Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/sched/mm.h>
  26#include <linux/dma-fence-array.h>
  27#include <drm/drm_gem.h>
  28
  29#include "display/intel_display.h"
  30#include "display/intel_frontbuffer.h"
  31#include "gem/i915_gem_lmem.h"
  32#include "gem/i915_gem_object_frontbuffer.h"
  33#include "gem/i915_gem_tiling.h"
  34#include "gt/intel_engine.h"
  35#include "gt/intel_engine_heartbeat.h"
  36#include "gt/intel_gt.h"
  37#include "gt/intel_gt_requests.h"
  38#include "gt/intel_tlb.h"
  39
  40#include "i915_drv.h"
  41#include "i915_gem_evict.h"
  42#include "i915_sw_fence_work.h"
  43#include "i915_trace.h"
  44#include "i915_vma.h"
  45#include "i915_vma_resource.h"
  46
  47static inline void assert_vma_held_evict(const struct i915_vma *vma)
  48{
  49	/*
  50	 * We may be forced to unbind when the vm is dead, to clean it up.
  51	 * This is the only exception to the requirement of the object lock
  52	 * being held.
  53	 */
  54	if (kref_read(&vma->vm->ref))
  55		assert_object_held_shared(vma->obj);
  56}
  57
  58static struct kmem_cache *slab_vmas;
  59
  60static struct i915_vma *i915_vma_alloc(void)
  61{
  62	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
  63}
  64
  65static void i915_vma_free(struct i915_vma *vma)
  66{
  67	return kmem_cache_free(slab_vmas, vma);
  68}
  69
  70#if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
  71
  72#include <linux/stackdepot.h>
  73
  74static void vma_print_allocator(struct i915_vma *vma, const char *reason)
  75{
  76	char buf[512];
  77
  78	if (!vma->node.stack) {
  79		drm_dbg(vma->obj->base.dev,
  80			"vma.node [%08llx + %08llx] %s: unknown owner\n",
  81			vma->node.start, vma->node.size, reason);
  82		return;
  83	}
  84
  85	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
  86	drm_dbg(vma->obj->base.dev,
  87		"vma.node [%08llx + %08llx] %s: inserted at %s\n",
  88		vma->node.start, vma->node.size, reason, buf);
  89}
  90
  91#else
  92
  93static void vma_print_allocator(struct i915_vma *vma, const char *reason)
  94{
  95}
  96
  97#endif
  98
  99static inline struct i915_vma *active_to_vma(struct i915_active *ref)
 100{
 101	return container_of(ref, typeof(struct i915_vma), active);
 102}
 103
 104static int __i915_vma_active(struct i915_active *ref)
 105{
 106	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
 107}
 108
 109static void __i915_vma_retire(struct i915_active *ref)
 110{
 111	i915_vma_put(active_to_vma(ref));
 112}
 113
 114static struct i915_vma *
 115vma_create(struct drm_i915_gem_object *obj,
 116	   struct i915_address_space *vm,
 117	   const struct i915_gtt_view *view)
 118{
 119	struct i915_vma *pos = ERR_PTR(-E2BIG);
 120	struct i915_vma *vma;
 121	struct rb_node *rb, **p;
 122	int err;
 123
 124	/* The aliasing_ppgtt should never be used directly! */
 125	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
 126
 127	vma = i915_vma_alloc();
 128	if (vma == NULL)
 129		return ERR_PTR(-ENOMEM);
 130
 131	vma->ops = &vm->vma_ops;
 132	vma->obj = obj;
 133	vma->size = obj->base.size;
 134	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
 135
 136	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
 137
 138	/* Declare ourselves safe for use inside shrinkers */
 139	if (IS_ENABLED(CONFIG_LOCKDEP)) {
 140		fs_reclaim_acquire(GFP_KERNEL);
 141		might_lock(&vma->active.mutex);
 142		fs_reclaim_release(GFP_KERNEL);
 143	}
 144
 145	INIT_LIST_HEAD(&vma->closed_link);
 146	INIT_LIST_HEAD(&vma->obj_link);
 147	RB_CLEAR_NODE(&vma->obj_node);
 148
 149	if (view && view->type != I915_GTT_VIEW_NORMAL) {
 150		vma->gtt_view = *view;
 151		if (view->type == I915_GTT_VIEW_PARTIAL) {
 152			GEM_BUG_ON(range_overflows_t(u64,
 153						     view->partial.offset,
 154						     view->partial.size,
 155						     obj->base.size >> PAGE_SHIFT));
 156			vma->size = view->partial.size;
 157			vma->size <<= PAGE_SHIFT;
 158			GEM_BUG_ON(vma->size > obj->base.size);
 159		} else if (view->type == I915_GTT_VIEW_ROTATED) {
 160			vma->size = intel_rotation_info_size(&view->rotated);
 161			vma->size <<= PAGE_SHIFT;
 162		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
 163			vma->size = intel_remapped_info_size(&view->remapped);
 164			vma->size <<= PAGE_SHIFT;
 165		}
 166	}
 167
 168	if (unlikely(vma->size > vm->total))
 169		goto err_vma;
 170
 171	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
 172
 173	err = mutex_lock_interruptible(&vm->mutex);
 174	if (err) {
 175		pos = ERR_PTR(err);
 176		goto err_vma;
 177	}
 178
 179	vma->vm = vm;
 180	list_add_tail(&vma->vm_link, &vm->unbound_list);
 181
 182	spin_lock(&obj->vma.lock);
 183	if (i915_is_ggtt(vm)) {
 184		if (unlikely(overflows_type(vma->size, u32)))
 185			goto err_unlock;
 186
 187		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
 188						      i915_gem_object_get_tiling(obj),
 189						      i915_gem_object_get_stride(obj));
 190		if (unlikely(vma->fence_size < vma->size || /* overflow */
 191			     vma->fence_size > vm->total))
 192			goto err_unlock;
 193
 194		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
 195
 196		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
 197								i915_gem_object_get_tiling(obj),
 198								i915_gem_object_get_stride(obj));
 199		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
 200
 201		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
 202	}
 203
 204	rb = NULL;
 205	p = &obj->vma.tree.rb_node;
 206	while (*p) {
 207		long cmp;
 208
 209		rb = *p;
 210		pos = rb_entry(rb, struct i915_vma, obj_node);
 211
 212		/*
 213		 * If the view already exists in the tree, another thread
 214		 * already created a matching vma, so return the older instance
 215		 * and dispose of ours.
 216		 */
 217		cmp = i915_vma_compare(pos, vm, view);
 218		if (cmp < 0)
 219			p = &rb->rb_right;
 220		else if (cmp > 0)
 221			p = &rb->rb_left;
 222		else
 223			goto err_unlock;
 224	}
 225	rb_link_node(&vma->obj_node, rb, p);
 226	rb_insert_color(&vma->obj_node, &obj->vma.tree);
 227
 228	if (i915_vma_is_ggtt(vma))
 229		/*
 230		 * We put the GGTT vma at the start of the vma-list, followed
 231		 * by the ppGGTT vma. This allows us to break early when
 232		 * iterating over only the GGTT vma for an object, see
 233		 * for_each_ggtt_vma()
 234		 */
 235		list_add(&vma->obj_link, &obj->vma.list);
 236	else
 237		list_add_tail(&vma->obj_link, &obj->vma.list);
 238
 239	spin_unlock(&obj->vma.lock);
 240	mutex_unlock(&vm->mutex);
 241
 242	return vma;
 243
 244err_unlock:
 245	spin_unlock(&obj->vma.lock);
 246	list_del_init(&vma->vm_link);
 247	mutex_unlock(&vm->mutex);
 248err_vma:
 249	i915_vma_free(vma);
 250	return pos;
 251}
 252
 253static struct i915_vma *
 254i915_vma_lookup(struct drm_i915_gem_object *obj,
 255	   struct i915_address_space *vm,
 256	   const struct i915_gtt_view *view)
 257{
 258	struct rb_node *rb;
 259
 260	rb = obj->vma.tree.rb_node;
 261	while (rb) {
 262		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
 263		long cmp;
 264
 265		cmp = i915_vma_compare(vma, vm, view);
 266		if (cmp == 0)
 267			return vma;
 268
 269		if (cmp < 0)
 270			rb = rb->rb_right;
 271		else
 272			rb = rb->rb_left;
 273	}
 274
 275	return NULL;
 276}
 277
 278/**
 279 * i915_vma_instance - return the singleton instance of the VMA
 280 * @obj: parent &struct drm_i915_gem_object to be mapped
 281 * @vm: address space in which the mapping is located
 282 * @view: additional mapping requirements
 283 *
 284 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
 285 * the same @view characteristics. If a match is not found, one is created.
