Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2022 Intel Corporation
4 */
5
6#include <drm/drm_blend.h>
7
8#include "i915_drv.h"
9#include "i915_fixed.h"
10#include "i915_reg.h"
11#include "i9xx_wm.h"
12#include "intel_atomic.h"
13#include "intel_atomic_plane.h"
14#include "intel_bw.h"
15#include "intel_crtc.h"
16#include "intel_de.h"
17#include "intel_display.h"
18#include "intel_display_power.h"
19#include "intel_display_types.h"
20#include "intel_fb.h"
21#include "intel_pcode.h"
22#include "intel_wm.h"
23#include "skl_watermark.h"
24#include "skl_watermark_regs.h"
25
26static void skl_sagv_disable(struct drm_i915_private *i915);
27
28/* Stores plane specific WM parameters */
29struct skl_wm_params {
30 bool x_tiled, y_tiled;
31 bool rc_surface;
32 bool is_planar;
33 u32 width;
34 u8 cpp;
35 u32 plane_pixel_rate;
36 u32 y_min_scanlines;
37 u32 plane_bytes_per_line;
38 uint_fixed_16_16_t plane_blocks_per_line;
39 uint_fixed_16_16_t y_tile_minimum;
40 u32 linetime_us;
41 u32 dbuf_block_size;
42};
43
44u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915)
45{
46 u8 enabled_slices = 0;
47 enum dbuf_slice slice;
48
49 for_each_dbuf_slice(i915, slice) {
50 if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
51 enabled_slices |= BIT(slice);
52 }
53
54 return enabled_slices;
55}
56
57/*
58 * FIXME: We still don't have the proper code detect if we need to apply the WA,
59 * so assume we'll always need it in order to avoid underruns.
60 */
61static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915)
62{
63 return DISPLAY_VER(i915) == 9;
64}
65
66static bool
67intel_has_sagv(struct drm_i915_private *i915)
68{
69 return HAS_SAGV(i915) &&
70 i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED;
71}
72
73static u32
74intel_sagv_block_time(struct drm_i915_private *i915)
75{
76 if (DISPLAY_VER(i915) >= 14) {
77 u32 val;
78
79 val = intel_de_read(i915, MTL_LATENCY_SAGV);
80
81 return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
82 } else if (DISPLAY_VER(i915) >= 12) {
83 u32 val = 0;
84 int ret;
85
86 ret = snb_pcode_read(&i915->uncore,
87 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
88 &val, NULL);
89 if (ret) {
90 drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n");
91 return 0;
92 }
93
94 return val;
95 } else if (DISPLAY_VER(i915) == 11) {
96 return 10;
97 } else if (HAS_SAGV(i915)) {
98 return 30;
99 } else {
100 return 0;
101 }
102}
103
104static void intel_sagv_init(struct drm_i915_private *i915)
105{
106 if (!HAS_SAGV(i915))
107 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
108
109 /*
110 * Probe to see if we have working SAGV control.
111 * For icl+ this was already determined by intel_bw_init_hw().
112 */
113 if (DISPLAY_VER(i915) < 11)
114 skl_sagv_disable(i915);
115
116 drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN);
117
118 i915->display.sagv.block_time_us = intel_sagv_block_time(i915);
119
120 drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
121 str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us);
122
123 /* avoid overflow when adding with wm0 latency/etc. */
124 if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX,
125 "Excessive SAGV block time %u, ignoring\n",
126 i915->display.sagv.block_time_us))
127 i915->display.sagv.block_time_us = 0;
128
129 if (!intel_has_sagv(i915))
130 i915->display.sagv.block_time_us = 0;
131}
132
133/*
134 * SAGV dynamically adjusts the system agent voltage and clock frequencies
135 * depending on power and performance requirements. The display engine access
136 * to system memory is blocked during the adjustment time. Because of the
137 * blocking time, having this enabled can cause full system hangs and/or pipe
138 * underruns if we don't meet all of the following requirements:
139 *
140 * - <= 1 pipe enabled
141 * - All planes can enable watermarks for latencies >= SAGV engine block time
142 * - We're not using an interlaced display configuration
143 */
144static void skl_sagv_enable(struct drm_i915_private *i915)
145{
146 int ret;
147
148 if (!intel_has_sagv(i915))
149 return;
150
151 if (i915->display.sagv.status == I915_SAGV_ENABLED)
152 return;
153
154 drm_dbg_kms(&i915->drm, "Enabling SAGV\n");
155 ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
156 GEN9_SAGV_ENABLE);
157
158 /* We don't need to wait for SAGV when enabling */
159
160 /*
161 * Some skl systems, pre-release machines in particular,
162 * don't actually have SAGV.
163 */
164 if (IS_SKYLAKE(i915) && ret == -ENXIO) {
165 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
166 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
167 return;
168 } else if (ret < 0) {
169 drm_err(&i915->drm, "Failed to enable SAGV\n");
170 return;
171 }
172
173 i915->display.sagv.status = I915_SAGV_ENABLED;
174}
175
176static void skl_sagv_disable(struct drm_i915_private *i915)
177{
178 int ret;
179
180 if (!intel_has_sagv(i915))
181 return;
182
183 if (i915->display.sagv.status == I915_SAGV_DISABLED)
184 return;
185
186 drm_dbg_kms(&i915->drm, "Disabling SAGV\n");
187 /* bspec says to keep retrying for at least 1 ms */
188 ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
189 GEN9_SAGV_DISABLE,
190 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
191 1);
192 /*
193 * Some skl systems, pre-release machines in particular,
194 * don't actually have SAGV.
