0, 0, 0, 0, 0},
2126 {0, 0, 0, 0, 0},
2127 {0, 0, 0, 0, 0},
2128 },
2129
2130 },
2131 .calTarget_freqbin_5G = {
2132 FREQ2FBIN(5180, 0),
2133 FREQ2FBIN(5220, 0),
2134 FREQ2FBIN(5320, 0),
2135 FREQ2FBIN(5400, 0),
2136 FREQ2FBIN(5500, 0),
2137 FREQ2FBIN(5600, 0),
2138 FREQ2FBIN(5725, 0),
2139 FREQ2FBIN(5825, 0)
2140 },
2141 .calTarget_freqbin_5GHT20 = {
2142 FREQ2FBIN(5180, 0),
2143 FREQ2FBIN(5220, 0),
2144 FREQ2FBIN(5320, 0),
2145 FREQ2FBIN(5400, 0),
2146 FREQ2FBIN(5500, 0),
2147 FREQ2FBIN(5600, 0),
2148 FREQ2FBIN(5725, 0),
2149 FREQ2FBIN(5825, 0)
2150 },
2151 .calTarget_freqbin_5GHT40 = {
2152 FREQ2FBIN(5180, 0),
2153 FREQ2FBIN(5220, 0),
2154 FREQ2FBIN(5320, 0),
2155 FREQ2FBIN(5400, 0),
2156 FREQ2FBIN(5500, 0),
2157 FREQ2FBIN(5600, 0),
2158 FREQ2FBIN(5725, 0),
2159 FREQ2FBIN(5825, 0)
2160 },
2161 .calTargetPower5G = {
2162 /* 6-24,36,48,54 */
2163 { {32, 32, 28, 26} },
2164 { {32, 32, 28, 26} },
2165 { {32, 32, 28, 26} },
2166 { {32, 32, 26, 24} },
2167 { {32, 32, 26, 24} },
2168 { {32, 32, 24, 22} },
2169 { {30, 30, 24, 22} },
2170 { {30, 30, 24, 22} },
2171 },
2172 .calTargetPower5GHT20 = {
2173 /*
2174 * 0_8_16,1-3_9-11_17-19,
2175 * 4,5,6,7,12,13,14,15,20,21,22,23
2176 */
2177 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2178 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2179 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2180 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2181 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2182 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2183 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2184 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2185 },
2186 .calTargetPower5GHT40 = {
2187 /*
2188 * 0_8_16,1-3_9-11_17-19,
2189 * 4,5,6,7,12,13,14,15,20,21,22,23
2190 */
2191 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2192 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2193 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2194 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2195 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2196 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2197 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2198 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2199 },
2200 .ctlIndex_5G = {
2201 0x10, 0x16, 0x18, 0x40, 0x46,
2202 0x48, 0x30, 0x36, 0x38
2203 },
2204 .ctl_freqbin_5G = {
2205 {
2206 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2207 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2208 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2209 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2210 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2211 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2212 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2213 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2214 },
2215 {
2216 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2217 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2218 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2219 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2220 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2221 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2222 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2223 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2224 },
2225
2226 {
2227 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2228 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2229 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2230 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2231 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2232 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2233 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2234 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2235 },
2236
2237 {
2238 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2239 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2240 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2241 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2242 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2243 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2244 /* Data[3].ctledges[6].bchannel */ 0xFF,
2245 /* Data[3].ctledges[7].bchannel */ 0xFF,
2246 },
2247
2248 {
2249 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2250 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2251 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2252 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2253 /* Data[4].ctledges[4].bchannel */ 0xFF,
2254 /* Data[4].ctledges[5].bchannel */ 0xFF,
2255 /* Data[4].ctledges[6].bchannel */ 0xFF,
2256 /* Data[4].ctledges[7].bchannel */ 0xFF,
2257 },
2258
2259 {
2260 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2261 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2262 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2263 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2264 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2265 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2266 /* Data[5].ctledges[6].bchannel */ 0xFF,
2267 /* Data[5].ctledges[7].bchannel */ 0xFF
2268 },
2269
2270 {
2271 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2272 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2273 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2274 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2275 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2276 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2277 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2278 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2279 },
2280
2281 {
2282 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2283 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2284 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2285 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2286 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2287 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2288 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2289 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2290 },
2291
2292 {
2293 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2294 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2295 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2296 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2297 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2298 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2299 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2300 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2301 }
2302 },
2303 .ctlPowerData_5G = {
2304 {
2305 {
2306 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2307 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2308 }
2309 },
2310 {
2311 {
2312 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2313 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2314 }
2315 },
2316 {
2317 {
2318 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2319 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2320 }
2321 },
2322 {
2323 {
2324 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2325 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2326 }
2327 },
2328 {
2329 {
2330 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2331 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2332 }
2333 },
2334 {
2335 {
2336 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2337 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2338 }
2339 },
2340 {
2341 {
2342 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2343 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2344 }
2345 },
2346 {
2347 {
2348 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2349 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2350 }
2351 },
2352 {
2353 {
2354 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2355 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2356 }
2357 },
2358 }
2359};
2360
2361static const struct ar9300_eeprom ar9300_h116 = {
2362 .eepromVersion = 2,
2363 .templateVersion = 4,
2364 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2365 .custData = {"h116-041-f0000"},
2366 .baseEepHeader = {
2367 .regDmn = { LE16(0), LE16(0x1f) },
2368 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2369 .opCapFlags = {
2370 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2371 .eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
2372 },
2373 .rfSilent = 0,
2374 .blueToothOptions = 0,
2375 .deviceCap = 0,
2376 .deviceType = 5, /* takes lower byte in eeprom location */
2377 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2378 .params_for_tuning_caps = {0, 0},
2379 .featureEnable = 0x0d,
2380 /*
2381 * bit0 - enable tx temp comp - disabled
2382 * bit1 - enable tx volt comp - disabled
2383 * bit2 - enable fastClock - enabled
2384 * bit3 - enable doubling - enabled
2385 * bit4 - enable internal regulator - disabled
2386 * bit5 - enable pa predistortion - disabled
2387 */
2388 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2389 .eepromWriteEnableGpio = 6,
2390 .wlanDisableGpio = 0,
2391 .wlanLedGpio = 8,
2392 .rxBandSelectGpio = 0xff,
2393 .txrxgain = 0x10,
2394 .swreg = 0,
2395 },
2396 .modalHeader2G = {
2397 /* ar9300_modal_eep_header 2g */
2398 /* 4 idle,t1,t2,b(4 bits per setting) */
2399 .antCtrlCommon = LE32(0x110),
2400 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2401 .antCtrlCommon2 = LE32(0x44444),
2402
2403 /*
2404 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2405 * rx1, rx12, b (2 bits each)
2406 */
2407 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2408
2409 /*
2410 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2411 * for ar9280 (0xa20c/b20c 5:0)
2412 */
2413 .xatten1DB = {0x1f, 0x1f, 0x1f},
2414
2415 /*
2416 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2417 * for ar9280 (0xa20c/b20c 16:12
2418 */
2419 .xatten1Margin = {0x12, 0x12, 0x12},
2420 .tempSlope = 25,
2421 .voltSlope = 0,
2422
2423 /*
2424 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2425 * channels in usual fbin coding format
2426 */
2427 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2428
2429 /*
2430 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2431 * if the register is per chain
2432 */
2433 .noiseFloorThreshCh = {-1, 0, 0},
2434 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2435 .quick_drop = 0,
2436 .xpaBiasLvl = 0,
2437 .txFrameToDataStart = 0x0e,
2438 .txFrameToPaOn = 0x0e,
2439 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2440 .antennaGain = 0,
2441 .switchSettling = 0x2c,
2442 .adcDesiredSize = -30,
2443 .txEndToXpaOff = 0,
2444 .txEndToRxOn = 0x2,
2445 .txFrameToXpaOn = 0xe,
2446 .thresh62 = 28,
2447 .papdRateMaskHt20 = LE32(0x0c80C080),
2448 .papdRateMaskHt40 = LE32(0x0080C080),
2449 .switchcomspdt = 0,
2450 .xlna_bias_strength = 0,
2451 .futureModal = {
2452 0, 0, 0, 0, 0, 0, 0,
2453 },
2454 },
2455 .base_ext1 = {
2456 .ant_div_control = 0,
2457 .future = {0, 0},
2458 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2459 },
2460 .calFreqPier2G = {
2461 FREQ2FBIN(2412, 1),
2462 FREQ2FBIN(2437, 1),
2463 FREQ2FBIN(2462, 1),
2464 },
2465 /* ar9300_cal_data_per_freq_op_loop 2g */
2466 .calPierData2G = {
2467 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2468 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2469 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2470 },
2471 .calTarget_freqbin_Cck = {
2472 FREQ2FBIN(2412, 1),
2473 FREQ2FBIN(2472, 1),
2474 },
2475 .calTarget_freqbin_2G = {
2476 FREQ2FBIN(2412, 1),
2477 FREQ2FBIN(2437, 1),
2478 FREQ2FBIN(2472, 1)
2479 },
2480 .calTarget_freqbin_2GHT20 = {
2481 FREQ2FBIN(2412, 1),
2482 FREQ2FBIN(2437, 1),
2483 FREQ2FBIN(2472, 1)
2484 },
2485 .calTarget_freqbin_2GHT40 = {
2486 FREQ2FBIN(2412, 1),
2487 FREQ2FBIN(2437, 1),
2488 FREQ2FBIN(2472, 1)
2489 },
2490 .calTargetPowerCck = {
2491 /* 1L-5L,5S,11L,11S */
2492 { {34, 34, 34, 34} },
2493 { {34, 34, 34, 34} },
2494 },
2495 .calTargetPower2G = {
2496 /* 6-24,36,48,54 */
2497 { {34, 34, 32, 32} },
2498 { {34, 34, 32, 32} },
2499 { {34, 34, 32, 32} },
2500 },
2501 .calTargetPower2GHT20 = {
2502 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2503 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2504 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2505 },
2506 .calTargetPower2GHT40 = {
2507 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2508 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2509 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2510 },
2511 .ctlIndex_2G = {
2512 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2513 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2514 },
2515 .ctl_freqbin_2G = {
2516 {
2517 FREQ2FBIN(2412, 1),
2518 FREQ2FBIN(2417, 1),
2519 FREQ2FBIN(2457, 1),
2520 FREQ2FBIN(2462, 1)
2521 },
2522 {
2523 FREQ2FBIN(2412, 1),
2524 FREQ2FBIN(2417, 1),
2525 FREQ2FBIN(2462, 1),
2526 0xFF,
2527 },
2528
2529 {
2530 FREQ2FBIN(2412, 1),
2531 FREQ2FBIN(2417, 1),
2532 FREQ2FBIN(2462, 1),
2533 0xFF,
2534 },
2535 {
2536 FREQ2FBIN(2422, 1),
2537 FREQ2FBIN(2427, 1),
2538 FREQ2FBIN(2447, 1),
2539 FREQ2FBIN(2452, 1)
2540 },
2541
2542 {
2543 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2544 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2545 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2546 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2547 },
2548
2549 {
2550 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2551 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2552 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2553 0,
2554 },
2555
2556 {
2557 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2558 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2559 FREQ2FBIN(2472, 1),
2560 0,
2561 },
2562
2563 {
2564 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2565 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2566 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2567 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2568 },
2569
2570 {
2571 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2572 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2573 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2574 },
2575
2576 {
2577 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2578 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2579 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2580 0
2581 },
2582
2583 {
2584 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2585 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2586 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2587 0
2588 },
2589
2590 {
2591 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2592 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2593 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2594 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2595 }
2596 },
2597 .ctlPowerData_2G = {
2598 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2600 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2601
2602 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2603 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2604 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2605
2606 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2607 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2608 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2609
2610 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2611 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2612 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2613 },
2614 .modalHeader5G = {
2615 /* 4 idle,t1,t2,b (4 bits per setting) */
2616 .antCtrlCommon = LE32(0x220),
2617 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2618 .antCtrlCommon2 = LE32(0x44444),
2619 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2620 .antCtrlChain = {
2621 LE16(0x150), LE16(0x150), LE16(0x150),
2622 },
2623 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2624 .xatten1DB = {0x19, 0x19, 0x19},
2625
2626 /*
2627 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2628 * for merlin (0xa20c/b20c 16:12
2629 */
2630 .xatten1Margin = {0x14, 0x14, 0x14},
2631 .tempSlope = 70,
2632 .voltSlope = 0,
2633 /* spurChans spur channels in usual fbin coding format */
2634 .spurChans = {0, 0, 0, 0, 0},
2635 /* noiseFloorThreshCh Check if the register is per chain */
2636 .noiseFloorThreshCh = {-1, 0, 0},
2637 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2638 .quick_drop = 0,
2639 .xpaBiasLvl = 0,
2640 .txFrameToDataStart = 0x0e,
2641 .txFrameToPaOn = 0x0e,
2642 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2643 .antennaGain = 0,
2644 .switchSettling = 0x2d,
2645 .adcDesiredSize = -30,
2646 .txEndToXpaOff = 0,
2647 .txEndToRxOn = 0x2,
2648 .txFrameToXpaOn = 0xe,
2649 .thresh62 = 28,
2650 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2651 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2652 .switchcomspdt = 0,
2653 .xlna_bias_strength = 0,
2654 .futureModal = {
2655 0, 0, 0, 0, 0, 0, 0,
2656 },
2657 },
