Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2022 Intel Corporation
  4 */
  5
  6#include "xe_guc.h"
  7
  8#include <drm/drm_managed.h>
  9
 10#include "abi/guc_actions_abi.h"
 11#include "abi/guc_errors_abi.h"
 12#include "generated/xe_wa_oob.h"
 13#include "regs/xe_gt_regs.h"
 14#include "regs/xe_guc_regs.h"
 15#include "xe_bo.h"
 16#include "xe_device.h"
 17#include "xe_force_wake.h"
 18#include "xe_gt.h"
 19#include "xe_guc_ads.h"
 20#include "xe_guc_ct.h"
 21#include "xe_guc_hwconfig.h"
 22#include "xe_guc_log.h"
 23#include "xe_guc_pc.h"
 24#include "xe_guc_submit.h"
 25#include "xe_mmio.h"
 26#include "xe_platform_types.h"
 27#include "xe_uc.h"
 28#include "xe_uc_fw.h"
 29#include "xe_wa.h"
 30#include "xe_wopcm.h"
 31
 32/* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */
 33#define GUC_GGTT_TOP    0xFEE00000
 34static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
 35			    struct xe_bo *bo)
 36{
 37	struct xe_device *xe = guc_to_xe(guc);
 38	u32 addr = xe_bo_ggtt_addr(bo);
 39
 40	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
 41	xe_assert(xe, addr < GUC_GGTT_TOP);
 42	xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
 43
 44	return addr;
 45}
 46
 47static u32 guc_ctl_debug_flags(struct xe_guc *guc)
 48{
 49	u32 level = xe_guc_log_get_level(&guc->log);
 50	u32 flags = 0;
 51
 52	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
 53		flags |= GUC_LOG_DISABLED;
 54	else
 55		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
 56			 GUC_LOG_VERBOSITY_SHIFT;
 57
 58	return flags;
 59}
 60
 61static u32 guc_ctl_feature_flags(struct xe_guc *guc)
 62{
 63	u32 flags = 0;
 64
 65	if (!guc_to_xe(guc)->info.skip_guc_pc)
 66		flags |= GUC_CTL_ENABLE_SLPC;
 67
 68	return flags;
 69}
 70
 71static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
 72{
 73	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
 74	u32 flags;
 75
 76	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
 77	#define LOG_UNIT SZ_1M
 78	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
 79	#else
 80	#define LOG_UNIT SZ_4K
 81	#define LOG_FLAG 0
 82	#endif
 83
 84	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
 85	#define CAPTURE_UNIT SZ_1M
 86	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
 87	#else
 88	#define CAPTURE_UNIT SZ_4K
 89	#define CAPTURE_FLAG 0
 90	#endif
 91
 92	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
 93	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
 94	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
 95	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
 96	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
 97	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
 98
 99	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
100			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
101	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
102			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
103	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
104			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
105
106	flags = GUC_LOG_VALID |
107		GUC_LOG_NOTIFY_ON_HALF_FULL |
108		CAPTURE_FLAG |
109		LOG_FLAG |
110		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
111		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
112		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
113		 GUC_LOG_CAPTURE_SHIFT) |
114		(offset << GUC_LOG_BUF_ADDR_SHIFT);
115
116	#undef LOG_UNIT
117	#undef LOG_FLAG
118	#undef CAPTURE_UNIT
119	#undef CAPTURE_FLAG
120
121	return flags;
122}
123
124static u32 guc_ctl_ads_flags(struct xe_guc *guc)
125{
126	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
127	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
128
129	return flags;
130}
131
132static u32 guc_ctl_wa_flags(struct xe_guc *guc)
133{
134	struct xe_device *xe = guc_to_xe(guc);
135	struct xe_gt *gt = guc_to_gt(guc);
136	u32 flags = 0;
137
138	if (XE_WA(gt, 22012773006))
139		flags |= GUC_WA_POLLCS;
140
141	if (XE_WA(gt, 16011759253))
142		flags |= GUC_WA_GAM_CREDITS;
143
144	if (XE_WA(gt, 14014475959))
145		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
146
147	if (XE_WA(gt, 22011391025) || XE_WA(gt, 14012197797))
148		flags |= GUC_WA_DUAL_QUEUE;
149
150	/*
151	 * Wa_22011802037: FIXME - there's more to be done than simply setting
152	 * this flag: make sure each CS is stopped when preparing for GT reset
153	 * and wait for pending MI_FW.
