Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2022 Intel Corporation
  4 */
  5
  6#include "xe_gt_pagefault.h"
  7
  8#include <linux/bitfield.h>
  9#include <linux/circ_buf.h>
 10
 11#include <drm/drm_exec.h>
 12#include <drm/drm_managed.h>
 13#include <drm/ttm/ttm_execbuf_util.h>
 14
 15#include "abi/guc_actions_abi.h"
 16#include "xe_bo.h"
 17#include "xe_gt.h"
 18#include "xe_gt_tlb_invalidation.h"
 19#include "xe_guc.h"
 20#include "xe_guc_ct.h"
 21#include "xe_migrate.h"
 22#include "xe_pt.h"
 23#include "xe_trace.h"
 24#include "xe_vm.h"
 25
 26struct pagefault {
 27	u64 page_addr;
 28	u32 asid;
 29	u16 pdata;
 30	u8 vfid;
 31	u8 access_type;
 32	u8 fault_type;
 33	u8 fault_level;
 34	u8 engine_class;
 35	u8 engine_instance;
 36	u8 fault_unsuccessful;
 37	bool trva_fault;
 38};
 39
 40enum access_type {
 41	ACCESS_TYPE_READ = 0,
 42	ACCESS_TYPE_WRITE = 1,
 43	ACCESS_TYPE_ATOMIC = 2,
 44	ACCESS_TYPE_RESERVED = 3,
 45};
 46
 47enum fault_type {
 48	NOT_PRESENT = 0,
 49	WRITE_ACCESS_VIOLATION = 1,
 50	ATOMIC_ACCESS_VIOLATION = 2,
 51};
 52
 53struct acc {
 54	u64 va_range_base;
 55	u32 asid;
 56	u32 sub_granularity;
 57	u8 granularity;
 58	u8 vfid;
 59	u8 access_type;
 60	u8 engine_class;
 61	u8 engine_instance;
 62};
 63
 64static bool access_is_atomic(enum access_type access_type)
 65{
 66	return access_type == ACCESS_TYPE_ATOMIC;
 67}
 68
 69static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
 70{
 71	return BIT(tile->id) & vma->tile_present &&
 72		!(BIT(tile->id) & vma->usm.tile_invalidated);
 73}
 74
 75static bool vma_matches(struct xe_vma *vma, u64 page_addr)
 76{
 77	if (page_addr > xe_vma_end(vma) - 1 ||
 78	    page_addr + SZ_4K - 1 < xe_vma_start(vma))
 79		return false;
 80
 81	return true;
 82}
 83
 84static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr)
 85{
 86	struct xe_vma *vma = NULL;
 87
 88	if (vm->usm.last_fault_vma) {   /* Fast lookup */
 89		if (vma_matches(vm->usm.last_fault_vma, page_addr))
 90			vma = vm->usm.last_fault_vma;
 91	}
 92	if (!vma)
 93		vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K);
 94
 95	return vma;
 96}
 97
 98static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
 99		       bool atomic, unsigned int id)
100{
101	struct xe_bo *bo = xe_vma_bo(vma);
102	struct xe_vm *vm = xe_vma_vm(vma);
103	unsigned int num_shared = 2; /* slots for bind + move */
104	int err;
105
106	err = xe_vm_prepare_vma(exec, vma, num_shared);
107	if (err)
108		return err;
109
110	if (atomic && IS_DGFX(vm->xe)) {
111		if (xe_vma_is_userptr(vma)) {
112			err = -EACCES;
113			return err;
114		}
115
116		/* Migrate to VRAM, move should invalidate the VMA first */
117		err = xe_bo_migrate(bo, XE_PL_VRAM0 + id);
118		if (err)
119			return err;
120	} else if (bo) {
121		/* Create backing store if needed */
122		err = xe_bo_validate(bo, vm, true);
123		if (err)
124			return err;
125	}
126
127	return 0;
128}
129
130static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
131{
132	struct xe_device *xe = gt_to_xe(gt);
133	struct xe_tile *tile = gt_to_tile(gt);
134	struct drm_exec exec;
135	struct xe_vm *vm;
136	struct xe_vma *vma = NULL;
137	struct dma_fence *fence;
138	bool write_locked;
139	int ret = 0;
140	bool atomic;
141
142	/* SW isn't expected to handle TRTT faults */
143	if (pf->trva_fault)
144		return -EFAULT;
145
146	/* ASID to VM */
147	mutex_lock(&xe->usm.lock);
148	vm = xa_load(&xe->usm.asid_to_vm, pf->asid);
149	if (vm)
150		xe_vm_get(vm);
151	mutex_unlock(&xe->usm.lock);
152	if (!vm || !xe_vm_in_fault_mode(vm))
153		return -EINVAL;
154
155retry_userptr:
156	/*
157	 * TODO: Avoid exclusive lock if VM doesn't have userptrs, or
158	 * start out read-locked?