195 */
196 if (IS_SKYLAKE(i915) && ret == -ENXIO) {
197 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
198 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
199 return;
200 } else if (ret < 0) {
201 drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret);
202 return;
203 }
204
205 i915->display.sagv.status = I915_SAGV_DISABLED;
206}
207
208static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
209{
210 struct drm_i915_private *i915 = to_i915(state->base.dev);
211 const struct intel_bw_state *new_bw_state =
212 intel_atomic_get_new_bw_state(state);
213
214 if (!new_bw_state)
215 return;
216
217 if (!intel_can_enable_sagv(i915, new_bw_state))
218 skl_sagv_disable(i915);
219}
220
221static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
222{
223 struct drm_i915_private *i915 = to_i915(state->base.dev);
224 const struct intel_bw_state *new_bw_state =
225 intel_atomic_get_new_bw_state(state);
226
227 if (!new_bw_state)
228 return;
229
230 if (intel_can_enable_sagv(i915, new_bw_state))
231 skl_sagv_enable(i915);
232}
233
234static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
235{
236 struct drm_i915_private *i915 = to_i915(state->base.dev);
237 const struct intel_bw_state *old_bw_state =
238 intel_atomic_get_old_bw_state(state);
239 const struct intel_bw_state *new_bw_state =
240 intel_atomic_get_new_bw_state(state);
241 u16 old_mask, new_mask;
242
243 if (!new_bw_state)
244 return;
245
246 old_mask = old_bw_state->qgv_points_mask;
247 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
248
249 if (old_mask == new_mask)
250 return;
251
252 WARN_ON(!new_bw_state->base.changed);
253
254 drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
255 old_mask, new_mask);
256
257 /*
258 * Restrict required qgv points before updating the configuration.
259 * According to BSpec we can't mask and unmask qgv points at the same
260 * time. Also masking should be done before updating the configuration
261 * and unmasking afterwards.
262 */
263 icl_pcode_restrict_qgv_points(i915, new_mask);
264}
265
266static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
267{
268 struct drm_i915_private *i915 = to_i915(state->base.dev);
269 const struct intel_bw_state *old_bw_state =
270 intel_atomic_get_old_bw_state(state);
271 const struct intel_bw_state *new_bw_state =
272 intel_atomic_get_new_bw_state(state);
273 u16 old_mask, new_mask;
274
275 if (!new_bw_state)
276 return;
277
278 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
279 new_mask = new_bw_state->qgv_points_mask;
280
281 if (old_mask == new_mask)
282 return;
283
284 WARN_ON(!new_bw_state->base.changed);
285
286 drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
287 old_mask, new_mask);
288
289 /*
290 * Allow required qgv points after updating the configuration.
291 * According to BSpec we can't mask and unmask qgv points at the same
292 * time. Also masking should be done before updating the configuration
293 * and unmasking afterwards.
294 */
295 icl_pcode_restrict_qgv_points(i915, new_mask);
296}
297
298void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
299{
300 struct drm_i915_private *i915 = to_i915(state->base.dev);
301
302 /*
303 * Just return if we can't control SAGV or don't have it.
304 * This is different from situation when we have SAGV but just can't
305 * afford it due to DBuf limitation - in case if SAGV is completely
306 * disabled in a BIOS, we are not even allowed to send a PCode request,
307 * as it will throw an error. So have to check it here.
308 */
309 if (!intel_has_sagv(i915))
310 return;
311
312 if (DISPLAY_VER(i915) >= 11)
313 icl_sagv_pre_plane_update(state);
314 else
315 skl_sagv_pre_plane_update(state);
316}
317
318void intel_sagv_post_plane_update(struct intel_atomic_state *state)
319{
320 struct drm_i915_private *i915 = to_i915(state->base.dev);
321
322 /*
323 * Just return if we can't control SAGV or don't have it.
324 * This is different from situation when we have SAGV but just can't
325 * afford it due to DBuf limitation - in case if SAGV is completely
326 * disabled in a BIOS, we are not even allowed to send a PCode request,
327 * as it will throw an error. So have to check it here.
328 */
329 if (!intel_has_sagv(i915))
330 return;
331
332 if (DISPLAY_VER(i915) >= 11)
333 icl_sagv_post_plane_update(state);
334 else
335 skl_sagv_post_plane_update(state);
336}
337
338static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
339{
340 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
341 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
342 enum plane_id plane_id;
343 int max_level = INT_MAX;
344
345 if (!intel_has_sagv(i915))
346 return false;
347
348 if (!crtc_state->hw.active)
349 return true;
350
351 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
352 return false;
353
354 for_each_plane_id_on_crtc(crtc, plane_id) {
355 const struct skl_plane_wm *wm =
356 &crtc_state->wm.skl.optimal.planes[plane_id];
357 int level;
358
359 /* Skip this plane if it's not enabled */
360 if (!wm->wm[0].enable)
361 continue;
362
363 /* Find the highest enabled wm level for this plane */
364 for (level = i915->display.wm.num_levels - 1;
365 !wm->wm[level].enable; --level)
366 { }
367
368 /* Highest common enabled wm level for all planes */
369 max_level = min(level, max_level);
370 }
371
372 /* No enabled planes? */
373 if (max_level == INT_MAX)
374 return true;
375
376 for_each_plane_id_on_crtc(crtc, plane_id) {
377 const struct skl_plane_wm *wm =
378 &crtc_state->wm.skl.optimal.planes[plane_id];
379
380 /*
381 * All enabled planes must have enabled a common wm level that
382 * can tolerate memory latencies higher than sagv_block_time_us
383 */
384 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
385 return false;
386 }
387
388 return true;
389}
390
391static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
392{
393 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 enum plane_id plane_id;
395
396 if (!crtc_state->hw.active)
397 return true;