 286 * Once created, the VMA is kept until either the object is freed, or the
 287 * address space is closed.
 288 *
 289 * Returns the vma, or an error pointer.
 290 */
 291struct i915_vma *
 292i915_vma_instance(struct drm_i915_gem_object *obj,
 293		  struct i915_address_space *vm,
 294		  const struct i915_gtt_view *view)
 295{
 296	struct i915_vma *vma;
 297
 298	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
 299	GEM_BUG_ON(!kref_read(&vm->ref));
 300
 301	spin_lock(&obj->vma.lock);
 302	vma = i915_vma_lookup(obj, vm, view);
 303	spin_unlock(&obj->vma.lock);
 304
 305	/* vma_create() will resolve the race if another creates the vma */
 306	if (unlikely(!vma))
 307		vma = vma_create(obj, vm, view);
 308
 309	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
 310	return vma;
 311}
 312
 313struct i915_vma_work {
 314	struct dma_fence_work base;
 315	struct i915_address_space *vm;
 316	struct i915_vm_pt_stash stash;
 317	struct i915_vma_resource *vma_res;
 318	struct drm_i915_gem_object *obj;
 319	struct i915_sw_dma_fence_cb cb;
 320	unsigned int pat_index;
 321	unsigned int flags;
 322};
 323
 324static void __vma_bind(struct dma_fence_work *work)
 325{
 326	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
 327	struct i915_vma_resource *vma_res = vw->vma_res;
 328
 329	/*
 330	 * We are about the bind the object, which must mean we have already
 331	 * signaled the work to potentially clear/move the pages underneath. If
 332	 * something went wrong at that stage then the object should have
 333	 * unknown_state set, in which case we need to skip the bind.
 334	 */
 335	if (i915_gem_object_has_unknown_state(vw->obj))
 336		return;
 337
 338	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
 339			       vma_res, vw->pat_index, vw->flags);
 340}
 341
 342static void __vma_release(struct dma_fence_work *work)
 343{
 344	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
 345
 346	if (vw->obj)
 347		i915_gem_object_put(vw->obj);
 348
 349	i915_vm_free_pt_stash(vw->vm, &vw->stash);
 350	if (vw->vma_res)
 351		i915_vma_resource_put(vw->vma_res);
 352}
 353
 354static const struct dma_fence_work_ops bind_ops = {
 355	.name = "bind",
 356	.work = __vma_bind,
 357	.release = __vma_release,
 358};
 359
 360struct i915_vma_work *i915_vma_work(void)
 361{
 362	struct i915_vma_work *vw;
 363
 364	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
 365	if (!vw)
 366		return NULL;
 367
 368	dma_fence_work_init(&vw->base, &bind_ops);
 369	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
 370
 371	return vw;
 372}
 373
 374int i915_vma_wait_for_bind(struct i915_vma *vma)
 375{
 376	int err = 0;
 377
 378	if (rcu_access_pointer(vma->active.excl.fence)) {
 379		struct dma_fence *fence;
 380
 381		rcu_read_lock();
 382		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
 383		rcu_read_unlock();
 384		if (fence) {
 385			err = dma_fence_wait(fence, true);
 386			dma_fence_put(fence);
 387		}
 388	}
 389
 390	return err;
 391}
 392
 393#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
 394static int i915_vma_verify_bind_complete(struct i915_vma *vma)
 395{
 396	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
 397	int err;
 398
 399	if (!fence)
 400		return 0;
 401
 402	if (dma_fence_is_signaled(fence))
 403		err = fence->error;
 404	else
 405		err = -EBUSY;
 406
 407	dma_fence_put(fence);
 408
 409	return err;
 410}
 411#else
 412#define i915_vma_verify_bind_complete(_vma) 0
 413#endif
 414
 415I915_SELFTEST_EXPORT void
 416i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
 417				struct i915_vma *vma)
 418{
 419	struct drm_i915_gem_object *obj = vma->obj;
 420
 421	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
 422			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
 423			       i915_gem_object_is_lmem(obj), obj->mm.region,
 424			       vma->ops, vma->private, __i915_vma_offset(vma),
 425			       __i915_vma_size(vma), vma->size, vma->guard);
 426}
 427
 428/**
 429 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
 430 * @vma: VMA to map
 431 * @pat_index: PAT index to set in PTE
 432 * @flags: flags like global or local mapping
 433 * @work: preallocated worker for allocating and binding the PTE
 434 * @vma_res: pointer to a preallocated vma resource. The resource is either
 435 * consumed or freed.
 436 *
 437 * DMA addresses are taken from the scatter-gather table of this object (or of
 438 * this VMA in case of non-default GGTT views) and PTE entries set up.
 439 * Note that DMA addresses are also the only part of the SG table we care about.
 440 */
 441int i915_vma_bind(struct i915_vma *vma,
 442		  unsigned int pat_index,
 443		  u32 flags,
 444		  struct i915_vma_work *work,
 445		  struct i915_vma_resource *vma_res)
 446{
 447	u32 bind_flags;
 448	u32 vma_flags;
 449	int ret;
 450
 451	lockdep_assert_held(&vma->vm->mutex);
 452	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
 453	GEM_BUG_ON(vma->size > i915_vma_size(vma));
 454
 455	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
 456					      vma->node.size,
 457					      vma->vm->total))) {
 458		i915_vma_resource_free(vma_res);
 459		return -ENODEV;
 460	}
 461
 462	if (GEM_DEBUG_WARN_ON(!flags)) {
 463		i915_vma_resource_free(vma_res);
 464		return -EINVAL;
 465	}
 466
 467	bind_flags = flags;
 468	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
 469
 470	vma_flags = atomic_read(&vma->flags);
 471	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
 472
 473	bind_flags &= ~vma_flags;
 474	if (bind_flags == 0) {
 475		i915_vma_resource_free(vma_res);
 476		return 0;
 477	}
 478
 479	GEM_BUG_ON(!atomic_read(&vma->pages_count));
 480
 481	/* Wait for or await async unbinds touching our range */
 482	if (work && bind_flags & vma->vm->bind_async_flags)
 483		ret = i915_vma_resource_bind_dep_await(vma->vm,
 484						       &work->base.chain,
 485						       vma->node.start,
 486						       vma->node.size,
 487						       true,
 488						       GFP_NOWAIT |
 489						       __GFP_RETRY_MAYFAIL |
 490						       __GFP_NOWARN);
 491	else
 492		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
 493						      vma->node.size, true);
 494	if (ret) {
 495		i915_vma_resource_free(vma_res);
 496		return ret;
 497	}
 498
 499	if (vma->resource || !vma_res) {
 500		/* Rebinding with an additional I915_VMA_*_BIND */
 501		GEM_WARN_ON(!vma_flags);
 502		i915_vma_resource_free(vma_res);
 503	} else {
 504		i915_vma_resource_init_from_vma(vma_res, vma);
 505		vma->resource = vma_res;
 506	}
 507	trace_i915_vma_bind(vma, bind_flags);
 508	if (work && bind_flags & vma->vm->bind_async_flags) {
 509		struct dma_fence *prev;
 510
 511		work->vma_res = i915_vma_resource_get(vma->resource);
 512		work->pat_index = pat_index;
 513		work->flags = bind_flags;
 514
 515		/*
 516		 * Note we only want to chain up to the migration fence on
 517		 * the pages (not the object itself). As we don't track that,
 518		 * yet, we have to use the exclusive fence instead.
 519		 *
 520		 * Also note that we do not want to track the async vma as
 521		 * part of the obj->resv->excl_fence as it only affects
 522		 * execution and not content or object's backing store lifetime.