159	 */
160	down_write(&vm->lock);
161	write_locked = true;
162	vma = lookup_vma(vm, pf->page_addr);
163	if (!vma) {
164		ret = -EINVAL;
165		goto unlock_vm;
166	}
167
168	if (!xe_vma_is_userptr(vma) ||
169	    !xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
170		downgrade_write(&vm->lock);
171		write_locked = false;
172	}
173
174	trace_xe_vma_pagefault(vma);
175
176	atomic = access_is_atomic(pf->access_type);
177
178	/* Check if VMA is valid */
179	if (vma_is_valid(tile, vma) && !atomic)
180		goto unlock_vm;
181
182	/* TODO: Validate fault */
183
184	if (xe_vma_is_userptr(vma) && write_locked) {
185		struct xe_userptr_vma *uvma = to_userptr_vma(vma);
186
187		spin_lock(&vm->userptr.invalidated_lock);
188		list_del_init(&uvma->userptr.invalidate_link);
189		spin_unlock(&vm->userptr.invalidated_lock);
190
191		ret = xe_vma_userptr_pin_pages(uvma);
192		if (ret)
193			goto unlock_vm;
194
195		downgrade_write(&vm->lock);
196		write_locked = false;
197	}
198
199	/* Lock VM and BOs dma-resv */
200	drm_exec_init(&exec, 0, 0);
201	drm_exec_until_all_locked(&exec) {
202		ret = xe_pf_begin(&exec, vma, atomic, tile->id);
203		drm_exec_retry_on_contention(&exec);
204		if (ret)
205			goto unlock_dma_resv;
206	}
207
208	/* Bind VMA only to the GT that has faulted */
209	trace_xe_vma_pf_bind(vma);
210	fence = __xe_pt_bind_vma(tile, vma, xe_tile_migrate_engine(tile), NULL, 0,
211				 vma->tile_present & BIT(tile->id));
212	if (IS_ERR(fence)) {
213		ret = PTR_ERR(fence);
214		goto unlock_dma_resv;
215	}
216
217	/*
218	 * XXX: Should we drop the lock before waiting? This only helps if doing
219	 * GPU binds which is currently only done if we have to wait for more
220	 * than 10ms on a move.
221	 */
222	dma_fence_wait(fence, false);
223	dma_fence_put(fence);
224
225	if (xe_vma_is_userptr(vma))
226		ret = xe_vma_userptr_check_repin(to_userptr_vma(vma));
227	vma->usm.tile_invalidated &= ~BIT(tile->id);
228
229unlock_dma_resv:
230	drm_exec_fini(&exec);
231unlock_vm:
232	if (!ret)
233		vm->usm.last_fault_vma = vma;
234	if (write_locked)
235		up_write(&vm->lock);
236	else
237		up_read(&vm->lock);
238	if (ret == -EAGAIN)
239		goto retry_userptr;
240
241	if (!ret) {
242		ret = xe_gt_tlb_invalidation_vma(gt, NULL, vma);
243		if (ret >= 0)
244			ret = 0;
245	}
246	xe_vm_put(vm);
247
248	return ret;
249}
250
251static int send_pagefault_reply(struct xe_guc *guc,
252				struct xe_guc_pagefault_reply *reply)
253{
254	u32 action[] = {
255		XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
256		reply->dw0,
257		reply->dw1,
258	};
259
260	return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
261}
262
263static void print_pagefault(struct xe_device *xe, struct pagefault *pf)
264{
265	drm_dbg(&xe->drm, "\n\tASID: %d\n"
266		 "\tVFID: %d\n"
267		 "\tPDATA: 0x%04x\n"
268		 "\tFaulted Address: 0x%08x%08x\n"
269		 "\tFaultType: %d\n"
270		 "\tAccessType: %d\n"
271		 "\tFaultLevel: %d\n"
272		 "\tEngineClass: %d\n"
273		 "\tEngineInstance: %d\n",
274		 pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
275		 lower_32_bits(pf->page_addr),
276		 pf->fault_type, pf->access_type, pf->fault_level,
277		 pf->engine_class, pf->engine_instance);
278}
279
280#define PF_MSG_LEN_DW	4
281
282static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
283{
284	const struct xe_guc_pagefault_desc *desc;
285	bool ret = false;
286
287	spin_lock_irq(&pf_queue->lock);
288	if (pf_queue->head != pf_queue->tail) {
289		desc = (const struct xe_guc_pagefault_desc *)