398
399 for_each_plane_id_on_crtc(crtc, plane_id) {
400 const struct skl_plane_wm *wm =
401 &crtc_state->wm.skl.optimal.planes[plane_id];
402
403 if (wm->wm[0].enable && !wm->sagv.wm0.enable)
404 return false;
405 }
406
407 return true;
408}
409
410static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
411{
412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
413 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
414
415 if (!i915->display.params.enable_sagv)
416 return false;
417
418 if (DISPLAY_VER(i915) >= 12)
419 return tgl_crtc_can_enable_sagv(crtc_state);
420 else
421 return skl_crtc_can_enable_sagv(crtc_state);
422}
423
424bool intel_can_enable_sagv(struct drm_i915_private *i915,
425 const struct intel_bw_state *bw_state)
426{
427 if (DISPLAY_VER(i915) < 11 &&
428 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
429 return false;
430
431 return bw_state->pipe_sagv_reject == 0;
432}
433
434static int intel_compute_sagv_mask(struct intel_atomic_state *state)
435{
436 struct drm_i915_private *i915 = to_i915(state->base.dev);
437 int ret;
438 struct intel_crtc *crtc;
439 struct intel_crtc_state *new_crtc_state;
440 struct intel_bw_state *new_bw_state = NULL;
441 const struct intel_bw_state *old_bw_state = NULL;
442 int i;
443
444 for_each_new_intel_crtc_in_state(state, crtc,
445 new_crtc_state, i) {
446 new_bw_state = intel_atomic_get_bw_state(state);
447 if (IS_ERR(new_bw_state))
448 return PTR_ERR(new_bw_state);
449
450 old_bw_state = intel_atomic_get_old_bw_state(state);
451
452 if (intel_crtc_can_enable_sagv(new_crtc_state))
453 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
454 else
455 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
456 }
457
458 if (!new_bw_state)
459 return 0;
460
461 new_bw_state->active_pipes =
462 intel_calc_active_pipes(state, old_bw_state->active_pipes);
463
464 if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
465 ret = intel_atomic_lock_global_state(&new_bw_state->base);
466 if (ret)
467 return ret;
468 }
469
470 if (intel_can_enable_sagv(i915, new_bw_state) !=
471 intel_can_enable_sagv(i915, old_bw_state)) {
472 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
473 if (ret)
474 return ret;
475 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
476 ret = intel_atomic_lock_global_state(&new_bw_state->base);
477 if (ret)
478 return ret;
479 }
480
481 for_each_new_intel_crtc_in_state(state, crtc,
482 new_crtc_state, i) {
483 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
484
485 /*
486 * We store use_sagv_wm in the crtc state rather than relying on
487 * that bw state since we have no convenient way to get at the
488 * latter from the plane commit hooks (especially in the legacy
489 * cursor case)
490 */
491 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) &&
492 DISPLAY_VER(i915) >= 12 &&
493 intel_can_enable_sagv(i915, new_bw_state);
494 }
495
496 return 0;
497}
498
499static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
500 u16 start, u16 end)
501{
502 entry->start = start;
503 entry->end = end;
504
505 return end;
506}
507
508static int intel_dbuf_slice_size(struct drm_i915_private *i915)
509{
510 return DISPLAY_INFO(i915)->dbuf.size /
511 hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask);
512}
513
514static void
515skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask,
516 struct skl_ddb_entry *ddb)
517{
518 int slice_size = intel_dbuf_slice_size(i915);
519
520 if (!slice_mask) {
521 ddb->start = 0;
522 ddb->end = 0;
523 return;
524 }
525
526 ddb->start = (ffs(slice_mask) - 1) * slice_size;
527 ddb->end = fls(slice_mask) * slice_size;
528
529 WARN_ON(ddb->start >= ddb->end);
530 WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size);
531}
532
533static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
534{
535 struct skl_ddb_entry ddb;
536
537 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
538 slice_mask = BIT(DBUF_S1);
539 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
540 slice_mask = BIT(DBUF_S3);
541
542 skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
543
544 return ddb.start;
545}
546
547u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915,
548 const struct skl_ddb_entry *entry)
549{
550 int slice_size = intel_dbuf_slice_size(i915);
551 enum dbuf_slice start_slice, end_slice;
552 u8 slice_mask = 0;
553
554 if (!skl_ddb_entry_size(entry))
555 return 0;
556
557 start_slice = entry->start / slice_size;
558 end_slice = (entry->end - 1) / slice_size;
559
560 /*
561 * Per plane DDB entry can in a really worst case be on multiple slices
562 * but single entry is anyway contigious.
563 */
564 while (start_slice <= end_slice) {
565 slice_mask |= BIT(start_slice);
566 start_slice++;
567 }
568
569 return slice_mask;
570}
571
572static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
573{
574 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
575 int hdisplay, vdisplay;
576
577 if (!crtc_state->hw.active)
578 return 0;
579
580 /*
581 * Watermark/ddb requirement highly depends upon width of the
582 * framebuffer, So instead of allocating DDB equally among pipes
583 * distribute DDB based on resolution/width of the display.
584 */
585 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
586
587 return hdisplay;
588}
589
590static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
591 enum pipe for_pipe,
592 unsigned int *weight_start,
593 unsigned int *weight_end,
594 unsigned int *weight_total)
595{
596 struct drm_i915_private *i915 =
597 to_i915(dbuf_state->base.state->base.dev);
598 enum pipe pipe;
599
600 *weight_start = 0;
601 *weight_end = 0;
602 *weight_total = 0;
603
604 for_each_pipe(i915, pipe) {
605 int weight = dbuf_state->weight[pipe];
606
607 /*
608 * Do not account pipes using other slice sets
609 * luckily as of current BSpec slice sets do not partially
610 * intersect(pipes share either same one slice or same slice set
611 * i.e no partial intersection), so it is enough to check for
612 * equality for now.
