Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.1
 
  1/*
  2 * inftlmount.c -- INFTL mount code with extensive checks.
  3 *
  4 * Author: Greg Ungerer (gerg@snapgear.com)
  5 * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com)
  6 *
  7 * Based heavily on the nftlmount.c code which is:
  8 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  9 * Copyright © 2000 Netgem S.A.
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License as published by
 13 * the Free Software Foundation; either version 2 of the License, or
 14 * (at your option) any later version.
 15 *
 16 * This program is distributed in the hope that it will be useful,
 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 * GNU General Public License for more details.
 20 *
 21 * You should have received a copy of the GNU General Public License
 22 * along with this program; if not, write to the Free Software
 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 24 */
 25
 26#include <linux/kernel.h>
 27#include <linux/module.h>
 28#include <asm/errno.h>
 29#include <asm/io.h>
 30#include <asm/uaccess.h>
 31#include <linux/delay.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/mtd/mtd.h>
 35#include <linux/mtd/nftl.h>
 36#include <linux/mtd/inftl.h>
 37
 38/*
 39 * find_boot_record: Find the INFTL Media Header and its Spare copy which
 40 *	contains the various device information of the INFTL partition and
 41 *	Bad Unit Table. Update the PUtable[] table according to the Bad
 42 *	Unit Table. PUtable[] is used for management of Erase Unit in
 43 *	other routines in inftlcore.c and inftlmount.c.
 44 */
 45static int find_boot_record(struct INFTLrecord *inftl)
 46{
 47	struct inftl_unittail h1;
 48	//struct inftl_oob oob;
 49	unsigned int i, block;
 50	u8 buf[SECTORSIZE];
 51	struct INFTLMediaHeader *mh = &inftl->MediaHdr;
 52	struct mtd_info *mtd = inftl->mbd.mtd;
 53	struct INFTLPartition *ip;
 54	size_t retlen;
 55
 56	DEBUG(MTD_DEBUG_LEVEL3, "INFTL: find_boot_record(inftl=%p)\n", inftl);
 57
 58        /*
 59	 * Assume logical EraseSize == physical erasesize for starting the
 60	 * scan. We'll sort it out later if we find a MediaHeader which says
 61	 * otherwise.
 62	 */
 63	inftl->EraseSize = inftl->mbd.mtd->erasesize;
 64        inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize;
 65
 66	inftl->MediaUnit = BLOCK_NIL;
 67
 68	/* Search for a valid boot record */
 69	for (block = 0; block < inftl->nb_blocks; block++) {
 70		int ret;
 71
 72		/*
 73		 * Check for BNAND header first. Then whinge if it's found
 74		 * but later checks fail.
 75		 */
 76		ret = mtd->read(mtd, block * inftl->EraseSize,
 77				SECTORSIZE, &retlen, buf);
 78		/* We ignore ret in case the ECC of the MediaHeader is invalid
 79		   (which is apparently acceptable) */
 80		if (retlen != SECTORSIZE) {
 81			static int warncount = 5;
 82
 83			if (warncount) {
 84				printk(KERN_WARNING "INFTL: block read at 0x%x "
 85					"of mtd%d failed: %d\n",
 86					block * inftl->EraseSize,
 87					inftl->mbd.mtd->index, ret);
 88				if (!--warncount)
 89					printk(KERN_WARNING "INFTL: further "
 90						"failures for this block will "
 91						"not be printed\n");
 92			}
 93			continue;
 94		}
 95
 96		if (retlen < 6 || memcmp(buf, "BNAND", 6)) {
 97			/* BNAND\0 not found. Continue */
 98			continue;
 99		}
100
101		/* To be safer with BIOS, also use erase mark as discriminant */
102		ret = inftl_read_oob(mtd,
103				     block * inftl->EraseSize + SECTORSIZE + 8,
104				     8, &retlen,(char *)&h1);
105		if (ret < 0) {
106			printk(KERN_WARNING "INFTL: ANAND header found at "
107				"0x%x in mtd%d, but OOB data read failed "
108				"(err %d)\n", block * inftl->EraseSize,
109				inftl->mbd.mtd->index, ret);
110			continue;
111		}
112
113
114		/*
115		 * This is the first we've seen.
116		 * Copy the media header structure into place.
117		 */
118		memcpy(mh, buf, sizeof(struct INFTLMediaHeader));
119
120		/* Read the spare media header at offset 4096 */
121		mtd->read(mtd, block * inftl->EraseSize + 4096,
122			  SECTORSIZE, &retlen, buf);
123		if (retlen != SECTORSIZE) {
124			printk(KERN_WARNING "INFTL: Unable to read spare "
125			       "Media Header\n");
126			return -1;
127		}
128		/* Check if this one is the same as the first one we found. */
129		if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) {
130			printk(KERN_WARNING "INFTL: Primary and spare Media "
131			       "Headers disagree.\n");
132			return -1;
133		}
134
135		mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
136		mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
137		mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
138		mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
139		mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
140		mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
141
142#ifdef CONFIG_MTD_DEBUG_VERBOSE
143		if (CONFIG_MTD_DEBUG_VERBOSE >= 2) {
144			printk("INFTL: Media Header ->\n"
145				"    bootRecordID          = %s\n"
146				"    NoOfBootImageBlocks   = %d\n"
147				"    NoOfBinaryPartitions  = %d\n"
148				"    NoOfBDTLPartitions    = %d\n"
149				"    BlockMultiplerBits    = %d\n"
150				"    FormatFlgs            = %d\n"
151				"    OsakVersion           = 0x%x\n"
152				"    PercentUsed           = %d\n",
153				mh->bootRecordID, mh->NoOfBootImageBlocks,
154				mh->NoOfBinaryPartitions,
155				mh->NoOfBDTLPartitions,
156				mh->BlockMultiplierBits, mh->FormatFlags,
157				mh->OsakVersion, mh->PercentUsed);
158		}
159#endif
160
161		if (mh->NoOfBDTLPartitions == 0) {
162			printk(KERN_WARNING "INFTL: Media Header sanity check "
163				"failed: NoOfBDTLPartitions (%d) == 0, "
164				"must be at least 1\n", mh->NoOfBDTLPartitions);
165			return -1;
166		}
167
168		if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) {
169			printk(KERN_WARNING "INFTL: Media Header sanity check "
170				"failed: Total Partitions (%d) > 4, "
171				"BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions +
172				mh->NoOfBinaryPartitions,
173				mh->NoOfBDTLPartitions,
174				mh->NoOfBinaryPartitions);
175			return -1;
176		}
177
178		if (mh->BlockMultiplierBits > 1) {
179			printk(KERN_WARNING "INFTL: sorry, we don't support "
180				"UnitSizeFactor 0x%02x\n",
181				mh->BlockMultiplierBits);
182			return -1;
183		} else if (mh->BlockMultiplierBits == 1) {
184			printk(KERN_WARNING "INFTL: support for INFTL with "
185				"UnitSizeFactor 0x%02x is experimental\n",
186				mh->BlockMultiplierBits);
187			inftl->EraseSize = inftl->mbd.mtd->erasesize <<
188				mh->BlockMultiplierBits;
189			inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize;
190			block >>= mh->BlockMultiplierBits;
191		}
192
193		/* Scan the partitions */
194		for (i = 0; (i < 4); i++) {
195			ip = &mh->Partitions[i];
196			ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
197			ip->firstUnit = le32_to_cpu(ip->firstUnit);
198			ip->lastUnit = le32_to_cpu(ip->lastUnit);
199			ip->flags = le32_to_cpu(ip->flags);
200			ip->spareUnits = le32_to_cpu(ip->spareUnits);
201			ip->Reserved0 = le32_to_cpu(ip->Reserved0);
202
203#ifdef CONFIG_MTD_DEBUG_VERBOSE
204			if (CONFIG_MTD_DEBUG_VERBOSE >= 2) {
205				printk("    PARTITION[%d] ->\n"
206					"        virtualUnits    = %d\n"
207					"        firstUnit       = %d\n"
208					"        lastUnit        = %d\n"
209					"        flags           = 0x%x\n"
210					"        spareUnits      = %d\n",
211					i, ip->virtualUnits, ip->firstUnit,
212					ip->lastUnit, ip->flags,
213					ip->spareUnits);
214			}
215#endif
216
217			if (ip->Reserved0 != ip->firstUnit) {
218				struct erase_info *instr = &inftl->instr;
219
220				instr->mtd = inftl->mbd.mtd;
221
222				/*
223				 * 	Most likely this is using the
224				 * 	undocumented qiuck mount feature.
225				 * 	We don't support that, we will need
226				 * 	to erase the hidden block for full
227				 * 	compatibility.
228				 */
229				instr->addr = ip->Reserved0 * inftl->EraseSize;
230				instr->len = inftl->EraseSize;
231				mtd->erase(mtd, instr);
232			}
233			if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) {
234				printk(KERN_WARNING "INFTL: Media Header "
235					"Partition %d sanity check failed\n"
236					"    firstUnit %d : lastUnit %d  >  "
237					"virtualUnits %d\n", i, ip->lastUnit,
238					ip->firstUnit, ip->Reserved0);
239				return -1;
240			}
241			if (ip->Reserved1 != 0) {
242				printk(KERN_WARNING "INFTL: Media Header "
243					"Partition %d sanity check failed: "
244					"Reserved1 %d != 0\n",
245					i, ip->Reserved1);
246				return -1;
247			}
248
249			if (ip->flags & INFTL_BDTL)
250				break;
251		}
252
253		if (i >= 4) {
254			printk(KERN_WARNING "INFTL: Media Header Partition "
255				"sanity check failed:\n       No partition "
256				"marked as Disk Partition\n");
257			return -1;
258		}
259
260		inftl->nb_boot_blocks = ip->firstUnit;
261		inftl->numvunits = ip->virtualUnits;
262		if (inftl->numvunits > (inftl->nb_blocks -
263		    inftl->nb_boot_blocks - 2)) {
264			printk(KERN_WARNING "INFTL: Media Header sanity check "
265				"failed:\n        numvunits (%d) > nb_blocks "
266				"(%d) - nb_boot_blocks(%d) - 2\n",
267				inftl->numvunits, inftl->nb_blocks,
268				inftl->nb_boot_blocks);
269			return -1;
270		}
271
272		inftl->mbd.size  = inftl->numvunits *
273			(inftl->EraseSize / SECTORSIZE);
274
275		/*
276		 * Block count is set to last used EUN (we won't need to keep
277		 * any meta-data past that point).
278		 */
279		inftl->firstEUN = ip->firstUnit;
280		inftl->lastEUN = ip->lastUnit;
281		inftl->nb_blocks = ip->lastUnit + 1;
282
283		/* Memory alloc */
284		inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
285		if (!inftl->PUtable) {
286			printk(KERN_WARNING "INFTL: allocation of PUtable "
287				"failed (%zd bytes)\n",
288				inftl->nb_blocks * sizeof(u16));
289			return -ENOMEM;
290		}
291
292		inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
 
