Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * sonic.c
  4 *
  5 * (C) 2005 Finn Thain
  6 *
  7 * Converted to DMA API, added zero-copy buffer handling, and
  8 * (from the mac68k project) introduced dhd's support for 16-bit cards.
  9 *
 10 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
 11 *
 12 * This driver is based on work from Andreas Busse, but most of
 13 * the code is rewritten.
 14 *
 15 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
 16 *
 17 *    Core code included by system sonic drivers
 18 *
 19 * And... partially rewritten again by David Huggins-Daines in order
 20 * to cope with screwed up Macintosh NICs that may or may not use
 21 * 16-bit DMA.
 22 *
 23 * (C) 1999 David Huggins-Daines <dhd@debian.org>
 24 *
 25 */
 26
 27/*
 28 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
 29 * National Semiconductors data sheet for the DP83932B Sonic Ethernet
 30 * controller, and the files "8390.c" and "skeleton.c" in this directory.
 31 *
 32 * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
 33 * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
 34 * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
 35 */
 36
 37static unsigned int version_printed;
 38
 39static int sonic_debug = -1;
 40module_param(sonic_debug, int, 0);
 41MODULE_PARM_DESC(sonic_debug, "debug message level");
 42
 43static void sonic_msg_init(struct net_device *dev)
 44{
 45	struct sonic_local *lp = netdev_priv(dev);
 46
 47	lp->msg_enable = netif_msg_init(sonic_debug, 0);
 48
 49	if (version_printed++ == 0)
 50		netif_dbg(lp, drv, dev, "%s", version);
 51}
 52
 53static int sonic_alloc_descriptors(struct net_device *dev)
 54{
 55	struct sonic_local *lp = netdev_priv(dev);
 56
 57	/* Allocate a chunk of memory for the descriptors. Note that this
 58	 * must not cross a 64K boundary. It is smaller than one page which
 59	 * means that page alignment is a sufficient condition.
 60	 */
 61	lp->descriptors =
 62		dma_alloc_coherent(lp->device,
 63				   SIZEOF_SONIC_DESC *
 64				   SONIC_BUS_SCALE(lp->dma_bitmode),
 65				   &lp->descriptors_laddr, GFP_KERNEL);
 66
 67	if (!lp->descriptors)
 68		return -ENOMEM;
 69
 70	lp->cda = lp->descriptors;
 71	lp->tda = lp->cda + SIZEOF_SONIC_CDA *
 72			    SONIC_BUS_SCALE(lp->dma_bitmode);
 73	lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
 74			    SONIC_BUS_SCALE(lp->dma_bitmode);
 75	lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
 76			    SONIC_BUS_SCALE(lp->dma_bitmode);
 77
 78	lp->cda_laddr = lp->descriptors_laddr;
 79	lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
 80					SONIC_BUS_SCALE(lp->dma_bitmode);
 81	lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
 82					SONIC_BUS_SCALE(lp->dma_bitmode);
 83	lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
 84					SONIC_BUS_SCALE(lp->dma_bitmode);
 85
 86	return 0;
 87}
 88
 89/*
 90 * Open/initialize the SONIC controller.
 91 *
 92 * This routine should set everything up anew at each open, even
 93 *  registers that "should" only need to be set once at boot, so that
 94 *  there is non-reboot way to recover if something goes wrong.