613 */
614 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
615 continue;
616
617 *weight_total += weight;
618 if (pipe < for_pipe) {
619 *weight_start += weight;
620 *weight_end += weight;
621 } else if (pipe == for_pipe) {
622 *weight_end += weight;
623 }
624 }
625}
626
627static int
628skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
629{
630 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
631 unsigned int weight_total, weight_start, weight_end;
632 const struct intel_dbuf_state *old_dbuf_state =
633 intel_atomic_get_old_dbuf_state(state);
634 struct intel_dbuf_state *new_dbuf_state =
635 intel_atomic_get_new_dbuf_state(state);
636 struct intel_crtc_state *crtc_state;
637 struct skl_ddb_entry ddb_slices;
638 enum pipe pipe = crtc->pipe;
639 unsigned int mbus_offset = 0;
640 u32 ddb_range_size;
641 u32 dbuf_slice_mask;
642 u32 start, end;
643 int ret;
644
645 if (new_dbuf_state->weight[pipe] == 0) {
646 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
647 goto out;
648 }
649
650 dbuf_slice_mask = new_dbuf_state->slices[pipe];
651
652 skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices);
653 mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask);
654 ddb_range_size = skl_ddb_entry_size(&ddb_slices);
655
656 intel_crtc_dbuf_weights(new_dbuf_state, pipe,
657 &weight_start, &weight_end, &weight_total);
658
659 start = ddb_range_size * weight_start / weight_total;
660 end = ddb_range_size * weight_end / weight_total;
661
662 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
663 ddb_slices.start - mbus_offset + start,
664 ddb_slices.start - mbus_offset + end);
665
666out:
667 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
668 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
669 &new_dbuf_state->ddb[pipe]))
670 return 0;
671
672 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
673 if (ret)
674 return ret;
675
676 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
677 if (IS_ERR(crtc_state))
678 return PTR_ERR(crtc_state);
679
680 /*
681 * Used for checking overlaps, so we need absolute
682 * offsets instead of MBUS relative offsets.
683 */
684 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
685 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
686
687 drm_dbg_kms(&i915->drm,
688 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
689 crtc->base.base.id, crtc->base.name,
690 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
691 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
692 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
693 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
694
695 return 0;
696}
697
698static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
699 int width, const struct drm_format_info *format,
700 u64 modifier, unsigned int rotation,
701 u32 plane_pixel_rate, struct skl_wm_params *wp,
702 int color_plane);
703
704static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
705 struct intel_plane *plane,
706 int level,
707 unsigned int latency,
708 const struct skl_wm_params *wp,
709 const struct skl_wm_level *result_prev,
710 struct skl_wm_level *result /* out */);
711
712static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level,
713 const struct skl_wm_params *wp)
714{
715 unsigned int latency = i915->display.wm.skl_latency[level];
716
717 if (latency == 0)
718 return 0;
719
720 /*
721 * WaIncreaseLatencyIPCEnabled: kbl,cfl
722 * Display WA #1141: kbl,cfl
723 */
724 if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) &&
725 skl_watermark_ipc_enabled(i915))
726 latency += 4;
727
728 if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled)
729 latency += 15;
730
731 return latency;
732}
733
734static unsigned int
735skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
736 int num_active)
737{
738 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
739 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
740 struct skl_wm_level wm = {};
741 int ret, min_ddb_alloc = 0;
742 struct skl_wm_params wp;
743 int level;
744
745 ret = skl_compute_wm_params(crtc_state, 256,
746 drm_format_info(DRM_FORMAT_ARGB8888),
747 DRM_FORMAT_MOD_LINEAR,
748 DRM_MODE_ROTATE_0,
749 crtc_state->pixel_rate, &wp, 0);
750 drm_WARN_ON(&i915->drm, ret);
751
752 for (level = 0; level < i915->display.wm.num_levels; level++) {
753 unsigned int latency = skl_wm_latency(i915, level, &wp);
754
755 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
756 if (wm.min_ddb_alloc == U16_MAX)
757 break;
758
759 min_ddb_alloc = wm.min_ddb_alloc;
760 }
761
762 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
763}
764
765static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
766{
767 skl_ddb_entry_init(entry,
768 REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
769 REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
770 if (entry->end)
771 entry->end++;
772}
773
774static void
775skl_ddb_get_hw_plane_state(struct drm_i915_private *i915,
776 const enum pipe pipe,
777 const enum plane_id plane_id,
778 struct skl_ddb_entry *ddb,
779 struct skl_ddb_entry *ddb_y)
780{
781 u32 val;
782
783 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
784 if (plane_id == PLANE_CURSOR) {
785 val = intel_de_read(i915, CUR_BUF_CFG(pipe));
786 skl_ddb_entry_init_from_hw(ddb, val);
787 return;
788 }
789
790 val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id));
791 skl_ddb_entry_init_from_hw(ddb, val);
792
793 if (DISPLAY_VER(i915) >= 11)
794 return;
795
796 val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id));
797 skl_ddb_entry_init_from_hw(ddb_y, val);
798}
799
800static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
801 struct skl_ddb_entry *ddb,
802 struct skl_ddb_entry *ddb_y)
803{
804 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
805 enum intel_display_power_domain power_domain;
806 enum pipe pipe = crtc->pipe;
807 intel_wakeref_t wakeref;
808 enum plane_id plane_id;
809
810 power_domain = POWER_DOMAIN_PIPE(pipe);
811 wakeref = intel_display_power_get_if_enabled(i915, power_domain);
812 if (!wakeref)
813 return;
814
815 for_each_plane_id_on_crtc(crtc, plane_id)
816 skl_ddb_get_hw_plane_state(i915, pipe,
817 plane_id,
818 &ddb[plane_id],
819 &ddb_y[plane_id]);
820
821 intel_display_power_put(i915, power_domain, wakeref);
822}
823
824struct dbuf_slice_conf_entry {
825 u8 active_pipes;
826 u8 dbuf_mask[I915_MAX_PIPES];
827 bool join_mbus;
828};
829
830/*
831 * Table taken from Bspec 12716
832 * Pipes do have some preferred DBuf slice affinity,
833 * plus there are some hardcoded requirements on how
834 * those should be distributed for multipipe scenarios.