293		if (!inftl->VUtable) {
294			kfree(inftl->PUtable);
295			printk(KERN_WARNING "INFTL: allocation of VUtable "
296				"failed (%zd bytes)\n",
297				inftl->nb_blocks * sizeof(u16));
298			return -ENOMEM;
299		}
300
301		/* Mark the blocks before INFTL MediaHeader as reserved */
302		for (i = 0; i < inftl->nb_boot_blocks; i++)
303			inftl->PUtable[i] = BLOCK_RESERVED;
304		/* Mark all remaining blocks as potentially containing data */
305		for (; i < inftl->nb_blocks; i++)
306			inftl->PUtable[i] = BLOCK_NOTEXPLORED;
307
308		/* Mark this boot record (NFTL MediaHeader) block as reserved */
309		inftl->PUtable[block] = BLOCK_RESERVED;
310
311		/* Read Bad Erase Unit Table and modify PUtable[] accordingly */
312		for (i = 0; i < inftl->nb_blocks; i++) {
313			int physblock;
314			/* If any of the physical eraseblocks are bad, don't
315			   use the unit. */
316			for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) {
317				if (inftl->mbd.mtd->block_isbad(inftl->mbd.mtd, i * inftl->EraseSize + physblock))
 
318					inftl->PUtable[i] = BLOCK_RESERVED;
319			}
320		}
321
322		inftl->MediaUnit = block;
323		return 0;
324	}
325
326	/* Not found. */
327	return -1;
328}
329
330static int memcmpb(void *a, int c, int n)
331{
332	int i;
333	for (i = 0; i < n; i++) {
334		if (c != ((unsigned char *)a)[i])
335			return 1;
336	}
337	return 0;
338}
339
340/*
341 * check_free_sector: check if a free sector is actually FREE,
342 *	i.e. All 0xff in data and oob area.
343 */
344static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address,
345	int len, int check_oob)
346{
347	u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize];
348	struct mtd_info *mtd = inftl->mbd.mtd;
349	size_t retlen;
350	int i;
 
351
 
 
 
 
 
352	for (i = 0; i < len; i += SECTORSIZE) {
353		if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf))
354			return -1;
355		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
356			return -1;
357
358		if (check_oob) {
359			if(inftl_read_oob(mtd, address, mtd->oobsize,
360					  &retlen, &buf[SECTORSIZE]) < 0)
361				return -1;
362			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
363				return -1;
364		}
365		address += SECTORSIZE;
366	}
367
368	return 0;
 
 
 