 523		 */
 524		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
 525		if (prev) {
 526			__i915_sw_fence_await_dma_fence(&work->base.chain,
 527							prev,
 528							&work->cb);
 529			dma_fence_put(prev);
 530		}
 531
 532		work->base.dma.error = 0; /* enable the queue_work() */
 533		work->obj = i915_gem_object_get(vma->obj);
 534	} else {
 535		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
 536		if (ret) {
 537			i915_vma_resource_free(vma->resource);
 538			vma->resource = NULL;
 539
 540			return ret;
 541		}
 542		vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
 543				   bind_flags);
 544	}
 545
 546	atomic_or(bind_flags, &vma->flags);
 547	return 0;
 548}
 549
 550void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
 551{
 552	void __iomem *ptr;
 553	int err;
 554
 555	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
 556		return IOMEM_ERR_PTR(-EINVAL);
 557
 558	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
 559	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
 560	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
 561
 562	ptr = READ_ONCE(vma->iomap);
 563	if (ptr == NULL) {
 564		/*
 565		 * TODO: consider just using i915_gem_object_pin_map() for lmem
 566		 * instead, which already supports mapping non-contiguous chunks
 567		 * of pages, that way we can also drop the
 568		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
 569		 */
 570		if (i915_gem_object_is_lmem(vma->obj)) {
 571			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
 572							  vma->obj->base.size);
 573		} else if (i915_vma_is_map_and_fenceable(vma)) {
 574			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
 575						i915_vma_offset(vma),
 576						i915_vma_size(vma));
 577		} else {
 578			ptr = (void __iomem *)
 579				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
 580			if (IS_ERR(ptr)) {
 581				err = PTR_ERR(ptr);
 582				goto err;
 583			}
 584			ptr = page_pack_bits(ptr, 1);
 585		}
 586
 587		if (ptr == NULL) {
 588			err = -ENOMEM;
 589			goto err;
 590		}
 591
 592		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
 593			if (page_unmask_bits(ptr))
 594				__i915_gem_object_release_map(vma->obj);
 595			else
 596				io_mapping_unmap(ptr);
 597			ptr = vma->iomap;
 598		}
 599	}
 600
 601	__i915_vma_pin(vma);
 602
 603	err = i915_vma_pin_fence(vma);
 604	if (err)
 605		goto err_unpin;
 606
 607	i915_vma_set_ggtt_write(vma);
 608
 609	/* NB Access through the GTT requires the device to be awake. */
 610	return page_mask_bits(ptr);
 611
 612err_unpin:
 613	__i915_vma_unpin(vma);
 614err:
 615	return IOMEM_ERR_PTR(err);
 616}
 617
 618void i915_vma_flush_writes(struct i915_vma *vma)
 619{
 620	if (i915_vma_unset_ggtt_write(vma))
 621		intel_gt_flush_ggtt_writes(vma->vm->gt);
 622}
 623
 624void i915_vma_unpin_iomap(struct i915_vma *vma)
 625{
 626	GEM_BUG_ON(vma->iomap == NULL);
 627
 628	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
 629
 630	i915_vma_flush_writes(vma);
 631
 632	i915_vma_unpin_fence(vma);
 633	i915_vma_unpin(vma);
 634}
 635
 636void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
 637{
 638	struct i915_vma *vma;
 639	struct drm_i915_gem_object *obj;
 640
 641	vma = fetch_and_zero(p_vma);
 642	if (!vma)
 643		return;
 644
 645	obj = vma->obj;
 646	GEM_BUG_ON(!obj);
 647
 648	i915_vma_unpin(vma);
 649
 650	if (flags & I915_VMA_RELEASE_MAP)
 651		i915_gem_object_unpin_map(obj);
 652
 653	i915_gem_object_put(obj);
 654}
 655
 656bool i915_vma_misplaced(const struct i915_vma *vma,
 657			u64 size, u64 alignment, u64 flags)
 658{
 659	if (!drm_mm_node_allocated(&vma->node))
 660		return false;
 661
 662	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
 663		return true;
 664
 665	if (i915_vma_size(vma) < size)
 666		return true;
 667
 668	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
 669	if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
 670		return true;
 671
 672	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
 673		return true;
 674
 675	if (flags & PIN_OFFSET_BIAS &&
 676	    i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
 677		return true;
 678
 679	if (flags & PIN_OFFSET_FIXED &&
 680	    i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
 681		return true;
 682
 683	if (flags & PIN_OFFSET_GUARD &&
 684	    vma->guard < (flags & PIN_OFFSET_MASK))
 685		return true;
 686
 687	return false;
 688}
 689
 690void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
 691{
 692	bool mappable, fenceable;
 693
 694	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
 695	GEM_BUG_ON(!vma->fence_size);
 696
 697	fenceable = (i915_vma_size(vma) >= vma->fence_size &&
 698		     IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
 699
 700	mappable = i915_ggtt_offset(vma) + vma->fence_size <=
 701		   i915_vm_to_ggtt(vma->vm)->mappable_end;
 702
 703	if (mappable && fenceable)
 704		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
 705	else
 706		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
 707}
 708
 709bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
 710{
 711	struct drm_mm_node *node = &vma->node;
 712	struct drm_mm_node *other;
 713
 714	/*
 715	 * On some machines we have to be careful when putting differing types
 716	 * of snoopable memory together to avoid the prefetcher crossing memory
 717	 * domains and dying. During vm initialisation, we decide whether or not
 718	 * these constraints apply and set the drm_mm.color_adjust
 719	 * appropriately.
 720	 */
 721	if (!i915_vm_has_cache_coloring(vma->vm))
 722		return true;
 723
 724	/* Only valid to be called on an already inserted vma */
 725	GEM_BUG_ON(!drm_mm_node_allocated(node));
 726	GEM_BUG_ON(list_empty(&node->node_list));
 727
 728	other = list_prev_entry(node, node_list);
 729	if (i915_node_color_differs(other, color) &&
 730	    !drm_mm_hole_follows(other))
 731		return false;
 732
 733	other = list_next_entry(node, node_list);
 734	if (i915_node_color_differs(other, color) &&
 735	    !drm_mm_hole_follows(node))
 736		return false;
 737
 738	return true;
 739}
 740
 741/**
 742 * i915_vma_insert - finds a slot for the vma in its address space
 743 * @vma: the vma
 744 * @ww: An optional struct i915_gem_ww_ctx
 745 * @size: requested size in bytes (can be larger than the VMA)
 746 * @alignment: required alignment
 747 * @flags: mask of PIN_* flags to use
 748 *
 749 * First we try to allocate some free space that meets the requirements for
 750 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 751 * preferrably the oldest idle entry to make room for the new VMA.
 752 *
 753 * Returns:
 754 * 0 on success, negative error code otherwise.
 755 */
 756static int
 757i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
 758		u64 size, u64 alignment, u64 flags)
 759{
 760	unsigned long color, guard;
 761	u64 start, end;
 762	int ret;
 763
 764	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
 765	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
 766	GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
 767
 768	size = max(size, vma->size);
 769	alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
 770	if (flags & PIN_MAPPABLE) {
 771		size = max_t(typeof(size), size, vma->fence_size);
 772		alignment = max_t(typeof(alignment),
 773				  alignment, vma->fence_alignment);
 774	}
 775
 776	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
 777	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
 778	GEM_BUG_ON(!is_power_of_2(alignment));
 779
 780	guard = vma->guard; /* retain guard across rebinds */
 781	if (flags & PIN_OFFSET_GUARD) {
 782		GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
 783		guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
 784	}
 785	/*
 786	 * As we align the node upon insertion, but the hardware gets
 787	 * node.start + guard, the easiest way to make that work is
 788	 * to make the guard a multiple of the alignment size.
 789	 */
 790	guard = ALIGN(guard, alignment);
 791
 792	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
 793	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
 794
 795	end = vma->vm->total;
 796	if (flags & PIN_MAPPABLE)
 797		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
 798	if (flags & PIN_ZONE_4G)
 799		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
 800	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
 801
 802	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
 803
 804	/*
 805	 * If binding the object/GGTT view requires more space than the entire
 806	 * aperture has, reject it early before evicting everything in a vain
 807	 * attempt to find space.
 808	 */
 809	if (size > end - 2 * guard) {
 810		drm_dbg(vma->obj->base.dev,
 811			"Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
 812			size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
 813		return -ENOSPC;
 814	}
 815
 816	color = 0;
 817
 818	if (i915_vm_has_cache_coloring(vma->vm))
 819		color = vma->obj->pat_index;
 820
 821	if (flags & PIN_OFFSET_FIXED) {
 822		u64 offset = flags & PIN_OFFSET_MASK;
 823		if (!IS_ALIGNED(offset, alignment) ||
 824		    range_overflows(offset, size, end))
 825			return -EINVAL;
 826		/*
 827		 * The caller knows not of the guard added by others and
 828		 * requests for the offset of the start of its buffer
 829		 * to be fixed, which may not be the same as the position
 830		 * of the vma->node due to the guard pages.