835 * For more DBuf slices algorithm can get even more messy
836 * and less readable, so decided to use a table almost
837 * as is from BSpec itself - that way it is at least easier
838 * to compare, change and check.
839 */
840static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
841/* Autogenerated with igt/tools/intel_dbuf_map tool: */
842{
843 {
844 .active_pipes = BIT(PIPE_A),
845 .dbuf_mask = {
846 [PIPE_A] = BIT(DBUF_S1),
847 },
848 },
849 {
850 .active_pipes = BIT(PIPE_B),
851 .dbuf_mask = {
852 [PIPE_B] = BIT(DBUF_S1),
853 },
854 },
855 {
856 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
857 .dbuf_mask = {
858 [PIPE_A] = BIT(DBUF_S1),
859 [PIPE_B] = BIT(DBUF_S2),
860 },
861 },
862 {
863 .active_pipes = BIT(PIPE_C),
864 .dbuf_mask = {
865 [PIPE_C] = BIT(DBUF_S2),
866 },
867 },
868 {
869 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
870 .dbuf_mask = {
871 [PIPE_A] = BIT(DBUF_S1),
872 [PIPE_C] = BIT(DBUF_S2),
873 },
874 },
875 {
876 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
877 .dbuf_mask = {
878 [PIPE_B] = BIT(DBUF_S1),
879 [PIPE_C] = BIT(DBUF_S2),
880 },
881 },
882 {
883 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
884 .dbuf_mask = {
885 [PIPE_A] = BIT(DBUF_S1),
886 [PIPE_B] = BIT(DBUF_S1),
887 [PIPE_C] = BIT(DBUF_S2),
888 },
889 },
890 {}
891};
892
893/*
894 * Table taken from Bspec 49255
895 * Pipes do have some preferred DBuf slice affinity,
896 * plus there are some hardcoded requirements on how
897 * those should be distributed for multipipe scenarios.
898 * For more DBuf slices algorithm can get even more messy
899 * and less readable, so decided to use a table almost
900 * as is from BSpec itself - that way it is at least easier
901 * to compare, change and check.
902 */
903static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
904/* Autogenerated with igt/tools/intel_dbuf_map tool: */
905{
906 {
907 .active_pipes = BIT(PIPE_A),
908 .dbuf_mask = {
909 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
910 },
911 },
912 {
913 .active_pipes = BIT(PIPE_B),
914 .dbuf_mask = {
915 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
916 },
917 },
918 {
919 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
920 .dbuf_mask = {
921 [PIPE_A] = BIT(DBUF_S2),
922 [PIPE_B] = BIT(DBUF_S1),
923 },
924 },
925 {
926 .active_pipes = BIT(PIPE_C),
927 .dbuf_mask = {
928 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
929 },
930 },
931 {
932 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
933 .dbuf_mask = {
934 [PIPE_A] = BIT(DBUF_S1),
935 [PIPE_C] = BIT(DBUF_S2),
936 },
937 },
938 {
939 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
940 .dbuf_mask = {
941 [PIPE_B] = BIT(DBUF_S1),
942 [PIPE_C] = BIT(DBUF_S2),
943 },
944 },
945 {
946 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
947 .dbuf_mask = {
948 [PIPE_A] = BIT(DBUF_S1),
949 [PIPE_B] = BIT(DBUF_S1),
950 [PIPE_C] = BIT(DBUF_S2),
951 },
952 },
953 {
954 .active_pipes = BIT(PIPE_D),
955 .dbuf_mask = {
956 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
957 },
958 },
959 {
960 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
961 .dbuf_mask = {
962 [PIPE_A] = BIT(DBUF_S1),
963 [PIPE_D] = BIT(DBUF_S2),
964 },
965 },
966 {
967 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
968 .dbuf_mask = {
969 [PIPE_B] = BIT(DBUF_S1),
970 [PIPE_D] = BIT(DBUF_S2),
971 },
972 },
973 {
974 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
975 .dbuf_mask = {
976 [PIPE_A] = BIT(DBUF_S1),
977 [PIPE_B] = BIT(DBUF_S1),
978 [PIPE_D] = BIT(DBUF_S2),
979 },
980 },
981 {
982 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
983 .dbuf_mask = {
984 [PIPE_C] = BIT(DBUF_S1),
985 [PIPE_D] = BIT(DBUF_S2),
986 },
987 },
988 {
989 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
990 .dbuf_mask = {
991 [PIPE_A] = BIT(DBUF_S1),
992 [PIPE_C] = BIT(DBUF_S2),
993 [PIPE_D] = BIT(DBUF_S2),
994 },
995 },
996 {
997 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
998 .dbuf_mask = {
999 [PIPE_B] = BIT(DBUF_S1),
1000 [PIPE_C] = BIT(DBUF_S2),
1001 [PIPE_D] = BIT(DBUF_S2),
1002 },
1003 },
1004 {
1005 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1006 .dbuf_mask = {
1007 [PIPE_A] = BIT(DBUF_S1),
1008 [PIPE_B] = BIT(DBUF_S1),
1009 [PIPE_C] = BIT(DBUF_S2),
1010 [PIPE_D] = BIT(DBUF_S2),
1011 },
1012 },
1013 {}
1014};
1015
1016static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
1017 {
1018 .active_pipes = BIT(PIPE_A),
1019 .dbuf_mask = {
1020 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1021 },
1022 },
1023 {
1024 .active_pipes = BIT(PIPE_B),
1025 .dbuf_mask = {
1026 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1027 },
1028 },
1029 {
1030 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1031 .dbuf_mask = {
1032 [PIPE_A] = BIT(DBUF_S1),
1033 [PIPE_B] = BIT(DBUF_S2),
1034 },
1035 },
1036 {
1037 .active_pipes = BIT(PIPE_C),
1038 .dbuf_mask = {
1039 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1040 },
1041 },
1042 {
1043 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1044 .dbuf_mask = {
1045 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1046 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1047 },
1048 },
1049 {
1050 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1051 .dbuf_mask = {
1052 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1053 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1054 },
1055 },
1056 {
1057 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1058 .dbuf_mask = {
1059 [PIPE_A] = BIT(DBUF_S1),
1060 [PIPE_B] = BIT(DBUF_S2),
1061 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1062 },
1063 },
1064 {
1065 .active_pipes = BIT(PIPE_D),
1066 .dbuf_mask = {
1067 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1068 },
1069 },
1070 {
1071 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1072 .dbuf_mask = {
1073 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1074 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1075 },
1076 },
1077 {
1078 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1079 .dbuf_mask = {
1080 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1081 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1082 },
1083 },
1084 {
1085 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1086 .dbuf_mask = {
