Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2021 Intel Corporation
   4 */
   5
   6#include <linux/shmem_fs.h>
   7
   8#include <drm/ttm/ttm_placement.h>
   9#include <drm/ttm/ttm_tt.h>
  10#include <drm/drm_buddy.h>
  11
  12#include "i915_drv.h"
  13#include "i915_ttm_buddy_manager.h"
  14#include "intel_memory_region.h"
  15#include "intel_region_ttm.h"
  16
  17#include "gem/i915_gem_mman.h"
  18#include "gem/i915_gem_object.h"
  19#include "gem/i915_gem_region.h"
  20#include "gem/i915_gem_ttm.h"
  21#include "gem/i915_gem_ttm_move.h"
  22#include "gem/i915_gem_ttm_pm.h"
  23#include "gt/intel_gpu_commands.h"
  24
  25#define I915_TTM_PRIO_PURGE     0
  26#define I915_TTM_PRIO_NO_PAGES  1
  27#define I915_TTM_PRIO_HAS_PAGES 2
  28#define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
  29
  30/*
  31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
  32 */
  33#define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
  34
  35/**
  36 * struct i915_ttm_tt - TTM page vector with additional private information
  37 * @ttm: The base TTM page vector.
  38 * @dev: The struct device used for dma mapping and unmapping.
  39 * @cached_rsgt: The cached scatter-gather table.
  40 * @is_shmem: Set if using shmem.
  41 * @filp: The shmem file, if using shmem backend.
  42 *
  43 * Note that DMA may be going on right up to the point where the page-
  44 * vector is unpopulated in delayed destroy. Hence keep the
  45 * scatter-gather table mapped and cached up to that point. This is
  46 * different from the cached gem object io scatter-gather table which
  47 * doesn't have an associated dma mapping.
  48 */
  49struct i915_ttm_tt {
  50	struct ttm_tt ttm;
  51	struct device *dev;
  52	struct i915_refct_sgt cached_rsgt;
  53
  54	bool is_shmem;
  55	struct file *filp;
  56};
  57
  58static const struct ttm_place sys_placement_flags = {
  59	.fpfn = 0,
  60	.lpfn = 0,
  61	.mem_type = I915_PL_SYSTEM,
  62	.flags = 0,
  63};
  64
  65static struct ttm_placement i915_sys_placement = {
  66	.num_placement = 1,
  67	.placement = &sys_placement_flags,
  68	.num_busy_placement = 1,
  69	.busy_placement = &sys_placement_flags,
  70};
  71
  72/**
  73 * i915_ttm_sys_placement - Return the struct ttm_placement to be
  74 * used for an object in system memory.
  75 *
  76 * Rather than making the struct extern, use this
  77 * function.
  78 *
  79 * Return: A pointer to a static variable for sys placement.
  80 */
  81struct ttm_placement *i915_ttm_sys_placement(void)
  82{
  83	return &i915_sys_placement;
  84}
  85
  86static int i915_ttm_err_to_gem(int err)
  87{
  88	/* Fastpath */
  89	if (likely(!err))
  90		return 0;
  91
  92	switch (err) {
  93	case -EBUSY:
  94		/*
  95		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
  96		 * restart the operation, since we don't record the contending
  97		 * lock. We use -EAGAIN to restart.
  98		 */
  99		return -EAGAIN;
 100	case -ENOSPC:
 101		/*
 102		 * Memory type / region is full, and we can't evict.
 103		 * Except possibly system, that returns -ENOMEM;
 104		 */
 105		return -ENXIO;
 106	default:
 107		break;
 108	}
 109
 110	return err;
 111}
 112
 113static enum ttm_caching
 114i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
 115{
 116	/*
 117	 * Objects only allowed in system get cached cpu-mappings, or when
 118	 * evicting lmem-only buffers to system for swapping. Other objects get
 119	 * WC mapping for now. Even if in system.