290			(pf_queue->data + pf_queue->head);
291
292		pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
293		pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
294		pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
295		pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
296		pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
297			PFD_PDATA_HI_SHIFT;
298		pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
299		pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
300		pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
301		pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
302		pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
303		pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
304			PFD_VIRTUAL_ADDR_HI_SHIFT;
305		pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
306			PFD_VIRTUAL_ADDR_LO_SHIFT;
307
308		pf_queue->head = (pf_queue->head + PF_MSG_LEN_DW) %
309			PF_QUEUE_NUM_DW;
310		ret = true;
311	}
312	spin_unlock_irq(&pf_queue->lock);
313
314	return ret;
315}
316
317static bool pf_queue_full(struct pf_queue *pf_queue)
318{
319	lockdep_assert_held(&pf_queue->lock);
320
321	return CIRC_SPACE(pf_queue->tail, pf_queue->head, PF_QUEUE_NUM_DW) <=
322		PF_MSG_LEN_DW;
323}
324
325int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
326{
327	struct xe_gt *gt = guc_to_gt(guc);
328	struct xe_device *xe = gt_to_xe(gt);
329	struct pf_queue *pf_queue;
330	unsigned long flags;
331	u32 asid;
332	bool full;
333
334	if (unlikely(len != PF_MSG_LEN_DW))
335		return -EPROTO;
336
337	asid = FIELD_GET(PFD_ASID, msg[1]);
338	pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE);
339
340	spin_lock_irqsave(&pf_queue->lock, flags);
341	full = pf_queue_full(pf_queue);
342	if (!full) {
343		memcpy(pf_queue->data + pf_queue->tail, msg, len * sizeof(u32));
344		pf_queue->tail = (pf_queue->tail + len) % PF_QUEUE_NUM_DW;
345		queue_work(gt->usm.pf_wq, &pf_queue->worker);
346	} else {
347		drm_warn(&xe->drm, "PF Queue full, shouldn't be possible");
348	}
349	spin_unlock_irqrestore(&pf_queue->lock, flags);
350
351	return full ? -ENOSPC : 0;
352}
353
354#define USM_QUEUE_MAX_RUNTIME_MS	20
355
356static void pf_queue_work_func(struct work_struct *w)
357{
358	struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
359	struct xe_gt *gt = pf_queue->gt;
360	struct xe_device *xe = gt_to_xe(gt);
361	struct xe_guc_pagefault_reply reply = {};
362	struct pagefault pf = {};
363	unsigned long threshold;
364	int ret;
365
366	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
367
368	while (get_pagefault(pf_queue, &pf)) {
369		ret = handle_pagefault(gt, &pf);
370		if (unlikely(ret)) {
371			print_pagefault(xe, &pf);
372			pf.fault_unsuccessful = 1;
373			drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret);
374		}
375
376		reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
377			FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
378			FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
379			FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
380			FIELD_PREP(PFR_ASID, pf.asid);
381
382		reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
383			FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
384			FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
385			FIELD_PREP(PFR_PDATA, pf.pdata);
386
387		send_pagefault_reply(&gt->uc.guc, &reply);
388
389		if (time_after(jiffies, threshold) &&
390		    pf_queue->head != pf_queue->tail) {
391			queue_work(gt->usm.pf_wq, w);
392			break;