 95 */
 96static int sonic_open(struct net_device *dev)
 97{
 98	struct sonic_local *lp = netdev_priv(dev);
 99	int i;
100
101	netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
102
103	spin_lock_init(&lp->lock);
104
105	for (i = 0; i < SONIC_NUM_RRS; i++) {
106		struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
107		if (skb == NULL) {
108			while(i > 0) { /* free any that were allocated successfully */
109				i--;
110				dev_kfree_skb(lp->rx_skb[i]);
111				lp->rx_skb[i] = NULL;
112			}
113			printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
114			       dev->name);
115			return -ENOMEM;
116		}
117		/* align IP header unless DMA requires otherwise */
118		if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
119			skb_reserve(skb, 2);
120		lp->rx_skb[i] = skb;
121	}
122
123	for (i = 0; i < SONIC_NUM_RRS; i++) {
124		dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
125		                                  SONIC_RBSIZE, DMA_FROM_DEVICE);
126		if (dma_mapping_error(lp->device, laddr)) {
127			while(i > 0) { /* free any that were mapped successfully */
128				i--;
129				dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
130				lp->rx_laddr[i] = (dma_addr_t)0;
131			}
132			for (i = 0; i < SONIC_NUM_RRS; i++) {
133				dev_kfree_skb(lp->rx_skb[i]);
134				lp->rx_skb[i] = NULL;
135			}
136			printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
137			       dev->name);
138			return -ENOMEM;
139		}
140		lp->rx_laddr[i] = laddr;
141	}
142
143	/*
144	 * Initialize the SONIC
145	 */
146	sonic_init(dev, true);
147
148	netif_start_queue(dev);
149
150	netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
151
152	return 0;
153}
154
155/* Wait for the SONIC to become idle. */
156static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep)
157{
158	struct sonic_local * __maybe_unused lp = netdev_priv(dev);
159	int i;
160	u16 bits;
161
162	for (i = 0; i < 1000; ++i) {
163		bits = SONIC_READ(SONIC_CMD) & mask;
164		if (!bits)
165			return;
166		if (!may_sleep)
167			udelay(20);
168		else
169			usleep_range(100, 200);
170	}
171	WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
172}
173
174/*
175 * Close the SONIC device
176 */
177static int sonic_close(struct net_device *dev)
178{
179	struct sonic_local *lp = netdev_priv(dev);
180	int i;
181
182	netif_dbg(lp, ifdown, dev, "%s\n", __func__);
183
184	netif_stop_queue(dev);
185
186	/*
187	 * stop the SONIC, disable interrupts
188	 */
189	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
190	sonic_quiesce(dev, SONIC_CR_ALL, true);
191
192	SONIC_WRITE(SONIC_IMR, 0);
193	SONIC_WRITE(SONIC_ISR, 0x7fff);
194	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
195
196	/* unmap and free skbs that haven't been transmitted */
197	for (i = 0; i < SONIC_NUM_TDS; i++) {
198		if(lp->tx_laddr[i]) {
199			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
200			lp->tx_laddr[i] = (dma_addr_t)0;
201		}
202		if(lp->tx_skb[i]) {
203			dev_kfree_skb(lp->tx_skb[i]);
204			lp->tx_skb[i] = NULL;
205		}
206	}
207
208	/* unmap and free the receive buffers */
209	for (i = 0; i < SONIC_NUM_RRS; i++) {
210		if(lp->rx_laddr[i]) {
211			dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
212			lp->rx_laddr[i] = (dma_addr_t)0;
213		}
214		if(lp->rx_skb[i]) {
215			dev_kfree_skb(lp->rx_skb[i]);
216			lp->rx_skb[i] = NULL;
217		}
218	}
219
220	return 0;
221}
222
223static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
224{
225	struct sonic_local *lp = netdev_priv(dev);
226	int i;
227	/*
228	 * put the Sonic into software-reset mode and
229	 * disable all interrupts before releasing DMA buffers
230	 */
231	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
232	sonic_quiesce(dev, SONIC_CR_ALL, false);
233
234	SONIC_WRITE(SONIC_IMR, 0);
235	SONIC_WRITE(SONIC_ISR, 0x7fff);
236	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
237	/* We could resend the original skbs. Easier to re-initialise. */
238	for (i = 0; i < SONIC_NUM_TDS; i++) {
239		if(lp->tx_laddr[i]) {
240			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
241			lp->tx_laddr[i] = (dma_addr_t)0;
242		}
243		if(lp->tx_skb[i]) {
244			dev_kfree_skb(lp->tx_skb[i]);
245			lp->tx_skb[i] = NULL;
246		}
247	}
248	/* Try to restart the adaptor. */
249	sonic_init(dev, false);
250	lp->stats.tx_errors++;
251	netif_trans_update(dev); /* prevent tx timeout */
252	netif_wake_queue(dev);
253}
254
255/*
256 * transmit packet
257 *
258 * Appends new TD during transmission thus avoiding any TX interrupts
259 * until we run out of TDs.