2658 .base_ext2 = {
2659 .tempSlopeLow = 35,
2660 .tempSlopeHigh = 50,
2661 .xatten1DBLow = {0, 0, 0},
2662 .xatten1MarginLow = {0, 0, 0},
2663 .xatten1DBHigh = {0, 0, 0},
2664 .xatten1MarginHigh = {0, 0, 0}
2665 },
2666 .calFreqPier5G = {
2667 FREQ2FBIN(5160, 0),
2668 FREQ2FBIN(5220, 0),
2669 FREQ2FBIN(5320, 0),
2670 FREQ2FBIN(5400, 0),
2671 FREQ2FBIN(5500, 0),
2672 FREQ2FBIN(5600, 0),
2673 FREQ2FBIN(5700, 0),
2674 FREQ2FBIN(5785, 0)
2675 },
2676 .calPierData5G = {
2677 {
2678 {0, 0, 0, 0, 0},
2679 {0, 0, 0, 0, 0},
2680 {0, 0, 0, 0, 0},
2681 {0, 0, 0, 0, 0},
2682 {0, 0, 0, 0, 0},
2683 {0, 0, 0, 0, 0},
2684 {0, 0, 0, 0, 0},
2685 {0, 0, 0, 0, 0},
2686 },
2687 {
2688 {0, 0, 0, 0, 0},
2689 {0, 0, 0, 0, 0},
2690 {0, 0, 0, 0, 0},
2691 {0, 0, 0, 0, 0},
2692 {0, 0, 0, 0, 0},
2693 {0, 0, 0, 0, 0},
2694 {0, 0, 0, 0, 0},
2695 {0, 0, 0, 0, 0},
2696 },
2697 {
2698 {0, 0, 0, 0, 0},
2699 {0, 0, 0, 0, 0},
2700 {0, 0, 0, 0, 0},
2701 {0, 0, 0, 0, 0},
2702 {0, 0, 0, 0, 0},
2703 {0, 0, 0, 0, 0},
2704 {0, 0, 0, 0, 0},
2705 {0, 0, 0, 0, 0},
2706 },
2707
2708 },
2709 .calTarget_freqbin_5G = {
2710 FREQ2FBIN(5180, 0),
2711 FREQ2FBIN(5240, 0),
2712 FREQ2FBIN(5320, 0),
2713 FREQ2FBIN(5400, 0),
2714 FREQ2FBIN(5500, 0),
2715 FREQ2FBIN(5600, 0),
2716 FREQ2FBIN(5700, 0),
2717 FREQ2FBIN(5825, 0)
2718 },
2719 .calTarget_freqbin_5GHT20 = {
2720 FREQ2FBIN(5180, 0),
2721 FREQ2FBIN(5240, 0),
2722 FREQ2FBIN(5320, 0),
2723 FREQ2FBIN(5400, 0),
2724 FREQ2FBIN(5500, 0),
2725 FREQ2FBIN(5700, 0),
2726 FREQ2FBIN(5745, 0),
2727 FREQ2FBIN(5825, 0)
2728 },
2729 .calTarget_freqbin_5GHT40 = {
2730 FREQ2FBIN(5180, 0),
2731 FREQ2FBIN(5240, 0),
2732 FREQ2FBIN(5320, 0),
2733 FREQ2FBIN(5400, 0),
2734 FREQ2FBIN(5500, 0),
2735 FREQ2FBIN(5700, 0),
2736 FREQ2FBIN(5745, 0),
2737 FREQ2FBIN(5825, 0)
2738 },
2739 .calTargetPower5G = {
2740 /* 6-24,36,48,54 */
2741 { {30, 30, 28, 24} },
2742 { {30, 30, 28, 24} },
2743 { {30, 30, 28, 24} },
2744 { {30, 30, 28, 24} },
2745 { {30, 30, 28, 24} },
2746 { {30, 30, 28, 24} },
2747 { {30, 30, 28, 24} },
2748 { {30, 30, 28, 24} },
2749 },
2750 .calTargetPower5GHT20 = {
2751 /*
2752 * 0_8_16,1-3_9-11_17-19,
2753 * 4,5,6,7,12,13,14,15,20,21,22,23
2754 */
2755 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2756 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2757 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2758 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2759 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2760 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2761 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2762 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2763 },
2764 .calTargetPower5GHT40 = {
2765 /*
2766 * 0_8_16,1-3_9-11_17-19,
2767 * 4,5,6,7,12,13,14,15,20,21,22,23
2768 */
2769 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2770 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2771 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2772 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2773 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2774 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2775 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2776 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2777 },
2778 .ctlIndex_5G = {
2779 0x10, 0x16, 0x18, 0x40, 0x46,
2780 0x48, 0x30, 0x36, 0x38
2781 },
2782 .ctl_freqbin_5G = {
2783 {
2784 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2785 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2786 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2787 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2788 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2789 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2790 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2791 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2792 },
2793 {
2794 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2795 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2796 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2797 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2798 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2799 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2800 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2801 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2802 },
2803
2804 {
2805 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2806 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2807 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2808 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2809 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2810 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2811 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2812 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2813 },
2814
2815 {
2816 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2818 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2819 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2820 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2821 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2822 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2823 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2824 },
2825
2826 {
2827 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2828 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2829 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2830 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2831 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2832 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2833 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2834 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2835 },
2836
2837 {
2838 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2839 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2840 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2841 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2842 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2843 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2844 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2845 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2846 },
2847
2848 {
2849 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2851 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2852 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2853 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2854 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2855 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2856 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2857 },
2858
2859 {
2860 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2861 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2862 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2863 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2864 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2865 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2866 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2867 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2868 },
2869
2870 {
2871 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2872 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2873 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2874 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2875 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2876 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2877 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2878 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2879 }
2880 },
2881 .ctlPowerData_5G = {
2882 {
2883 {
2884 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2885 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2886 }
2887 },
2888 {
2889 {
2890 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2891 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 }
2893 },
2894 {
2895 {
2896 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2897 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2898 }
2899 },
2900 {
2901 {
2902 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2903 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2904 }
2905 },
2906 {
2907 {
2908 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2909 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2910 }
2911 },
2912 {
2913 {
2914 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2915 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2916 }
2917 },
2918 {
2919 {
2920 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2921 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2922 }
2923 },
2924 {
2925 {
2926 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2927 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2928 }
2929 },
2930 {
2931 {
2932 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2933 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2934 }
2935 },
2936 }
2937};
2938
2939
2940static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2941 &ar9300_default,
2942 &ar9300_x112,
2943 &ar9300_h116,
2944 &ar9300_h112,
2945 &ar9300_x113,
2946};
2947
2948static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2949{
2950 int it;
2951
2952 for (it = 0; it < ARRAY_SIZE(ar9300_eep_templates); it++)
2953 if (ar9300_eep_templates[it]->templateVersion == id)
2954 return ar9300_eep_templates[it];
2955 return NULL;
2956}
2957
2958static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2959{
2960 return 0;
2961}
2962
2963static int interpolate(int x, int xa, int xb, int ya, int yb)
2964{
2965 int bf, factor, plus;
2966
2967 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2968 factor = bf / 2;
2969 plus = bf % 2;
2970 return ya + factor + plus;
2971}
2972
2973static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2974 enum eeprom_param param)
2975{
2976 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2977 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2978
2979 switch (param) {
2980 case EEP_MAC_LSW:
2981 return get_unaligned_be16(eep->macAddr);
2982 case EEP_MAC_MID:
2983 return get_unaligned_be16(eep->macAddr + 2);
2984 case EEP_MAC_MSW:
2985 return get_unaligned_be16(eep->macAddr + 4);
2986 case EEP_REG_0:
2987 return le16_to_cpu(pBase->regDmn[0]);
2988 case EEP_OP_CAP:
2989 return pBase->deviceCap;
2990 case EEP_OP_MODE:
2991 return pBase->opCapFlags.opFlags;
2992 case EEP_RF_SILENT:
2993 return pBase->rfSilent;
2994 case EEP_TX_MASK:
2995 return (pBase->txrxMask >> 4) & 0xf;
2996 case EEP_RX_MASK:
2997 return pBase->txrxMask & 0xf;
2998 case EEP_PAPRD:
2999 return !!(pBase->featureEnable & BIT(5));
3000 case EEP_CHAIN_MASK_REDUCE:
3001 return (pBase->miscConfiguration >> 0x3) & 0x1;
3002 case EEP_ANT_DIV_CTL1:
3003 if (AR_SREV_9565(ah))
3004 return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
3005 else
3006 return eep->base_ext1.ant_div_control;
3007 case EEP_ANTENNA_GAIN_5G:
3008 return eep->modalHeader5G.antennaGain;
3009 case EEP_ANTENNA_GAIN_2G:
3010 return eep->modalHeader2G.antennaGain;
3011 default:
3012 return 0;
3013 }
3014}
3015
3016static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3017 u8 *buffer)
3018{
3019 u16 val;
3020
3021 if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3022 return false;
3023
3024 *buffer = (val >> (8 * (address % 2))) & 0xff;
3025 return true;
3026}
3027
3028static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3029 u8 *buffer)
3030{
3031 u16 val;
3032
3033 if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3034 return false;
3035
3036 buffer[0] = val >> 8;
3037 buffer[1] = val & 0xff;
3038
3039 return true;
3040}
3041
3042static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3043 int count)
3044{
3045 struct ath_common *common = ath9k_hw_common(ah);
3046 int i;
3047
3048 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3049 ath_dbg(common, EEPROM, "eeprom address not in range\n");
3050 return false;
3051 }
3052
3053 /*
3054 * Since we're reading the bytes in reverse order from a little-endian
3055 * word stream, an even address means we only use the lower half of
3056 * the 16-bit word at that address
3057 */
3058 if (address % 2 == 0) {
3059 if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3060 goto error;
3061
3062 count--;
3063 }
3064
3065 for (i = 0; i < count / 2; i++) {
3066 if (!ar9300_eeprom_read_word(ah, address, buffer))
3067 goto error;
3068
3069 address -= 2;
3070 buffer += 2;
3071 }
3072
3073 if (count % 2)
3074 if (!ar9300_eeprom_read_byte(ah, address, buffer))
3075 goto error;
3076
3077 return true;
3078
3079error:
3080 ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3081 address);
3082 return false;
3083}
3084
3085static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3086{
3087 REG_READ(ah, AR9300_OTP_BASE(ah) + (4 * addr));
3088
3089 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS(ah), AR9300_OTP_STATUS_TYPE,
3090 AR9300_OTP_STATUS_VALID, 1000))
3091 return false;
3092
3093 *data = REG_READ(ah, AR9300_OTP_READ_DATA(ah));
3094 return true;
3095}
3096
3097static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3098 int count)
3099{
3100 u32 data;
3101 int i;
3102
3103 for (i = 0; i < count; i++) {
3104 int offset = 8 * ((address - i) % 4);
3105 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3106 return false;
3107
3108 buffer[i] = (data >> offset) & 0xff;
3109 }
3110
3111 return true;
3112}
3113
3114
3115static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3116 int *length, int *major, int *minor)
3117{
3118 unsigned long value[4];
3119
3120 value[0] = best[0];
3121 value[1] = best[1];
3122 value[2] = best[2];
3123 value[3] = best[3];
3124 *code = ((value[0] >> 5) & 0x0007);
3125 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3126 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3127 *major = (value[2] & 0x000f);
3128 *minor = (value[3] & 0x00ff);
3129}
3130
3131static u16 ar9300_comp_cksum(u8 *data, int dsize)
3132{
3133 int it, checksum = 0;
3134
3135 for (it = 0; it < dsize; it++) {
3136 checksum += data[it];
3137 checksum &= 0xffff;
3138 }
3139
3140 return checksum;
3141}
3142
3143static bool ar9300_uncompress_block(struct ath_hw *ah,
3144 u8 *mptr,
3145 int mdataSize,
3146 u8 *block,
3147 int size)
3148{
3149 int it;
3150 int spot;
3151 int offset;
3152 int length;
3153 struct ath_common *common = ath9k_hw_common(ah);
3154
3155 spot = 0;
3156
3157 for (it = 0; it < size; it += (length+2)) {
3158 offset = block[it];
3159 offset &= 0xff;
3160 spot += offset;
3161 length = block[it+1];
3162 length &= 0xff;
3163
3164 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3165 ath_dbg(common, EEPROM,
3166 "Restore at %d: spot=%d offset=%d length=%d\n",
3167 it, spot, offset, length);
3168 memcpy(&mptr[spot], &block[it+2], length);
3169 spot += length;
3170 } else if (length > 0) {
3171 ath_dbg(common, EEPROM,
3172 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3173 it, spot, offset, length);
3174 return false;
3175 }
3176 }
3177 return true;
3178}
3179
3180static int ar9300_compress_decision(struct ath_hw *ah,
3181 int it,
3182 int code,
3183 int reference,
3184 u8 *mptr,
3185 u8 *word, int length, int mdata_size)
3186{
3187 struct ath_common *common = ath9k_hw_common(ah);
3188 const struct ar9300_eeprom *eep = NULL;
3189
3190 switch (code) {
3191 case _CompressNone:
3192 if (length != mdata_size) {
3193 ath_dbg(common, EEPROM,
3194 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3195 mdata_size, length);
3196 return -1;
3197 }
3198 memcpy(mptr, word + COMP_HDR_LEN, length);
3199 ath_dbg(common, EEPROM,
3200 "restored eeprom %d: uncompressed, length %d\n",
3201 it, length);
3202 break;
3203 case _CompressBlock:
3204 if (reference != 0) {
3205 eep = ar9003_eeprom_struct_find_by_id(reference);
3206 if (eep == NULL) {
3207 ath_dbg(common, EEPROM,
3208 "can't find reference eeprom struct %d\n",
3209 reference);
3210 return -1;
3211 }
3212 memcpy(mptr, eep, mdata_size);
3213 }
3214 ath_dbg(common, EEPROM,
3215 "restore eeprom %d: block, reference %d, length %d\n",
3216 it, reference, length);
3217 ar9300_uncompress_block(ah, mptr, mdata_size,
3218 (word + COMP_HDR_LEN), length);
3219 break;
3220 default:
3221 ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3222 return -1;
3223 }
3224 return 0;
3225}
3226
3227typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3228 int count);
3229
3230static bool ar9300_check_header(void *data)
3231{
3232 u32 *word = data;
3233 return !(*word == 0 || *word == ~0);
3234}
3235
3236static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3237 int base_addr)
3238{
3239 u8 header[4];
3240
3241 if (!read(ah, base_addr, header, 4))
3242 return false;
3243
3244 return ar9300_check_header(header);
3245}
3246
3247static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3248 int mdata_size)
3249{
3250 u16 *data = (u16 *) mptr;
3251 int i;
3252
3253 for (i = 0; i < mdata_size / 2; i++, data++)
3254 if (!ath9k_hw_nvram_read(ah, i, data))
3255 return -EIO;
3256
3257 return 0;
3258}
3259/*
3260 * Read the configuration data from the eeprom.