393		}
394	}
395}
396
397static void acc_queue_work_func(struct work_struct *w);
398
399int xe_gt_pagefault_init(struct xe_gt *gt)
400{
401	struct xe_device *xe = gt_to_xe(gt);
402	int i;
403
404	if (!xe->info.has_usm)
405		return 0;
406
407	for (i = 0; i < NUM_PF_QUEUE; ++i) {
408		gt->usm.pf_queue[i].gt = gt;
409		spin_lock_init(&gt->usm.pf_queue[i].lock);
410		INIT_WORK(&gt->usm.pf_queue[i].worker, pf_queue_work_func);
411	}
412	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
413		gt->usm.acc_queue[i].gt = gt;
414		spin_lock_init(&gt->usm.acc_queue[i].lock);
415		INIT_WORK(&gt->usm.acc_queue[i].worker, acc_queue_work_func);
416	}
417
418	gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
419					WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
420	if (!gt->usm.pf_wq)
421		return -ENOMEM;
422
423	gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
424					 WQ_UNBOUND | WQ_HIGHPRI,
425					 NUM_ACC_QUEUE);
426	if (!gt->usm.acc_wq)
427		return -ENOMEM;
428
429	return 0;
430}
431
432void xe_gt_pagefault_reset(struct xe_gt *gt)
433{
434	struct xe_device *xe = gt_to_xe(gt);
435	int i;
436
437	if (!xe->info.has_usm)
438		return;
439
440	for (i = 0; i < NUM_PF_QUEUE; ++i) {
441		spin_lock_irq(&gt->usm.pf_queue[i].lock);
442		gt->usm.pf_queue[i].head = 0;
443		gt->usm.pf_queue[i].tail = 0;
444		spin_unlock_irq(&gt->usm.pf_queue[i].lock);
445	}
446
447	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
448		spin_lock(&gt->usm.acc_queue[i].lock);
449		gt->usm.acc_queue[i].head = 0;
450		gt->usm.acc_queue[i].tail = 0;
451		spin_unlock(&gt->usm.acc_queue[i].lock);
452	}
453}
454
455static int granularity_in_byte(int val)
456{
457	switch (val) {
458	case 0:
459		return SZ_128K;
460	case 1:
461		return SZ_2M;
462	case 2:
463		return SZ_16M;
464	case 3:
465		return SZ_64M;
466	default:
467		return 0;
468	}
469}
470
471static int sub_granularity_in_byte(int val)
472{
473	return (granularity_in_byte(val) / 32);
474}
475
476static void print_acc(struct xe_device *xe, struct acc *acc)
477{
478	drm_warn(&xe->drm, "Access counter request:\n"
479		 "\tType: %s\n"
480		 "\tASID: %d\n"
481		 "\tVFID: %d\n"
482		 "\tEngine: %d:%d\n"
483		 "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
484		 "\tSub_Granularity Vector: 0x%08x\n"
485		 "\tVA Range base: 0x%016llx\n",
486		 acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
487		 acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
488		 granularity_in_byte(acc->granularity) / SZ_1K,
489		 sub_granularity_in_byte(acc->granularity) / SZ_1K,
490		 acc->sub_granularity, acc->va_range_base);
491}
492
493static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
494{
495	u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
496		sub_granularity_in_byte(acc->granularity);
497
498	return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
499}
500
501static int handle_acc(struct xe_gt *gt, struct acc *acc)
502{
503	struct xe_device *xe = gt_to_xe(gt);
504	struct xe_tile *tile = gt_to_tile(gt);
505	struct drm_exec exec;
506	struct xe_vm *vm;
507	struct xe_vma *vma;
508	int ret = 0;
509
510	/* We only support ACC_TRIGGER at the moment */
511	if (acc->access_type != ACC_TRIGGER)
512		return -EINVAL;
513
514	/* ASID to VM */
515	mutex_lock(&xe->usm.lock);
516	vm = xa_load(&xe->usm.asid_to_vm, acc->asid);
517	if (vm)
518		xe_vm_get(vm);
519	mutex_unlock(&xe->usm.lock);
520	if (!vm || !xe_vm_in_fault_mode(vm))
521		return -EINVAL;
522
523	down_read(&vm->lock);
524