 831		 */
 832		if (offset < guard || offset + size > end - guard)
 833			return -ENOSPC;
 834
 835		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
 836					   size + 2 * guard,
 837					   offset - guard,
 838					   color, flags);
 839		if (ret)
 840			return ret;
 841	} else {
 842		size += 2 * guard;
 843		/*
 844		 * We only support huge gtt pages through the 48b PPGTT,
 845		 * however we also don't want to force any alignment for
 846		 * objects which need to be tightly packed into the low 32bits.
 847		 *
 848		 * Note that we assume that GGTT are limited to 4GiB for the
 849		 * forseeable future. See also i915_ggtt_offset().
 850		 */
 851		if (upper_32_bits(end - 1) &&
 852		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
 853		    !HAS_64K_PAGES(vma->vm->i915)) {
 854			/*
 855			 * We can't mix 64K and 4K PTEs in the same page-table
 856			 * (2M block), and so to avoid the ugliness and
 857			 * complexity of coloring we opt for just aligning 64K
 858			 * objects to 2M.
 859			 */
 860			u64 page_alignment =
 861				rounddown_pow_of_two(vma->page_sizes.sg |
 862						     I915_GTT_PAGE_SIZE_2M);
 863
 864			/*
 865			 * Check we don't expand for the limited Global GTT
 866			 * (mappable aperture is even more precious!). This
 867			 * also checks that we exclude the aliasing-ppgtt.
 868			 */
 869			GEM_BUG_ON(i915_vma_is_ggtt(vma));
 870
 871			alignment = max(alignment, page_alignment);
 872
 873			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
 874				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
 875		}
 876
 877		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
 878					  size, alignment, color,
 879					  start, end, flags);
 880		if (ret)
 881			return ret;
 882
 883		GEM_BUG_ON(vma->node.start < start);
 884		GEM_BUG_ON(vma->node.start + vma->node.size > end);
 885	}
 886	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
 887	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
 888
 889	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
 890	vma->guard = guard;
 891
 892	return 0;
 893}
 894
 895static void
 896i915_vma_detach(struct i915_vma *vma)
 897{
 898	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
 899	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
 900
 901	/*
 902	 * And finally now the object is completely decoupled from this
 903	 * vma, we can drop its hold on the backing storage and allow
 904	 * it to be reaped by the shrinker.
 905	 */
 906	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
 907}
 908
 909static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
 910{
 911	unsigned int bound;
 912
 913	bound = atomic_read(&vma->flags);
 914
 915	if (flags & PIN_VALIDATE) {
 916		flags &= I915_VMA_BIND_MASK;
 917
 918		return (flags & bound) == flags;
 919	}
 920
 921	/* with the lock mandatory for unbind, we don't race here */
 922	flags &= I915_VMA_BIND_MASK;
 923	do {
 924		if (unlikely(flags & ~bound))
 925			return false;
 926
 927		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
 928			return false;
 929
 930		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
 931	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
 932
 933	return true;
 934}
 935
 936static struct scatterlist *
 937rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
 938	     unsigned int width, unsigned int height,
 939	     unsigned int src_stride, unsigned int dst_stride,
 940	     struct sg_table *st, struct scatterlist *sg)
 941{
 942	unsigned int column, row;
 943	pgoff_t src_idx;
 944
 945	for (column = 0; column < width; column++) {
 946		unsigned int left;
 947
 948		src_idx = src_stride * (height - 1) + column + offset;
 949		for (row = 0; row < height; row++) {
 950			st->nents++;
 951			/*
 952			 * We don't need the pages, but need to initialize
 953			 * the entries so the sg list can be happily traversed.
 954			 * The only thing we need are DMA addresses.
 955			 */
 956			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
 957			sg_dma_address(sg) =
 958				i915_gem_object_get_dma_address(obj, src_idx);
 959			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
 960			sg = sg_next(sg);
 961			src_idx -= src_stride;
 962		}
 963
 964		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
 965
 966		if (!left)
 967			continue;
 968
 969		st->nents++;
 970
 971		/*
 972		 * The DE ignores the PTEs for the padding tiles, the sg entry
 973		 * here is just a conenience to indicate how many padding PTEs
 974		 * to insert at this spot.
 975		 */
 976		sg_set_page(sg, NULL, left, 0);
 977		sg_dma_address(sg) = 0;
 978		sg_dma_len(sg) = left;
 979		sg = sg_next(sg);
 980	}
 981
 982	return sg;
 983}
 984
 985static noinline struct sg_table *
 986intel_rotate_pages(struct intel_rotation_info *rot_info,
 987		   struct drm_i915_gem_object *obj)
 988{
 989	unsigned int size = intel_rotation_info_size(rot_info);
 990	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 991	struct sg_table *st;
 992	struct scatterlist *sg;
 993	int ret = -ENOMEM;
 994	int i;
 995
 996	/* Allocate target SG list. */
 997	st = kmalloc(sizeof(*st), GFP_KERNEL);
 998	if (!st)
 999		goto err_st_alloc;
1000
1001	ret = sg_alloc_table(st, size, GFP_KERNEL);
1002	if (ret)
1003		goto err_sg_alloc;
1004
1005	st->nents = 0;
1006	sg = st->sgl;
1007
1008	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1009		sg = rotate_pages(obj, rot_info->plane[i].offset,
1010				  rot_info->plane[i].width, rot_info->plane[i].height,
1011				  rot_info->plane[i].src_stride,
1012				  rot_info->plane[i].dst_stride,
1013				  st, sg);
1014
1015	return st;
1016
1017err_sg_alloc:
1018	kfree(st);
1019err_st_alloc:
1020
1021	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1022		obj->base.size, rot_info->plane[0].width,
1023		rot_info->plane[0].height, size);
1024
1025	return ERR_PTR(ret);
1026}
1027
1028static struct scatterlist *
1029add_padding_pages(unsigned int count,
1030		  struct sg_table *st, struct scatterlist *sg)
1031{
1032	st->nents++;
1033
1034	/*
1035	 * The DE ignores the PTEs for the padding tiles, the sg entry
1036	 * here is just a convenience to indicate how many padding PTEs
1037	 * to insert at this spot.
1038	 */
1039	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1040	sg_dma_address(sg) = 0;
1041	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1042	sg = sg_next(sg);
1043
1044	return sg;
1045}
1046
1047static struct scatterlist *
1048remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1049			      unsigned long offset, unsigned int alignment_pad,
1050			      unsigned int width, unsigned int height,
1051			      unsigned int src_stride, unsigned int dst_stride,
1052			      struct sg_table *st, struct scatterlist *sg,
1053			      unsigned int *gtt_offset)
1054{
1055	unsigned int row;
1056
1057	if (!width || !height)
1058		return sg;
1059
1060	if (alignment_pad)
1061		sg = add_padding_pages(alignment_pad, st, sg);
1062
1063	for (row = 0; row < height; row++) {
1064		unsigned int left = width * I915_GTT_PAGE_SIZE;
1065
1066		while (left) {
1067			dma_addr_t addr;
1068			unsigned int length;
1069
1070			/*
1071			 * We don't need the pages, but need to initialize
1072			 * the entries so the sg list can be happily traversed.
1073			 * The only thing we need are DMA addresses.