3261 * The data can be put in any specified memory buffer.
3262 *
3263 * Returns -1 on error.
3264 * Returns address of next memory location on success.
3265 */
3266static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3267 u8 *mptr, int mdata_size)
3268{
3269#define MDEFAULT 15
3270#define MSTATE 100
3271 int cptr;
3272 u8 *word;
3273 int code;
3274 int reference, length, major, minor;
3275 int osize;
3276 int it;
3277 u16 checksum, mchecksum;
3278 struct ath_common *common = ath9k_hw_common(ah);
3279 struct ar9300_eeprom *eep;
3280 eeprom_read_op read;
3281
3282 if (ath9k_hw_use_flash(ah)) {
3283 u8 txrx;
3284
3285 if (ar9300_eeprom_restore_flash(ah, mptr, mdata_size))
3286 return -EIO;
3287
3288 /* check if eeprom contains valid data */
3289 eep = (struct ar9300_eeprom *) mptr;
3290 txrx = eep->baseEepHeader.txrxMask;
3291 if (txrx != 0 && txrx != 0xff)
3292 return 0;
3293 }
3294
3295 word = kzalloc(2048, GFP_KERNEL);
3296 if (!word)
3297 return -ENOMEM;
3298
3299 memcpy(mptr, &ar9300_default, mdata_size);
3300
3301 read = ar9300_read_eeprom;
3302 if (AR_SREV_9485(ah))
3303 cptr = AR9300_BASE_ADDR_4K;
3304 else if (AR_SREV_9330(ah))
3305 cptr = AR9300_BASE_ADDR_512;
3306 else
3307 cptr = AR9300_BASE_ADDR;
3308 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3309 cptr);
3310 if (ar9300_check_eeprom_header(ah, read, cptr))
3311 goto found;
3312
3313 cptr = AR9300_BASE_ADDR_4K;
3314 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3315 cptr);
3316 if (ar9300_check_eeprom_header(ah, read, cptr))
3317 goto found;
3318
3319 cptr = AR9300_BASE_ADDR_512;
3320 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3321 cptr);
3322 if (ar9300_check_eeprom_header(ah, read, cptr))
3323 goto found;
3324
3325 read = ar9300_read_otp;
3326 cptr = AR9300_BASE_ADDR;
3327 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3328 if (ar9300_check_eeprom_header(ah, read, cptr))
3329 goto found;
3330
3331 cptr = AR9300_BASE_ADDR_512;
3332 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3333 if (ar9300_check_eeprom_header(ah, read, cptr))
3334 goto found;
3335
3336 goto fail;
3337
3338found:
3339 ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3340
3341 for (it = 0; it < MSTATE; it++) {
3342 if (!read(ah, cptr, word, COMP_HDR_LEN))
3343 goto fail;
3344
3345 if (!ar9300_check_header(word))
3346 break;
3347
3348 ar9300_comp_hdr_unpack(word, &code, &reference,
3349 &length, &major, &minor);
3350 ath_dbg(common, EEPROM,
3351 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3352 cptr, code, reference, length, major, minor);
3353 if ((!AR_SREV_9485(ah) && length >= 1024) ||
3354 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485) ||
3355 (length > cptr)) {
3356 ath_dbg(common, EEPROM, "Skipping bad header\n");
3357 cptr -= COMP_HDR_LEN;
3358 continue;
3359 }
3360
3361 osize = length;
3362 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3363 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3364 mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3365 ath_dbg(common, EEPROM, "checksum %x %x\n",
3366 checksum, mchecksum);
3367 if (checksum == mchecksum) {
3368 ar9300_compress_decision(ah, it, code, reference, mptr,
3369 word, length, mdata_size);
3370 } else {
3371 ath_dbg(common, EEPROM,
3372 "skipping block with bad checksum\n");
3373 }
3374 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3375 }
3376
3377 kfree(word);
3378 return cptr;
3379
3380fail:
3381 kfree(word);
3382 return -1;
3383}
3384
3385/*
3386 * Restore the configuration structure by reading the eeprom.
3387 * This function destroys any existing in-memory structure
3388 * content.
3389 */
3390static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3391{
3392 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3393
3394 if (ar9300_eeprom_restore_internal(ah, mptr,
3395 sizeof(struct ar9300_eeprom)) < 0)
3396 return false;
3397
3398 return true;
3399}
3400
3401#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3402static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3403 struct ar9300_modal_eep_header *modal_hdr)
3404{
3405 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3406 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3407 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3408 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3409 PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3410 PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3411 PR_EEP("Switch Settle", modal_hdr->switchSettling);
3412 PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3413 PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3414 PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3415 PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3416 PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3417 PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3418 PR_EEP("Temp Slope", modal_hdr->tempSlope);
3419 PR_EEP("Volt Slope", modal_hdr->voltSlope);
3420 PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3421 PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3422 PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3423 PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3424 PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3425 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3426 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3427 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3428 PR_EEP("Quick Drop", modal_hdr->quick_drop);
3429 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3430 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3431 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3432 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3433 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3434 PR_EEP("txClip", modal_hdr->txClip);
3435 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3436
3437 return len;
3438}
3439
3440static u32 ar9003_dump_cal_data(struct ath_hw *ah, char *buf, u32 len, u32 size,
3441 bool is_2g)
3442{
3443 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3444 struct ar9300_base_eep_hdr *pBase;
3445 struct ar9300_cal_data_per_freq_op_loop *cal_pier;
3446 int cal_pier_nr;
3447 int freq;
3448 int i, j;
3449
3450 pBase = &eep->baseEepHeader;
3451
3452 if (is_2g)
3453 cal_pier_nr = AR9300_NUM_2G_CAL_PIERS;
3454 else
3455 cal_pier_nr = AR9300_NUM_5G_CAL_PIERS;
3456
3457 for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3458 if (!((pBase->txrxMask >> i) & 1))
3459 continue;
3460
3461 len += scnprintf(buf + len, size - len, "Chain %d\n", i);
3462
3463 len += scnprintf(buf + len, size - len,
3464 "Freq\t ref\tvolt\ttemp\tnf_cal\tnf_pow\trx_temp\n");
3465
3466 for (j = 0; j < cal_pier_nr; j++) {
3467 if (is_2g) {
3468 cal_pier = &eep->calPierData2G[i][j];
3469 freq = 2300 + eep->calFreqPier2G[j];
3470 } else {
3471 cal_pier = &eep->calPierData5G[i][j];
3472 freq = 4800 + eep->calFreqPier5G[j] * 5;
3473 }
3474
3475 len += scnprintf(buf + len, size - len,
3476 "%d\t", freq);
3477
3478 len += scnprintf(buf + len, size - len,
3479 "%d\t%d\t%d\t%d\t%d\t%d\n",
3480 cal_pier->refPower,
3481 cal_pier->voltMeas,
3482 cal_pier->tempMeas,
3483 cal_pier->rxTempMeas ?
3484 N2DBM(cal_pier->rxNoisefloorCal) : 0,
3485 cal_pier->rxTempMeas ?