154	 */
155	if (GRAPHICS_VERx100(xe) < 1270)
156		flags |= GUC_WA_PRE_PARSER;
157
158	if (XE_WA(gt, 16011777198))
159		flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
160
161	if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
162		flags |= GUC_WA_CONTEXT_ISOLATION;
163
164	if ((XE_WA(gt, 16015675438) || XE_WA(gt, 18020744125)) &&
165	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
166		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
167
168	if (XE_WA(gt, 1509372804))
169		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
170
171	return flags;
172}
173
174static u32 guc_ctl_devid(struct xe_guc *guc)
175{
176	struct xe_device *xe = guc_to_xe(guc);
177
178	return (((u32)xe->info.devid) << 16) | xe->info.revid;
179}
180
181static void guc_init_params(struct xe_guc *guc)
182{
183	struct xe_device *xe = guc_to_xe(guc);
184	u32 *params = guc->params;
185	int i;
186
187	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
188	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
189
190	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
191	params[GUC_CTL_FEATURE] = 0;
192	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
193	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
194	params[GUC_CTL_WA] = 0;
195	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
196
197	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
198		drm_dbg(&xe->drm, "GuC param[%2d] = 0x%08x\n", i, params[i]);
199}
200
201static void guc_init_params_post_hwconfig(struct xe_guc *guc)
202{
203	struct xe_device *xe = guc_to_xe(guc);
204	u32 *params = guc->params;
205	int i;
206
207	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
208	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
209
210	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
211	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
212	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
213	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
214	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
215	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
216
217	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
218		drm_dbg(&xe->drm, "GuC param[%2d] = 0x%08x\n", i, params[i]);
219}
220
221/*
222 * Initialize the GuC parameter block before starting the firmware
223 * transfer. These parameters are read by the firmware on startup
224 * and cannot be changed thereafter.
225 */
226static void guc_write_params(struct xe_guc *guc)
227{
228	struct xe_gt *gt = guc_to_gt(guc);
229	int i;
230
231	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
232
233	xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
234
235	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
236		xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
237}
238
239static void guc_fini(struct drm_device *drm, void *arg)
240{
241	struct xe_guc *guc = arg;
242
243	xe_force_wake_get(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
244	xe_guc_pc_fini(&guc->pc);
245	xe_uc_fini_hw(&guc_to_gt(guc)->uc);
246	xe_force_wake_put(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
247}
248
249int xe_guc_init(struct xe_guc *guc)
250{
251	struct xe_device *xe = guc_to_xe(guc);
252	struct xe_gt *gt = guc_to_gt(guc);
253	int ret;
254
255	guc->fw.type = XE_UC_FW_TYPE_GUC;
256	ret = xe_uc_fw_init(&guc->fw);
257	if (ret)
258		goto out;
259
260	if (!xe_uc_fw_is_enabled(&guc->fw))
261		return 0;
262
263	ret = xe_guc_log_init(&guc->log);
264	if (ret)
265		goto out;
266
267	ret = xe_guc_ads_init(&guc->ads);
268	if (ret)
269		goto out;
270
271	ret = xe_guc_ct_init(&guc->ct);
272	if (ret)
273		goto out;
274
275	ret = xe_guc_pc_init(&guc->pc);
276	if (ret)
277		goto out;
278
279	ret = drmm_add_action_or_reset(&gt_to_xe(gt)->drm, guc_fini, guc);
280	if (ret)
281		goto out;
282
283	guc_init_params(guc);
284
285	if (xe_gt_is_media_type(gt))
286		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
287	else
288		guc->notify_reg = GUC_HOST_INTERRUPT;
289
290	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
291
292	return 0;
293
294out:
295	drm_err(&xe->drm, "GuC init failed with %d", ret);
296	return ret;
297}
298
299/**
300 * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
301 * @guc: The GuC object
302 *
303 * Return: 0 on success, negative error code on error.