1074			 */
1075
1076			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1077
1078			length = min(left, length);
1079
1080			st->nents++;
1081
1082			sg_set_page(sg, NULL, length, 0);
1083			sg_dma_address(sg) = addr;
1084			sg_dma_len(sg) = length;
1085			sg = sg_next(sg);
1086
1087			offset += length / I915_GTT_PAGE_SIZE;
1088			left -= length;
1089		}
1090
1091		offset += src_stride - width;
1092
1093		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1094
1095		if (!left)
1096			continue;
1097
1098		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1099	}
1100
1101	*gtt_offset += alignment_pad + dst_stride * height;
1102
1103	return sg;
1104}
1105
1106static struct scatterlist *
1107remap_contiguous_pages(struct drm_i915_gem_object *obj,
1108		       pgoff_t obj_offset,
1109		       unsigned int count,
1110		       struct sg_table *st, struct scatterlist *sg)
1111{
1112	struct scatterlist *iter;
1113	unsigned int offset;
1114
1115	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1116	GEM_BUG_ON(!iter);
1117
1118	do {
1119		unsigned int len;
1120
1121		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1122			  count << PAGE_SHIFT);
1123		sg_set_page(sg, NULL, len, 0);
1124		sg_dma_address(sg) =
1125			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1126		sg_dma_len(sg) = len;
1127
1128		st->nents++;
1129		count -= len >> PAGE_SHIFT;
1130		if (count == 0)
1131			return sg;
1132
1133		sg = __sg_next(sg);
1134		iter = __sg_next(iter);
1135		offset = 0;
1136	} while (1);
1137}
1138
1139static struct scatterlist *
1140remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1141			       pgoff_t obj_offset, unsigned int alignment_pad,
1142			       unsigned int size,
1143			       struct sg_table *st, struct scatterlist *sg,
1144			       unsigned int *gtt_offset)
1145{
1146	if (!size)
1147		return sg;
1148
1149	if (alignment_pad)
1150		sg = add_padding_pages(alignment_pad, st, sg);
1151
1152	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1153	sg = sg_next(sg);
1154
1155	*gtt_offset += alignment_pad + size;
1156
1157	return sg;
1158}
1159
1160static struct scatterlist *
1161remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1162			struct drm_i915_gem_object *obj,
1163			int color_plane,
1164			struct sg_table *st, struct scatterlist *sg,
1165			unsigned int *gtt_offset)
1166{
1167	unsigned int alignment_pad = 0;
1168
1169	if (rem_info->plane_alignment)
1170		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1171
1172	if (rem_info->plane[color_plane].linear)
1173		sg = remap_linear_color_plane_pages(obj,
1174						    rem_info->plane[color_plane].offset,
1175						    alignment_pad,
1176						    rem_info->plane[color_plane].size,
1177						    st, sg,
1178						    gtt_offset);
1179
1180	else
1181		sg = remap_tiled_color_plane_pages(obj,
1182						   rem_info->plane[color_plane].offset,
1183						   alignment_pad,
1184						   rem_info->plane[color_plane].width,
1185						   rem_info->plane[color_plane].height,
1186						   rem_info->plane[color_plane].src_stride,
1187						   rem_info->plane[color_plane].dst_stride,
1188						   st, sg,
1189						   gtt_offset);
1190
1191	return sg;
1192}
1193
1194static noinline struct sg_table *
1195intel_remap_pages(struct intel_remapped_info *rem_info,
1196		  struct drm_i915_gem_object *obj)
1197{
1198	unsigned int size = intel_remapped_info_size(rem_info);
1199	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1200	struct sg_table *st;
1201	struct scatterlist *sg;
1202	unsigned int gtt_offset = 0;
1203	int ret = -ENOMEM;
1204	int i;
1205
1206	/* Allocate target SG list. */
1207	st = kmalloc(sizeof(*st), GFP_KERNEL);
1208	if (!st)
1209		goto err_st_alloc;
1210
1211	ret = sg_alloc_table(st, size, GFP_KERNEL);
1212	if (ret)
1213		goto err_sg_alloc;
1214
1215	st->nents = 0;
1216	sg = st->sgl;
1217
1218	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1219		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1220
1221	i915_sg_trim(st);
1222
1223	return st;
1224
1225err_sg_alloc:
1226	kfree(st);
1227err_st_alloc:
1228
1229	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1230		obj->base.size, rem_info->plane[0].width,
1231		rem_info->plane[0].height, size);
1232
1233	return ERR_PTR(ret);
1234}
1235
1236static noinline struct sg_table *
1237intel_partial_pages(const struct i915_gtt_view *view,
1238		    struct drm_i915_gem_object *obj)
1239{
1240	struct sg_table *st;
1241	struct scatterlist *sg;
1242	unsigned int count = view->partial.size;
1243	int ret = -ENOMEM;
1244
1245	st = kmalloc(sizeof(*st), GFP_KERNEL);
1246	if (!st)
1247		goto err_st_alloc;
1248
1249	ret = sg_alloc_table(st, count, GFP_KERNEL);
1250	if (ret)
1251		goto err_sg_alloc;
1252
1253	st->nents = 0;
1254
1255	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1256
1257	sg_mark_end(sg);
1258	i915_sg_trim(st); /* Drop any unused tail entries. */
1259
1260	return st;
1261
1262err_sg_alloc:
1263	kfree(st);
1264err_st_alloc:
1265	return ERR_PTR(ret);
1266}
1267
1268static int
1269__i915_vma_get_pages(struct i915_vma *vma)
1270{
1271	struct sg_table *pages;
1272
1273	/*
1274	 * The vma->pages are only valid within the lifespan of the borrowed
1275	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1276	 * must be the vma->pages. A simple rule is that vma->pages must only
1277	 * be accessed when the obj->mm.pages are pinned.
1278	 */
1279	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1280
1281	switch (vma->gtt_view.type) {
1282	default:
1283		GEM_BUG_ON(vma->gtt_view.type);
1284		fallthrough;
1285	case I915_GTT_VIEW_NORMAL:
1286		pages = vma->obj->mm.pages;
1287		break;
1288
1289	case I915_GTT_VIEW_ROTATED:
1290		pages =
1291			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1292		break;
1293
1294	case I915_GTT_VIEW_REMAPPED:
1295		pages =
1296			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1297		break;
1298
1299	case I915_GTT_VIEW_PARTIAL:
1300		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1301		break;
1302	}
1303
1304	if (IS_ERR(pages)) {
1305		drm_err(&vma->vm->i915->drm,
1306			"Failed to get pages for VMA view type %u (%ld)!\n",
1307			vma->gtt_view.type, PTR_ERR(pages));
1308		return PTR_ERR(pages);
1309	}
1310
1311	vma->pages = pages;
1312
1313	return 0;
1314}
1315
1316I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1317{
1318	int err;
1319
1320	if (atomic_add_unless(&vma->pages_count, 1, 0))
1321		return 0;
1322
1323	err = i915_gem_object_pin_pages(vma->obj);
1324	if (err)
1325		return err;
1326
1327	err = __i915_vma_get_pages(vma);
1328	if (err)
1329		goto err_unpin;
1330
1331	vma->page_sizes = vma->obj->mm.page_sizes;
1332	atomic_inc(&vma->pages_count);
1333
1334	return 0;
1335
1336err_unpin:
1337	__i915_gem_object_unpin_pages(vma->obj);
1338
1339	return err;
1340}
1341
1342void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1343{
1344	struct intel_gt *gt;
1345	int id;
1346
1347	if (!tlb)
1348		return;
1349
1350	/*
1351	 * Before we release the pages that were bound by this vma, we
1352	 * must invalidate all the TLBs that may still have a reference
1353	 * back to our physical address. It only needs to be done once,
1354	 * so after updating the PTE to point away from the pages, record
1355	 * the most recent TLB invalidation seqno, and if we have not yet
1356	 * flushed the TLBs upon release, perform a full invalidation.
1357	 */
1358	for_each_gt(gt, vm->i915, id)
1359		WRITE_ONCE(tlb[id],
1360			   intel_gt_next_invalidate_tlb_full(gt));
1361}
1362
1363static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1364{
1365	/* We allocate under vma_get_pages, so beware the shrinker */
1366	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1367
1368	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1369		if (vma->pages != vma->obj->mm.pages) {
1370			sg_free_table(vma->pages);
1371			kfree(vma->pages);
1372		}
1373		vma->pages = NULL;
1374
1375		i915_gem_object_unpin_pages(vma->obj);
1376	}
1377}
1378
1379I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1380{
1381	if (atomic_add_unless(&vma->pages_count, -1, 1))
1382		return;
1383
1384	__vma_put_pages(vma, 1);
1385}
1386
1387static void vma_unbind_pages(struct i915_vma *vma)
1388{
1389	unsigned int count;
1390
1391	lockdep_assert_held(&vma->vm->mutex);
1392
1393	/* The upper portion of pages_count is the number of bindings */
1394	count = atomic_read(&vma->pages_count);
1395	count >>= I915_VMA_PAGES_BIAS;
1396	GEM_BUG_ON(!count);
1397
1398	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1399}
1400
1401int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1402		    u64 size, u64 alignment, u64 flags)
1403{
1404	struct i915_vma_work *work = NULL;
1405	struct dma_fence *moving = NULL;
1406	struct i915_vma_resource *vma_res = NULL;
1407	intel_wakeref_t wakeref = 0;
1408	unsigned int bound;
1409	int err;
1410
1411	assert_vma_held(vma);
1412	GEM_BUG_ON(!ww);
1413
1414	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1415	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1416
1417	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1418
1419	/* First try and grab the pin without rebinding the vma */
1420	if (try_qad_pin(vma, flags))
1421		return 0;
1422
1423	err = i915_vma_get_pages(vma);
1424	if (err)
1425		return err;
1426
1427	if (flags & PIN_GLOBAL)
1428		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1429
1430	if (flags & vma->vm->bind_async_flags) {
1431		/* lock VM */
1432		err = i915_vm_lock_objects(vma->vm, ww);
1433		if (err)
1434			goto err_rpm;
1435
1436		work = i915_vma_work();
1437		if (!work) {
1438			err = -ENOMEM;
1439			goto err_rpm;
1440		}
1441
1442		work->vm = vma->vm;
1443
1444		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1445		if (err)
1446			goto err_rpm;
1447
1448		dma_fence_work_chain(&work->base, moving);
1449
1450		/* Allocate enough page directories to used PTE */
1451		if (vma->vm->allocate_va_range) {
1452			err = i915_vm_alloc_pt_stash(vma->vm,
1453						     &work->stash,
1454						     vma->size);
1455			if (err)
1456				goto err_fence;
1457
1458			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1459			if (err)
1460				goto err_fence;
1461		}
1462	}
1463
1464	vma_res = i915_vma_resource_alloc();
1465	if (IS_ERR(vma_res)) {
1466		err = PTR_ERR(vma_res);
1467		goto err_fence;
1468	}
1469
1470	/*
1471	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1472	 *
1473	 * We conflate the Global GTT with the user's vma when using the
1474	 * aliasing-ppgtt, but it is still vitally important to try and
1475	 * keep the use cases distinct. For example, userptr objects are
1476	 * not allowed inside the Global GTT as that will cause lock
1477	 * inversions when we have to evict them the mmu_notifier callbacks -
1478	 * but they are allowed to be part of the user ppGTT which can never
1479	 * be mapped. As such we try to give the distinct users of the same
1480	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1481	 * and i915_ppgtt separate].