3486 N2DBM(cal_pier->rxNoisefloorPower) : 0,
3487 cal_pier->rxTempMeas);
3488 }
3489 }
3490
3491 return len;
3492}
3493
3494static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3495 u8 *buf, u32 len, u32 size)
3496{
3497 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3498 struct ar9300_base_eep_hdr *pBase;
3499
3500 if (!dump_base_hdr) {
3501 len += scnprintf(buf + len, size - len,
3502 "%20s :\n", "2GHz modal Header");
3503 len = ar9003_dump_modal_eeprom(buf, len, size,
3504 &eep->modalHeader2G);
3505
3506 len += scnprintf(buf + len, size - len, "Calibration data\n");
3507 len = ar9003_dump_cal_data(ah, buf, len, size, true);
3508
3509 len += scnprintf(buf + len, size - len,
3510 "%20s :\n", "5GHz modal Header");
3511 len = ar9003_dump_modal_eeprom(buf, len, size,
3512 &eep->modalHeader5G);
3513
3514 len += scnprintf(buf + len, size - len, "Calibration data\n");
3515 len = ar9003_dump_cal_data(ah, buf, len, size, false);
3516
3517 goto out;
3518 }
3519
3520 pBase = &eep->baseEepHeader;
3521
3522 PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3523 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3524 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3525 PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3526 PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3527 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3528 AR5416_OPFLAGS_11A));
3529 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3530 AR5416_OPFLAGS_11G));
3531 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3532 AR5416_OPFLAGS_N_2G_HT20));
3533 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3534 AR5416_OPFLAGS_N_2G_HT40));
3535 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3536 AR5416_OPFLAGS_N_5G_HT20));
3537 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3538 AR5416_OPFLAGS_N_5G_HT40));
3539 PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc &
3540 AR5416_EEPMISC_BIG_ENDIAN));
3541 PR_EEP("RF Silent", pBase->rfSilent);
3542 PR_EEP("BT option", pBase->blueToothOptions);
3543 PR_EEP("Device Cap", pBase->deviceCap);
3544 PR_EEP("Device Type", pBase->deviceType);
3545 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3546 PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3547 PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3548 PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3549 PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3550 PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3551 PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3552 PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3553 PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3554 PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3555 PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3556 PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3557 PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3558 PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3559 PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3560 PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3561 PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3562 PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3563 PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3564
3565 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3566 ah->eeprom.ar9300_eep.macAddr);
3567out:
3568 if (len > size)
3569 len = size;
3570
3571 return len;
3572}
3573#else
3574static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3575 u8 *buf, u32 len, u32 size)
3576{
3577 return 0;
3578}
3579#endif
3580
3581/* XXX: review hardware docs */
3582static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3583{
3584 return ah->eeprom.ar9300_eep.eepromVersion;
3585}
3586
3587/* XXX: could be read from the eepromVersion, not sure yet */
3588static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3589{
3590 return 0;
3591}
3592
3593static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3594 bool is2ghz)
3595{
3596 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3597
3598 if (is2ghz)
3599 return &eep->modalHeader2G;
3600 else
3601 return &eep->modalHeader5G;
3602}
3603
3604static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3605{
3606 int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3607
3608 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
3609 AR_SREV_9531(ah) || AR_SREV_9561(ah))
3610 REG_RMW_FIELD(ah, AR_CH0_TOP2(ah), AR_CH0_TOP2_XPABIASLVL, bias);
3611 else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3612 REG_RMW_FIELD(ah, AR_CH0_TOP(ah), AR_CH0_TOP_XPABIASLVL, bias);
3613 else {
3614 REG_RMW_FIELD(ah, AR_CH0_TOP(ah), AR_CH0_TOP_XPABIASLVL, bias);
3615 REG_RMW_FIELD(ah, AR_CH0_THERM(ah),
3616 AR_CH0_THERM_XPABIASLVL_MSB,
3617 bias >> 2);
3618 REG_RMW_FIELD(ah, AR_CH0_THERM(ah),
3619 AR_CH0_THERM_XPASHORT2GND, 1);
3620 }
3621}
3622
3623static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3624{
3625 return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3626}
3627
3628u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3629{
3630 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3631}
3632
3633u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3634{
3635 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3636}
3637
3638static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3639 bool is2ghz)
3640{
3641 __le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3642 return le16_to_cpu(val);
3643}
3644
3645static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3646{
3647 struct ath_common *common = ath9k_hw_common(ah);
3648 struct ath9k_hw_capabilities *pCap = &ah->caps;
3649 int chain;
3650 u32 regval, value, gpio;
3651 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3652 AR_PHY_SWITCH_CHAIN_0,
3653 AR_PHY_SWITCH_CHAIN_1,
3654 AR_PHY_SWITCH_CHAIN_2,
3655 };
3656
3657 if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3658 if (ah->config.xlna_gpio)
3659 gpio = ah->config.xlna_gpio;
3660 else
3661 gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3662
3663 ath9k_hw_gpio_request_out(ah, gpio, NULL,
3664 AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3665 }
3666
3667 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3668
3669 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3670 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3671 AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3672 } else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
3673 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3674 AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3675 } else
3676 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3677 AR_SWITCH_TABLE_COM_ALL, value);
3678
3679
3680 /*
3681 * AR9462 defines new switch table for BT/WLAN,
3682 * here's new field name in XXX.ref for both 2G and 5G.
3683 * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3684 * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
3685 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3686 *
3687 * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
3688 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3689 *
3690 * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3691 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3692 */
3693 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3694 value = ar9003_switch_com_spdt_get(ah, is2ghz);
3695 REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3696 AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3697 REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3698 }
3699
3700 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3701 if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
3702 value &= ~AR_SWITCH_TABLE_COM2_ALL;
3703 value |= ah->config.ant_ctrl_comm2g_switch_enable;
3704
3705 }
3706 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3707
3708 if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3709 value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3710 REG_RMW_FIELD(ah, switch_chain_reg[0],
3711 AR_SWITCH_TABLE_ALL, value);
3712 }
3713
3714 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3715 if ((ah->rxchainmask & BIT(chain)) ||
3716 (ah->txchainmask & BIT(chain))) {
3717 value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3718 is2ghz);
3719 REG_RMW_FIELD(ah, switch_chain_reg[chain],
3720 AR_SWITCH_TABLE_ALL, value);
3721 }
3722 }
3723
3724 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3725 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3726 /*
3727 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3728 * are the fields present
3729 */
3730 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3731 regval &= (~AR_ANT_DIV_CTRL_ALL);
3732 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3733 /* enable_lnadiv */
3734 regval &= (~AR_PHY_ANT_DIV_LNADIV);
3735 regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3736
3737 if (AR_SREV_9485(ah) && common->bt_ant_diversity)
3738 regval |= AR_ANT_DIV_ENABLE;
3739
3740 if (AR_SREV_9565(ah)) {
3741 if (common->bt_ant_diversity) {
3742 regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3743
3744 REG_SET_BIT(ah, AR_PHY_RESTART,
3745 AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
3746
3747 /* Force WLAN LNA diversity ON */
3748 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
3749 AR_BTCOEX_WL_LNADIV_FORCE_ON);
3750 } else {
3751 regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3752 regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3753
3754 REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
3755 (1 << AR_PHY_ANT_SW_RX_PROT_S));
3756
3757 /* Force WLAN LNA diversity OFF */
3758 REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
3759 AR_BTCOEX_WL_LNADIV_FORCE_ON);
3760 }
3761 }
3762
3763 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3764
3765 /* enable fast_div */
3766 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3767 regval &= (~AR_FAST_DIV_ENABLE);
3768 regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3769
3770 if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
3771 && common->bt_ant_diversity)
3772 regval |= AR_FAST_DIV_ENABLE;
3773
3774 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3775
3776 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3777 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3778 /*
3779 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3780 * main_tb, alt_tb
3781 */
3782 regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3783 AR_PHY_ANT_DIV_ALT_LNACONF |
3784 AR_PHY_ANT_DIV_ALT_GAINTB |
3785 AR_PHY_ANT_DIV_MAIN_GAINTB));
3786 /* by default use LNA1 for the main antenna */
3787 regval |= (ATH_ANT_DIV_COMB_LNA1 <<
3788 AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3789 regval |= (ATH_ANT_DIV_COMB_LNA2 <<
3790 AR_PHY_ANT_DIV_ALT_LNACONF_S);
3791 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3792 }
3793 }
3794}
3795
3796static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3797{
3798 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3799 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3800 int drive_strength;
3801 unsigned long reg;
3802
3803 drive_strength = pBase->miscConfiguration & BIT(0);
3804 if (!drive_strength)
3805 return;
3806
3807 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3808 reg &= ~0x00ffffc0;
3809 reg |= 0x5 << 21;
3810 reg |= 0x5 << 18;
3811 reg |= 0x5 << 15;
3812 reg |= 0x5 << 12;
3813 reg |= 0x5 << 9;
3814 reg |= 0x5 << 6;
3815 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3816
3817 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3818 reg &= ~0xffffffe0;
3819 reg |= 0x5 << 29;
3820 reg |= 0x5 << 26;
3821 reg |= 0x5 << 23;
3822 reg |= 0x5 << 20;
3823 reg |= 0x5 << 17;
3824 reg |= 0x5 << 14;
3825 reg |= 0x5 << 11;
3826 reg |= 0x5 << 8;
3827 reg |= 0x5 << 5;
3828 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3829
3830 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3831 reg &= ~0xff800000;
3832 reg |= 0x5 << 29;
3833 reg |= 0x5 << 26;
3834 reg |= 0x5 << 23;
3835 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3836}
3837
3838static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3839 struct ath9k_channel *chan)
3840{
3841 int f[3], t[3];
3842 u16 value;
3843 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3844
3845 if (chain >= 0 && chain < 3) {
3846 if (IS_CHAN_2GHZ(chan))
3847 return eep->modalHeader2G.xatten1DB[chain];
3848 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3849 t[0] = eep->base_ext2.xatten1DBLow[chain];
3850 f[0] = 5180;
3851 t[1] = eep->modalHeader5G.xatten1DB[chain];
3852 f[1] = 5500;
3853 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3854 f[2] = 5785;
3855 value = ar9003_hw_power_interpolate((s32) chan->channel,
3856 f, t, 3);
3857 return value;
3858 } else
3859 return eep->modalHeader5G.xatten1DB[chain];
3860 }
3861
3862 return 0;
3863}
3864
3865
3866static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3867 struct ath9k_channel *chan)
3868{
3869 int f[3], t[3];
3870 u16 value;
3871 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3872
3873 if (chain >= 0 && chain < 3) {
3874 if (IS_CHAN_2GHZ(chan))
3875 return eep->modalHeader2G.xatten1Margin[chain];
3876 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3877 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3878 f[0] = 5180;
3879 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3880 f[1] = 5500;
3881 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3882 f[2] = 5785;
3883 value = ar9003_hw_power_interpolate((s32) chan->channel,
3884 f, t, 3);
3885 return value;
3886 } else
3887 return eep->modalHeader5G.xatten1Margin[chain];
3888 }
3889
3890 return 0;
3891}
3892
3893static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3894{
3895 int i;
3896 u16 value;
3897 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3898 AR_PHY_EXT_ATTEN_CTL_1,
3899 AR_PHY_EXT_ATTEN_CTL_2,
3900 };
3901
3902 if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3903 value = ar9003_hw_atten_chain_get(ah, 1, chan);
3904 REG_RMW_FIELD(ah, ext_atten_reg[0],
3905 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3906
3907 value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3908 REG_RMW_FIELD(ah, ext_atten_reg[0],
3909 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3910 value);
3911 }
3912
3913 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3914 for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3915 if (ah->txchainmask & BIT(i)) {
3916 value = ar9003_hw_atten_chain_get(ah, i, chan);
3917 REG_RMW_FIELD(ah, ext_atten_reg[i],
3918 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3919
3920 if (AR_SREV_9485(ah) &&
3921 (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3922 ah->config.xatten_margin_cfg)
3923 value = 5;
3924 else
3925 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3926
3927 if (ah->config.alt_mingainidx)
3928 REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
3929 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3930 value);
3931
3932 REG_RMW_FIELD(ah, ext_atten_reg[i],
3933 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3934 value);
3935 }
3936 }
3937}
3938
3939static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3940{
3941 int timeout = 100;
3942
3943 while (pmu_set != REG_READ(ah, pmu_reg)) {
3944 if (timeout-- == 0)
3945 return false;
3946 REG_WRITE(ah, pmu_reg, pmu_set);
3947 udelay(10);
3948 }
3949
3950 return true;
3951}
3952
3953void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3954{
3955 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3956 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3957 u32 reg_val;
3958
3959 if (pBase->featureEnable & BIT(4)) {
3960 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3961 int reg_pmu_set;
3962
3963 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2(ah)) & ~AR_PHY_PMU2_PGM;
3964 REG_WRITE(ah, AR_PHY_PMU2(ah), reg_pmu_set);
3965 if (!is_pmu_set(ah, AR_PHY_PMU2(ah), reg_pmu_set))
3966 return;
3967
3968 if (AR_SREV_9330(ah)) {
3969 if (ah->is_clk_25mhz) {