 120	 */
 121	if (obj->mm.n_placements <= 1)
 122		return ttm_cached;
 123
 124	return ttm_write_combined;
 125}
 126
 127static void
 128i915_ttm_place_from_region(const struct intel_memory_region *mr,
 129			   struct ttm_place *place,
 130			   resource_size_t offset,
 131			   resource_size_t size,
 132			   unsigned int flags)
 133{
 134	memset(place, 0, sizeof(*place));
 135	place->mem_type = intel_region_to_ttm_type(mr);
 136
 137	if (mr->type == INTEL_MEMORY_SYSTEM)
 138		return;
 139
 140	if (flags & I915_BO_ALLOC_CONTIGUOUS)
 141		place->flags |= TTM_PL_FLAG_CONTIGUOUS;
 142	if (offset != I915_BO_INVALID_OFFSET) {
 143		WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
 144		place->fpfn = offset >> PAGE_SHIFT;
 145		WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
 146		place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
 147	} else if (mr->io_size && mr->io_size < mr->total) {
 148		if (flags & I915_BO_ALLOC_GPU_ONLY) {
 149			place->flags |= TTM_PL_FLAG_TOPDOWN;
 150		} else {
 151			place->fpfn = 0;
 152			WARN_ON(overflows_type(mr->io_size >> PAGE_SHIFT, place->lpfn));
 153			place->lpfn = mr->io_size >> PAGE_SHIFT;
 154		}
 155	}
 156}
 157
 158static void
 159i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
 160			    struct ttm_place *requested,
 161			    struct ttm_place *busy,
 162			    struct ttm_placement *placement)
 163{
 164	unsigned int num_allowed = obj->mm.n_placements;
 165	unsigned int flags = obj->flags;
 166	unsigned int i;
 167
 168	placement->num_placement = 1;
 169	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
 170				   obj->mm.region, requested, obj->bo_offset,
 171				   obj->base.size, flags);
 172
 173	/* Cache this on object? */
 174	placement->num_busy_placement = num_allowed;
 175	for (i = 0; i < placement->num_busy_placement; ++i)
 176		i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
 177					   obj->bo_offset, obj->base.size, flags);
 178
 179	if (num_allowed == 0) {
 180		*busy = *requested;
 181		placement->num_busy_placement = 1;
 182	}
 183
 184	placement->placement = requested;
 185	placement->busy_placement = busy;
 186}
 187
 188static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
 189				      struct ttm_tt *ttm,
 190				      struct ttm_operation_ctx *ctx)
 191{
 192	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
 193	struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
 194	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 195	const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
 196	const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
 197	struct file *filp = i915_tt->filp;
 198	struct sgt_iter sgt_iter;
 199	struct sg_table *st;
 200	struct page *page;
 201	unsigned long i;
 202	int err;
 203
 204	if (!filp) {
 205		struct address_space *mapping;
 206		gfp_t mask;
 207
 208		filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
 209		if (IS_ERR(filp))
 210			return PTR_ERR(filp);
 211
 212		mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
 213
 214		mapping = filp->f_mapping;
 215		mapping_set_gfp_mask(mapping, mask);
 216		GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
 217
 218		i915_tt->filp = filp;
 219	}
 220
 221	st = &i915_tt->cached_rsgt.table;
 222	err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
 223				   max_segment);
 224	if (err)
 225		return err;
 226
 227	err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
 228			      DMA_ATTR_SKIP_CPU_SYNC);
 229	if (err)
 230		goto err_free_st;
 231
 232	i = 0;
 233	for_each_sgt_page(page, sgt_iter, st)
 234		ttm->pages[i++] = page;
 235
 236	if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
 237		ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
 238
 239	return 0;
 240
 241err_free_st:
 242	shmem_sg_free_table(st, filp->f_mapping, false, false);
 243
 244	return err;
 245}
 246
 247static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
 248{
 249	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 250	bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
 251	struct sg_table *st = &i915_tt->cached_rsgt.table;
 252
 253	shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
 254			    backup, backup);
 255}
 256
 257static void i915_ttm_tt_release(struct kref *ref)
 258{
 259	struct i915_ttm_tt *i915_tt =
 260		container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
 261	struct sg_table *st = &i915_tt->cached_rsgt.table;
 262
 263	GEM_WARN_ON(st->sgl);
 264
 265	kfree(i915_tt);
 266}
 267
 268static const struct i915_refct_sgt_ops tt_rsgt_ops = {
 269	.release = i915_ttm_tt_release
 270};
 271
 272static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
 273					 uint32_t page_flags)
 274{
 275	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
 276						     bdev);
 277	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 278	unsigned long ccs_pages = 0;
 279	enum ttm_caching caching;
 280	struct i915_ttm_tt *i915_tt;
 281	int ret;
 282
 283	if (i915_ttm_is_ghost_object(bo))
 284		return NULL;
 285
 286	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
 287	if (!i915_tt)
 288		return NULL;
 289
 290	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
 291	    ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
 292		page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
 293
 294	caching = i915_ttm_select_tt_caching(obj);
 295	if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
 296		page_flags |= TTM_TT_FLAG_EXTERNAL |
 297			      TTM_TT_FLAG_EXTERNAL_MAPPABLE;
 298		i915_tt->is_shmem = true;
 299	}
 300
 301	if (i915_gem_object_needs_ccs_pages(obj))
 302		ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
 303						      NUM_BYTES_PER_CCS_BYTE),
 304					 PAGE_SIZE);
 305
 306	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
 307	if (ret)
 308		goto err_free;
 309
 310	__i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
 311			      &tt_rsgt_ops);
 312
 313	i915_tt->dev = obj->base.dev->dev;
 314
 315	return &i915_tt->ttm;
 316
 317err_free:
 318	kfree(i915_tt);
 319	return NULL;
 320}
 321
 322static int i915_ttm_tt_populate(struct ttm_device *bdev,
 323				struct ttm_tt *ttm,
 324				struct ttm_operation_ctx *ctx)
 325{
 326	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 327
 328	if (i915_tt->is_shmem)
 329		return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
 330
 331	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
 332}
 333
 334static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
 335{
 336	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 337	struct sg_table *st = &i915_tt->cached_rsgt.table;
 338
 339	if (st->sgl)
 340		dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
 341
 342	if (i915_tt->is_shmem) {
 343		i915_ttm_tt_shmem_unpopulate(ttm);
 344	} else {
 345		sg_free_table(st);
 346		ttm_pool_free(&bdev->pool, ttm);
 347	}
 348}
 349
 350static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
 351{
 352	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 353
 354	if (i915_tt->filp)
 355		fput(i915_tt->filp);
 356
 357	ttm_tt_fini(ttm);
 358	i915_refct_sgt_put(&i915_tt->cached_rsgt);
 359}
 360
 361static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
 362				       const struct ttm_place *place)
 363{
 364	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 365
 366	if (i915_ttm_is_ghost_object(bo))
 367		return false;
 368
 369	/*
 370	 * EXTERNAL objects should never be swapped out by TTM, instead we need
 371	 * to handle that ourselves. TTM will already skip such objects for us,
 372	 * but we would like to avoid grabbing locks for no good reason.