1087 [PIPE_A] = BIT(DBUF_S1),
1088 [PIPE_B] = BIT(DBUF_S2),
1089 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1090 },
1091 },
1092 {
1093 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1094 .dbuf_mask = {
1095 [PIPE_C] = BIT(DBUF_S3),
1096 [PIPE_D] = BIT(DBUF_S4),
1097 },
1098 },
1099 {
1100 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1101 .dbuf_mask = {
1102 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1103 [PIPE_C] = BIT(DBUF_S3),
1104 [PIPE_D] = BIT(DBUF_S4),
1105 },
1106 },
1107 {
1108 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1109 .dbuf_mask = {
1110 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1111 [PIPE_C] = BIT(DBUF_S3),
1112 [PIPE_D] = BIT(DBUF_S4),
1113 },
1114 },
1115 {
1116 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1117 .dbuf_mask = {
1118 [PIPE_A] = BIT(DBUF_S1),
1119 [PIPE_B] = BIT(DBUF_S2),
1120 [PIPE_C] = BIT(DBUF_S3),
1121 [PIPE_D] = BIT(DBUF_S4),
1122 },
1123 },
1124 {}
1125};
1126
1127static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
1128 /*
1129 * Keep the join_mbus cases first so check_mbus_joined()
1130 * will prefer them over the !join_mbus cases.
1131 */
1132 {
1133 .active_pipes = BIT(PIPE_A),
1134 .dbuf_mask = {
1135 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1136 },
1137 .join_mbus = true,
1138 },
1139 {
1140 .active_pipes = BIT(PIPE_B),
1141 .dbuf_mask = {
1142 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1143 },
1144 .join_mbus = true,
1145 },
1146 {
1147 .active_pipes = BIT(PIPE_A),
1148 .dbuf_mask = {
1149 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1150 },
1151 .join_mbus = false,
1152 },
1153 {
1154 .active_pipes = BIT(PIPE_B),
1155 .dbuf_mask = {
1156 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1157 },
1158 .join_mbus = false,
1159 },
1160 {
1161 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1162 .dbuf_mask = {
1163 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1164 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1165 },
1166 },
1167 {
1168 .active_pipes = BIT(PIPE_C),
1169 .dbuf_mask = {
1170 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1171 },
1172 },
1173 {
1174 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1175 .dbuf_mask = {
1176 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1177 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1178 },
1179 },
1180 {
1181 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1182 .dbuf_mask = {
1183 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1184 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1185 },
1186 },
1187 {
1188 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1189 .dbuf_mask = {
1190 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1191 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1192 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1193 },
1194 },
1195 {
1196 .active_pipes = BIT(PIPE_D),
1197 .dbuf_mask = {
1198 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1199 },
1200 },
1201 {
1202 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1203 .dbuf_mask = {
1204 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1205 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1206 },
1207 },
1208 {
1209 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1210 .dbuf_mask = {
1211 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1212 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1213 },
1214 },
1215 {
1216 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1217 .dbuf_mask = {
1218 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1219 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1220 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1221 },
1222 },
1223 {
1224 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1225 .dbuf_mask = {
1226 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1227 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1228 },
1229 },
1230 {
1231 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1232 .dbuf_mask = {
1233 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1234 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1235 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1236 },
1237 },
1238 {
1239 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1240 .dbuf_mask = {
1241 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1242 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1243 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1244 },
1245 },
1246 {
1247 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1248 .dbuf_mask = {
1249 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1250 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1251 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1252 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1253 },
1254 },
1255 {}
1256
1257};
1258
1259static bool check_mbus_joined(u8 active_pipes,
1260 const struct dbuf_slice_conf_entry *dbuf_slices)
1261{
1262 int i;
1263
1264 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1265 if (dbuf_slices[i].active_pipes == active_pipes)
1266 return dbuf_slices[i].join_mbus;
1267 }
1268 return false;
1269}
1270
1271static bool adlp_check_mbus_joined(u8 active_pipes)
1272{
1273 return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
1274}
1275
1276static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
1277 const struct dbuf_slice_conf_entry *dbuf_slices)
1278{
1279 int i;
1280
1281 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1282 if (dbuf_slices[i].active_pipes == active_pipes &&
1283 dbuf_slices[i].join_mbus == join_mbus)
1284 return dbuf_slices[i].dbuf_mask[pipe];
1285 }
1286 return 0;
1287}
1288
1289/*
1290 * This function finds an entry with same enabled pipe configuration and
1291 * returns correspondent DBuf slice mask as stated in BSpec for particular
1292 * platform.
1293 */
1294static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1295{
1296 /*
1297 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
1298 * required calculating "pipe ratio" in order to determine
1299 * if one or two slices can be used for single pipe configurations
1300 * as additional constraint to the existing table.