 
369}
370
371/*
372 * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase
373 *		 Unit and Update INFTL metadata. Each erase operation is
374 *		 checked with check_free_sectors.
375 *
376 * Return: 0 when succeed, -1 on error.
377 *
378 * ToDo: 1. Is it neceressary to check_free_sector after erasing ??
379 */
380int INFTL_formatblock(struct INFTLrecord *inftl, int block)
381{
382	size_t retlen;
383	struct inftl_unittail uci;
384	struct erase_info *instr = &inftl->instr;
385	struct mtd_info *mtd = inftl->mbd.mtd;
386	int physblock;
387
388	DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_formatblock(inftl=%p,"
389		"block=%d)\n", inftl, block);
390
391	memset(instr, 0, sizeof(struct erase_info));
392
393	/* FIXME: Shouldn't we be setting the 'discarded' flag to zero
394	   _first_? */
395
396	/* Use async erase interface, test return code */
397	instr->mtd = inftl->mbd.mtd;
398	instr->addr = block * inftl->EraseSize;
399	instr->len = inftl->mbd.mtd->erasesize;
400	/* Erase one physical eraseblock at a time, even though the NAND api
401	   allows us to group them.  This way we if we have a failure, we can
402	   mark only the failed block in the bbt. */
403	for (physblock = 0; physblock < inftl->EraseSize;
404	     physblock += instr->len, instr->addr += instr->len) {
405		mtd->erase(inftl->mbd.mtd, instr);
406
407		if (instr->state == MTD_ERASE_FAILED) {
 