 373	 */
 374	if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
 375		return false;
 376
 377	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
 378	if (!i915_gem_object_evictable(obj))
 379		return false;
 380
 381	return ttm_bo_eviction_valuable(bo, place);
 382}
 383
 384static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
 385				 struct ttm_placement *placement)
 386{
 387	*placement = i915_sys_placement;
 388}
 389
 390/**
 391 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
 392 * @obj: The GEM object
 393 * This function frees any LMEM-related information that is cached on
 394 * the object. For example the radix tree for fast page lookup and the
 395 * cached refcounted sg-table
 396 */
 397void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
 398{
 399	struct radix_tree_iter iter;
 400	void __rcu **slot;
 401
 402	if (!obj->ttm.cached_io_rsgt)
 403		return;
 404
 405	rcu_read_lock();
 406	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
 407		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
 408	rcu_read_unlock();
 409
 410	i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
 411	obj->ttm.cached_io_rsgt = NULL;
 412}
 413
 414/**
 415 * i915_ttm_purge - Clear an object of its memory
 416 * @obj: The object
 417 *
 418 * This function is called to clear an object of it's memory when it is
 419 * marked as not needed anymore.
 420 *
 421 * Return: 0 on success, negative error code on failure.
 422 */
 423int i915_ttm_purge(struct drm_i915_gem_object *obj)
 424{
 425	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 426	struct i915_ttm_tt *i915_tt =
 427		container_of(bo->ttm, typeof(*i915_tt), ttm);
 428	struct ttm_operation_ctx ctx = {
 429		.interruptible = true,
 430		.no_wait_gpu = false,
 431	};
 432	struct ttm_placement place = {};
 433	int ret;
 434
 435	if (obj->mm.madv == __I915_MADV_PURGED)
 436		return 0;
 437
 438	ret = ttm_bo_validate(bo, &place, &ctx);
 439	if (ret)
 440		return ret;
 441
 442	if (bo->ttm && i915_tt->filp) {
 443		/*
 444		 * The below fput(which eventually calls shmem_truncate) might
 445		 * be delayed by worker, so when directly called to purge the
 446		 * pages(like by the shrinker) we should try to be more
 447		 * aggressive and release the pages immediately.
 448		 */
 449		shmem_truncate_range(file_inode(i915_tt->filp),
 450				     0, (loff_t)-1);
 451		fput(fetch_and_zero(&i915_tt->filp));
 452	}
 453
 454	obj->write_domain = 0;
 455	obj->read_domains = 0;
 456	i915_ttm_adjust_gem_after_move(obj);
 457	i915_ttm_free_cached_io_rsgt(obj);
 458	obj->mm.madv = __I915_MADV_PURGED;
 459
 460	return 0;
 461}
 462
 463static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
 464{
 465	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 466	struct i915_ttm_tt *i915_tt =
 467		container_of(bo->ttm, typeof(*i915_tt), ttm);
 468	struct ttm_operation_ctx ctx = {
 469		.interruptible = true,
 470		.no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
 471	};
 472	struct ttm_placement place = {};
 473	int ret;
 474
 475	if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource))
 476		return 0;
 477
 478	GEM_BUG_ON(!i915_tt->is_shmem);
 479
 480	if (!i915_tt->filp)
 481		return 0;
 482
 483	ret = ttm_bo_wait_ctx(bo, &ctx);
 484	if (ret)
 485		return ret;
 486
 487	switch (obj->mm.madv) {
 488	case I915_MADV_DONTNEED:
 489		return i915_ttm_purge(obj);
 490	case __I915_MADV_PURGED:
 491		return 0;
 492	}
 493
 494	if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
 495		return 0;
 496
 497	bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
 498	ret = ttm_bo_validate(bo, &place, &ctx);
 499	if (ret) {
 500		bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
 501		return ret;
 502	}
 503
 504	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
 505		__shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
 506
 507	return 0;
 508}
 509
 510static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
 511{
 512	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 513
 514	/*
 515	 * This gets called twice by ttm, so long as we have a ttm resource or
 516	 * ttm_tt then we can still safely call this. Due to pipeline-gutting,
 517	 * we maybe have NULL bo->resource, but in that case we should always
 518	 * have a ttm alive (like if the pages are swapped out).
 519	 */
 520	if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) {
 521		__i915_gem_object_pages_fini(obj);
 522		i915_ttm_free_cached_io_rsgt(obj);
 523	}
 524}
 525
 526static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
 527{
 528	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 529	struct sg_table *st;
 530	int ret;
 531
 532	if (i915_tt->cached_rsgt.table.sgl)
 533		return i915_refct_sgt_get(&i915_tt->cached_rsgt);
 534
 535	st = &i915_tt->cached_rsgt.table;
 536	ret = sg_alloc_table_from_pages_segment(st,
 537			ttm->pages, ttm->num_pages,
 538			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
 539			i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
 540	if (ret) {
 541		st->sgl = NULL;
 542		return ERR_PTR(ret);
 543	}
 544
 545	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
 546	if (ret) {
 547		sg_free_table(st);
 548		return ERR_PTR(ret);
 549	}
 550
 551	return i915_refct_sgt_get(&i915_tt->cached_rsgt);
 552}
 553
 554/**
 555 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
 556 * resource memory
 557 * @obj: The GEM object used for sg-table caching
 558 * @res: The struct ttm_resource for which an sg-table is requested.