3970 reg_pmu_set = (3 << 1) | (8 << 4) |
3971 (3 << 8) | (1 << 14) |
3972 (6 << 17) | (1 << 20) |
3973 (3 << 24);
3974 } else {
3975 reg_pmu_set = (4 << 1) | (7 << 4) |
3976 (3 << 8) | (1 << 14) |
3977 (6 << 17) | (1 << 20) |
3978 (3 << 24);
3979 }
3980 } else {
3981 reg_pmu_set = (5 << 1) | (7 << 4) |
3982 (2 << 8) | (2 << 14) |
3983 (6 << 17) | (1 << 20) |
3984 (3 << 24) | (1 << 28);
3985 }
3986
3987 REG_WRITE(ah, AR_PHY_PMU1(ah), reg_pmu_set);
3988 if (!is_pmu_set(ah, AR_PHY_PMU1(ah), reg_pmu_set))
3989 return;
3990
3991 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2(ah)) & ~0xFFC00000)
3992 | (4 << 26);
3993 REG_WRITE(ah, AR_PHY_PMU2(ah), reg_pmu_set);
3994 if (!is_pmu_set(ah, AR_PHY_PMU2(ah), reg_pmu_set))
3995 return;
3996
3997 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2(ah)) & ~0x00200000)
3998 | (1 << 21);
3999 REG_WRITE(ah, AR_PHY_PMU2(ah), reg_pmu_set);
4000 if (!is_pmu_set(ah, AR_PHY_PMU2(ah), reg_pmu_set))
4001 return;
4002 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah) ||
4003 AR_SREV_9561(ah)) {
4004 reg_val = le32_to_cpu(pBase->swreg);
4005 REG_WRITE(ah, AR_PHY_PMU1(ah), reg_val);
4006
4007 if (AR_SREV_9561(ah))
4008 REG_WRITE(ah, AR_PHY_PMU2(ah), 0x10200000);
4009 } else {
4010 /* Internal regulator is ON. Write swreg register. */
4011 reg_val = le32_to_cpu(pBase->swreg);
4012 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
4013 REG_READ(ah, AR_RTC_REG_CONTROL1) &
4014 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
4015 REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
4016 /* Set REG_CONTROL1.SWREG_PROGRAM */
4017 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
4018 REG_READ(ah,
4019 AR_RTC_REG_CONTROL1) |
4020 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
4021 }
4022 } else {
4023 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
4024 REG_RMW_FIELD(ah, AR_PHY_PMU2(ah), AR_PHY_PMU2_PGM, 0);
4025 while (REG_READ_FIELD(ah, AR_PHY_PMU2(ah),
4026 AR_PHY_PMU2_PGM))
4027 udelay(10);
4028
4029 REG_RMW_FIELD(ah, AR_PHY_PMU1(ah), AR_PHY_PMU1_PWD, 0x1);
4030 while (!REG_READ_FIELD(ah, AR_PHY_PMU1(ah),
4031 AR_PHY_PMU1_PWD))
4032 udelay(10);
4033 REG_RMW_FIELD(ah, AR_PHY_PMU2(ah), AR_PHY_PMU2_PGM, 0x1);
4034 while (!REG_READ_FIELD(ah, AR_PHY_PMU2(ah),
4035 AR_PHY_PMU2_PGM))
4036 udelay(10);
4037 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
4038 REG_RMW_FIELD(ah, AR_PHY_PMU1(ah), AR_PHY_PMU1_PWD, 0x1);
4039 else {
4040 reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK(ah)) |
4041 AR_RTC_FORCE_SWREG_PRD;
4042 REG_WRITE(ah, AR_RTC_SLEEP_CLK(ah), reg_val);
4043 }
4044 }
4045
4046}
4047
4048static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
4049{
4050 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4051 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
4052
4053 if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
4054 return;
4055
4056 if (eep->baseEepHeader.featureEnable & 0x40) {
4057 tuning_caps_param &= 0x7f;
4058 REG_RMW_FIELD(ah, AR_CH0_XTAL(ah), AR_CH0_XTAL_CAPINDAC,
4059 tuning_caps_param);
4060 REG_RMW_FIELD(ah, AR_CH0_XTAL(ah), AR_CH0_XTAL_CAPOUTDAC,
4061 tuning_caps_param);
4062 }
4063}
4064
4065static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
4066{
4067 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4068 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4069 int quick_drop;
4070 s32 t[3], f[3] = {5180, 5500, 5785};
4071
4072 if (!(pBase->miscConfiguration & BIT(4)))
4073 return;
4074
4075 if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
4076 if (freq < 4000) {
4077 quick_drop = eep->modalHeader2G.quick_drop;
4078 } else {
4079 t[0] = eep->base_ext1.quick_drop_low;
4080 t[1] = eep->modalHeader5G.quick_drop;
4081 t[2] = eep->base_ext1.quick_drop_high;
4082 quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
4083 }
4084 REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
4085 }
4086}
4087
4088static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
4089{
4090 u32 value;
4091
4092 value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
4093
4094 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4095 AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
4096 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4097 AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
4098}
4099
4100static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
4101{
4102 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4103 u8 xpa_ctl;
4104
4105 if (!(eep->baseEepHeader.featureEnable & 0x80))
4106 return;
4107
4108 if (!AR_SREV_9300(ah) &&
4109 !AR_SREV_9340(ah) &&
4110 !AR_SREV_9580(ah) &&
4111 !AR_SREV_9531(ah) &&
4112 !AR_SREV_9561(ah))
4113 return;
4114
4115 xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
4116 if (is2ghz)
4117 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4118 AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
4119 else
4120 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4121 AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
4122}
4123
4124static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
4125{
4126 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4127 u8 bias;
4128
4129 if (!(eep->baseEepHeader.miscConfiguration & 0x40))
4130 return;
4131
4132 if (!AR_SREV_9300(ah))
4133 return;
4134
4135 bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4136 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4137 bias & 0x3);
4138 bias >>= 2;
4139 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4140 bias & 0x3);
4141 bias >>= 2;
4142 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4143 bias & 0x3);
4144}
4145
4146static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4147{
4148 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4149 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4150 int thermometer = (pBase->miscConfiguration >> 1) & 0x3;
4151
4152 return --thermometer;
4153}
4154
4155static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4156{
4157 struct ath9k_hw_capabilities *pCap = &ah->caps;
4158 int thermometer = ar9003_hw_get_thermometer(ah);
4159 u8 therm_on = (thermometer < 0) ? 0 : 1;
4160
4161 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4162 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4163 if (pCap->chip_chainmask & BIT(1))
4164 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4165 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4166 if (pCap->chip_chainmask & BIT(2))
4167 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4168 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4169
4170 therm_on = thermometer == 0;
4171 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4172 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4173 if (pCap->chip_chainmask & BIT(1)) {
4174 therm_on = thermometer == 1;
4175 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4176 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4177 }
4178 if (pCap->chip_chainmask & BIT(2)) {
4179 therm_on = thermometer == 2;
4180 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4181 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4182 }
4183}
4184
4185static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4186{
4187 u32 data = 0, ko, kg;
4188
4189 if (!AR_SREV_9462_20_OR_LATER(ah))
4190 return;
4191
4192 ar9300_otp_read_word(ah, 1, &data);
4193 ko = data & 0xff;
4194 kg = (data >> 8) & 0xff;
4195 if (ko || kg) {
4196 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4197 AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4198 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4199 AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4200 kg + 256);
4201 }
4202}
4203
4204static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah,
4205 bool is2ghz)
4206{
4207 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4208 const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = {
4209 AR_PHY_CCA_CTRL_0,
4210 AR_PHY_CCA_CTRL_1,
4211 AR_PHY_CCA_CTRL_2,
4212 };
4213 int chain;
4214 u32 val;
4215
4216 if (is2ghz) {
4217 if (!(eep->base_ext1.misc_enable & BIT(2)))
4218 return;
4219 } else {
4220 if (!(eep->base_ext1.misc_enable & BIT(3)))
4221 return;
4222 }
4223
4224 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
4225 if (!(ah->caps.tx_chainmask & BIT(chain)))
4226 continue;
4227
4228 val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain];
4229 REG_RMW_FIELD(ah, cca_ctrl[chain],
4230 AR_PHY_EXT_CCA0_THRESH62_1, val);
4231 }
4232
4233}
4234
4235static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4236 struct ath9k_channel *chan)
4237{
4238 bool is2ghz = IS_CHAN_2GHZ(chan);
4239 ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4240 ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4241 ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4242 ar9003_hw_drive_strength_apply(ah);
4243 ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4244 ar9003_hw_atten_apply(ah, chan);
4245 ar9003_hw_quick_drop_apply(ah, chan->channel);
4246 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah))
4247 ar9003_hw_internal_regulator_apply(ah);
4248 ar9003_hw_apply_tuning_caps(ah);
4249 ar9003_hw_apply_minccapwr_thresh(ah, is2ghz);
4250 ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4251 ar9003_hw_thermometer_apply(ah);
4252 ar9003_hw_thermo_cal_apply(ah);
4253}
4254
4255static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4256 struct ath9k_channel *chan)
4257{
4258}
4259
4260/*
4261 * Returns the interpolated y value corresponding to the specified x value
4262 * from the np ordered pairs of data (px,py).
4263 * The pairs do not have to be in any order.
4264 * If the specified x value is less than any of the px,
4265 * the returned y value is equal to the py for the lowest px.
4266 * If the specified x value is greater than any of the px,
4267 * the returned y value is equal to the py for the highest px.
4268 */
4269static int ar9003_hw_power_interpolate(int32_t x,
4270 int32_t *px, int32_t *py, u_int16_t np)
4271{
4272 int ip = 0;
4273 int lx = 0, ly = 0, lhave = 0;
4274 int hx = 0, hy = 0, hhave = 0;
4275 int dx = 0;
4276 int y = 0;
4277
4278 lhave = 0;
4279 hhave = 0;
4280
4281 /* identify best lower and higher x calibration measurement */
4282 for (ip = 0; ip < np; ip++) {
4283 dx = x - px[ip];
4284
4285 /* this measurement is higher than our desired x */
4286 if (dx <= 0) {
4287 if (!hhave || dx > (x - hx)) {
4288 /* new best higher x measurement */
4289 hx = px[ip];
4290 hy = py[ip];
4291 hhave = 1;
4292 }
4293 }
4294 /* this measurement is lower than our desired x */
4295 if (dx >= 0) {
4296 if (!lhave || dx < (x - lx)) {
4297 /* new best lower x measurement */
4298 lx = px[ip];
4299 ly = py[ip];
4300 lhave = 1;
4301 }
4302 }
4303 }
4304
4305 /* the low x is good */
4306 if (lhave) {
4307 /* so is the high x */
4308 if (hhave) {
4309 /* they're the same, so just pick one */
4310 if (hx == lx)
4311 y = ly;
4312 else /* interpolate */
4313 y = interpolate(x, lx, hx, ly, hy);
4314 } else /* only low is good, use it */
4315 y = ly;
4316 } else if (hhave) /* only high is good, use it */
4317 y = hy;
4318 else /* nothing is good,this should never happen unless np=0, ???? */
4319 y = -(1 << 30);
4320 return y;
4321}
4322
4323static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4324 u16 rateIndex, u16 freq, bool is2GHz)
4325{
4326 u16 numPiers, i;
4327 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4328 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4329 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4330 struct cal_tgt_pow_legacy *pEepromTargetPwr;
4331 u8 *pFreqBin;
4332
4333 if (is2GHz) {
4334 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4335 pEepromTargetPwr = eep->calTargetPower2G;
4336 pFreqBin = eep->calTarget_freqbin_2G;
4337 } else {
4338 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4339 pEepromTargetPwr = eep->calTargetPower5G;
4340 pFreqBin = eep->calTarget_freqbin_5G;
4341 }
4342
4343 /*
4344 * create array of channels and targetpower from
4345 * targetpower piers stored on eeprom
4346 */
4347 for (i = 0; i < numPiers; i++) {
4348 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4349 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4350 }
4351
4352 /* interpolate to get target power for given frequency */
4353 return (u8) ar9003_hw_power_interpolate((s32) freq,
4354 freqArray,
4355 targetPowerArray, numPiers);
4356}
4357
4358static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4359 u16 rateIndex,
4360 u16 freq, bool is2GHz)
4361{
4362 u16 numPiers, i;
4363 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4364 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4365 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4366 struct cal_tgt_pow_ht *pEepromTargetPwr;
4367 u8 *pFreqBin;
4368
4369 if (is2GHz) {
4370 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4371 pEepromTargetPwr = eep->calTargetPower2GHT20;
4372 pFreqBin = eep->calTarget_freqbin_2GHT20;
4373 } else {
4374 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4375 pEepromTargetPwr = eep->calTargetPower5GHT20;
4376 pFreqBin = eep->calTarget_freqbin_5GHT20;
4377 }
4378
4379 /*
4380 * create array of channels and targetpower
4381 * from targetpower piers stored on eeprom
4382 */
4383 for (i = 0; i < numPiers; i++) {
4384 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4385 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4386 }
4387
4388 /* interpolate to get target power for given frequency */
4389 return (u8) ar9003_hw_power_interpolate((s32) freq,
4390 freqArray,
4391 targetPowerArray, numPiers);
4392}
4393
4394static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4395 u16 rateIndex,
4396 u16 freq, bool is2GHz)
4397{
4398 u16 numPiers, i;
4399 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4400 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4401 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4402 struct cal_tgt_pow_ht *pEepromTargetPwr;
4403 u8 *pFreqBin;
4404
4405 if (is2GHz) {
4406 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4407 pEepromTargetPwr = eep->calTargetPower2GHT40;
4408 pFreqBin = eep->calTarget_freqbin_2GHT40;
4409 } else {
4410 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4411 pEepromTargetPwr = eep->calTargetPower5GHT40;
4412 pFreqBin = eep->calTarget_freqbin_5GHT40;
4413 }
4414
4415 /*
4416 * create array of channels and targetpower from
4417 * targetpower piers stored on eeprom
4418 */
4419 for (i = 0; i < numPiers; i++) {
4420 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4421 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4422 }
4423
4424 /* interpolate to get target power for given frequency */
4425 return (u8) ar9003_hw_power_interpolate((s32) freq,
4426 freqArray,
4427 targetPowerArray, numPiers);
4428}
4429
4430static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4431 u16 rateIndex, u16 freq)
4432{
4433 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4434 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4435 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4436 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4437 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4438 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4439
4440 /*
4441 * create array of channels and targetpower from
4442 * targetpower piers stored on eeprom
4443 */
4444 for (i = 0; i < numPiers; i++) {
4445 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4446 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4447 }
4448
4449 /* interpolate to get target power for given frequency */
4450 return (u8) ar9003_hw_power_interpolate((s32) freq,
4451 freqArray,
4452 targetPowerArray, numPiers);
4453}
4454
4455static void ar9003_hw_selfgen_tpc_txpower(struct ath_hw *ah,
4456 struct ath9k_channel *chan,
4457 u8 *pwr_array)
4458{
4459 u32 val;
4460
4461 /* target power values for self generated frames (ACK,RTS/CTS) */
4462 if (IS_CHAN_2GHZ(chan)) {
4463 val = SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
4464 SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