408			printk(KERN_WARNING "INFTL: error while formatting block %d\n",
409				block);
410			goto fail;
411		}
412
413		/*
414		 * Check the "freeness" of Erase Unit before updating metadata.
415		 * FixMe: is this check really necessary? Since we have check
416		 * the return code after the erase operation.
417		 */
418		if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0)
419			goto fail;
420	}
421
422	uci.EraseMark = cpu_to_le16(ERASE_MARK);
423	uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
424	uci.Reserved[0] = 0;
425	uci.Reserved[1] = 0;
426	uci.Reserved[2] = 0;
427	uci.Reserved[3] = 0;
428	instr->addr = block * inftl->EraseSize + SECTORSIZE * 2;
429	if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0)
430		goto fail;
431	return 0;
432fail:
433	/* could not format, update the bad block table (caller is responsible
434	   for setting the PUtable to BLOCK_RESERVED on failure) */
435	inftl->mbd.mtd->block_markbad(inftl->mbd.mtd, instr->addr);
436	return -1;
437}
438
439/*
440 * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase
441 *	Units in a Virtual Unit Chain, i.e. all the units are disconnected.
442 *
443 *	Since the chain is invalid then we will have to erase it from its
444 *	head (normally for INFTL we go from the oldest). But if it has a
445 *	loop then there is no oldest...
446 */
447static void format_chain(struct INFTLrecord *inftl, unsigned int first_block)
448{
449	unsigned int block = first_block, block1;
450
451	printk(KERN_WARNING "INFTL: formatting chain at block %d\n",
452		first_block);
453
454	for (;;) {
455		block1 = inftl->PUtable[block];
456
457		printk(KERN_WARNING "INFTL: formatting block %d\n", block);
458		if (INFTL_formatblock(inftl, block) < 0) {
459			/*
460			 * Cannot format !!!! Mark it as Bad Unit,
461			 */
462			inftl->PUtable[block] = BLOCK_RESERVED;
463		} else {
464			inftl->PUtable[block] = BLOCK_FREE;
465		}
466
467		/* Goto next block on the chain */
468		block = block1;
469
470		if (block == BLOCK_NIL || block >= inftl->lastEUN)
471			break;
472	}
473}
474
475void INFTL_dumptables(struct INFTLrecord *s)
476{
477	int i;
478
479	printk("-------------------------------------------"
480		"----------------------------------\n");
481
482	printk("VUtable[%d] ->", s->nb_blocks);
483	for (i = 0; i < s->nb_blocks; i++) {
484		if ((i % 8) == 0)
485			printk("\n%04x: ", i);
486		printk("%04x ", s->VUtable[i]);
487	}
488
489	printk("\n-------------------------------------------"
490		"----------------------------------\n");
491
492	printk("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks);
493	for (i = 0; i <= s->lastEUN; i++) {
494		if ((i % 8) == 0)
495			printk("\n%04x: ", i);
496		printk("%04x ", s->PUtable[i]);
497	}
498
499	printk("\n-------------------------------------------"
500		"----------------------------------\n");
501
502	printk("INFTL ->\n"
503		"  EraseSize       = %d\n"
504		"  h/s/c           = %d/%d/%d\n"
505		"  numvunits       = %d\n"
506		"  firstEUN        = %d\n"
507		"  lastEUN         = %d\n"
508		"  numfreeEUNs     = %d\n"
509		"  LastFreeEUN     = %d\n"
510		"  nb_blocks       = %d\n"
511		"  nb_boot_blocks  = %d",
512		s->EraseSize, s->heads, s->sectors, s->cylinders,
513		s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs,
514		s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks);
515
516	printk("\n-------------------------------------------"
517		"----------------------------------\n");
518}
519
520void INFTL_dumpVUchains(struct INFTLrecord *s)
521{
522	int logical, block, i;
523
524	printk("-------------------------------------------"
525		"----------------------------------\n");
526
527	printk("INFTL Virtual Unit Chains:\n");
528	for (logical = 0; logical < s->nb_blocks; logical++) {
529		block = s->VUtable[logical];
530		if (block > s->nb_blocks)
531			continue;
532		printk("  LOGICAL %d --> %d ", logical, block);
533		for (i = 0; i < s->nb_blocks; i++) {
534			if (s->PUtable[block] == BLOCK_NIL)
535				break;
536			block = s->PUtable[block];
537			printk("%d ", block);
538		}
539		printk("\n");
540	}
541
542	printk("-------------------------------------------"
543		"----------------------------------\n");
544}
545
546int INFTL_mount(struct INFTLrecord *s)
547{
548	struct mtd_info *mtd = s->mbd.mtd;
549	unsigned int block, first_block, prev_block, last_block;
550	unsigned int first_logical_block, logical_block, erase_mark;
551	int chain_length, do_format_chain;
552	struct inftl_unithead1 h0;
553	struct inftl_unittail h1;
554	size_t retlen;
555	int i;
556	u8 *ANACtable, ANAC;
557
558	DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_mount(inftl=%p)\n", s);
559
560	/* Search for INFTL MediaHeader and Spare INFTL Media Header */
561	if (find_boot_record(s) < 0) {
562		printk(KERN_WARNING "INFTL: could not find valid boot record?\n");
563		return -ENXIO;
564	}
565
566	/* Init the logical to physical table */
567	for (i = 0; i < s->nb_blocks; i++)
568		s->VUtable[i] = BLOCK_NIL;
569
570	logical_block = block = BLOCK_NIL;
571
572	/* Temporary buffer to store ANAC numbers. */
573	ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL);
574	if (!ANACtable) {
575		printk(KERN_WARNING "INFTL: allocation of ANACtable "
576				"failed (%zd bytes)\n",
577				s->nb_blocks * sizeof(u8));
578		return -ENOMEM;
579	}
580
581	/*
582	 * First pass is to explore each physical unit, and construct the
583	 * virtual chains that exist (newest physical unit goes into VUtable).
584	 * Any block that is in any way invalid will be left in the
585	 * NOTEXPLORED state. Then at the end we will try to format it and
586	 * mark it as free.
587	 */
588	DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 1, explore each unit\n");
589	for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) {
590		if (s->PUtable[first_block] != BLOCK_NOTEXPLORED)
591			continue;
592
593		do_format_chain = 0;
594		first_logical_block = BLOCK_NIL;
595		last_block = BLOCK_NIL;
596		block = first_block;
597
598		for (chain_length = 0; ; chain_length++) {
599
600			if ((chain_length == 0) &&
601			    (s->PUtable[block] != BLOCK_NOTEXPLORED)) {
602				/* Nothing to do here, onto next block */
603				break;
604			}
605
606			if (inftl_read_oob(mtd, block * s->EraseSize + 8,
607					   8, &retlen, (char *)&h0) < 0 ||
608			    inftl_read_oob(mtd, block * s->EraseSize +
609					   2 * SECTORSIZE + 8, 8, &retlen,
610					   (char *)&h1) < 0) {
611				/* Should never happen? */
612				do_format_chain++;
613				break;
614			}
615
616			logical_block = le16_to_cpu(h0.virtualUnitNo);
617			prev_block = le16_to_cpu(h0.prevUnitNo);
618			erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1));
619			ANACtable[block] = h0.ANAC;
620
621			/* Previous block is relative to start of Partition */
622			if (prev_block < s->nb_blocks)
623				prev_block += s->firstEUN;
624
625			/* Already explored partial chain? */
626			if (s->PUtable[block] != BLOCK_NOTEXPLORED) {
627				/* Check if chain for this logical */
628				if (logical_block == first_logical_block) {
629					if (last_block != BLOCK_NIL)
630						s->PUtable[last_block] = block;
631				}
632				break;
633			}
634
635			/* Check for invalid block */
636			if (erase_mark != ERASE_MARK) {
637				printk(KERN_WARNING "INFTL: corrupt block %d "
638					"in chain %d, chain length %d, erase "
639					"mark 0x%x?\n", block, first_block,
640					chain_length, erase_mark);
641				/*
642				 * Assume end of chain, probably incomplete
643				 * fold/erase...
644				 */
645				if (chain_length == 0)
646					do_format_chain++;
647				break;
648			}
649
650			/* Check for it being free already then... */
651			if ((logical_block == BLOCK_FREE) ||
652			    (logical_block == BLOCK_NIL)) {
653				s->PUtable[block] = BLOCK_FREE;
654				break;
655			}
656
657			/* Sanity checks on block numbers */
658			if ((logical_block >= s->nb_blocks) ||
659			    ((prev_block >= s->nb_blocks) &&
660			     (prev_block != BLOCK_NIL))) {
661				if (chain_length > 0) {
662					printk(KERN_WARNING "INFTL: corrupt "
663						"block %d in chain %d?\n",
664						block, first_block);
665					do_format_chain++;
666				}
667				break;
668			}
669
670			if (first_logical_block == BLOCK_NIL) {
671				first_logical_block = logical_block;
672			} else {
673				if (first_logical_block != logical_block) {
674					/* Normal for folded chain... */
675					break;
676				}
677			}
678
679			/*
680			 * Current block is valid, so if we followed a virtual
681			 * chain to get here then we can set the previous
682			 * block pointer in our PUtable now. Then move onto
683			 * the previous block in the chain.
684			 */
685			s->PUtable[block] = BLOCK_NIL;
686			if (last_block != BLOCK_NIL)
687				s->PUtable[last_block] = block;
688			last_block = block;
689			block = prev_block;
690
691			/* Check for end of chain */
692			if (block == BLOCK_NIL)
693				break;
694
695			/* Validate next block before following it... */
696			if (block > s->lastEUN) {
697				printk(KERN_WARNING "INFTL: invalid previous "
698					"block %d in chain %d?\n", block,
699					first_block);
700				do_format_chain++;
701				break;
702			}
703		}
704
705		if (do_format_chain) {
706			format_chain(s, first_block);
707			continue;
708		}
709
710		/*
711		 * Looks like a valid chain then. It may not really be the
712		 * newest block in the chain, but it is the newest we have
713		 * found so far. We might update it in later iterations of
714		 * this loop if we find something newer.
715		 */
716		s->VUtable[first_logical_block] = first_block;
717		logical_block = BLOCK_NIL;
718	}
719
720#ifdef CONFIG_MTD_DEBUG_VERBOSE
721	if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
722		INFTL_dumptables(s);
723#endif
724
725	/*
726	 * Second pass, check for infinite loops in chains. These are
727	 * possible because we don't update the previous pointers when
728	 * we fold chains. No big deal, just fix them up in PUtable.
729	 */
730	DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 2, validate virtual chains\n");
731	for (logical_block = 0; logical_block < s->numvunits; logical_block++) {
732		block = s->VUtable[logical_block];
733		last_block = BLOCK_NIL;
734
735		/* Check for free/reserved/nil */
736		if (block >= BLOCK_RESERVED)
737			continue;
738
739		ANAC = ANACtable[block];
740		for (i = 0; i < s->numvunits; i++) {
741			if (s->PUtable[block] == BLOCK_NIL)
742				break;
743			if (s->PUtable[block] > s->lastEUN) {
744				printk(KERN_WARNING "INFTL: invalid prev %d, "
745					"in virtual chain %d\n",
746					s->PUtable[block], logical_block);
747				s->PUtable[block] = BLOCK_NIL;
748
749			}
750			if (ANACtable[block] != ANAC) {
751				/*
752				 * Chain must point back to itself. This is ok,
753				 * but we will need adjust the tables with this
754				 * newest block and oldest block.
755				 */
756				s->VUtable[logical_block] = block;
757				s->PUtable[last_block] = BLOCK_NIL;
758				break;
759			}
760
761			ANAC--;
762			last_block = block;
763			block = s->PUtable[block];
764		}
765
766		if (i >= s->nb_blocks) {
767			/*
768			 * Uhoo, infinite chain with valid ANACS!
769			 * Format whole chain...
770			 */
771			format_chain(s, first_block);
772		}
773	}
774
775#ifdef CONFIG_MTD_DEBUG_VERBOSE
776	if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
777		INFTL_dumptables(s);
778	if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
779		INFTL_dumpVUchains(s);
780#endif
781
782	/*
783	 * Third pass, format unreferenced blocks and init free block count.
784	 */
785	s->numfreeEUNs = 0;
786	s->LastFreeEUN = BLOCK_NIL;
787
788	DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 3, format unused blocks\n");
789	for (block = s->firstEUN; block <= s->lastEUN; block++) {
790		if (s->PUtable[block] == BLOCK_NOTEXPLORED) {
791			printk("INFTL: unreferenced block %d, formatting it\n",
792				block);
793			if (INFTL_formatblock(s, block) < 0)
794				s->PUtable[block] = BLOCK_RESERVED;
795			else
796				s->PUtable[block] = BLOCK_FREE;
797		}
798		if (s->PUtable[block] == BLOCK_FREE) {
799			s->numfreeEUNs++;
800			if (s->LastFreeEUN == BLOCK_NIL)
801				s->LastFreeEUN = block;
802		}
803	}
804
805	kfree(ANACtable);
806	return 0;
807}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * inftlmount.c -- INFTL mount code with extensive checks.
  4 *
  5 * Author: Greg Ungerer (gerg@snapgear.com)
  6 * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com)
  7 *
  8 * Based heavily on the nftlmount.c code which is:
  9 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
 10 * Copyright © 2000 Netgem S.A.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 11 */
 12
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <asm/errno.h>
 16#include <asm/io.h>
 17#include <linux/uaccess.h>
 18#include <linux/delay.h>
 19#include <linux/slab.h>
 