 559 *
 560 * This function returns a refcounted sg-table representing the memory
 561 * pointed to by @res. If @res is the object's current resource it may also
 562 * cache the sg_table on the object or attempt to access an already cached
 563 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
 564 *
 565 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
 566 * failure.
 567 */
 568struct i915_refct_sgt *
 569i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
 570			 struct ttm_resource *res)
 571{
 572	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 573	u32 page_alignment;
 574
 575	if (!i915_ttm_gtt_binds_lmem(res))
 576		return i915_ttm_tt_get_st(bo->ttm);
 577
 578	page_alignment = bo->page_alignment << PAGE_SHIFT;
 579	if (!page_alignment)
 580		page_alignment = obj->mm.region->min_page_size;
 581
 582	/*
 583	 * If CPU mapping differs, we need to add the ttm_tt pages to
 584	 * the resulting st. Might make sense for GGTT.
 585	 */
 586	GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
 587	if (bo->resource == res) {
 588		if (!obj->ttm.cached_io_rsgt) {
 589			struct i915_refct_sgt *rsgt;
 590
 591			rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
 592								 res,
 593								 page_alignment);
 594			if (IS_ERR(rsgt))
 595				return rsgt;
 596
 597			obj->ttm.cached_io_rsgt = rsgt;
 598		}
 599		return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
 600	}
 601
 602	return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
 603						 page_alignment);
 604}
 605
 606static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
 607{
 608	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 609	long err;
 610
 611	WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
 612
 613	err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
 614				    true, 15 * HZ);
 615	if (err < 0)
 616		return err;
 617	if (err == 0)
 618		return -EBUSY;
 619
 620	err = i915_ttm_move_notify(bo);
 621	if (err)
 622		return err;
 623
 624	return i915_ttm_purge(obj);
 625}
 626
 627static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
 628{
 629	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 630	int ret;
 631
 632	if (i915_ttm_is_ghost_object(bo))
 633		return;
 634
 635	ret = i915_ttm_move_notify(bo);
 636	GEM_WARN_ON(ret);
 637	GEM_WARN_ON(obj->ttm.cached_io_rsgt);
 638	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
 639		i915_ttm_purge(obj);
 640}
 641
 642/**
 643 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
 644 * accessible.
 645 * @res: The TTM resource to check.
 646 *
 647 * This is interesting on small-BAR systems where we may encounter lmem objects
 648 * that can't be accessed via the CPU.
 649 */
 650bool i915_ttm_resource_mappable(struct ttm_resource *res)
 651{
 652	struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
 653
 654	if (!i915_ttm_cpu_maps_iomem(res))
 655		return true;
 656
 657	return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
 658}
 659
 660static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
 661{
 662	struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
 663	bool unknown_state;
 664
 665	if (i915_ttm_is_ghost_object(mem->bo))
 666		return -EINVAL;
 667
 668	if (!kref_get_unless_zero(&obj->base.refcount))
 669		return -EINVAL;
 670
 671	assert_object_held(obj);
 672
 673	unknown_state = i915_gem_object_has_unknown_state(obj);
 674	i915_gem_object_put(obj);
 675	if (unknown_state)
 676		return -EINVAL;
 677
 678	if (!i915_ttm_cpu_maps_iomem(mem))
 679		return 0;
 680
 681	if (!i915_ttm_resource_mappable(mem))
 682		return -EINVAL;
 683
 684	mem->bus.caching = ttm_write_combined;
 685	mem->bus.is_iomem = true;
 686
 687	return 0;
 688}
 689
 690static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 691					 unsigned long page_offset)
 692{
 693	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 694	struct scatterlist *sg;
 695	unsigned long base;
 696	unsigned int ofs;
 697
 698	GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
 699	GEM_WARN_ON(bo->ttm);
 700
 701	base = obj->mm.region->iomap.base - obj->mm.region->region.start;
 702	sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
 703
 704	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
 705}
 706
 707static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
 708				  unsigned long offset, void *buf,
 709				  int len, int write)
 710{
 711	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 712	resource_size_t iomap = obj->mm.region->iomap.base -
 713		obj->mm.region->region.start;
 714	unsigned long page = offset >> PAGE_SHIFT;
 715	unsigned long bytes_left = len;
 716
 717	/*
 718	 * TODO: For now just let it fail if the resource is non-mappable,
 719	 * otherwise we need to perform the memcpy from the gpu here, without
 720	 * interfering with the object (like moving the entire thing).