4465 SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4466 } else {
4467 val = SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
4468 SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
4469 SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4470 }
4471 REG_WRITE(ah, AR_TPC, val);
4472}
4473
4474/* Set tx power registers to array of values passed in */
4475int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4476{
4477#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4478 /* make sure forced gain is not set */
4479 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4480
4481 /* Write the OFDM power per rate set */
4482
4483 /* 6 (LSB), 9, 12, 18 (MSB) */
4484 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4485 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4486 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4487 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4488 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4489
4490 /* 24 (LSB), 36, 48, 54 (MSB) */
4491 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4492 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4493 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4494 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4495 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4496
4497 /* Write the CCK power per rate set */
4498
4499 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4500 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4501 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4502 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4503 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4504 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4505
4506 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4507 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4508 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4509 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4510 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4511 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4512 );
4513
4514 /* Write the power for duplicated frames - HT40 */
4515
4516 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4517 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4518 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4519 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4520 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4521 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4522 );
4523
4524 /* Write the HT20 power per rate set */
4525
4526 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4527 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4528 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4529 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4530 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4531 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4532 );
4533
4534 /* 6 (LSB), 7, 12, 13 (MSB) */
4535 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4536 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4537 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4538 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4539 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4540 );
4541
4542 /* 14 (LSB), 15, 20, 21 */
4543 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4544 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4545 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4546 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4547 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4548 );
4549
4550 /* Mixed HT20 and HT40 rates */
4551
4552 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4553 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4554 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4555 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4556 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4557 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4558 );
4559
4560 /*
4561 * Write the HT40 power per rate set
4562 * correct PAR difference between HT40 and HT20/LEGACY
4563 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4564 */
4565 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4566 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4567 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4568 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4569 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4570 );
4571
4572 /* 6 (LSB), 7, 12, 13 (MSB) */
4573 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4574 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4575 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4576 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4577 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4578 );
4579
4580 /* 14 (LSB), 15, 20, 21 */
4581 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4582 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4583 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4584 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4585 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4586 );
4587
4588 return 0;
4589#undef POW_SM
4590}
4591
4592static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4593 u8 *targetPowerValT2,
4594 bool is2GHz)
4595{
4596 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4597 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4598 is2GHz);
4599 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4600 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4601 is2GHz);
4602 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4603 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4604 is2GHz);
4605 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4606 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4607 is2GHz);
4608}
4609
4610static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4611 u8 *targetPowerValT2)
4612{
4613 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4614 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4615 freq);
4616 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4617 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4618 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4619 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4620 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4621 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4622}
4623
4624static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4625 u8 *targetPowerValT2, bool is2GHz)
4626{
4627 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4628 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4629 is2GHz);
4630 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4631 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4632 freq, is2GHz);
4633 targetPowerValT2[ALL_TARGET_HT20_4] =
4634 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4635 is2GHz);
4636 targetPowerValT2[ALL_TARGET_HT20_5] =
4637 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4638 is2GHz);
4639 targetPowerValT2[ALL_TARGET_HT20_6] =
4640 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4641 is2GHz);
4642 targetPowerValT2[ALL_TARGET_HT20_7] =
4643 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4644 is2GHz);
4645 targetPowerValT2[ALL_TARGET_HT20_12] =
4646 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4647 is2GHz);
4648 targetPowerValT2[ALL_TARGET_HT20_13] =
4649 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4650 is2GHz);
4651 targetPowerValT2[ALL_TARGET_HT20_14] =
4652 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4653 is2GHz);
4654 targetPowerValT2[ALL_TARGET_HT20_15] =
4655 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4656 is2GHz);
4657 targetPowerValT2[ALL_TARGET_HT20_20] =
4658 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4659 is2GHz);
4660 targetPowerValT2[ALL_TARGET_HT20_21] =
4661 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4662 is2GHz);
4663 targetPowerValT2[ALL_TARGET_HT20_22] =
4664 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4665 is2GHz);
4666 targetPowerValT2[ALL_TARGET_HT20_23] =
4667 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4668 is2GHz);
4669}
4670
4671static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4672 u16 freq,
4673 u8 *targetPowerValT2,
4674 bool is2GHz)
4675{
4676 /* XXX: hard code for now, need to get from eeprom struct */
4677 u8 ht40PowerIncForPdadc = 0;
4678
4679 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4680 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4681 is2GHz) + ht40PowerIncForPdadc;
4682 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4683 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4684 freq,
4685 is2GHz) + ht40PowerIncForPdadc;
4686 targetPowerValT2[ALL_TARGET_HT40_4] =
4687 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4688 is2GHz) + ht40PowerIncForPdadc;
4689 targetPowerValT2[ALL_TARGET_HT40_5] =
4690 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4691 is2GHz) + ht40PowerIncForPdadc;
4692 targetPowerValT2[ALL_TARGET_HT40_6] =
4693 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4694 is2GHz) + ht40PowerIncForPdadc;
4695 targetPowerValT2[ALL_TARGET_HT40_7] =
4696 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4697 is2GHz) + ht40PowerIncForPdadc;
4698 targetPowerValT2[ALL_TARGET_HT40_12] =
4699 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4700 is2GHz) + ht40PowerIncForPdadc;
4701 targetPowerValT2[ALL_TARGET_HT40_13] =
4702 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4703 is2GHz) + ht40PowerIncForPdadc;
4704 targetPowerValT2[ALL_TARGET_HT40_14] =
4705 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4706 is2GHz) + ht40PowerIncForPdadc;
4707 targetPowerValT2[ALL_TARGET_HT40_15] =
4708 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4709 is2GHz) + ht40PowerIncForPdadc;
4710 targetPowerValT2[ALL_TARGET_HT40_20] =
4711 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4712 is2GHz) + ht40PowerIncForPdadc;
4713 targetPowerValT2[ALL_TARGET_HT40_21] =
4714 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4715 is2GHz) + ht40PowerIncForPdadc;
4716 targetPowerValT2[ALL_TARGET_HT40_22] =
4717 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4718 is2GHz) + ht40PowerIncForPdadc;
4719 targetPowerValT2[ALL_TARGET_HT40_23] =
4720 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4721 is2GHz) + ht40PowerIncForPdadc;
4722}
4723
4724static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4725 struct ath9k_channel *chan,
4726 u8 *targetPowerValT2)
4727{
4728 bool is2GHz = IS_CHAN_2GHZ(chan);
4729 unsigned int i = 0;
4730 struct ath_common *common = ath9k_hw_common(ah);
4731 u16 freq = chan->channel;
4732
4733 if (is2GHz)
4734 ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4735
4736 ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4737 ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4738
4739 if (IS_CHAN_HT40(chan))
4740 ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4741 is2GHz);
4742
4743 for (i = 0; i < ar9300RateSize; i++) {
4744 ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4745 i, targetPowerValT2[i]);
4746 }
4747}
4748
4749static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4750 bool is2ghz,
4751 int ipier,
4752 int ichain,
4753 int *pfrequency,
4754 int *pcorrection,
4755 int *ptemperature, int *pvoltage,
4756 int *pnf_cal, int *pnf_power)
4757{
4758 u8 *pCalPier;
4759 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4760 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4761 struct ath_common *common = ath9k_hw_common(ah);
4762
4763 if (ichain >= AR9300_MAX_CHAINS) {
4764 ath_dbg(common, EEPROM,
4765 "Invalid chain index, must be less than %d\n",
4766 AR9300_MAX_CHAINS);
4767 return -1;
4768 }
4769
4770 if (is2ghz) {
4771 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4772 ath_dbg(common, EEPROM,
4773 "Invalid 2GHz cal pier index, must be less than %d\n",
4774 AR9300_NUM_2G_CAL_PIERS);
4775 return -1;
4776 }
4777
4778 pCalPier = &(eep->calFreqPier2G[ipier]);
4779 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4780 } else {
4781 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4782 ath_dbg(common, EEPROM,
4783 "Invalid 5GHz cal pier index, must be less than %d\n",
4784 AR9300_NUM_5G_CAL_PIERS);
4785 return -1;
4786 }
4787 pCalPier = &(eep->calFreqPier5G[ipier]);
4788 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4789 }
4790
4791 *pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2ghz);
4792 *pcorrection = pCalPierStruct->refPower;
4793 *ptemperature = pCalPierStruct->tempMeas;
4794 *pvoltage = pCalPierStruct->voltMeas;
4795 *pnf_cal = pCalPierStruct->rxTempMeas ?
4796 N2DBM(pCalPierStruct->rxNoisefloorCal) : 0;
4797 *pnf_power = pCalPierStruct->rxTempMeas ?
4798 N2DBM(pCalPierStruct->rxNoisefloorPower) : 0;
4799
4800 return 0;
4801}
4802
4803static void ar9003_hw_power_control_override(struct ath_hw *ah,
4804 int frequency,
4805 int *correction,
4806 int *voltage, int *temperature)
4807{
4808 int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4809 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4810 int f[8], t[8], t1[3], t2[3], i;
4811
4812 REG_RMW(ah, AR_PHY_TPC_11_B0,
4813 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4814 AR_PHY_TPC_OLPC_GAIN_DELTA);
4815 if (ah->caps.tx_chainmask & BIT(1))
4816 REG_RMW(ah, AR_PHY_TPC_11_B1,
4817 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4818 AR_PHY_TPC_OLPC_GAIN_DELTA);
4819 if (ah->caps.tx_chainmask & BIT(2))
4820 REG_RMW(ah, AR_PHY_TPC_11_B2,
4821 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4822 AR_PHY_TPC_OLPC_GAIN_DELTA);
4823
4824 /* enable open loop power control on chip */
4825 REG_RMW(ah, AR_PHY_TPC_6_B0,
4826 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4827 AR_PHY_TPC_6_ERROR_EST_MODE);
4828 if (ah->caps.tx_chainmask & BIT(1))
4829 REG_RMW(ah, AR_PHY_TPC_6_B1,
4830 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4831 AR_PHY_TPC_6_ERROR_EST_MODE);
4832 if (ah->caps.tx_chainmask & BIT(2))
4833 REG_RMW(ah, AR_PHY_TPC_6_B2,
4834 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4835 AR_PHY_TPC_6_ERROR_EST_MODE);
4836
4837 /*
4838 * enable temperature compensation
4839 * Need to use register names
4840 */
4841 if (frequency < 4000) {
4842 temp_slope = eep->modalHeader2G.tempSlope;
4843 } else {
4844 if (AR_SREV_9550(ah)) {
4845 t[0] = eep->base_ext1.tempslopextension[2];
4846 t1[0] = eep->base_ext1.tempslopextension[3];
4847 t2[0] = eep->base_ext1.tempslopextension[4];
4848 f[0] = 5180;
4849
4850 t[1] = eep->modalHeader5G.tempSlope;
4851 t1[1] = eep->base_ext1.tempslopextension[0];
4852 t2[1] = eep->base_ext1.tempslopextension[1];
4853 f[1] = 5500;
4854
4855 t[2] = eep->base_ext1.tempslopextension[5];
4856 t1[2] = eep->base_ext1.tempslopextension[6];
4857 t2[2] = eep->base_ext1.tempslopextension[7];
4858 f[2] = 5785;
4859
4860 temp_slope = ar9003_hw_power_interpolate(frequency,
4861 f, t, 3);
4862 temp_slope1 = ar9003_hw_power_interpolate(frequency,
4863 f, t1, 3);
4864 temp_slope2 = ar9003_hw_power_interpolate(frequency,
4865 f, t2, 3);
4866
4867 goto tempslope;
4868 }
4869
4870 if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4871 for (i = 0; i < 8; i++) {
4872 t[i] = eep->base_ext1.tempslopextension[i];
4873 f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4874 }
4875 temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4876 f, t, 8);
4877 } else if (eep->base_ext2.tempSlopeLow != 0) {
4878 t[0] = eep->base_ext2.tempSlopeLow;
4879 f[0] = 5180;
4880 t[1] = eep->modalHeader5G.tempSlope;
4881 f[1] = 5500;
4882 t[2] = eep->base_ext2.tempSlopeHigh;
4883 f[2] = 5785;
4884 temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4885 f, t, 3);
4886 } else {
4887 temp_slope = eep->modalHeader5G.tempSlope;
4888 }
4889 }
4890
4891tempslope:
4892 if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
4893 u8 txmask = (eep->baseEepHeader.txrxMask & 0xf0) >> 4;
4894
4895 /*
4896 * AR955x has tempSlope register for each chain.