 20#include <linux/mtd/mtd.h>
 21#include <linux/mtd/nftl.h>
 22#include <linux/mtd/inftl.h>
 23
 24/*
 25 * find_boot_record: Find the INFTL Media Header and its Spare copy which
 26 *	contains the various device information of the INFTL partition and
 27 *	Bad Unit Table. Update the PUtable[] table according to the Bad
 28 *	Unit Table. PUtable[] is used for management of Erase Unit in
 29 *	other routines in inftlcore.c and inftlmount.c.
 30 */
 31static int find_boot_record(struct INFTLrecord *inftl)
 32{
 33	struct inftl_unittail h1;
 34	//struct inftl_oob oob;
 35	unsigned int i, block;
 36	u8 buf[SECTORSIZE];
 37	struct INFTLMediaHeader *mh = &inftl->MediaHdr;
 38	struct mtd_info *mtd = inftl->mbd.mtd;
 39	struct INFTLPartition *ip;
 40	size_t retlen;
 41
 42	pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl);
 43
 44        /*
 45	 * Assume logical EraseSize == physical erasesize for starting the
 46	 * scan. We'll sort it out later if we find a MediaHeader which says
 47	 * otherwise.
 48	 */
 49	inftl->EraseSize = inftl->mbd.mtd->erasesize;
 50        inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize;
 51
 52	inftl->MediaUnit = BLOCK_NIL;
 53
 54	/* Search for a valid boot record */
 55	for (block = 0; block < inftl->nb_blocks; block++) {
 56		int ret;
 57
 58		/*
 59		 * Check for BNAND header first. Then whinge if it's found
 60		 * but later checks fail.
 61		 */
 62		ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE,
 63			       &retlen, buf);
 64		/* We ignore ret in case the ECC of the MediaHeader is invalid
 65		   (which is apparently acceptable) */
 66		if (retlen != SECTORSIZE) {
 67			static int warncount = 5;
 68
 69			if (warncount) {
 70				printk(KERN_WARNING "INFTL: block read at 0x%x "
 71					"of mtd%d failed: %d\n",
 72					block * inftl->EraseSize,
 73					inftl->mbd.mtd->index, ret);
 74				if (!--warncount)
 75					printk(KERN_WARNING "INFTL: further "
 76						"failures for this block will "
 77						"not be printed\n");
 78			}
 79			continue;
 80		}
 81
 82		if (retlen < 6 || memcmp(buf, "BNAND", 6)) {
 83			/* BNAND\0 not found. Continue */
 84			continue;
 85		}
 86
 87		/* To be safer with BIOS, also use erase mark as discriminant */
 88		ret = inftl_read_oob(mtd,
 89				     block * inftl->EraseSize + SECTORSIZE + 8,
 90				     8, &retlen,(char *)&h1);
 91		if (ret < 0) {
 92			printk(KERN_WARNING "INFTL: ANAND header found at "
 93				"0x%x in mtd%d, but OOB data read failed "
 94				"(err %d)\n", block * inftl->EraseSize,
 95				inftl->mbd.mtd->index, ret);
 96			continue;
 97		}
 98
 99
100		/*
101		 * This is the first we've seen.
102		 * Copy the media header structure into place.
103		 */
104		memcpy(mh, buf, sizeof(struct INFTLMediaHeader));
105
106		/* Read the spare media header at offset 4096 */
107		mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE,
108			 &retlen, buf);
109		if (retlen != SECTORSIZE) {
110			printk(KERN_WARNING "INFTL: Unable to read spare "
111			       "Media Header\n");
112			return -1;
113		}
114		/* Check if this one is the same as the first one we found. */
115		if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) {
116			printk(KERN_WARNING "INFTL: Primary and spare Media "
117			       "Headers disagree.\n");
118			return -1;
119		}
120
121		mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
122		mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
123		mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
124		mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
125		mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
126		mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
127
128		pr_debug("INFTL: Media Header ->\n"
129			 "    bootRecordID          = %s\n"
130			 "    NoOfBootImageBlocks   = %d\n"
131			 "    NoOfBinaryPartitions  = %d\n"
132			 "    NoOfBDTLPartitions    = %d\n"
133			 "    BlockMultiplierBits   = %d\n"
134			 "    FormatFlgs            = %d\n"
135			 "    OsakVersion           = 0x%x\n"
136			 "    PercentUsed           = %d\n",
137			 mh->bootRecordID, mh->NoOfBootImageBlocks,
138			 mh->NoOfBinaryPartitions,
139			 mh->NoOfBDTLPartitions,
140			 mh->BlockMultiplierBits, mh->FormatFlags,
141			 mh->OsakVersion, mh->PercentUsed);
 
 
 
 
142
143		if (mh->NoOfBDTLPartitions == 0) {
144			printk(KERN_WARNING "INFTL: Media Header sanity check "
145				"failed: NoOfBDTLPartitions (%d) == 0, "
146				"must be at least 1\n", mh->NoOfBDTLPartitions);
147			return -1;
148		}
149
150		if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) {
151			printk(KERN_WARNING "INFTL: Media Header sanity check "
152				"failed: Total Partitions (%d) > 4, "
153				"BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions +
154				mh->NoOfBinaryPartitions,
155				mh->NoOfBDTLPartitions,
156				mh->NoOfBinaryPartitions);
157			return -1;
158		}
159
160		if (mh->BlockMultiplierBits > 1) {
161			printk(KERN_WARNING "INFTL: sorry, we don't support "
162				"UnitSizeFactor 0x%02x\n",
163				mh->BlockMultiplierBits);
164			return -1;
165		} else if (mh->BlockMultiplierBits == 1) {
166			printk(KERN_WARNING "INFTL: support for INFTL with "
167				"UnitSizeFactor 0x%02x is experimental\n",
168				mh->BlockMultiplierBits);
169			inftl->EraseSize = inftl->mbd.mtd->erasesize <<
170				mh->BlockMultiplierBits;
171			inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize;
172			block >>= mh->BlockMultiplierBits;
173		}
174
175		/* Scan the partitions */
176		for (i = 0; (i < 4); i++) {
177			ip = &mh->Partitions[i];
178			ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
179			ip->firstUnit = le32_to_cpu(ip->firstUnit);
180			ip->lastUnit = le32_to_cpu(ip->lastUnit);
181			ip->flags = le32_to_cpu(ip->flags);
182			ip->spareUnits = le32_to_cpu(ip->spareUnits);
183			ip->Reserved0 = le32_to_cpu(ip->Reserved0);
184
185			pr_debug("    PARTITION[%d] ->\n"
186				 "        virtualUnits    = %d\n"
187				 "        firstUnit       = %d\n"
188				 "        lastUnit        = %d\n"
189				 "        flags           = 0x%x\n"
190				 "        spareUnits      = %d\n",
191				 i, ip->virtualUnits, ip->firstUnit,
192				 ip->lastUnit, ip->flags,
193				 ip->spareUnits);
 