 721	 */
 722	if (!i915_ttm_resource_mappable(bo->resource))
 723		return -EIO;
 724
 725	offset -= page << PAGE_SHIFT;
 726	do {
 727		unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
 728		void __iomem *ptr;
 729		dma_addr_t daddr;
 730
 731		daddr = i915_gem_object_get_dma_address(obj, page);
 732		ptr = ioremap_wc(iomap + daddr + offset, bytes);
 733		if (!ptr)
 734			return -EIO;
 735
 736		if (write)
 737			memcpy_toio(ptr, buf, bytes);
 738		else
 739			memcpy_fromio(buf, ptr, bytes);
 740		iounmap(ptr);
 741
 742		page++;
 743		buf += bytes;
 744		bytes_left -= bytes;
 745		offset = 0;
 746	} while (bytes_left);
 747
 748	return len;
 749}
 750
 751/*
 752 * All callbacks need to take care not to downcast a struct ttm_buffer_object
 753 * without checking its subclass, since it might be a TTM ghost object.
 754 */
 755static struct ttm_device_funcs i915_ttm_bo_driver = {
 756	.ttm_tt_create = i915_ttm_tt_create,
 757	.ttm_tt_populate = i915_ttm_tt_populate,
 758	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
 759	.ttm_tt_destroy = i915_ttm_tt_destroy,
 760	.eviction_valuable = i915_ttm_eviction_valuable,
 761	.evict_flags = i915_ttm_evict_flags,
 762	.move = i915_ttm_move,
 763	.swap_notify = i915_ttm_swap_notify,
 764	.delete_mem_notify = i915_ttm_delete_mem_notify,
 765	.io_mem_reserve = i915_ttm_io_mem_reserve,
 766	.io_mem_pfn = i915_ttm_io_mem_pfn,
 767	.access_memory = i915_ttm_access_memory,
 768};
 769
 770/**
 771 * i915_ttm_driver - Return a pointer to the TTM device funcs
 772 *
 773 * Return: Pointer to statically allocated TTM device funcs.
 774 */
 775struct ttm_device_funcs *i915_ttm_driver(void)
 776{
 777	return &i915_ttm_bo_driver;
 778}
 779
 780static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
 781				struct ttm_placement *placement)
 782{
 783	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 784	struct ttm_operation_ctx ctx = {
 785		.interruptible = true,
 786		.no_wait_gpu = false,
 787	};
 788	int real_num_busy;
 789	int ret;
 790
 791	/* First try only the requested placement. No eviction. */
 792	real_num_busy = fetch_and_zero(&placement->num_busy_placement);
 793	ret = ttm_bo_validate(bo, placement, &ctx);
 794	if (ret) {
 795		ret = i915_ttm_err_to_gem(ret);
 796		/*
 797		 * Anything that wants to restart the operation gets to
 798		 * do that.
 799		 */
 800		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
 801		    ret == -EAGAIN)
 802			return ret;
 803
 804		/*
 805		 * If the initial attempt fails, allow all accepted placements,
 806		 * evicting if necessary.
 807		 */
 808		placement->num_busy_placement = real_num_busy;
 809		ret = ttm_bo_validate(bo, placement, &ctx);
 810		if (ret)
 811			return i915_ttm_err_to_gem(ret);
 812	}
 813
 814	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
 815		ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
 816		if (ret)
 817			return ret;
 818
 819		i915_ttm_adjust_domains_after_move(obj);
 820		i915_ttm_adjust_gem_after_move(obj);
 821	}
 822
 823	if (!i915_gem_object_has_pages(obj)) {
 824		struct i915_refct_sgt *rsgt =
 825			i915_ttm_resource_get_st(obj, bo->resource);
 826
 827		if (IS_ERR(rsgt))
 828			return PTR_ERR(rsgt);
 829
 830		GEM_BUG_ON(obj->mm.rsgt);
 831		obj->mm.rsgt = rsgt;
 832		__i915_gem_object_set_pages(obj, &rsgt->table);
 833	}
 834
 835	GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
 836	i915_ttm_adjust_lru(obj);
 837	return ret;
 838}
 839
 840static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
 841{
 842	struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
 843	struct ttm_placement placement;
 844
 845	/* restricted by sg_alloc_table */
 846	if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
 847		return -E2BIG;
 848
 849	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
 850
 851	/* Move to the requested placement. */
 852	i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
 853
 854	return __i915_ttm_get_pages(obj, &placement);
 855}
 856
 857/**
 858 * DOC: Migration vs eviction
 859 *
 860 * GEM migration may not be the same as TTM migration / eviction. If
 861 * the TTM core decides to evict an object it may be evicted to a
 862 * TTM memory type that is not in the object's allowable GEM regions, or
 863 * in fact theoretically to a TTM memory type that doesn't correspond to
 864 * a GEM memory region. In that case the object's GEM region is not
 865 * updated, and the data is migrated back to the GEM region at
 866 * get_pages time. TTM may however set up CPU ptes to the object even
 867 * when it is evicted.
 868 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
 869 * to regions that are not in the object's list of allowable placements.
 870 */
 871static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
 872			      struct intel_memory_region *mr,
 873			      unsigned int flags)
 874{
 875	struct ttm_place requested;
 876	struct ttm_placement placement;
 877	int ret;
 878
 879	i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
 880				   obj->base.size, flags);
 881	placement.num_placement = 1;
 882	placement.num_busy_placement = 1;
 883	placement.placement = &requested;
 884	placement.busy_placement = &requested;
 885
 886	ret = __i915_ttm_get_pages(obj, &placement);
 887	if (ret)
 888		return ret;
 889
 890	/*
 891	 * Reinitialize the region bindings. This is primarily
 892	 * required for objects where the new region is not in
 893	 * its allowable placements.