304 */
305int xe_guc_init_post_hwconfig(struct xe_guc *guc)
306{
307	guc_init_params_post_hwconfig(guc);
308
309	return xe_guc_ads_init_post_hwconfig(&guc->ads);
310}
311
312int xe_guc_post_load_init(struct xe_guc *guc)
313{
314	xe_guc_ads_populate_post_load(&guc->ads);
315	guc->submission_state.enabled = true;
316
317	return 0;
318}
319
320int xe_guc_reset(struct xe_guc *guc)
321{
322	struct xe_device *xe = guc_to_xe(guc);
323	struct xe_gt *gt = guc_to_gt(guc);
324	u32 guc_status, gdrst;
325	int ret;
326
327	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
328
329	xe_mmio_write32(gt, GDRST, GRDOM_GUC);
330
331	ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
332	if (ret) {
333		drm_err(&xe->drm, "GuC reset timed out, GDRST=0x%8x\n",
334			gdrst);
335		goto err_out;
336	}
337
338	guc_status = xe_mmio_read32(gt, GUC_STATUS);
339	if (!(guc_status & GS_MIA_IN_RESET)) {
340		drm_err(&xe->drm,
341			"GuC status: 0x%x, MIA core expected to be in reset\n",
342			guc_status);
343		ret = -EIO;
344		goto err_out;
345	}
346
347	return 0;
348
349err_out:
350
351	return ret;
352}
353
354static void guc_prepare_xfer(struct xe_guc *guc)
355{
356	struct xe_gt *gt = guc_to_gt(guc);
357	struct xe_device *xe =  guc_to_xe(guc);
358	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
359		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
360		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
361		GUC_ENABLE_MIA_CLOCK_GATING;
362
363	if (GRAPHICS_VERx100(xe) < 1250)
364		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
365				GUC_ENABLE_MIA_CACHING;
366
367	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
368		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
369
370	/* Must program this register before loading the ucode with DMA */
371	xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
372
373	xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
374}
375
376/*
377 * Supporting MMIO & in memory RSA
378 */
379static int guc_xfer_rsa(struct xe_guc *guc)
380{
381	struct xe_gt *gt = guc_to_gt(guc);
382	u32 rsa[UOS_RSA_SCRATCH_COUNT];
383	size_t copied;
384	int i;
385
386	if (guc->fw.rsa_size > 256) {
387		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
388				    xe_uc_fw_rsa_offset(&guc->fw);
389		xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
390		return 0;
391	}
392
393	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
394	if (copied < sizeof(rsa))
395		return -ENOMEM;
396
397	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
398		xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
399
400	return 0;
401}
402
403static int guc_wait_ucode(struct xe_guc *guc)
404{
405	struct xe_device *xe = guc_to_xe(guc);
406	u32 status;
407	int ret;
408
409	/*
410	 * Wait for the GuC to start up.
411	 * NB: Docs recommend not using the interrupt for completion.
412	 * Measurements indicate this should take no more than 20ms
413	 * (assuming the GT clock is at maximum frequency). So, a
414	 * timeout here indicates that the GuC has failed and is unusable.
415	 * (Higher levels of the driver may decide to reset the GuC and
416	 * attempt the ucode load again if this happens.)
417	 *
418	 * FIXME: There is a known (but exceedingly unlikely) race condition
419	 * where the asynchronous frequency management code could reduce
420	 * the GT clock while a GuC reload is in progress (during a full
421	 * GT reset). A fix is in progress but there are complex locking
422	 * issues to be resolved. In the meantime bump the timeout to
423	 * 200ms. Even at slowest clock, this should be sufficient. And
424	 * in the working case, a larger timeout makes no difference.