1482	 *
1483	 * NB this may cause us to mask real lock inversions -- while the
1484	 * code is safe today, lockdep may not be able to spot future
1485	 * transgressions.
1486	 */
1487	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1488					      !(flags & PIN_GLOBAL));
1489	if (err)
1490		goto err_vma_res;
1491
1492	/* No more allocations allowed now we hold vm->mutex */
1493
1494	if (unlikely(i915_vma_is_closed(vma))) {
1495		err = -ENOENT;
1496		goto err_unlock;
1497	}
1498
1499	bound = atomic_read(&vma->flags);
1500	if (unlikely(bound & I915_VMA_ERROR)) {
1501		err = -ENOMEM;
1502		goto err_unlock;
1503	}
1504
1505	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1506		err = -EAGAIN; /* pins are meant to be fairly temporary */
1507		goto err_unlock;
1508	}
1509
1510	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1511		if (!(flags & PIN_VALIDATE))
1512			__i915_vma_pin(vma);
1513		goto err_unlock;
1514	}
1515
1516	err = i915_active_acquire(&vma->active);
1517	if (err)
1518		goto err_unlock;
1519
1520	if (!(bound & I915_VMA_BIND_MASK)) {
1521		err = i915_vma_insert(vma, ww, size, alignment, flags);
1522		if (err)
1523			goto err_active;
1524
1525		if (i915_is_ggtt(vma->vm))
1526			__i915_vma_set_map_and_fenceable(vma);
1527	}
1528
1529	GEM_BUG_ON(!vma->pages);
1530	err = i915_vma_bind(vma,
1531			    vma->obj->pat_index,
1532			    flags, work, vma_res);
1533	vma_res = NULL;
1534	if (err)
1535		goto err_remove;
1536
1537	/* There should only be at most 2 active bindings (user, global) */
1538	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1539	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1540	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1541
1542	if (!(flags & PIN_VALIDATE)) {
1543		__i915_vma_pin(vma);
1544		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1545	}
1546	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1547	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1548
1549err_remove:
1550	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1551		i915_vma_detach(vma);
1552		drm_mm_remove_node(&vma->node);
1553	}
1554err_active:
1555	i915_active_release(&vma->active);
1556err_unlock:
1557	mutex_unlock(&vma->vm->mutex);
1558err_vma_res:
1559	i915_vma_resource_free(vma_res);
1560err_fence:
1561	if (work)
1562		dma_fence_work_commit_imm(&work->base);
1563err_rpm:
1564	if (wakeref)
1565		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1566
1567	if (moving)
1568		dma_fence_put(moving);
1569
1570	i915_vma_put_pages(vma);
1571	return err;
1572}
1573
1574static void flush_idle_contexts(struct intel_gt *gt)
1575{
1576	struct intel_engine_cs *engine;
1577	enum intel_engine_id id;
1578
1579	for_each_engine(engine, gt, id)
1580		intel_engine_flush_barriers(engine);
1581
1582	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1583}
1584
1585static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1586			   u32 align, unsigned int flags)
1587{
1588	struct i915_address_space *vm = vma->vm;
1589	struct intel_gt *gt;
1590	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1591	int err;
1592
1593	do {
1594		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1595
1596		if (err != -ENOSPC) {
1597			if (!err) {
1598				err = i915_vma_wait_for_bind(vma);
1599				if (err)
1600					i915_vma_unpin(vma);
1601			}
1602			return err;
1603		}
1604
1605		/* Unlike i915_vma_pin, we don't take no for an answer! */
1606		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1607			flush_idle_contexts(gt);
1608		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1609			/*
1610			 * We pass NULL ww here, as we don't want to unbind
1611			 * locked objects when called from execbuf when pinning
1612			 * is removed. This would probably regress badly.
1613			 */
1614			i915_gem_evict_vm(vm, NULL, NULL);
1615			mutex_unlock(&vm->mutex);
1616		}
1617	} while (1);
1618}
1619
1620int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1621		  u32 align, unsigned int flags)
1622{
1623	struct i915_gem_ww_ctx _ww;
1624	int err;
1625
1626	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1627
1628	if (ww)
1629		return __i915_ggtt_pin(vma, ww, align, flags);
1630
1631	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1632
1633	for_i915_gem_ww(&_ww, err, true) {
1634		err = i915_gem_object_lock(vma->obj, &_ww);
1635		if (!err)
1636			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1637	}
1638
1639	return err;
1640}
1641
1642/**
1643 * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1644 * @obj: i915 GEM object
1645 * This function clears scanout flags for objects ggtt vmas. These flags are set
1646 * when object is pinned for display use and this function to clear them all is
1647 * targeted to be called by frontbuffer tracking code when the frontbuffer is
1648 * about to be released.
1649 */
1650void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1651{
1652	struct i915_vma *vma;
1653
1654	spin_lock(&obj->vma.lock);
1655	for_each_ggtt_vma(vma, obj) {
1656		i915_vma_clear_scanout(vma);
1657		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1658	}
1659	spin_unlock(&obj->vma.lock);
1660}
1661
1662static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1663{
1664	/*
1665	 * We defer actually closing, unbinding and destroying the VMA until
1666	 * the next idle point, or if the object is freed in the meantime. By
1667	 * postponing the unbind, we allow for it to be resurrected by the
1668	 * client, avoiding the work required to rebind the VMA. This is
1669	 * advantageous for DRI, where the client/server pass objects
1670	 * between themselves, temporarily opening a local VMA to the
1671	 * object, and then closing it again. The same object is then reused
1672	 * on the next frame (or two, depending on the depth of the swap queue)
1673	 * causing us to rebind the VMA once more. This ends up being a lot
1674	 * of wasted work for the steady state.