 894	 */
 895	if (obj->mm.region != mr) {
 896		i915_gem_object_release_memory_region(obj);
 897		i915_gem_object_init_memory_region(obj, mr);
 898	}
 899
 900	return 0;
 901}
 902
 903static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
 904			    struct intel_memory_region *mr,
 905			    unsigned int flags)
 906{
 907	return __i915_ttm_migrate(obj, mr, flags);
 908}
 909
 910static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
 911			       struct sg_table *st)
 912{
 913	/*
 914	 * We're currently not called from a shrinker, so put_pages()
 915	 * typically means the object is about to destroyed, or called
 916	 * from move_notify(). So just avoid doing much for now.
 917	 * If the object is not destroyed next, The TTM eviction logic
 918	 * and shrinkers will move it out if needed.
 919	 */
 920
 921	if (obj->mm.rsgt)
 922		i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
 923}
 924
 925/**
 926 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
 927 * @obj: The object
 928 */
 929void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
 930{
 931	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 932	struct i915_ttm_tt *i915_tt =
 933		container_of(bo->ttm, typeof(*i915_tt), ttm);
 934	bool shrinkable =
 935		bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
 936
 937	/*
 938	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
 939	 * We're called through i915_ttm_delete_mem_notify().
 940	 */
 941	if (!kref_read(&bo->kref))
 942		return;
 943
 944	/*
 945	 * We skip managing the shrinker LRU in set_pages() and just manage
 946	 * everything here. This does at least solve the issue with having
 947	 * temporary shmem mappings(like with evicted lmem) not being visible to
 948	 * the shrinker. Only our shmem objects are shrinkable, everything else
 949	 * we keep as unshrinkable.
 950	 *
 951	 * To make sure everything plays nice we keep an extra shrink pin in TTM
 952	 * if the underlying pages are not currently shrinkable. Once we release
 953	 * our pin, like when the pages are moved to shmem, the pages will then
 954	 * be added to the shrinker LRU, assuming the caller isn't also holding
 955	 * a pin.
 956	 *
 957	 * TODO: consider maybe also bumping the shrinker list here when we have
 958	 * already unpinned it, which should give us something more like an LRU.
 959	 *
 960	 * TODO: There is a small window of opportunity for this function to
 961	 * get called from eviction after we've dropped the last GEM refcount,
 962	 * but before the TTM deleted flag is set on the object. Avoid
 963	 * adjusting the shrinker list in such cases, since the object is
 964	 * not available to the shrinker anyway due to its zero refcount.
 965	 * To fix this properly we should move to a TTM shrinker LRU list for
 966	 * these objects.
 967	 */
 968	if (kref_get_unless_zero(&obj->base.refcount)) {
 969		if (shrinkable != obj->mm.ttm_shrinkable) {
 970			if (shrinkable) {
 971				if (obj->mm.madv == I915_MADV_WILLNEED)
 972					__i915_gem_object_make_shrinkable(obj);
 973				else
 974					__i915_gem_object_make_purgeable(obj);
 975			} else {
 976				i915_gem_object_make_unshrinkable(obj);
 977			}
 978
 979			obj->mm.ttm_shrinkable = shrinkable;
 980		}
 981		i915_gem_object_put(obj);
 982	}
 983
 984	/*
 985	 * Put on the correct LRU list depending on the MADV status
 986	 */
 987	spin_lock(&bo->bdev->lru_lock);
 988	if (shrinkable) {
 989		/* Try to keep shmem_tt from being considered for shrinking. */
 990		bo->priority = TTM_MAX_BO_PRIORITY - 1;
 991	} else if (obj->mm.madv != I915_MADV_WILLNEED) {
 992		bo->priority = I915_TTM_PRIO_PURGE;
 993	} else if (!i915_gem_object_has_pages(obj)) {
 994		bo->priority = I915_TTM_PRIO_NO_PAGES;
 995	} else {
 996		struct ttm_resource_manager *man =
 997			ttm_manager_type(bo->bdev, bo->resource->mem_type);
 998
 999		/*
1000		 * If we need to place an LMEM resource which doesn't need CPU
1001		 * access then we should try not to victimize mappable objects
1002		 * first, since we likely end up stealing more of the mappable
1003		 * portion. And likewise when we try to find space for a mappble
1004		 * object, we know not to ever victimize objects that don't
1005		 * occupy any mappable pages.
1006		 */
1007		if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1008		    i915_ttm_buddy_man_visible_size(man) < man->size &&
1009		    !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1010			bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1011		else
1012			bo->priority = I915_TTM_PRIO_HAS_PAGES;
1013	}
1014
1015	ttm_bo_move_to_lru_tail(bo);
1016	spin_unlock(&bo->bdev->lru_lock);
1017}
1018
1019/*
1020 * TTM-backed gem object destruction requires some clarification.
1021 * Basically we have two possibilities here. We can either rely on the
1022 * i915 delayed destruction and put the TTM object when the object
1023 * is idle. This would be detected by TTM which would bypass the
1024 * TTM delayed destroy handling. The other approach is to put the TTM
1025 * object early and rely on the TTM destroyed handling, and then free
1026 * the leftover parts of the GEM object once TTM's destroyed list handling is
1027 * complete. For now, we rely on the latter for two reasons:
1028 * a) TTM can evict an object even when it's on the delayed destroy list,
1029 * which in theory allows for complete eviction.