425	 */
426	ret = xe_mmio_wait32(guc_to_gt(guc), GUC_STATUS, GS_UKERNEL_MASK,
427			     FIELD_PREP(GS_UKERNEL_MASK, XE_GUC_LOAD_STATUS_READY),
428			     200000, &status, false);
429
430	if (ret) {
431		struct drm_device *drm = &xe->drm;
432		struct drm_printer p = drm_info_printer(drm->dev);
433
434		drm_info(drm, "GuC load failed: status = 0x%08X\n", status);
435		drm_info(drm, "GuC load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
436			 REG_FIELD_GET(GS_MIA_IN_RESET, status),
437			 REG_FIELD_GET(GS_BOOTROM_MASK, status),
438			 REG_FIELD_GET(GS_UKERNEL_MASK, status),
439			 REG_FIELD_GET(GS_MIA_MASK, status),
440			 REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
441
442		if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) {
443			drm_info(drm, "GuC firmware signature verification failed\n");
444			ret = -ENOEXEC;
445		}
446
447		if (REG_FIELD_GET(GS_UKERNEL_MASK, status) ==
448		    XE_GUC_LOAD_STATUS_EXCEPTION) {
449			drm_info(drm, "GuC firmware exception. EIP: %#x\n",
450				 xe_mmio_read32(guc_to_gt(guc),
451						SOFT_SCRATCH(13)));
452			ret = -ENXIO;
453		}
454
455		xe_guc_log_print(&guc->log, &p);
456	} else {
457		drm_dbg(&xe->drm, "GuC successfully loaded");
458	}
459
460	return ret;
461}
462
463static int __xe_guc_upload(struct xe_guc *guc)
464{
465	int ret;
466
467	guc_write_params(guc);
468	guc_prepare_xfer(guc);
469
470	/*
471	 * Note that GuC needs the CSS header plus uKernel code to be copied
472	 * by the DMA engine in one operation, whereas the RSA signature is
473	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
474	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
475	 * size > 256). The RSA size and therefore the way we provide it to the
476	 * HW is fixed for each platform and hard-coded in the bootrom.
477	 */
478	ret = guc_xfer_rsa(guc);
479	if (ret)
480		goto out;
481	/*
482	 * Current uCode expects the code to be loaded at 8k; locations below
483	 * this are used for the stack.
484	 */
485	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
486	if (ret)
487		goto out;
488
489	/* Wait for authentication */
490	ret = guc_wait_ucode(guc);
491	if (ret)
492		goto out;
493
494	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
495	return 0;
496
497out:
498	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
499	return 0	/* FIXME: ret, don't want to stop load currently */;
500}
501
502/**
503 * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
504 * @guc: The GuC object
505 *
506 * This function uploads a minimal GuC that does not support submissions but
507 * in a state where the hwconfig table can be read. Next, it reads and parses
508 * the hwconfig table so it can be used for subsequent steps in the driver load.
509 * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
510 *
511 * Return: 0 on success, negative error code on error.
512 */
513int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
514{
515	int ret;
516
517	xe_guc_ads_populate_minimal(&guc->ads);
518
519	ret = __xe_guc_upload(guc);
520	if (ret)
521		return ret;
522
523	ret = xe_guc_hwconfig_init(guc);
524	if (ret)
525		return ret;
526
527	ret = xe_guc_enable_communication(guc);
528	if (ret)
529		return ret;
530
531	return 0;
532}
533
534int xe_guc_upload(struct xe_guc *guc)
535{
536	xe_guc_ads_populate(&guc->ads);
537
538	return __xe_guc_upload(guc);
539}
540
541static void guc_handle_mmio_msg(struct xe_guc *guc)
542{
543	struct xe_gt *gt = guc_to_gt(guc);
544	u32 msg;
545
546	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
547
548	msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
549	msg &= XE_GUC_RECV_MSG_EXCEPTION |
550		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
551	xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
552
553	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
554		drm_err(&guc_to_xe(guc)->drm,
555			"Received early GuC crash dump notification!\n");
556
557	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
558		drm_err(&guc_to_xe(guc)->drm,
559			"Received early GuC exception notification!\n");
560}
561
562static void guc_enable_irq(struct xe_guc *guc)
563{
564	struct xe_gt *gt = guc_to_gt(guc);
565	u32 events = xe_gt_is_media_type(gt) ?
566		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
567		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
568
569	/* Primary GuC and media GuC share a single enable bit */
570	xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
571			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
572
573	/*
574	 * There are separate mask bits for primary and media GuCs, so use
575	 * a RMW operation to avoid clobbering the other GuC's setting.