260 * This routine interacts closely with the ISR in that it may,
261 *   set tx_skb[i]
262 *   reset the status flags of the new TD
263 *   set and reset EOL flags
264 *   stop the tx queue
265 * The ISR interacts with this routine in various ways. It may,
266 *   reset tx_skb[i]
267 *   test the EOL and status flags of the TDs
268 *   wake the tx queue
269 * Concurrently with all of this, the SONIC is potentially writing to
270 * the status flags of the TDs.
271 */
272
273static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
274{
275	struct sonic_local *lp = netdev_priv(dev);
276	dma_addr_t laddr;
277	int length;
278	int entry;
279	unsigned long flags;
280
281	netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
282
283	length = skb->len;
284	if (length < ETH_ZLEN) {
285		if (skb_padto(skb, ETH_ZLEN))
286			return NETDEV_TX_OK;
287		length = ETH_ZLEN;
288	}
289
290	/*
291	 * Map the packet data into the logical DMA address space
292	 */
293
294	laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
295	if (dma_mapping_error(lp->device, laddr)) {
296		pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
297		dev_kfree_skb_any(skb);
298		return NETDEV_TX_OK;
299	}
300
301	spin_lock_irqsave(&lp->lock, flags);
302
303	entry = (lp->eol_tx + 1) & SONIC_TDS_MASK;
304
305	sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
306	sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
307	sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
308	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
309	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
310	sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
311	sonic_tda_put(dev, entry, SONIC_TD_LINK,
312		sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
313
314	sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL &
315		      sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK));
316
317	netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
318
319	SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
320
321	lp->tx_len[entry] = length;
322	lp->tx_laddr[entry] = laddr;
323	lp->tx_skb[entry] = skb;
324
325	lp->eol_tx = entry;
326
327	entry = (entry + 1) & SONIC_TDS_MASK;
328	if (lp->tx_skb[entry]) {
329		/* The ring is full, the ISR has yet to process the next TD. */
330		netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
331		netif_stop_queue(dev);
332		/* after this packet, wait for ISR to free up some TDAs */
333	}
334
335	spin_unlock_irqrestore(&lp->lock, flags);
336
337	return NETDEV_TX_OK;
338}
339
340/*
341 * The typical workload of the driver:
342 * Handle the network interface interrupts.
343 */
344static irqreturn_t sonic_interrupt(int irq, void *dev_id)
345{
346	struct net_device *dev = dev_id;
347	struct sonic_local *lp = netdev_priv(dev);
348	int status;
349	unsigned long flags;
350
351	/* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
352	 * with sonic_send_packet() so that the two functions can share state.
353	 * Secondly, it makes sonic_interrupt() re-entrant, as that is required
354	 * by macsonic which must use two IRQs with different priority levels.
355	 */
356	spin_lock_irqsave(&lp->lock, flags);
357
358	status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
359	if (!status) {
360		spin_unlock_irqrestore(&lp->lock, flags);
361
362		return IRQ_NONE;
363	}
364
365	do {
366		SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
367
368		if (status & SONIC_INT_PKTRX) {
369			netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
370			sonic_rx(dev);	/* got packet(s) */
371		}
372
373		if (status & SONIC_INT_TXDN) {
374			int entry = lp->cur_tx;
375			int td_status;
376			int freed_some = 0;
377
378			/* The state of a Transmit Descriptor may be inferred
379			 * from { tx_skb[entry], td_status } as follows.