 
 
 
194
195			if (ip->Reserved0 != ip->firstUnit) {
196				struct erase_info *instr = &inftl->instr;
197
 
 
198				/*
199				 * 	Most likely this is using the
200				 * 	undocumented qiuck mount feature.
201				 * 	We don't support that, we will need
202				 * 	to erase the hidden block for full
203				 * 	compatibility.
204				 */
205				instr->addr = ip->Reserved0 * inftl->EraseSize;
206				instr->len = inftl->EraseSize;
207				mtd_erase(mtd, instr);
208			}
209			if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) {
210				printk(KERN_WARNING "INFTL: Media Header "
211					"Partition %d sanity check failed\n"
212					"    firstUnit %d : lastUnit %d  >  "
213					"virtualUnits %d\n", i, ip->lastUnit,
214					ip->firstUnit, ip->Reserved0);
215				return -1;
216			}
217			if (ip->Reserved1 != 0) {
218				printk(KERN_WARNING "INFTL: Media Header "
219					"Partition %d sanity check failed: "
220					"Reserved1 %d != 0\n",
221					i, ip->Reserved1);
222				return -1;
223			}
224
225			if (ip->flags & INFTL_BDTL)
226				break;
227		}
228
229		if (i >= 4) {
230			printk(KERN_WARNING "INFTL: Media Header Partition "
231				"sanity check failed:\n       No partition "
232				"marked as Disk Partition\n");
233			return -1;
234		}
235
236		inftl->nb_boot_blocks = ip->firstUnit;
237		inftl->numvunits = ip->virtualUnits;
238		if (inftl->numvunits > (inftl->nb_blocks -
239		    inftl->nb_boot_blocks - 2)) {
240			printk(KERN_WARNING "INFTL: Media Header sanity check "
241				"failed:\n        numvunits (%d) > nb_blocks "
242				"(%d) - nb_boot_blocks(%d) - 2\n",
243				inftl->numvunits, inftl->nb_blocks,
244				inftl->nb_boot_blocks);
245			return -1;
246		}
247
248		inftl->mbd.size  = inftl->numvunits *
249			(inftl->EraseSize / SECTORSIZE);
250
251		/*
252		 * Block count is set to last used EUN (we won't need to keep
253		 * any meta-data past that point).
254		 */
255		inftl->firstEUN = ip->firstUnit;
256		inftl->lastEUN = ip->lastUnit;
257		inftl->nb_blocks = ip->lastUnit + 1;
258
259		/* Memory alloc */
260		inftl->PUtable = kmalloc_array(inftl->nb_blocks, sizeof(u16),
261					       GFP_KERNEL);
262		if (!inftl->PUtable)
 
 
263			return -ENOMEM;
 
264
265		inftl->VUtable = kmalloc_array(inftl->nb_blocks, sizeof(u16),
266					       GFP_KERNEL);
267		if (!inftl->VUtable) {
268			kfree(inftl->PUtable);
 
 
 
269			return -ENOMEM;
270		}
271
272		/* Mark the blocks before INFTL MediaHeader as reserved */
273		for (i = 0; i < inftl->nb_boot_blocks; i++)
274			inftl->PUtable[i] = BLOCK_RESERVED;
275		/* Mark all remaining blocks as potentially containing data */
276		for (; i < inftl->nb_blocks; i++)
277			inftl->PUtable[i] = BLOCK_NOTEXPLORED;
278
279		/* Mark this boot record (NFTL MediaHeader) block as reserved */
280		inftl->PUtable[block] = BLOCK_RESERVED;
281
282		/* Read Bad Erase Unit Table and modify PUtable[] accordingly */
283		for (i = 0; i < inftl->nb_blocks; i++) {
284			int physblock;
285			/* If any of the physical eraseblocks are bad, don't
286			   use the unit. */
287			for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) {
288				if (mtd_block_isbad(inftl->mbd.mtd,
289						    i * inftl->EraseSize + physblock))
290					inftl->PUtable[i] = BLOCK_RESERVED;
291			}
292		}
293
294		inftl->MediaUnit = block;
295		return 0;
296	}
297
298	/* Not found. */
299	return -1;
300}
301
302static int memcmpb(void *a, int c, int n)
303{
304	int i;
305	for (i = 0; i < n; i++) {
306		if (c != ((unsigned char *)a)[i])
307			return 1;
308	}
309	return 0;
310}
311
312/*
313 * check_free_sector: check if a free sector is actually FREE,
314 *	i.e. All 0xff in data and oob area.
315 */
316static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address,
317	int len, int check_oob)
318{
 
319	struct mtd_info *mtd = inftl->mbd.mtd;
320	size_t retlen;
321	int i, ret;
322	u8 *buf;
323
324	buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL);
325	if (!buf)
326		return -ENOMEM;
327
328	ret = -1;
329	for (i = 0; i < len; i += SECTORSIZE) {
330		if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
331			goto out;
332		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
333			goto out;
334
335		if (check_oob) {
336			if(inftl_read_oob(mtd, address, mtd->oobsize,
337					  &retlen, &buf[SECTORSIZE]) < 0)
338				goto out;
339			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
340				goto out;
341		}
342		address += SECTORSIZE;
343	}
344
345	ret = 0;
346
347out:
348	kfree(buf);
349	return ret;
350}
351
352/*
353 * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase
354 *		 Unit and Update INFTL metadata. Each erase operation is
355 *		 checked with check_free_sectors.
356 *
357 * Return: 0 when succeed, -1 on error.
358 *
359 * ToDo: 1. Is it necessary to check_free_sector after erasing ??
360 */
361int INFTL_formatblock(struct INFTLrecord *inftl, int block)
362{
363	size_t retlen;
364	struct inftl_unittail uci;
365	struct erase_info *instr = &inftl->instr;
366	struct mtd_info *mtd = inftl->mbd.mtd;
367	int physblock;
368
369	pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block);
 