525	/* Lookup VMA */
526	vma = get_acc_vma(vm, acc);
527	if (!vma) {
528		ret = -EINVAL;
529		goto unlock_vm;
530	}
531
532	trace_xe_vma_acc(vma);
533
534	/* Userptr or null can't be migrated, nothing to do */
535	if (xe_vma_has_no_bo(vma))
536		goto unlock_vm;
537
538	/* Lock VM and BOs dma-resv */
539	drm_exec_init(&exec, 0, 0);
540	drm_exec_until_all_locked(&exec) {
541		ret = xe_pf_begin(&exec, vma, true, tile->id);
542		drm_exec_retry_on_contention(&exec);
543		if (ret)
544			break;
545	}
546
547	drm_exec_fini(&exec);
548unlock_vm:
549	up_read(&vm->lock);
550	xe_vm_put(vm);
551
552	return ret;
553}
554
555#define make_u64(hi__, low__)  ((u64)(hi__) << 32 | (u64)(low__))
556
557#define ACC_MSG_LEN_DW        4
558
559static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
560{
561	const struct xe_guc_acc_desc *desc;
562	bool ret = false;
563
564	spin_lock(&acc_queue->lock);
565	if (acc_queue->head != acc_queue->tail) {
566		desc = (const struct xe_guc_acc_desc *)
567			(acc_queue->data + acc_queue->head);
568
569		acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
570		acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
571			FIELD_GET(ACC_SUBG_LO, desc->dw0);
572		acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
573		acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
574		acc->asid =  FIELD_GET(ACC_ASID, desc->dw1);
575		acc->vfid =  FIELD_GET(ACC_VFID, desc->dw2);
576		acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
577		acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
578					      desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);
579
580		acc_queue->head = (acc_queue->head + ACC_MSG_LEN_DW) %
581				  ACC_QUEUE_NUM_DW;
582		ret = true;
583	}
584	spin_unlock(&acc_queue->lock);
585
586	return ret;
587}
588
589static void acc_queue_work_func(struct work_struct *w)
590{
591	struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
592	struct xe_gt *gt = acc_queue->gt;
593	struct xe_device *xe = gt_to_xe(gt);
594	struct acc acc = {};
595	unsigned long threshold;
596	int ret;
597
598	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
599
600	while (get_acc(acc_queue, &acc)) {
601		ret = handle_acc(gt, &acc);
602		if (unlikely(ret)) {
603			print_acc(xe, &acc);
604			drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret);
605		}
606
607		if (time_after(jiffies, threshold) &&
608		    acc_queue->head != acc_queue->tail) {
609			queue_work(gt->usm.acc_wq, w);
610			break;
611		}
612	}
613}
614
615static bool acc_queue_full(struct acc_queue *acc_queue)
616{
617	lockdep_assert_held(&acc_queue->lock);
618
619	return CIRC_SPACE(acc_queue->tail, acc_queue->head, ACC_QUEUE_NUM_DW) <=
620		ACC_MSG_LEN_DW;
621}
622
623int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
624{
625	struct xe_gt *gt = guc_to_gt(guc);
626	struct acc_queue *acc_queue;
627	u32 asid;
628	bool full;
629
630	if (unlikely(len != ACC_MSG_LEN_DW))
631		return -EPROTO;
632
633	asid = FIELD_GET(ACC_ASID, msg[1]);
634	acc_queue = &gt->usm.acc_queue[asid % NUM_ACC_QUEUE];
635
636	spin_lock(&acc_queue->lock);
637	full = acc_queue_full(acc_queue);
638	if (!full) {
639		memcpy(acc_queue->data + acc_queue->tail, msg,
640		       len * sizeof(u32));
641		acc_queue->tail = (acc_queue->tail + len) % ACC_QUEUE_NUM_DW;
642		queue_work(gt->usm.acc_wq, &acc_queue->worker);
643	} else {
644		drm_warn(&gt_to_xe(gt)->drm, "ACC Queue full, dropping ACC");
645	}
646	spin_unlock(&acc_queue->lock);
647
648	return full ? -ENOSPC : 0;
649}