380			 * { clear, clear } => the TD has never been used
381			 * { set,   clear } => the TD was handed to SONIC
382			 * { set,   set   } => the TD was handed back
383			 * { clear, set   } => the TD is available for re-use
384			 */
385
386			netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
387
388			while (lp->tx_skb[entry] != NULL) {
389				if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
390					break;
391
392				if (td_status & SONIC_TCR_PTX) {
393					lp->stats.tx_packets++;
394					lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
395				} else {
396					if (td_status & (SONIC_TCR_EXD |
397					    SONIC_TCR_EXC | SONIC_TCR_BCM))
398						lp->stats.tx_aborted_errors++;
399					if (td_status &
400					    (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
401						lp->stats.tx_carrier_errors++;
402					if (td_status & SONIC_TCR_OWC)
403						lp->stats.tx_window_errors++;
404					if (td_status & SONIC_TCR_FU)
405						lp->stats.tx_fifo_errors++;
406				}
407
408				/* We must free the original skb */
409				dev_consume_skb_irq(lp->tx_skb[entry]);
410				lp->tx_skb[entry] = NULL;
411				/* and unmap DMA buffer */
412				dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
413				lp->tx_laddr[entry] = (dma_addr_t)0;
414				freed_some = 1;
415
416				if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
417					entry = (entry + 1) & SONIC_TDS_MASK;
418					break;
419				}
420				entry = (entry + 1) & SONIC_TDS_MASK;
421			}
422
423			if (freed_some || lp->tx_skb[entry] == NULL)
424				netif_wake_queue(dev);  /* The ring is no longer full */
425			lp->cur_tx = entry;
426		}
427
428		/*
429		 * check error conditions
430		 */
431		if (status & SONIC_INT_RFO) {
432			netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
433				  __func__);
434		}
435		if (status & SONIC_INT_RDE) {
436			netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
437				  __func__);
438		}
439		if (status & SONIC_INT_RBAE) {
440			netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
441				  __func__);
442		}
443
444		/* counter overruns; all counters are 16bit wide */
445		if (status & SONIC_INT_FAE)
446			lp->stats.rx_frame_errors += 65536;
447		if (status & SONIC_INT_CRC)
448			lp->stats.rx_crc_errors += 65536;
449		if (status & SONIC_INT_MP)
450			lp->stats.rx_missed_errors += 65536;
451
452		/* transmit error */
453		if (status & SONIC_INT_TXER) {
454			u16 tcr = SONIC_READ(SONIC_TCR);
455
456			netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
457				  __func__, tcr);
458
459			if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
460				   SONIC_TCR_FU | SONIC_TCR_BCM)) {
461				/* Aborted transmission. Try again. */
462				netif_stop_queue(dev);
463				SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
464			}
465		}
466
467		/* bus retry */
468		if (status & SONIC_INT_BR) {
469			printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
470				dev->name);
471			/* ... to help debug DMA problems causing endless interrupts. */
472			/* Bounce the eth interface to turn on the interrupt again. */
473			SONIC_WRITE(SONIC_IMR, 0);
474		}
475
476		status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
477	} while (status);
478
479	spin_unlock_irqrestore(&lp->lock, flags);
480
481	return IRQ_HANDLED;
482}
483
484/* Return the array index corresponding to a given Receive Buffer pointer. */
485static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
486			   unsigned int last)
487{
488	unsigned int i = last;
489
490	do {
491		i = (i + 1) & SONIC_RRS_MASK;
492		if (addr == lp->rx_laddr[i])
493			return i;
494	} while (i != last);
495
496	return -ENOENT;
497}
498
499/* Allocate and map a new skb to be used as a receive buffer. */
500static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
501			   struct sk_buff **new_skb, dma_addr_t *new_addr)
502{
503	*new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
504	if (!*new_skb)
505		return false;
506
507	if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
508		skb_reserve(*new_skb, 2);
509
510	*new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
511				   SONIC_RBSIZE, DMA_FROM_DEVICE);
512	if (dma_mapping_error(lp->device, *new_addr)) {
513		dev_kfree_skb(*new_skb);
514		*new_skb = NULL;
515		return false;
516	}
517
518	return true;
519}
520
521/* Place a new receive resource in the Receive Resource Area and update RWP. */
522static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
523			     dma_addr_t old_addr, dma_addr_t new_addr)
524{
525	unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
526	unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
527	u32 buf;
528
529	/* The resources in the range [RRP, RWP) belong to the SONIC. This loop
530	 * scans the other resources in the RRA, those in the range [RWP, RRP).
531	 */
532	do {
533		buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
534		      sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
535
536		if (buf == old_addr)
537			break;
538
539		entry = (entry + 1) & SONIC_RRS_MASK;
540	} while (entry != end);
541
542	WARN_ONCE(buf != old_addr, "failed to find resource!\n");
543
544	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
545	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
546
547	entry = (entry + 1) & SONIC_RRS_MASK;
548
549	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
550}
551
552/*
553 * We have a good packet(s), pass it/them up the network stack.