1301 * However based on recent info, it should be not "pipe ratio"
1302 * but rather ratio between pixel_rate and cdclk with additional
1303 * constants, so for now we are using only table until this is
1304 * clarified. Also this is the reason why crtc_state param is
1305 * still here - we will need it once those additional constraints
1306 * pop up.
1307 */
1308 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1309 icl_allowed_dbufs);
1310}
1311
1312static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1313{
1314 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1315 tgl_allowed_dbufs);
1316}
1317
1318static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1319{
1320 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1321 adlp_allowed_dbufs);
1322}
1323
1324static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1325{
1326 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1327 dg2_allowed_dbufs);
1328}
1329
1330static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
1331{
1332 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1333 enum pipe pipe = crtc->pipe;
1334
1335 if (IS_DG2(i915))
1336 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1337 else if (DISPLAY_VER(i915) >= 13)
1338 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1339 else if (DISPLAY_VER(i915) == 12)
1340 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1341 else if (DISPLAY_VER(i915) == 11)
1342 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1343 /*
1344 * For anything else just return one slice yet.
1345 * Should be extended for other platforms.
1346 */
1347 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
1348}
1349
1350static bool
1351use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
1352 struct intel_plane *plane)
1353{
1354 struct drm_i915_private *i915 = to_i915(plane->base.dev);
1355
1356 return DISPLAY_VER(i915) >= 13 &&
1357 crtc_state->uapi.async_flip &&
1358 plane->async_flip;
1359}
1360
1361static u64
1362skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
1363{
1364 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1365 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1366 enum plane_id plane_id;
1367 u64 data_rate = 0;
1368
1369 for_each_plane_id_on_crtc(crtc, plane_id) {
1370 if (plane_id == PLANE_CURSOR && DISPLAY_VER(i915) < 20)
1371 continue;
1372
1373 data_rate += crtc_state->rel_data_rate[plane_id];
1374
1375 if (DISPLAY_VER(i915) < 11)
1376 data_rate += crtc_state->rel_data_rate_y[plane_id];
1377 }
1378
1379 return data_rate;
1380}
1381
1382static const struct skl_wm_level *
1383skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
1384 enum plane_id plane_id,
1385 int level)
1386{
1387 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1388
1389 if (level == 0 && pipe_wm->use_sagv_wm)
1390 return &wm->sagv.wm0;
1391
1392 return &wm->wm[level];
1393}
1394
1395static const struct skl_wm_level *
1396skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
1397 enum plane_id plane_id)
1398{
1399 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1400
1401 if (pipe_wm->use_sagv_wm)
1402 return &wm->sagv.trans_wm;
1403
1404 return &wm->trans_wm;
1405}
1406
1407/*
1408 * We only disable the watermarks for each plane if
1409 * they exceed the ddb allocation of said plane. This
1410 * is done so that we don't end up touching cursor
1411 * watermarks needlessly when some other plane reduces
1412 * our max possible watermark level.
1413 *
1414 * Bspec has this to say about the PLANE_WM enable bit:
1415 * "All the watermarks at this level for all enabled
1416 * planes must be enabled before the level will be used."
1417 * So this is actually safe to do.
1418 */
1419static void
1420skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
1421{
1422 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
1423 memset(wm, 0, sizeof(*wm));
1424}
1425
1426static void
1427skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
1428 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
1429{
1430 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
1431 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1432 memset(wm, 0, sizeof(*wm));
1433 memset(uv_wm, 0, sizeof(*uv_wm));
1434 }
1435}
1436
1437static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level,
1438 const struct skl_plane_wm *wm)
1439{
1440 /*
1441 * Wa_1408961008:icl, ehl
1442 * Wa_14012656716:tgl, adl
1443 * Wa_14017887344:icl
1444 * Wa_14017868169:adl, tgl
1445 * Due to some power saving optimizations, different subsystems
1446 * like PSR, might still use even disabled wm level registers,
1447 * for "reference", so lets keep at least the values sane.
1448 * Considering amount of WA requiring us to do similar things, was
1449 * decided to simply do it for all of the platforms, as those wm
1450 * levels are disabled, this isn't going to do harm anyway.
1451 */
1452 return level > 0 && !wm->wm[level].enable;
1453}
1454
1455struct skl_plane_ddb_iter {
1456 u64 data_rate;
1457 u16 start, size;
1458};
1459
1460static void
1461skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
1462 struct skl_ddb_entry *ddb,
1463 const struct skl_wm_level *wm,
1464 u64 data_rate)
1465{
1466 u16 size, extra = 0;
1467
1468 if (data_rate) {
1469 extra = min_t(u16, iter->size,
1470 DIV64_U64_ROUND_UP(iter->size * data_rate,
1471 iter->data_rate));
1472 iter->size -= extra;
1473 iter->data_rate -= data_rate;
1474 }
1475
1476 /*
1477 * Keep ddb entry of all disabled planes explicitly zeroed
1478 * to avoid skl_ddb_add_affected_planes() adding them to
1479 * the state when other planes change their allocations.
1480 */
1481 size = wm->min_ddb_alloc + extra;
1482 if (size)
1483 iter->start = skl_ddb_entry_init(ddb, iter->start,
1484 iter->start + size);
1485}
1486
1487static int
1488skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
1489 struct intel_crtc *crtc)
1490{
1491 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1492 struct intel_crtc_state *crtc_state =
1493 intel_atomic_get_new_crtc_state(state, crtc);
1494 const struct intel_dbuf_state *dbuf_state =
1495 intel_atomic_get_new_dbuf_state(state);
1496 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
1497 int num_active = hweight8(dbuf_state->active_pipes);
1498 struct skl_plane_ddb_iter iter;
1499 enum plane_id plane_id;
1500 u16 cursor_size;
1501 u32 blocks;
1502 int level;
1503
1504 /* Clear the partitioning for disabled planes. */
1505 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
1506 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
1507
1508 if (!crtc_state->hw.active)
1509 return 0;
1510
1511 iter.start = alloc->start;
1512 iter.size = skl_ddb_entry_size(alloc);
1513 if (iter.size == 0)
1514 return 0;
1515
1516 /* Allocate fixed number of blocks for cursor. */
1517 if (DISPLAY_VER(i915) < 20) {
1518 cursor_size = skl_cursor_allocation(crtc_state, num_active);
1519 iter.size -= cursor_size;
1520 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
1521 alloc->end - cursor_size, alloc->end);
1522 }
1523
1524 iter.data_rate = skl_total_relative_data_rate(crtc_state);
1525
1526 /*
1527 * Find the highest watermark level for which we can satisfy the block
1528 * requirement of active planes.