1030 * b) There is work going on in TTM to allow freeing an object even when
1031 * it's not idle, and using the TTM destroyed list handling could help us
1032 * benefit from that.
1033 */
1034static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1035{
1036	GEM_BUG_ON(!obj->ttm.created);
1037
1038	ttm_bo_put(i915_gem_to_ttm(obj));
1039}
1040
1041static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1042{
1043	struct vm_area_struct *area = vmf->vma;
1044	struct ttm_buffer_object *bo = area->vm_private_data;
1045	struct drm_device *dev = bo->base.dev;
1046	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1047	intel_wakeref_t wakeref = 0;
1048	vm_fault_t ret;
1049	int idx;
1050
1051	/* Sanity check that we allow writing into this object */
1052	if (unlikely(i915_gem_object_is_readonly(obj) &&
1053		     area->vm_flags & VM_WRITE))
1054		return VM_FAULT_SIGBUS;
1055
1056	ret = ttm_bo_vm_reserve(bo, vmf);
1057	if (ret)
1058		return ret;
1059
1060	if (obj->mm.madv != I915_MADV_WILLNEED) {
1061		dma_resv_unlock(bo->base.resv);
1062		return VM_FAULT_SIGBUS;
1063	}
1064
1065	/*
1066	 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1067	 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1068	 * far as far doing a ttm_bo_move_null(), which should skip all the
1069	 * other junk.
1070	 */
1071	if (!bo->resource) {
1072		struct ttm_operation_ctx ctx = {
1073			.interruptible = true,
1074			.no_wait_gpu = true, /* should be idle already */
1075		};
1076		int err;
1077
1078		GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1079
1080		err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1081		if (err) {
1082			dma_resv_unlock(bo->base.resv);
1083			return VM_FAULT_SIGBUS;
1084		}
1085	} else if (!i915_ttm_resource_mappable(bo->resource)) {
1086		int err = -ENODEV;
1087		int i;
1088
1089		for (i = 0; i < obj->mm.n_placements; i++) {
1090			struct intel_memory_region *mr = obj->mm.placements[i];
1091			unsigned int flags;
1092
1093			if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM)
1094				continue;
1095
1096			flags = obj->flags;
1097			flags &= ~I915_BO_ALLOC_GPU_ONLY;
1098			err = __i915_ttm_migrate(obj, mr, flags);
1099			if (!err)
1100				break;
1101		}
1102
1103		if (err) {
1104			drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n",
1105				ERR_PTR(err));
1106			dma_resv_unlock(bo->base.resv);
1107			ret = VM_FAULT_SIGBUS;
1108			goto out_rpm;
1109		}
1110	}
1111
1112	if (i915_ttm_cpu_maps_iomem(bo->resource))
1113		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1114
1115	if (drm_dev_enter(dev, &idx)) {
1116		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1117					       TTM_BO_VM_NUM_PREFAULT);
1118		drm_dev_exit(idx);
1119	} else {
1120		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1121	}
1122
1123	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1124		goto out_rpm;
1125
1126	/*
1127	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1128	 * userfault_count is protected by dma_resv lock and rpm wakeref.
1129	 */
1130	if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1131		obj->userfault_count = 1;
1132		spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1133		list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1134		spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1135
1136		GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1137	}
1138
1139	if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1140		intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1141				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1142
1143	i915_ttm_adjust_lru(obj);
1144
1145	dma_resv_unlock(bo->base.resv);
1146
1147out_rpm:
1148	if (wakeref)
1149		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1150
1151	return ret;
1152}
1153
1154static int
1155vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1156	      void *buf, int len, int write)
1157{
1158	struct drm_i915_gem_object *obj =
1159		i915_ttm_to_gem(area->vm_private_data);
1160
1161	if (i915_gem_object_is_readonly(obj) && write)
1162		return -EACCES;
1163
1164	return ttm_bo_vm_access(area, addr, buf, len, write);
1165}
1166
1167static void ttm_vm_open(struct vm_area_struct *vma)
1168{
1169	struct drm_i915_gem_object *obj =
1170		i915_ttm_to_gem(vma->vm_private_data);
1171
1172	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1173	i915_gem_object_get(obj);
1174}
1175
1176static void ttm_vm_close(struct vm_area_struct *vma)
1177{
1178	struct drm_i915_gem_object *obj =
1179		i915_ttm_to_gem(vma->vm_private_data);
1180
1181	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1182	i915_gem_object_put(obj);
1183}
1184
1185static const struct vm_operations_struct vm_ops_ttm = {
1186	.fault = vm_fault_ttm,
1187	.access = vm_access_ttm,
1188	.open = ttm_vm_open,
1189	.close = ttm_vm_close,
1190};
1191
1192static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1193{
1194	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1195	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1196
1197	return drm_vma_node_offset_addr(&obj->base.vma_node);
1198}
1199
1200static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1201{
1202	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1203	intel_wakeref_t wakeref = 0;
1204
1205	assert_object_held_shared(obj);
1206
1207	if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1208		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1209
1210		/* userfault_count is protected by obj lock and rpm wakeref. */
1211		if (obj->userfault_count) {
1212			spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1213			list_del(&obj->userfault_link);
1214			spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1215			obj->userfault_count = 0;
1216		}
1217	}
1218
1219	GEM_WARN_ON(obj->userfault_count);
1220
1221	ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1222
1223	if (wakeref)
1224		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1225}
1226
1227static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1228	.name = "i915_gem_object_ttm",
1229	.flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1230		 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1231
1232	.get_pages = i915_ttm_get_pages,
1233	.put_pages = i915_ttm_put_pages,
1234	.truncate = i915_ttm_truncate,
1235	.shrink = i915_ttm_shrink,
1236
1237	.adjust_lru = i915_ttm_adjust_lru,
1238	.delayed_free = i915_ttm_delayed_free,
1239	.migrate = i915_ttm_migrate,
1240
1241	.mmap_offset = i915_ttm_mmap_offset,
1242	.unmap_virtual = i915_ttm_unmap_virtual,
1243	.mmap_ops = &vm_ops_ttm,
1244};
1245
1246void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1247{
1248	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1249
1250	i915_gem_object_release_memory_region(obj);
1251	mutex_destroy(&obj->ttm.get_io_page.lock);
1252
1253	if (obj->ttm.created) {
1254		/*
1255		 * We freely manage the shrinker LRU outide of the mm.pages life
1256		 * cycle. As a result when destroying the object we should be
1257		 * extra paranoid and ensure we remove it from the LRU, before
1258		 * we free the object.