554 */
555static void sonic_rx(struct net_device *dev)
556{
557	struct sonic_local *lp = netdev_priv(dev);
558	int entry = lp->cur_rx;
559	int prev_entry = lp->eol_rx;
560	bool rbe = false;
561
562	while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
563		u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
564
565		/* If the RD has LPKT set, the chip has finished with the RB */
566		if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
567			struct sk_buff *new_skb;
568			dma_addr_t new_laddr;
569			u32 addr = (sonic_rda_get(dev, entry,
570						  SONIC_RD_PKTPTR_H) << 16) |
571				   sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
572			int i = index_from_addr(lp, addr, entry);
573
574			if (i < 0) {
575				WARN_ONCE(1, "failed to find buffer!\n");
576				break;
577			}
578
579			if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
580				struct sk_buff *used_skb = lp->rx_skb[i];
581				int pkt_len;
582
583				/* Pass the used buffer up the stack */
584				dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
585						 DMA_FROM_DEVICE);
586
587				pkt_len = sonic_rda_get(dev, entry,
588							SONIC_RD_PKTLEN);
589				skb_trim(used_skb, pkt_len);
590				used_skb->protocol = eth_type_trans(used_skb,
591								    dev);
592				netif_rx(used_skb);
593				lp->stats.rx_packets++;
594				lp->stats.rx_bytes += pkt_len;
595
596				lp->rx_skb[i] = new_skb;
597				lp->rx_laddr[i] = new_laddr;
598			} else {
599				/* Failed to obtain a new buffer so re-use it */
600				new_laddr = addr;
601				lp->stats.rx_dropped++;
602			}
603			/* If RBE is already asserted when RWP advances then
604			 * it's safe to clear RBE after processing this packet.
605			 */
606			rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
607			sonic_update_rra(dev, lp, addr, new_laddr);
608		}
609		/*
610		 * give back the descriptor
611		 */
612		sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
613		sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
614
615		prev_entry = entry;
616		entry = (entry + 1) & SONIC_RDS_MASK;
617	}
618
619	lp->cur_rx = entry;
620
621	if (prev_entry != lp->eol_rx) {
622		/* Advance the EOL flag to put descriptors back into service */
623		sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
624			      sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
625		sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
626			      sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
627		lp->eol_rx = prev_entry;
628	}
629
630	if (rbe)
631		SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
632}
633
634
635/*
636 * Get the current statistics.
637 * This may be called with the device open or closed.
638 */
639static struct net_device_stats *sonic_get_stats(struct net_device *dev)
640{
641	struct sonic_local *lp = netdev_priv(dev);
642
643	/* read the tally counter from the SONIC and reset them */
644	lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
645	SONIC_WRITE(SONIC_CRCT, 0xffff);
646	lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
647	SONIC_WRITE(SONIC_FAET, 0xffff);
648	lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
649	SONIC_WRITE(SONIC_MPT, 0xffff);
650
651	return &lp->stats;
652}
653
654
655/*
656 * Set or clear the multicast filter for this adaptor.
657 */
658static void sonic_multicast_list(struct net_device *dev)
659{
660	struct sonic_local *lp = netdev_priv(dev);
661	unsigned int rcr;
662	struct netdev_hw_addr *ha;
663	unsigned char *addr;
664	int i;
665
666	rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
667	rcr |= SONIC_RCR_BRD;	/* accept broadcast packets */
668
669	if (dev->flags & IFF_PROMISC) {	/* set promiscuous mode */
670		rcr |= SONIC_RCR_PRO;
671	} else {
672		if ((dev->flags & IFF_ALLMULTI) ||
673		    (netdev_mc_count(dev) > 15)) {
674			rcr |= SONIC_RCR_AMC;
675		} else {
676			unsigned long flags;
677
678			netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
679				  netdev_mc_count(dev));
680			sonic_set_cam_enable(dev, 1);  /* always enable our own address */
681			i = 1;
682			netdev_for_each_mc_addr(ha, dev) {
683				addr = ha->addr;
684				sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
685				sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
686				sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
687				sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
688				i++;
689			}
690			SONIC_WRITE(SONIC_CDC, 16);
691			SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
692
693			/* LCAM and TXP commands can't be used simultaneously */
694			spin_lock_irqsave(&lp->lock, flags);
695			sonic_quiesce(dev, SONIC_CR_TXP, false);
696			SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
697			sonic_quiesce(dev, SONIC_CR_LCAM, false);
698			spin_unlock_irqrestore(&lp->lock, flags);
699		}
700	}
701
702	netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
703
704	SONIC_WRITE(SONIC_RCR, rcr);
705}
706
707
708/*
709 * Initialize the SONIC ethernet controller.