576	 */
577	xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
578}
579
580int xe_guc_enable_communication(struct xe_guc *guc)
581{
582	int err;
583
584	guc_enable_irq(guc);
585
586	xe_mmio_rmw32(guc_to_gt(guc), PMINTRMSK,
587		      ARAT_EXPIRED_INTRMSK, 0);
588
589	err = xe_guc_ct_enable(&guc->ct);
590	if (err)
591		return err;
592
593	guc_handle_mmio_msg(guc);
594
595	return 0;
596}
597
598int xe_guc_suspend(struct xe_guc *guc)
599{
600	int ret;
601	u32 action[] = {
602		XE_GUC_ACTION_CLIENT_SOFT_RESET,
603	};
604
605	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
606	if (ret) {
607		drm_err(&guc_to_xe(guc)->drm,
608			"GuC suspend: CLIENT_SOFT_RESET fail: %d!\n", ret);
609		return ret;
610	}
611
612	xe_guc_sanitize(guc);
613	return 0;
614}
615
616void xe_guc_notify(struct xe_guc *guc)
617{
618	struct xe_gt *gt = guc_to_gt(guc);
619	const u32 default_notify_data = 0;
620
621	/*
622	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
623	 * additional payload data to the GuC but this capability is not
624	 * used by the firmware yet. Use default value in the meantime.
625	 */
626	xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
627}
628
629int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
630{
631	u32 action[] = {
632		XE_GUC_ACTION_AUTHENTICATE_HUC,
633		rsa_addr
634	};
635
636	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
637}
638
639int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
640			  u32 len, u32 *response_buf)
641{
642	struct xe_device *xe = guc_to_xe(guc);
643	struct xe_gt *gt = guc_to_gt(guc);
644	u32 header, reply;
645	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
646		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
647	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
648	int ret;
649	int i;
650
651	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
652
653	xe_assert(xe, !guc->ct.enabled);
654	xe_assert(xe, len);
655	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
656	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
657	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
658		  GUC_HXG_ORIGIN_HOST);
659	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
660		  GUC_HXG_TYPE_REQUEST);
661
662retry:
663	/* Not in critical data-path, just do if else for GT type */
664	if (xe_gt_is_media_type(gt)) {
665		for (i = 0; i < len; ++i)
666			xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
667					request[i]);
668		xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
669	} else {
670		for (i = 0; i < len; ++i)
671			xe_mmio_write32(gt, VF_SW_FLAG(i),
672					request[i]);
673		xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
674	}
675
676	xe_guc_notify(guc);
677
678	ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
679			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
680			     50000, &reply, false);
681	if (ret) {
682timeout:
683		drm_err(&xe->drm, "mmio request %#x: no reply %#x\n",
684			request[0], reply);
685		return ret;
686	}
687
688	header = xe_mmio_read32(gt, reply_reg);
689	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
690	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
691		/*
692		 * Once we got a BUSY reply we must wait again for the final
693		 * response but this time we can't use ORIGIN mask anymore.
694		 * To spot a right change in the reply, we take advantage that
695		 * response SUCCESS and FAILURE differ only by the single bit
696		 * and all other bits are set and can be used as a new mask.
697		 */
698		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
699		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
700
701		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
702		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
703
704		ret = xe_mmio_wait32(gt, reply_reg,  resp_mask, resp_mask,
705				     1000000, &header, false);
706
707		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
708			     GUC_HXG_ORIGIN_GUC))
709			goto proto;
710		if (unlikely(ret))
711			goto timeout;
712	}
713
714	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
715	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
716		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
717
718		drm_dbg(&xe->drm, "mmio request %#x: retrying, reason %#x\n",
719			request[0], reason);
720		goto retry;
721	}
722
723	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
724	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
725		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
726		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
727
728		drm_err(&xe->drm, "mmio request %#x: failure %#x/%#x\n",
729			request[0], error, hint);
730		return -ENXIO;
731	}
732
733	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
734	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
735proto:
736		drm_err(&xe->drm, "mmio request %#x: unexpected reply %#x\n",
737			request[0], header);
738		return -EPROTO;
739	}
740
741	/* Just copy entire possible message response */
742	if (response_buf) {
743		response_buf[0] = header;
744
745		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
746			reply_reg.addr += sizeof(u32);
747			response_buf[i] = xe_mmio_read32(gt, reply_reg);
748		}
749	}
750
751	/* Use data from the GuC response as our return value */
752	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
753}
754
755int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
756{
757	return xe_guc_mmio_send_recv(guc, request, len, NULL);
758}
759
760static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
761{
762	struct xe_device *xe = guc_to_xe(guc);
763	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
764		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
765		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
766		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
767			   GUC_ACTION_HOST2GUC_SELF_CFG),
768		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
769		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
770		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
771			   lower_32_bits(val)),
772		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
773			   upper_32_bits(val)),
774	};
775	int ret;
776
777	xe_assert(xe, len <= 2);
778	xe_assert(xe, len != 1 || !upper_32_bits(val));
779
780	/* Self config must go over MMIO */
781	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
782
783	if (unlikely(ret < 0))
784		return ret;
785	if (unlikely(ret > 1))
786		return -EPROTO;
787	if (unlikely(!ret))
788		return -ENOKEY;
789
790	return 0;
791}
792
793int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
794{
795	return guc_self_cfg(guc, key, 1, val);
796}
797
798int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
799{
800	return guc_self_cfg(guc, key, 2, val);
801}
802
803void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
804{
805	if (iir & GUC_INTR_GUC2HOST)
806		xe_guc_ct_irq_handler(&guc->ct);
807}
808
809void xe_guc_sanitize(struct xe_guc *guc)
810{
811	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
812	xe_guc_ct_disable(&guc->ct);
813	guc->submission_state.enabled = false;
814}
815
816int xe_guc_reset_prepare(struct xe_guc *guc)
817{
818	return xe_guc_submit_reset_prepare(guc);
819}
820
821void xe_guc_reset_wait(struct xe_guc *guc)
822{
823	xe_guc_submit_reset_wait(guc);
824}
825
826void xe_guc_stop_prepare(struct xe_guc *guc)
827{
828	XE_WARN_ON(xe_guc_pc_stop(&guc->pc));
829}
830
831int xe_guc_stop(struct xe_guc *guc)
832{
833	int ret;
834
835	xe_guc_ct_disable(&guc->ct);
836
837	ret = xe_guc_submit_stop(guc);
838	if (ret)
839		return ret;
840
841	return 0;
842}
843
844int xe_guc_start(struct xe_guc *guc)
845{
846	int ret;
847
848	ret = xe_guc_pc_start(&guc->pc);
849	XE_WARN_ON(ret);
850
851	return xe_guc_submit_start(guc);
852}
853
854void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
855{
856	struct xe_gt *gt = guc_to_gt(guc);
857	u32 status;
858	int err;
859	int i;
860
861	xe_uc_fw_print(&guc->fw, p);
862
863	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
864	if (err)
865		return;
866
867	status = xe_mmio_read32(gt, GUC_STATUS);
868
869	drm_printf(p, "\nGuC status 0x%08x:\n", status);
870	drm_printf(p, "\tBootrom status = 0x%x\n",
871		   REG_FIELD_GET(GS_BOOTROM_MASK, status));
872	drm_printf(p, "\tuKernel status = 0x%x\n",
873		   REG_FIELD_GET(GS_UKERNEL_MASK, status));
874	drm_printf(p, "\tMIA Core status = 0x%x\n",
875		   REG_FIELD_GET(GS_MIA_MASK, status));
876	drm_printf(p, "\tLog level = %d\n",
877		   xe_guc_log_get_level(&guc->log));
878
879	drm_puts(p, "\nScratch registers:\n");
880	for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
881		drm_printf(p, "\t%2d: \t0x%x\n",
882			   i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
883	}
884
885	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
886
887	xe_guc_ct_print(&guc->ct, p, false);
888	xe_guc_submit_print(guc, p);
889}
890
891/**
892 * xe_guc_in_reset() - Detect if GuC MIA is in reset.
893 * @guc: The GuC object
894 *
895 * This function detects runtime resume from d3cold by leveraging
896 * GUC_STATUS, GUC doesn't get reset during d3hot,
897 * it strictly to be called from RPM resume handler.
898 *
899 * Return: true if failed to get forcewake or GuC MIA is in Reset,
900 * otherwise false.
901 */
902bool xe_guc_in_reset(struct xe_guc *guc)
903{
904	struct xe_gt *gt = guc_to_gt(guc);
905	u32 status;
906	int err;
907
908	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
909	if (err)
910		return true;
911
912	status = xe_mmio_read32(gt, GUC_STATUS);
913	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
914
915	return  status & GS_MIA_IN_RESET;
916}