4897 * Check whether temp_compensation feature is enabled or not.
4898 */
4899 if (eep->baseEepHeader.featureEnable & 0x1) {
4900 if (frequency < 4000) {
4901 if (txmask & BIT(0))
4902 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4903 AR_PHY_TPC_19_ALPHA_THERM,
4904 eep->base_ext2.tempSlopeLow);
4905 if (txmask & BIT(1))
4906 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4907 AR_PHY_TPC_19_ALPHA_THERM,
4908 temp_slope);
4909 if (txmask & BIT(2))
4910 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4911 AR_PHY_TPC_19_ALPHA_THERM,
4912 eep->base_ext2.tempSlopeHigh);
4913 } else {
4914 if (txmask & BIT(0))
4915 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4916 AR_PHY_TPC_19_ALPHA_THERM,
4917 temp_slope);
4918 if (txmask & BIT(1))
4919 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4920 AR_PHY_TPC_19_ALPHA_THERM,
4921 temp_slope1);
4922 if (txmask & BIT(2))
4923 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4924 AR_PHY_TPC_19_ALPHA_THERM,
4925 temp_slope2);
4926 }
4927 } else {
4928 /*
4929 * If temp compensation is not enabled,
4930 * set all registers to 0.
4931 */
4932 if (txmask & BIT(0))
4933 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4934 AR_PHY_TPC_19_ALPHA_THERM, 0);
4935 if (txmask & BIT(1))
4936 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4937 AR_PHY_TPC_19_ALPHA_THERM, 0);
4938 if (txmask & BIT(2))
4939 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4940 AR_PHY_TPC_19_ALPHA_THERM, 0);
4941 }
4942 } else {
4943 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4944 AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4945 }
4946
4947 if (AR_SREV_9462_20_OR_LATER(ah))
4948 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4949 AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4950
4951
4952 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4953 temperature[0]);
4954}
4955
4956/* Apply the recorded correction values. */
4957static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4958{
4959 int ichain, ipier, npier;
4960 int lfrequency[AR9300_MAX_CHAINS],
4961 lcorrection[AR9300_MAX_CHAINS],
4962 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS],
4963 lnf_cal[AR9300_MAX_CHAINS], lnf_pwr[AR9300_MAX_CHAINS];
4964 int hfrequency[AR9300_MAX_CHAINS],
4965 hcorrection[AR9300_MAX_CHAINS],
4966 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS],
4967 hnf_cal[AR9300_MAX_CHAINS], hnf_pwr[AR9300_MAX_CHAINS];
4968 int fdiff;
4969 int correction[AR9300_MAX_CHAINS],
4970 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS],
4971 nf_cal[AR9300_MAX_CHAINS], nf_pwr[AR9300_MAX_CHAINS];
4972 int pfrequency, pcorrection, ptemperature, pvoltage,
4973 pnf_cal, pnf_pwr;
4974 struct ath_common *common = ath9k_hw_common(ah);
4975 bool is2ghz = frequency < 4000;
4976
4977 if (is2ghz)
4978 npier = AR9300_NUM_2G_CAL_PIERS;
4979 else
4980 npier = AR9300_NUM_5G_CAL_PIERS;
4981
4982 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4983 lfrequency[ichain] = 0;
4984 hfrequency[ichain] = 100000;
4985 }
4986 /* identify best lower and higher frequency calibration measurement */
4987 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4988 for (ipier = 0; ipier < npier; ipier++) {
4989 if (!ar9003_hw_cal_pier_get(ah, is2ghz, ipier, ichain,
4990 &pfrequency, &pcorrection,
4991 &ptemperature, &pvoltage,
4992 &pnf_cal, &pnf_pwr)) {
4993 fdiff = frequency - pfrequency;
4994
4995 /*
4996 * this measurement is higher than
4997 * our desired frequency
4998 */
4999 if (fdiff <= 0) {
5000 if (hfrequency[ichain] <= 0 ||
5001 hfrequency[ichain] >= 100000 ||
5002 fdiff >
5003 (frequency - hfrequency[ichain])) {
5004 /*
5005 * new best higher
5006 * frequency measurement
5007 */
5008 hfrequency[ichain] = pfrequency;
5009 hcorrection[ichain] =
5010 pcorrection;
5011 htemperature[ichain] =
5012 ptemperature;
5013 hvoltage[ichain] = pvoltage;
5014 hnf_cal[ichain] = pnf_cal;
5015 hnf_pwr[ichain] = pnf_pwr;
5016 }
5017 }
5018 if (fdiff >= 0) {
5019 if (lfrequency[ichain] <= 0
5020 || fdiff <
5021 (frequency - lfrequency[ichain])) {
5022 /*
5023 * new best lower
5024 * frequency measurement
5025 */
5026 lfrequency[ichain] = pfrequency;
5027 lcorrection[ichain] =
5028 pcorrection;
5029 ltemperature[ichain] =
5030 ptemperature;
5031 lvoltage[ichain] = pvoltage;
5032 lnf_cal[ichain] = pnf_cal;
5033 lnf_pwr[ichain] = pnf_pwr;
5034 }
5035 }
5036 }
5037 }
5038 }
5039
5040 /* interpolate */
5041 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
5042 ath_dbg(common, EEPROM,
5043 "ch=%d f=%d low=%d %d h=%d %d n=%d %d p=%d %d\n",
5044 ichain, frequency, lfrequency[ichain],
5045 lcorrection[ichain], hfrequency[ichain],
5046 hcorrection[ichain], lnf_cal[ichain],
5047 hnf_cal[ichain], lnf_pwr[ichain],
5048 hnf_pwr[ichain]);
5049 /* they're the same, so just pick one */
5050 if (hfrequency[ichain] == lfrequency[ichain]) {
5051 correction[ichain] = lcorrection[ichain];
5052 voltage[ichain] = lvoltage[ichain];
5053 temperature[ichain] = ltemperature[ichain];
5054 nf_cal[ichain] = lnf_cal[ichain];
5055 nf_pwr[ichain] = lnf_pwr[ichain];
5056 }
5057 /* the low frequency is good */
5058 else if (frequency - lfrequency[ichain] < 1000) {
5059 /* so is the high frequency, interpolate */
5060 if (hfrequency[ichain] - frequency < 1000) {
5061
5062 correction[ichain] = interpolate(frequency,
5063 lfrequency[ichain],
5064 hfrequency[ichain],
5065 lcorrection[ichain],
5066 hcorrection[ichain]);
5067
5068 temperature[ichain] = interpolate(frequency,
5069 lfrequency[ichain],
5070 hfrequency[ichain],
5071 ltemperature[ichain],
5072 htemperature[ichain]);
5073
5074 voltage[ichain] = interpolate(frequency,
5075 lfrequency[ichain],
5076 hfrequency[ichain],
5077 lvoltage[ichain],
5078 hvoltage[ichain]);
5079
5080 nf_cal[ichain] = interpolate(frequency,
5081 lfrequency[ichain],
5082 hfrequency[ichain],
5083 lnf_cal[ichain],
5084 hnf_cal[ichain]);
5085
5086 nf_pwr[ichain] = interpolate(frequency,
5087 lfrequency[ichain],
5088 hfrequency[ichain],
5089 lnf_pwr[ichain],
5090 hnf_pwr[ichain]);
5091 }
5092 /* only low is good, use it */
5093 else {
5094 correction[ichain] = lcorrection[ichain];
5095 temperature[ichain] = ltemperature[ichain];
5096 voltage[ichain] = lvoltage[ichain];
5097 nf_cal[ichain] = lnf_cal[ichain];
5098 nf_pwr[ichain] = lnf_pwr[ichain];
5099 }
5100 }
5101 /* only high is good, use it */
5102 else if (hfrequency[ichain] - frequency < 1000) {
5103 correction[ichain] = hcorrection[ichain];
5104 temperature[ichain] = htemperature[ichain];
5105 voltage[ichain] = hvoltage[ichain];
5106 nf_cal[ichain] = hnf_cal[ichain];
5107 nf_pwr[ichain] = hnf_pwr[ichain];
5108 } else { /* nothing is good, presume 0???? */
5109 correction[ichain] = 0;
5110 temperature[ichain] = 0;
5111 voltage[ichain] = 0;
5112 nf_cal[ichain] = 0;
5113 nf_pwr[ichain] = 0;
5114 }
5115 }
5116
5117 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
5118 temperature);
5119
5120 ath_dbg(common, EEPROM,
5121 "for frequency=%d, calibration correction = %d %d %d\n",
5122 frequency, correction[0], correction[1], correction[2]);
5123
5124 /* Store calibrated noise floor values */
5125 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++)
5126 if (is2ghz) {
5127 ah->nf_2g.cal[ichain] = nf_cal[ichain];
5128 ah->nf_2g.pwr[ichain] = nf_pwr[ichain];
5129 } else {
5130 ah->nf_5g.cal[ichain] = nf_cal[ichain];
5131 ah->nf_5g.pwr[ichain] = nf_pwr[ichain];
5132 }
5133
5134 return 0;
5135}
5136
5137static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
5138 int idx,
5139 int edge,
5140 bool is2GHz)
5141{
5142 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5143 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5144
5145 if (is2GHz)
5146 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
5147 else
5148 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
5149}
5150
5151static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
5152 int idx,
5153 unsigned int edge,
5154 u16 freq,
5155 bool is2GHz)
5156{
5157 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5158 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5159
5160 u8 *ctl_freqbin = is2GHz ?
5161 &eep->ctl_freqbin_2G[idx][0] :
5162 &eep->ctl_freqbin_5G[idx][0];
5163
5164 if (is2GHz) {
5165 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
5166 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
5167 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
5168 } else {
5169 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
5170 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
5171 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
5172 }
5173
5174 return MAX_RATE_POWER;
5175}
5176
5177/*
5178 * Find the maximum conformance test limit for the given channel and CTL info
5179 */
5180static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
5181 u16 freq, int idx, bool is2GHz)
5182{
5183 u16 twiceMaxEdgePower = MAX_RATE_POWER;
5184 u8 *ctl_freqbin = is2GHz ?
5185 &eep->ctl_freqbin_2G[idx][0] :
5186 &eep->ctl_freqbin_5G[idx][0];
5187 u16 num_edges = is2GHz ?
5188 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
5189 unsigned int edge;
5190
5191 /* Get the edge power */
5192 for (edge = 0;
5193 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
5194 edge++) {
5195 /*
5196 * If there's an exact channel match or an inband flag set
5197 * on the lower channel use the given rdEdgePower
5198 */
5199 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
5200 twiceMaxEdgePower =
5201 ar9003_hw_get_direct_edge_power(eep, idx,
5202 edge, is2GHz);
5203 break;
5204 } else if ((edge > 0) &&
5205 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
5206 is2GHz))) {
5207 twiceMaxEdgePower =
5208 ar9003_hw_get_indirect_edge_power(eep, idx,
5209 edge, freq,
5210 is2GHz);
5211 /*
5212 * Leave loop - no more affecting edges possible in
5213 * this monotonic increasing list
5214 */
5215 break;
5216 }
5217 }
5218
5219 if (is2GHz && !twiceMaxEdgePower)
5220 twiceMaxEdgePower = 60;
5221
5222 return twiceMaxEdgePower;
5223}
5224
5225static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
5226 struct ath9k_channel *chan,
5227 u8 *pPwrArray, u16 cfgCtl,
5228 u8 antenna_reduction,
5229 u16 powerLimit)
5230{
5231 struct ath_common *common = ath9k_hw_common(ah);
5232 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
5233 u16 twiceMaxEdgePower;
5234 int i;
5235 u16 scaledPower = 0, minCtlPower;
5236 static const u16 ctlModesFor11a[] = {
5237 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5238 };
5239 static const u16 ctlModesFor11g[] = {
5240 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5241 CTL_11G_EXT, CTL_2GHT40
5242 };
5243 u16 numCtlModes;
5244 const u16 *pCtlMode;
5245 u16 ctlMode, freq;
5246 struct chan_centers centers;
5247 u8 *ctlIndex;
5248 u8 ctlNum;
5249 u16 twiceMinEdgePower;
5250 bool is2ghz = IS_CHAN_2GHZ(chan);
5251
5252 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
5253 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5254 antenna_reduction);
5255
5256 if (is2ghz) {
5257 /* Setup for CTL modes */
5258 /* CTL_11B, CTL_11G, CTL_2GHT20 */
5259 numCtlModes =
5260 ARRAY_SIZE(ctlModesFor11g) -
5261 SUB_NUM_CTL_MODES_AT_2G_40;
5262 pCtlMode = ctlModesFor11g;
5263 if (IS_CHAN_HT40(chan))
5264 /* All 2G CTL's */
5265 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5266 } else {
5267 /* Setup for CTL modes */
5268 /* CTL_11A, CTL_5GHT20 */
5269 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5270 SUB_NUM_CTL_MODES_AT_5G_40;
5271 pCtlMode = ctlModesFor11a;
5272 if (IS_CHAN_HT40(chan))
5273 /* All 5G CTL's */
5274 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5275 }
5276
5277 /*
5278 * For MIMO, need to apply regulatory caps individually across
5279 * dynamically running modes: CCK, OFDM, HT20, HT40
5280 *
5281 * The outer loop walks through each possible applicable runtime mode.