710 */
711static int sonic_init(struct net_device *dev, bool may_sleep)
712{
713	struct sonic_local *lp = netdev_priv(dev);
714	int i;
715
716	/*
717	 * put the Sonic into software-reset mode and
718	 * disable all interrupts
719	 */
720	SONIC_WRITE(SONIC_IMR, 0);
721	SONIC_WRITE(SONIC_ISR, 0x7fff);
722	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
723
724	/* While in reset mode, clear CAM Enable register */
725	SONIC_WRITE(SONIC_CE, 0);
726
727	/*
728	 * clear software reset flag, disable receiver, clear and
729	 * enable interrupts, then completely initialize the SONIC
730	 */
731	SONIC_WRITE(SONIC_CMD, 0);
732	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
733	sonic_quiesce(dev, SONIC_CR_ALL, may_sleep);
734
735	/*
736	 * initialize the receive resource area
737	 */
738	netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
739		  __func__);
740
741	for (i = 0; i < SONIC_NUM_RRS; i++) {
742		u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
743		u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
744		sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
745		sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
746		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
747		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
748	}
749
750	/* initialize all RRA registers */
751	SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
752	SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
753	SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
754	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
755	SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
756	SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
757
758	/* load the resource pointers */
759	netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
760
761	SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
762	sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep);
763
764	/*
765	 * Initialize the receive descriptors so that they
766	 * become a circular linked list, ie. let the last
767	 * descriptor point to the first again.
768	 */
769	netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
770		  __func__);
771
772	for (i=0; i<SONIC_NUM_RDS; i++) {
773		sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
774		sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
775		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
776		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
777		sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
778		sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
779		sonic_rda_put(dev, i, SONIC_RD_LINK,
780			lp->rda_laddr +
781			((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
782	}
783	/* fix last descriptor */
784	sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
785		(lp->rda_laddr & 0xffff) | SONIC_EOL);
786	lp->eol_rx = SONIC_NUM_RDS - 1;
787	lp->cur_rx = 0;
788	SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
789	SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
790
791	/*
792	 * initialize transmit descriptors
793	 */
794	netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
795		  __func__);
796
797	for (i = 0; i < SONIC_NUM_TDS; i++) {
798		sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
799		sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
800		sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
801		sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
802		sonic_tda_put(dev, i, SONIC_TD_LINK,
803			(lp->tda_laddr & 0xffff) +
804			(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
805		lp->tx_skb[i] = NULL;
806	}
807	/* fix last descriptor */
808	sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
809		(lp->tda_laddr & 0xffff));
810
811	SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
812	SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
813	lp->cur_tx = 0;
814	lp->eol_tx = SONIC_NUM_TDS - 1;
815
816	/*
817	 * put our own address to CAM desc[0]
818	 */
819	sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
820	sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
821	sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
822	sonic_set_cam_enable(dev, 1);
823
824	for (i = 0; i < 16; i++)
825		sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
826
827	/*
828	 * initialize CAM registers
829	 */
830	SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
831	SONIC_WRITE(SONIC_CDC, 16);
832
833	/*
834	 * load the CAM
835	 */
836	SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
837	sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep);
838
839	/*
840	 * enable receiver, disable loopback
841	 * and enable all interrupts
842	 */
843	SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
844	SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
845	SONIC_WRITE(SONIC_ISR, 0x7fff);
846	SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
847	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
848
849	netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
850		  SONIC_READ(SONIC_CMD));
851
852	return 0;
853}
854
855MODULE_LICENSE("GPL");