1675	 */
1676	GEM_BUG_ON(i915_vma_is_closed(vma));
1677	list_add(&vma->closed_link, &gt->closed_vma);
1678}
1679
1680void i915_vma_close(struct i915_vma *vma)
1681{
1682	struct intel_gt *gt = vma->vm->gt;
1683	unsigned long flags;
1684
1685	if (i915_vma_is_ggtt(vma))
1686		return;
1687
1688	GEM_BUG_ON(!atomic_read(&vma->open_count));
1689	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1690					&gt->closed_lock,
1691					flags)) {
1692		__vma_close(vma, gt);
1693		spin_unlock_irqrestore(&gt->closed_lock, flags);
1694	}
1695}
1696
1697static void __i915_vma_remove_closed(struct i915_vma *vma)
1698{
1699	list_del_init(&vma->closed_link);
1700}
1701
1702void i915_vma_reopen(struct i915_vma *vma)
1703{
1704	struct intel_gt *gt = vma->vm->gt;
1705
1706	spin_lock_irq(&gt->closed_lock);
1707	if (i915_vma_is_closed(vma))
1708		__i915_vma_remove_closed(vma);
1709	spin_unlock_irq(&gt->closed_lock);
1710}
1711
1712static void force_unbind(struct i915_vma *vma)
1713{
1714	if (!drm_mm_node_allocated(&vma->node))
1715		return;
1716
1717	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1718	WARN_ON(__i915_vma_unbind(vma));
1719	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1720}
1721
1722static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1723			       bool vm_ddestroy)
1724{
1725	struct drm_i915_gem_object *obj = vma->obj;
1726
1727	GEM_BUG_ON(i915_vma_is_active(vma));
1728
1729	spin_lock(&obj->vma.lock);
1730	list_del(&vma->obj_link);
1731	if (!RB_EMPTY_NODE(&vma->obj_node))
1732		rb_erase(&vma->obj_node, &obj->vma.tree);
1733
1734	spin_unlock(&obj->vma.lock);
1735
1736	spin_lock_irq(&gt->closed_lock);
1737	__i915_vma_remove_closed(vma);
1738	spin_unlock_irq(&gt->closed_lock);
1739
1740	if (vm_ddestroy)
1741		i915_vm_resv_put(vma->vm);
1742
1743	/* Wait for async active retire */
1744	i915_active_wait(&vma->active);
1745	i915_active_fini(&vma->active);
1746	GEM_WARN_ON(vma->resource);
1747	i915_vma_free(vma);
1748}
1749
1750/*
1751 * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1752 * the initial reference.
1753 *
1754 * This function should be called when it's decided the vma isn't needed
1755 * anymore. The caller must assure that it doesn't race with another lookup
1756 * plus destroy, typically by taking an appropriate reference.
1757 *
1758 * Current callsites are
1759 * - __i915_gem_object_pages_fini()
1760 * - __i915_vm_close() - Blocks the above function by taking a reference on
1761 * the object.
1762 * - __i915_vma_parked() - Blocks the above functions by taking a reference
1763 * on the vm and a reference on the object. Also takes the object lock so
1764 * destruction from __i915_vma_parked() can be blocked by holding the
1765 * object lock. Since the object lock is only allowed from within i915 with
1766 * an object refcount, holding the object lock also implicitly blocks the
1767 * vma freeing from __i915_gem_object_pages_fini().
1768 *
1769 * Because of locks taken during destruction, a vma is also guaranteed to
1770 * stay alive while the following locks are held if it was looked up while
1771 * holding one of the locks:
1772 * - vm->mutex
1773 * - obj->vma.lock
1774 * - gt->closed_lock
1775 */
1776void i915_vma_destroy_locked(struct i915_vma *vma)
1777{
1778	lockdep_assert_held(&vma->vm->mutex);
1779
1780	force_unbind(vma);
1781	list_del_init(&vma->vm_link);
1782	release_references(vma, vma->vm->gt, false);
1783}
1784
1785void i915_vma_destroy(struct i915_vma *vma)
1786{
1787	struct intel_gt *gt;
1788	bool vm_ddestroy;
1789
1790	mutex_lock(&vma->vm->mutex);
1791	force_unbind(vma);
1792	list_del_init(&vma->vm_link);
1793	vm_ddestroy = vma->vm_ddestroy;
1794	vma->vm_ddestroy = false;
1795
1796	/* vma->vm may be freed when releasing vma->vm->mutex. */
1797	gt = vma->vm->gt;
1798	mutex_unlock(&vma->vm->mutex);
1799	release_references(vma, gt, vm_ddestroy);
1800}
1801
1802void i915_vma_parked(struct intel_gt *gt)
1803{
1804	struct i915_vma *vma, *next;
1805	LIST_HEAD(closed);
1806
1807	spin_lock_irq(&gt->closed_lock);
1808	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1809		struct drm_i915_gem_object *obj = vma->obj;
1810		struct i915_address_space *vm = vma->vm;
1811
1812		/* XXX All to avoid keeping a reference on i915_vma itself */
1813
1814		if (!kref_get_unless_zero(&obj->base.refcount))
1815			continue;
1816
1817		if (!i915_vm_tryget(vm)) {
1818			i915_gem_object_put(obj);
1819			continue;
1820		}
1821
1822		list_move(&vma->closed_link, &closed);
1823	}
1824	spin_unlock_irq(&gt->closed_lock);
1825
1826	/* As the GT is held idle, no vma can be reopened as we destroy them */
1827	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1828		struct drm_i915_gem_object *obj = vma->obj;
1829		struct i915_address_space *vm = vma->vm;
1830
1831		if (i915_gem_object_trylock(obj, NULL)) {
1832			INIT_LIST_HEAD(&vma->closed_link);
1833			i915_vma_destroy(vma);
1834			i915_gem_object_unlock(obj);
1835		} else {
1836			/* back you go.. */
1837			spin_lock_irq(&gt->closed_lock);
1838			list_add(&vma->closed_link, &gt->closed_vma);
1839			spin_unlock_irq(&gt->closed_lock);
1840		}
1841
1842		i915_gem_object_put(obj);
1843		i915_vm_put(vm);
1844	}
1845}
1846
1847static void __i915_vma_iounmap(struct i915_vma *vma)
1848{
1849	GEM_BUG_ON(i915_vma_is_pinned(vma));
1850
1851	if (vma->iomap == NULL)
1852		return;
1853
1854	if (page_unmask_bits(vma->iomap))
1855		__i915_gem_object_release_map(vma->obj);
1856	else
1857		io_mapping_unmap(vma->iomap);
1858	vma->iomap = NULL;
1859}
1860
1861void i915_vma_revoke_mmap(struct i915_vma *vma)
1862{
1863	struct drm_vma_offset_node *node;
1864	u64 vma_offset;
1865
1866	if (!i915_vma_has_userfault(vma))
1867		return;
1868
1869	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1870	GEM_BUG_ON(!vma->obj->userfault_count);
1871
1872	node = &vma->mmo->vma_node;
1873	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1874	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1875			    drm_vma_node_offset_addr(node) + vma_offset,
1876			    vma->size,
1877			    1);
1878
1879	i915_vma_unset_userfault(vma);
1880	if (!--vma->obj->userfault_count)
1881		list_del(&vma->obj->userfault_link);
1882}
1883
1884static int
1885__i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1886{
1887	return __i915_request_await_exclusive(rq, &vma->active);
1888}
1889
1890static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1891{
1892	int err;
1893
1894	/* Wait for the vma to be bound before we start! */
1895	err = __i915_request_await_bind(rq, vma);
1896	if (err)
1897		return err;
1898
1899	return i915_active_add_request(&vma->active, rq);
1900}
1901
1902int _i915_vma_move_to_active(struct i915_vma *vma,
1903			     struct i915_request *rq,
1904			     struct dma_fence *fence,
1905			     unsigned int flags)
1906{
1907	struct drm_i915_gem_object *obj = vma->obj;
1908	int err;
1909
1910	assert_object_held(obj);
1911
1912	GEM_BUG_ON(!vma->pages);
1913
1914	if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1915		err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1916		if (unlikely(err))
1917			return err;
1918	}
1919	err = __i915_vma_move_to_active(vma, rq);
1920	if (unlikely(err))
1921		return err;
1922
1923	/*
1924	 * Reserve fences slot early to prevent an allocation after preparing
1925	 * the workload and associating fences with dma_resv.
1926	 */
1927	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1928		struct dma_fence *curr;
1929		int idx;
1930
1931		dma_fence_array_for_each(curr, idx, fence)
1932			;
1933		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1934		if (unlikely(err))
1935			return err;
1936	}
1937
1938	if (flags & EXEC_OBJECT_WRITE) {
1939		struct intel_frontbuffer *front;
1940
1941		front = i915_gem_object_get_frontbuffer(obj);
1942		if (unlikely(front)) {
1943			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1944				i915_active_add_request(&front->write, rq);
1945			intel_frontbuffer_put(front);
1946		}
1947	}
1948
1949	if (fence) {
1950		struct dma_fence *curr;
1951		enum dma_resv_usage usage;
1952		int idx;
1953
1954		if (flags & EXEC_OBJECT_WRITE) {
1955			usage = DMA_RESV_USAGE_WRITE;
1956			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1957			obj->read_domains = 0;
1958		} else {
1959			usage = DMA_RESV_USAGE_READ;
1960			obj->write_domain = 0;
1961		}
1962
1963		dma_fence_array_for_each(curr, idx, fence)
1964			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1965	}
1966
1967	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1968		i915_active_add_request(&vma->fence->active, rq);
1969
1970	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1971	obj->mm.dirty = true;
1972
1973	GEM_BUG_ON(!i915_vma_is_active(vma));
1974	return 0;
1975}
1976
1977struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1978{
1979	struct i915_vma_resource *vma_res = vma->resource;
1980	struct dma_fence *unbind_fence;
1981
1982	GEM_BUG_ON(i915_vma_is_pinned(vma));
1983	assert_vma_held_evict(vma);
1984
1985	if (i915_vma_is_map_and_fenceable(vma)) {
1986		/* Force a pagefault for domain tracking on next user access */
1987		i915_vma_revoke_mmap(vma);
1988
1989		/*
1990		 * Check that we have flushed all writes through the GGTT
1991		 * before the unbind, other due to non-strict nature of those
1992		 * indirect writes they may end up referencing the GGTT PTE
1993		 * after the unbind.