370
371	memset(instr, 0, sizeof(struct erase_info));
372
373	/* FIXME: Shouldn't we be setting the 'discarded' flag to zero
374	   _first_? */
375
376	/* Use async erase interface, test return code */
 
377	instr->addr = block * inftl->EraseSize;
378	instr->len = inftl->mbd.mtd->erasesize;
379	/* Erase one physical eraseblock at a time, even though the NAND api
380	   allows us to group them.  This way we if we have a failure, we can
381	   mark only the failed block in the bbt. */
382	for (physblock = 0; physblock < inftl->EraseSize;
383	     physblock += instr->len, instr->addr += instr->len) {
384		int ret;
385
386		ret = mtd_erase(inftl->mbd.mtd, instr);
387		if (ret) {
388			printk(KERN_WARNING "INFTL: error while formatting block %d\n",
389				block);
390			goto fail;
391		}
392
393		/*
394		 * Check the "freeness" of Erase Unit before updating metadata.
395		 * FixMe: is this check really necessary? Since we have check
396		 * the return code after the erase operation.
397		 */
398		if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0)
399			goto fail;
400	}
401
402	uci.EraseMark = cpu_to_le16(ERASE_MARK);
403	uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
404	uci.Reserved[0] = 0;
405	uci.Reserved[1] = 0;
406	uci.Reserved[2] = 0;
407	uci.Reserved[3] = 0;
408	instr->addr = block * inftl->EraseSize + SECTORSIZE * 2;
409	if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0)
410		goto fail;
411	return 0;
412fail:
413	/* could not format, update the bad block table (caller is responsible
414	   for setting the PUtable to BLOCK_RESERVED on failure) */
415	mtd_block_markbad(inftl->mbd.mtd, instr->addr);
416	return -1;
417}
418
419/*
420 * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase
421 *	Units in a Virtual Unit Chain, i.e. all the units are disconnected.
422 *
423 *	Since the chain is invalid then we will have to erase it from its
424 *	head (normally for INFTL we go from the oldest). But if it has a
425 *	loop then there is no oldest...
426 */
427static void format_chain(struct INFTLrecord *inftl, unsigned int first_block)
428{
429	unsigned int block = first_block, block1;
430
431	printk(KERN_WARNING "INFTL: formatting chain at block %d\n",
432		first_block);
433
434	for (;;) {
435		block1 = inftl->PUtable[block];
436
437		printk(KERN_WARNING "INFTL: formatting block %d\n", block);
438		if (INFTL_formatblock(inftl, block) < 0) {
439			/*
440			 * Cannot format !!!! Mark it as Bad Unit,
441			 */
442			inftl->PUtable[block] = BLOCK_RESERVED;
443		} else {
444			inftl->PUtable[block] = BLOCK_FREE;
445		}
446
447		/* Goto next block on the chain */
448		block = block1;
449
450		if (block == BLOCK_NIL || block >= inftl->lastEUN)
451			break;
452	}
453}
454
455void INFTL_dumptables(struct INFTLrecord *s)
456{
457	int i;
458
459	pr_debug("-------------------------------------------"
460		"----------------------------------\n");
461
462	pr_debug("VUtable[%d] ->", s->nb_blocks);
463	for (i = 0; i < s->nb_blocks; i++) {
464		if ((i % 8) == 0)
465			pr_debug("\n%04x: ", i);
466		pr_debug("%04x ", s->VUtable[i]);
467	}
468
469	pr_debug("\n-------------------------------------------"
470		"----------------------------------\n");
471
472	pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks);
473	for (i = 0; i <= s->lastEUN; i++) {
474		if ((i % 8) == 0)
475			pr_debug("\n%04x: ", i);
476		pr_debug("%04x ", s->PUtable[i]);
477	}
478
479	pr_debug("\n-------------------------------------------"
480		"----------------------------------\n");
481
482	pr_debug("INFTL ->\n"
483		"  EraseSize       = %d\n"
484		"  h/s/c           = %d/%d/%d\n"
485		"  numvunits       = %d\n"
486		"  firstEUN        = %d\n"
487		"  lastEUN         = %d\n"
488		"  numfreeEUNs     = %d\n"
489		"  LastFreeEUN     = %d\n"
490		"  nb_blocks       = %d\n"
491		"  nb_boot_blocks  = %d",
492		s->EraseSize, s->heads, s->sectors, s->cylinders,
493		s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs,
494		s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks);
495
496	pr_debug("\n-------------------------------------------"
497		"----------------------------------\n");
498}
499
500void INFTL_dumpVUchains(struct INFTLrecord *s)
501{
502	int logical, block, i;
503
504	pr_debug("-------------------------------------------"
505		"----------------------------------\n");
506
507	pr_debug("INFTL Virtual Unit Chains:\n");
508	for (logical = 0; logical < s->nb_blocks; logical++) {
509		block = s->VUtable[logical];
510		if (block >= s->nb_blocks)
511			continue;
512		pr_debug("  LOGICAL %d --> %d ", logical, block);
513		for (i = 0; i < s->nb_blocks; i++) {
514			if (s->PUtable[block] == BLOCK_NIL)
515				break;
516			block = s->PUtable[block];
517			pr_debug("%d ", block);
518		}
519		pr_debug("\n");
520	}
521
522	pr_debug("-------------------------------------------"
523		"----------------------------------\n");
524}
525
526int INFTL_mount(struct INFTLrecord *s)
527{
528	struct mtd_info *mtd = s->mbd.mtd;
529	unsigned int block, first_block, prev_block, last_block;
530	unsigned int first_logical_block, logical_block, erase_mark;
531	int chain_length, do_format_chain;
532	struct inftl_unithead1 h0;
533	struct inftl_unittail h1;
534	size_t retlen;
535	int i;
536	u8 *ANACtable, ANAC;
537
538	pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s);
539
540	/* Search for INFTL MediaHeader and Spare INFTL Media Header */
541	if (find_boot_record(s) < 0) {
542		printk(KERN_WARNING "INFTL: could not find valid boot record?\n");
543		return -ENXIO;
544	}
545
546	/* Init the logical to physical table */
547	for (i = 0; i < s->nb_blocks; i++)
548		s->VUtable[i] = BLOCK_NIL;
549
550	logical_block = block = BLOCK_NIL;
551
552	/* Temporary buffer to store ANAC numbers. */
553	ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL);
554	if (!ANACtable)
 
 
 
555		return -ENOMEM;
 