5282 * The inner loop walks through each ctlIndex entry in EEPROM.
5283 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5284 */
5285 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5286 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5287 (pCtlMode[ctlMode] == CTL_2GHT40);
5288 if (isHt40CtlMode)
5289 freq = centers.synth_center;
5290 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5291 freq = centers.ext_center;
5292 else
5293 freq = centers.ctl_center;
5294
5295 ath_dbg(common, REGULATORY,
5296 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5297 ctlMode, numCtlModes, isHt40CtlMode,
5298 (pCtlMode[ctlMode] & EXT_ADDITIVE));
5299
5300 /* walk through each CTL index stored in EEPROM */
5301 if (is2ghz) {
5302 ctlIndex = pEepData->ctlIndex_2G;
5303 ctlNum = AR9300_NUM_CTLS_2G;
5304 } else {
5305 ctlIndex = pEepData->ctlIndex_5G;
5306 ctlNum = AR9300_NUM_CTLS_5G;
5307 }
5308
5309 twiceMaxEdgePower = MAX_RATE_POWER;
5310 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5311 ath_dbg(common, REGULATORY,
5312 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5313 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5314 chan->channel);
5315
5316 /*
5317 * compare test group from regulatory
5318 * channel list with test mode from pCtlMode
5319 * list
5320 */
5321 if ((((cfgCtl & ~CTL_MODE_M) |
5322 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5323 ctlIndex[i]) ||
5324 (((cfgCtl & ~CTL_MODE_M) |
5325 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5326 ((ctlIndex[i] & CTL_MODE_M) |
5327 SD_NO_CTL))) {
5328 twiceMinEdgePower =
5329 ar9003_hw_get_max_edge_power(pEepData,
5330 freq, i,
5331 is2ghz);
5332
5333 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5334 /*
5335 * Find the minimum of all CTL
5336 * edge powers that apply to
5337 * this channel
5338 */
5339 twiceMaxEdgePower =
5340 min(twiceMaxEdgePower,
5341 twiceMinEdgePower);
5342 else {
5343 /* specific */
5344 twiceMaxEdgePower = twiceMinEdgePower;
5345 break;
5346 }
5347 }
5348 }
5349
5350 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5351
5352 ath_dbg(common, REGULATORY,
5353 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5354 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5355 scaledPower, minCtlPower);
5356
5357 /* Apply ctl mode to correct target power set */
5358 switch (pCtlMode[ctlMode]) {
5359 case CTL_11B:
5360 for (i = ALL_TARGET_LEGACY_1L_5L;
5361 i <= ALL_TARGET_LEGACY_11S; i++)
5362 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5363 minCtlPower);
5364 break;
5365 case CTL_11A:
5366 case CTL_11G:
5367 for (i = ALL_TARGET_LEGACY_6_24;
5368 i <= ALL_TARGET_LEGACY_54; i++)
5369 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5370 minCtlPower);
5371 break;
5372 case CTL_5GHT20:
5373 case CTL_2GHT20:
5374 for (i = ALL_TARGET_HT20_0_8_16;
5375 i <= ALL_TARGET_HT20_23; i++) {
5376 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5377 minCtlPower);
5378 if (ath9k_hw_mci_is_enabled(ah))
5379 pPwrArray[i] =
5380 (u8)min((u16)pPwrArray[i],
5381 ar9003_mci_get_max_txpower(ah,
5382 pCtlMode[ctlMode]));
5383 }
5384 break;
5385 case CTL_5GHT40:
5386 case CTL_2GHT40:
5387 for (i = ALL_TARGET_HT40_0_8_16;
5388 i <= ALL_TARGET_HT40_23; i++) {
5389 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5390 minCtlPower);
5391 if (ath9k_hw_mci_is_enabled(ah))
5392 pPwrArray[i] =
5393 (u8)min((u16)pPwrArray[i],
5394 ar9003_mci_get_max_txpower(ah,
5395 pCtlMode[ctlMode]));
5396 }
5397 break;
5398 default:
5399 break;
5400 }
5401 } /* end ctl mode checking */
5402}
5403
5404static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5405{
5406 u8 mod_idx = mcs_idx % 8;
5407
5408 if (mod_idx <= 3)
5409 return mod_idx ? (base_pwridx + 1) : base_pwridx;
5410 else
5411 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5412}
5413
5414static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5415 struct ath9k_channel *chan,
5416 u8 *targetPowerValT2)
5417{
5418 int i;
5419
5420 if (!ar9003_is_paprd_enabled(ah))
5421 return;
5422
5423 if (IS_CHAN_HT40(chan))
5424 i = ALL_TARGET_HT40_7;
5425 else
5426 i = ALL_TARGET_HT20_7;
5427
5428 if (IS_CHAN_2GHZ(chan)) {
5429 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5430 !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5431 if (IS_CHAN_HT40(chan))
5432 i = ALL_TARGET_HT40_0_8_16;
5433 else
5434 i = ALL_TARGET_HT20_0_8_16;
5435 }
5436 }
5437
5438 ah->paprd_target_power = targetPowerValT2[i];
5439}
5440
5441static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5442 struct ath9k_channel *chan, u16 cfgCtl,
5443 u8 twiceAntennaReduction,
5444 u8 powerLimit, bool test)
5445{
5446 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5447 struct ath_common *common = ath9k_hw_common(ah);
5448 u8 targetPowerValT2[ar9300RateSize];
5449 u8 target_power_val_t2_eep[ar9300RateSize];
5450 u8 targetPowerValT2_tpc[ar9300RateSize];
5451 unsigned int i = 0, paprd_scale_factor = 0;
5452 u8 pwr_idx, min_pwridx = 0;
5453
5454 memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5455
5456 /*
5457 * Get target powers from EEPROM - our baseline for TX Power
5458 */
5459 ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5460
5461 if (ar9003_is_paprd_enabled(ah)) {
5462 ah->paprd_ratemask =
5463 ar9003_get_paprd_rate_mask_ht20(ah, IS_CHAN_2GHZ(chan)) &
5464 AR9300_PAPRD_RATE_MASK;
5465
5466 ah->paprd_ratemask_ht40 =
5467 ar9003_get_paprd_rate_mask_ht40(ah, IS_CHAN_2GHZ(chan)) &
5468 AR9300_PAPRD_RATE_MASK;
5469
5470 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5471 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5472 ALL_TARGET_HT20_0_8_16;
5473
5474 if (!ah->paprd_table_write_done) {
5475 memcpy(target_power_val_t2_eep, targetPowerValT2,
5476 sizeof(targetPowerValT2));
5477 for (i = 0; i < 24; i++) {
5478 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5479 if (ah->paprd_ratemask & (1 << i)) {
5480 if (targetPowerValT2[pwr_idx] &&
5481 targetPowerValT2[pwr_idx] ==
5482 target_power_val_t2_eep[pwr_idx])
5483 targetPowerValT2[pwr_idx] -=
5484 paprd_scale_factor;
5485 }
5486 }
5487 }
5488 memcpy(target_power_val_t2_eep, targetPowerValT2,
5489 sizeof(targetPowerValT2));
5490 }
5491
5492 ar9003_hw_set_power_per_rate_table(ah, chan,
5493 targetPowerValT2, cfgCtl,
5494 twiceAntennaReduction,
5495 powerLimit);
5496
5497 memcpy(targetPowerValT2_tpc, targetPowerValT2,
5498 sizeof(targetPowerValT2));
5499
5500 if (ar9003_is_paprd_enabled(ah)) {
5501 for (i = 0; i < ar9300RateSize; i++) {
5502 if ((ah->paprd_ratemask & (1 << i)) &&
5503 (abs(targetPowerValT2[i] -
5504 target_power_val_t2_eep[i]) >
5505 paprd_scale_factor)) {
5506 ah->paprd_ratemask &= ~(1 << i);
5507 ath_dbg(common, EEPROM,
5508 "paprd disabled for mcs %d\n", i);
5509 }
5510 }
5511 }
5512
5513 regulatory->max_power_level = 0;
5514 for (i = 0; i < ar9300RateSize; i++) {
5515 if (targetPowerValT2[i] > regulatory->max_power_level)
5516 regulatory->max_power_level = targetPowerValT2[i];
5517 }
5518
5519 ath9k_hw_update_regulatory_maxpower(ah);
5520
5521 if (test)
5522 return;
5523
5524 for (i = 0; i < ar9300RateSize; i++) {
5525 ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5526 i, targetPowerValT2[i]);
5527 }
5528
5529 /* Write target power array to registers */
5530 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5531 ar9003_hw_calibration_apply(ah, chan->channel);
5532 ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5533
5534 ar9003_hw_selfgen_tpc_txpower(ah, chan, targetPowerValT2);
5535
5536 /* TPC initializations */
5537 if (ah->tpc_enabled) {
5538 u32 val;
5539
5540 ar9003_hw_init_rate_txpower(ah, targetPowerValT2_tpc, chan);
5541
5542 /* Enable TPC */
5543 REG_WRITE(ah, AR_PHY_PWRTX_MAX,
5544 AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
5545 /* Disable per chain power reduction */
5546 val = REG_READ(ah, AR_PHY_POWER_TX_SUB);
5547 if (AR_SREV_9340(ah))
5548 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5549 val & 0xFFFFFFC0);
5550 else
5551 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5552 val & 0xFFFFF000);
5553 } else {
5554 /* Disable TPC */
5555 REG_WRITE(ah, AR_PHY_PWRTX_MAX, 0);
5556 }
5557}
5558
5559static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5560 u16 i, bool is2GHz)
5561{
5562 return AR_NO_SPUR;
5563}
5564
5565s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5566{
5567 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5568
5569 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5570}
5571
5572s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5573{
5574 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5575
5576 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5577}
5578
5579u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5580{
5581 return ar9003_modal_header(ah, is2ghz)->spurChans;
5582}
5583
5584u32 ar9003_get_paprd_rate_mask_ht20(struct ath_hw *ah, bool is2ghz)
5585{
5586 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->papdRateMaskHt20);
5587}
5588
5589u32 ar9003_get_paprd_rate_mask_ht40(struct ath_hw *ah, bool is2ghz)
5590{
5591 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->papdRateMaskHt40);
5592}
5593
5594unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5595 struct ath9k_channel *chan)
5596{
5597 bool is2ghz = IS_CHAN_2GHZ(chan);
5598
5599 if (is2ghz)
5600 return MS(ar9003_get_paprd_rate_mask_ht20(ah, is2ghz),
5601 AR9300_PAPRD_SCALE_1);
5602 else {
5603 if (chan->channel >= 5700)
5604 return MS(ar9003_get_paprd_rate_mask_ht20(ah, is2ghz),
5605 AR9300_PAPRD_SCALE_1);
5606 else if (chan->channel >= 5400)
5607 return MS(ar9003_get_paprd_rate_mask_ht40(ah, is2ghz),
5608 AR9300_PAPRD_SCALE_2);
5609 else
5610 return MS(ar9003_get_paprd_rate_mask_ht40(ah, is2ghz),
5611 AR9300_PAPRD_SCALE_1);
5612 }
5613}
5614
5615static u8 ar9003_get_eepmisc(struct ath_hw *ah)
5616{
5617 return ah->eeprom.ar9300_eep.baseEepHeader.opCapFlags.eepMisc;
5618}
5619
5620const struct eeprom_ops eep_ar9300_ops = {
5621 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
5622 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
5623 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5624 .dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5625 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5626 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5627 .set_board_values = ath9k_hw_ar9300_set_board_values,
5628 .set_addac = ath9k_hw_ar9300_set_addac,
5629 .set_txpower = ath9k_hw_ar9300_set_txpower,
5630 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel,
5631 .get_eepmisc = ar9003_get_eepmisc
5632};