1259		 *
1260		 * Touching the ttm_shrinkable outside of the object lock here
1261		 * should be safe now that the last GEM object ref was dropped.
1262		 */
1263		if (obj->mm.ttm_shrinkable)
1264			i915_gem_object_make_unshrinkable(obj);
1265
1266		i915_ttm_backup_free(obj);
1267
1268		/* This releases all gem object bindings to the backend. */
1269		__i915_gem_free_object(obj);
1270
1271		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1272	} else {
1273		__i915_gem_object_fini(obj);
1274	}
1275}
1276
1277/*
1278 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1279 * @mem: The initial memory region for the object.
1280 * @obj: The gem object.
1281 * @size: Object size in bytes.
1282 * @flags: gem object flags.
1283 *
1284 * Return: 0 on success, negative error code on failure.
1285 */
1286int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1287			       struct drm_i915_gem_object *obj,
1288			       resource_size_t offset,
1289			       resource_size_t size,
1290			       resource_size_t page_size,
1291			       unsigned int flags)
1292{
1293	static struct lock_class_key lock_class;
1294	struct drm_i915_private *i915 = mem->i915;
1295	struct ttm_operation_ctx ctx = {
1296		.interruptible = true,
1297		.no_wait_gpu = false,
1298	};
1299	enum ttm_bo_type bo_type;
1300	int ret;
1301
1302	drm_gem_private_object_init(&i915->drm, &obj->base, size);
1303	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1304
1305	obj->bo_offset = offset;
1306
1307	/* Don't put on a region list until we're either locked or fully initialized. */
1308	obj->mm.region = mem;
1309	INIT_LIST_HEAD(&obj->mm.region_link);
1310
1311	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1312	mutex_init(&obj->ttm.get_io_page.lock);
1313	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1314		ttm_bo_type_kernel;
1315
1316	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1317
1318	/* Forcing the page size is kernel internal only */
1319	GEM_BUG_ON(page_size && obj->mm.n_placements);
1320
1321	/*
1322	 * Keep an extra shrink pin to prevent the object from being made
1323	 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1324	 * drop the pin. The TTM backend manages the shrinker LRU itself,
1325	 * outside of the normal mm.pages life cycle.
1326	 */
1327	i915_gem_object_make_unshrinkable(obj);
1328
1329	/*
1330	 * If this function fails, it will call the destructor, but
1331	 * our caller still owns the object. So no freeing in the
1332	 * destructor until obj->ttm.created is true.
1333	 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1334	 * until successful initialization.
1335	 */
1336	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1337				   &i915_sys_placement, page_size >> PAGE_SHIFT,
1338				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
1339
1340	/*
1341	 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1342	 * is too big to add vma. The direct function that returns -ENOSPC is
1343	 * drm_mm_insert_node_in_range(). To handle the same error as other code
1344	 * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1345	 * -E2BIG.
1346	 */
1347	if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1348		ret = -E2BIG;
1349
1350	if (ret)
1351		return i915_ttm_err_to_gem(ret);
1352
1353	obj->ttm.created = true;
1354	i915_gem_object_release_memory_region(obj);
1355	i915_gem_object_init_memory_region(obj, mem);
1356	i915_ttm_adjust_domains_after_move(obj);
1357	i915_ttm_adjust_gem_after_move(obj);
1358	i915_gem_object_unlock(obj);
1359
1360	return 0;
1361}
1362
1363static const struct intel_memory_region_ops ttm_system_region_ops = {
1364	.init_object = __i915_gem_ttm_object_init,
1365	.release = intel_region_ttm_fini,
1366};
1367
1368struct intel_memory_region *
1369i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1370			  u16 type, u16 instance)
1371{
1372	struct intel_memory_region *mr;
1373
1374	mr = intel_memory_region_create(i915, 0,
1375					totalram_pages() << PAGE_SHIFT,
1376					PAGE_SIZE, 0, 0,
1377					type, instance,
1378					&ttm_system_region_ops);
1379	if (IS_ERR(mr))
1380		return mr;
1381
1382	intel_memory_region_set_name(mr, "system-ttm");
1383	return mr;
1384}