556
557	/*
558	 * First pass is to explore each physical unit, and construct the
559	 * virtual chains that exist (newest physical unit goes into VUtable).
560	 * Any block that is in any way invalid will be left in the
561	 * NOTEXPLORED state. Then at the end we will try to format it and
562	 * mark it as free.
563	 */
564	pr_debug("INFTL: pass 1, explore each unit\n");
565	for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) {
566		if (s->PUtable[first_block] != BLOCK_NOTEXPLORED)
567			continue;
568
569		do_format_chain = 0;
570		first_logical_block = BLOCK_NIL;
571		last_block = BLOCK_NIL;
572		block = first_block;
573
574		for (chain_length = 0; ; chain_length++) {
575
576			if ((chain_length == 0) &&
577			    (s->PUtable[block] != BLOCK_NOTEXPLORED)) {
578				/* Nothing to do here, onto next block */
579				break;
580			}
581
582			if (inftl_read_oob(mtd, block * s->EraseSize + 8,
583					   8, &retlen, (char *)&h0) < 0 ||
584			    inftl_read_oob(mtd, block * s->EraseSize +
585					   2 * SECTORSIZE + 8, 8, &retlen,
586					   (char *)&h1) < 0) {
587				/* Should never happen? */
588				do_format_chain++;
589				break;
590			}
591
592			logical_block = le16_to_cpu(h0.virtualUnitNo);
593			prev_block = le16_to_cpu(h0.prevUnitNo);
594			erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1));
595			ANACtable[block] = h0.ANAC;
596
597			/* Previous block is relative to start of Partition */
598			if (prev_block < s->nb_blocks)
599				prev_block += s->firstEUN;
600
601			/* Already explored partial chain? */
602			if (s->PUtable[block] != BLOCK_NOTEXPLORED) {
603				/* Check if chain for this logical */
604				if (logical_block == first_logical_block) {
605					if (last_block != BLOCK_NIL)
606						s->PUtable[last_block] = block;
607				}
608				break;
609			}
610
611			/* Check for invalid block */
612			if (erase_mark != ERASE_MARK) {
613				printk(KERN_WARNING "INFTL: corrupt block %d "
614					"in chain %d, chain length %d, erase "
615					"mark 0x%x?\n", block, first_block,
616					chain_length, erase_mark);
617				/*
618				 * Assume end of chain, probably incomplete
619				 * fold/erase...
620				 */
621				if (chain_length == 0)
622					do_format_chain++;
623				break;
624			}
625
626			/* Check for it being free already then... */
627			if ((logical_block == BLOCK_FREE) ||
628			    (logical_block == BLOCK_NIL)) {
629				s->PUtable[block] = BLOCK_FREE;
630				break;
631			}
632
633			/* Sanity checks on block numbers */
634			if ((logical_block >= s->nb_blocks) ||
635			    ((prev_block >= s->nb_blocks) &&
636			     (prev_block != BLOCK_NIL))) {
637				if (chain_length > 0) {
638					printk(KERN_WARNING "INFTL: corrupt "
639						"block %d in chain %d?\n",
640						block, first_block);
641					do_format_chain++;
642				}
643				break;
644			}
645
646			if (first_logical_block == BLOCK_NIL) {
647				first_logical_block = logical_block;
648			} else {
649				if (first_logical_block != logical_block) {
650					/* Normal for folded chain... */
651					break;
652				}
653			}
654
655			/*
656			 * Current block is valid, so if we followed a virtual
657			 * chain to get here then we can set the previous
658			 * block pointer in our PUtable now. Then move onto
659			 * the previous block in the chain.
660			 */
661			s->PUtable[block] = BLOCK_NIL;
662			if (last_block != BLOCK_NIL)
663				s->PUtable[last_block] = block;
664			last_block = block;
665			block = prev_block;
666
667			/* Check for end of chain */
668			if (block == BLOCK_NIL)
669				break;
670
671			/* Validate next block before following it... */
672			if (block > s->lastEUN) {
673				printk(KERN_WARNING "INFTL: invalid previous "
674					"block %d in chain %d?\n", block,
675					first_block);
676				do_format_chain++;
677				break;
678			}
679		}
680
681		if (do_format_chain) {
682			format_chain(s, first_block);
683			continue;
684		}
685
686		/*
687		 * Looks like a valid chain then. It may not really be the
688		 * newest block in the chain, but it is the newest we have
689		 * found so far. We might update it in later iterations of
690		 * this loop if we find something newer.
691		 */
692		s->VUtable[first_logical_block] = first_block;
693		logical_block = BLOCK_NIL;
694	}
695
696	INFTL_dumptables(s);
 
 
 
697
698	/*
699	 * Second pass, check for infinite loops in chains. These are
700	 * possible because we don't update the previous pointers when
701	 * we fold chains. No big deal, just fix them up in PUtable.
702	 */
703	pr_debug("INFTL: pass 2, validate virtual chains\n");
704	for (logical_block = 0; logical_block < s->numvunits; logical_block++) {
705		block = s->VUtable[logical_block];
706		last_block = BLOCK_NIL;
707
708		/* Check for free/reserved/nil */
709		if (block >= BLOCK_RESERVED)
710			continue;
711
712		ANAC = ANACtable[block];
713		for (i = 0; i < s->numvunits; i++) {
714			if (s->PUtable[block] == BLOCK_NIL)
715				break;
716			if (s->PUtable[block] > s->lastEUN) {
717				printk(KERN_WARNING "INFTL: invalid prev %d, "
718					"in virtual chain %d\n",
719					s->PUtable[block], logical_block);
720				s->PUtable[block] = BLOCK_NIL;
721
722			}
723			if (ANACtable[block] != ANAC) {
724				/*
725				 * Chain must point back to itself. This is ok,
726				 * but we will need adjust the tables with this
727				 * newest block and oldest block.
728				 */
729				s->VUtable[logical_block] = block;
730				s->PUtable[last_block] = BLOCK_NIL;
731				break;
732			}
733
734			ANAC--;
735			last_block = block;
736			block = s->PUtable[block];
737		}
738
739		if (i >= s->nb_blocks) {
740			/*
741			 * Uhoo, infinite chain with valid ANACS!
742			 * Format whole chain...
743			 */
744			format_chain(s, first_block);
745		}
746	}
747
748	INFTL_dumptables(s);
749	INFTL_dumpVUchains(s);
 
 
 
 
750
751	/*
752	 * Third pass, format unreferenced blocks and init free block count.
753	 */
754	s->numfreeEUNs = 0;
755	s->LastFreeEUN = BLOCK_NIL;
756
757	pr_debug("INFTL: pass 3, format unused blocks\n");
758	for (block = s->firstEUN; block <= s->lastEUN; block++) {
759		if (s->PUtable[block] == BLOCK_NOTEXPLORED) {
760			printk("INFTL: unreferenced block %d, formatting it\n",
761				block);
762			if (INFTL_formatblock(s, block) < 0)
763				s->PUtable[block] = BLOCK_RESERVED;
764			else
765				s->PUtable[block] = BLOCK_FREE;
766		}
767		if (s->PUtable[block] == BLOCK_FREE) {
768			s->numfreeEUNs++;
769			if (s->LastFreeEUN == BLOCK_NIL)
770				s->LastFreeEUN = block;
771		}
772	}
773
774	kfree(ANACtable);
775	return 0;
776}