1994		 *
1995		 * Note that we may be concurrently poking at the GGTT_WRITE
1996		 * bit from set-domain, as we mark all GGTT vma associated
1997		 * with an object. We know this is for another vma, as we
1998		 * are currently unbinding this one -- so if this vma will be
1999		 * reused, it will be refaulted and have its dirty bit set
2000		 * before the next write.
2001		 */
2002		i915_vma_flush_writes(vma);
2003
2004		/* release the fence reg _after_ flushing */
2005		i915_vma_revoke_fence(vma);
2006
2007		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2008	}
2009
2010	__i915_vma_iounmap(vma);
2011
2012	GEM_BUG_ON(vma->fence);
2013	GEM_BUG_ON(i915_vma_has_userfault(vma));
2014
2015	/* Object backend must be async capable. */
2016	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2017
2018	/* If vm is not open, unbind is a nop. */
2019	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2020		kref_read(&vma->vm->ref);
2021	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
2022		vma->vm->skip_pte_rewrite;
2023	trace_i915_vma_unbind(vma);
2024
2025	if (async)
2026		unbind_fence = i915_vma_resource_unbind(vma_res,
2027							vma->obj->mm.tlb);
2028	else
2029		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2030
2031	vma->resource = NULL;
2032
2033	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2034		   &vma->flags);
2035
2036	i915_vma_detach(vma);
2037
2038	if (!async) {
2039		if (unbind_fence) {
2040			dma_fence_wait(unbind_fence, false);
2041			dma_fence_put(unbind_fence);
2042			unbind_fence = NULL;
2043		}
2044		vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb);
2045	}
2046
2047	/*
2048	 * Binding itself may not have completed until the unbind fence signals,
2049	 * so don't drop the pages until that happens, unless the resource is
2050	 * async_capable.
2051	 */
2052
2053	vma_unbind_pages(vma);
2054	return unbind_fence;
2055}
2056
2057int __i915_vma_unbind(struct i915_vma *vma)
2058{
2059	int ret;
2060
2061	lockdep_assert_held(&vma->vm->mutex);
2062	assert_vma_held_evict(vma);
2063
2064	if (!drm_mm_node_allocated(&vma->node))
2065		return 0;
2066
2067	if (i915_vma_is_pinned(vma)) {
2068		vma_print_allocator(vma, "is pinned");
2069		return -EAGAIN;
2070	}
2071
2072	/*
2073	 * After confirming that no one else is pinning this vma, wait for
2074	 * any laggards who may have crept in during the wait (through
2075	 * a residual pin skipping the vm->mutex) to complete.
2076	 */
2077	ret = i915_vma_sync(vma);
2078	if (ret)
2079		return ret;
2080
2081	GEM_BUG_ON(i915_vma_is_active(vma));
2082	__i915_vma_evict(vma, false);
2083
2084	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2085	return 0;
2086}
2087
2088static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2089{
2090	struct dma_fence *fence;
2091
2092	lockdep_assert_held(&vma->vm->mutex);
2093
2094	if (!drm_mm_node_allocated(&vma->node))
2095		return NULL;
2096
2097	if (i915_vma_is_pinned(vma) ||
2098	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2099		return ERR_PTR(-EAGAIN);
2100
2101	/*
2102	 * We probably need to replace this with awaiting the fences of the
2103	 * object's dma_resv when the vma active goes away. When doing that
2104	 * we need to be careful to not add the vma_resource unbind fence
2105	 * immediately to the object's dma_resv, because then unbinding
2106	 * the next vma from the object, in case there are many, will
2107	 * actually await the unbinding of the previous vmas, which is
2108	 * undesirable.
2109	 */
2110	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2111				       I915_ACTIVE_AWAIT_EXCL |
2112				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2113		return ERR_PTR(-EBUSY);
2114	}
2115
2116	fence = __i915_vma_evict(vma, true);
2117
2118	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2119
2120	return fence;
2121}
2122
2123int i915_vma_unbind(struct i915_vma *vma)
2124{
2125	struct i915_address_space *vm = vma->vm;
2126	intel_wakeref_t wakeref = 0;
2127	int err;
2128
2129	assert_object_held_shared(vma->obj);
2130
2131	/* Optimistic wait before taking the mutex */
2132	err = i915_vma_sync(vma);
2133	if (err)
2134		return err;
2135
2136	if (!drm_mm_node_allocated(&vma->node))
2137		return 0;
2138
2139	if (i915_vma_is_pinned(vma)) {
2140		vma_print_allocator(vma, "is pinned");
2141		return -EAGAIN;
2142	}
2143
2144	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2145		/* XXX not always required: nop_clear_range */
2146		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2147
2148	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2149	if (err)
2150		goto out_rpm;
2151
2152	err = __i915_vma_unbind(vma);
2153	mutex_unlock(&vm->mutex);
2154
2155out_rpm:
2156	if (wakeref)
2157		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2158	return err;
2159}
2160
2161int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2162{
2163	struct drm_i915_gem_object *obj = vma->obj;
2164	struct i915_address_space *vm = vma->vm;
2165	intel_wakeref_t wakeref = 0;
2166	struct dma_fence *fence;
2167	int err;
2168
2169	/*
2170	 * We need the dma-resv lock since we add the
2171	 * unbind fence to the dma-resv object.
2172	 */
2173	assert_object_held(obj);
2174
2175	if (!drm_mm_node_allocated(&vma->node))
2176		return 0;
2177
2178	if (i915_vma_is_pinned(vma)) {
2179		vma_print_allocator(vma, "is pinned");
2180		return -EAGAIN;
2181	}
2182
2183	if (!obj->mm.rsgt)
2184		return -EBUSY;
2185
2186	err = dma_resv_reserve_fences(obj->base.resv, 2);
2187	if (err)
2188		return -EBUSY;
2189
2190	/*
2191	 * It would be great if we could grab this wakeref from the
2192	 * async unbind work if needed, but we can't because it uses
2193	 * kmalloc and it's in the dma-fence signalling critical path.
2194	 */
2195	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2196		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2197
2198	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2199		err = -EBUSY;
2200		goto out_rpm;
2201	} else if (!trylock_vm) {
2202		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2203		if (err)
2204			goto out_rpm;
2205	}
2206
2207	fence = __i915_vma_unbind_async(vma);
2208	mutex_unlock(&vm->mutex);
2209	if (IS_ERR_OR_NULL(fence)) {
2210		err = PTR_ERR_OR_ZERO(fence);
2211		goto out_rpm;
2212	}
2213
2214	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2215	dma_fence_put(fence);
2216
2217out_rpm:
2218	if (wakeref)
2219		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2220	return err;
2221}
2222
2223int i915_vma_unbind_unlocked(struct i915_vma *vma)
2224{
2225	int err;
2226
2227	i915_gem_object_lock(vma->obj, NULL);
2228	err = i915_vma_unbind(vma);
2229	i915_gem_object_unlock(vma->obj);
2230
2231	return err;
2232}
2233
2234struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2235{
2236	i915_gem_object_make_unshrinkable(vma->obj);
2237	return vma;
2238}
2239
2240void i915_vma_make_shrinkable(struct i915_vma *vma)
2241{
2242	i915_gem_object_make_shrinkable(vma->obj);
2243}
2244
2245void i915_vma_make_purgeable(struct i915_vma *vma)
2246{
2247	i915_gem_object_make_purgeable(vma->obj);
2248}
2249
2250#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2251#include "selftests/i915_vma.c"
2252#endif
2253
2254void i915_vma_module_exit(void)
2255{
2256	kmem_cache_destroy(slab_vmas);
2257}
2258
2259int __init i915_vma_module_init(void)
2260{
2261	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2262	if (!slab_vmas)
2263		return -ENOMEM;
2264
2265	return 0;
2266}