1529 */
1530 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
1531 blocks = 0;
1532 for_each_plane_id_on_crtc(crtc, plane_id) {
1533 const struct skl_plane_wm *wm =
1534 &crtc_state->wm.skl.optimal.planes[plane_id];
1535
1536 if (plane_id == PLANE_CURSOR && DISPLAY_VER(i915) < 20) {
1537 const struct skl_ddb_entry *ddb =
1538 &crtc_state->wm.skl.plane_ddb[plane_id];
1539
1540 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1541 drm_WARN_ON(&i915->drm,
1542 wm->wm[level].min_ddb_alloc != U16_MAX);
1543 blocks = U32_MAX;
1544 break;
1545 }
1546 continue;
1547 }
1548
1549 blocks += wm->wm[level].min_ddb_alloc;
1550 blocks += wm->uv_wm[level].min_ddb_alloc;
1551 }
1552
1553 if (blocks <= iter.size) {
1554 iter.size -= blocks;
1555 break;
1556 }
1557 }
1558
1559 if (level < 0) {
1560 drm_dbg_kms(&i915->drm,
1561 "Requested display configuration exceeds system DDB limitations");
1562 drm_dbg_kms(&i915->drm, "minimum required %d/%d\n",
1563 blocks, iter.size);
1564 return -EINVAL;
1565 }
1566
1567 /* avoid the WARN later when we don't allocate any extra DDB */
1568 if (iter.data_rate == 0)
1569 iter.size = 0;
1570
1571 /*
1572 * Grant each plane the blocks it requires at the highest achievable
1573 * watermark level, plus an extra share of the leftover blocks
1574 * proportional to its relative data rate.
1575 */
1576 for_each_plane_id_on_crtc(crtc, plane_id) {
1577 struct skl_ddb_entry *ddb =
1578 &crtc_state->wm.skl.plane_ddb[plane_id];
1579 struct skl_ddb_entry *ddb_y =
1580 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1581 const struct skl_plane_wm *wm =
1582 &crtc_state->wm.skl.optimal.planes[plane_id];
1583
1584 if (plane_id == PLANE_CURSOR && DISPLAY_VER(i915) < 20)
1585 continue;
1586
1587 if (DISPLAY_VER(i915) < 11 &&
1588 crtc_state->nv12_planes & BIT(plane_id)) {
1589 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
1590 crtc_state->rel_data_rate_y[plane_id]);
1591 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
1592 crtc_state->rel_data_rate[plane_id]);
1593 } else {
1594 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
1595 crtc_state->rel_data_rate[plane_id]);
1596 }
1597 }
1598 drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0);
1599
1600 /*
1601 * When we calculated watermark values we didn't know how high
1602 * of a level we'd actually be able to hit, so we just marked
1603 * all levels as "enabled." Go back now and disable the ones
1604 * that aren't actually possible.
1605 */
1606 for (level++; level < i915->display.wm.num_levels; level++) {
1607 for_each_plane_id_on_crtc(crtc, plane_id) {
1608 const struct skl_ddb_entry *ddb =
1609 &crtc_state->wm.skl.plane_ddb[plane_id];
1610 const struct skl_ddb_entry *ddb_y =
1611 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1612 struct skl_plane_wm *wm =
1613 &crtc_state->wm.skl.optimal.planes[plane_id];
1614
1615 if (DISPLAY_VER(i915) < 11 &&
1616 crtc_state->nv12_planes & BIT(plane_id))
1617 skl_check_nv12_wm_level(&wm->wm[level],
1618 &wm->uv_wm[level],
1619 ddb_y, ddb);
1620 else
1621 skl_check_wm_level(&wm->wm[level], ddb);
1622
1623 if (skl_need_wm_copy_wa(i915, level, wm)) {
1624 wm->wm[level].blocks = wm->wm[level - 1].blocks;
1625 wm->wm[level].lines = wm->wm[level - 1].lines;
1626 wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines;
1627 }
1628 }
1629 }
1630
1631 /*
1632 * Go back and disable the transition and SAGV watermarks
1633 * if it turns out we don't have enough DDB blocks for them.
1634 */
1635 for_each_plane_id_on_crtc(crtc, plane_id) {
1636 const struct skl_ddb_entry *ddb =
1637 &crtc_state->wm.skl.plane_ddb[plane_id];
1638 const struct skl_ddb_entry *ddb_y =
1639 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1640 struct skl_plane_wm *wm =
1641 &crtc_state->wm.skl.optimal.planes[plane_id];
1642
1643 if (DISPLAY_VER(i915) < 11 &&
1644 crtc_state->nv12_planes & BIT(plane_id)) {
1645 skl_check_wm_level(&wm->trans_wm, ddb_y);
1646 } else {
1647 WARN_ON(skl_ddb_entry_size(ddb_y));
1648
1649 skl_check_wm_level(&wm->trans_wm, ddb);
1650 }
1651
1652 skl_check_wm_level(&wm->sagv.wm0, ddb);
1653 skl_check_wm_level(&wm->sagv.trans_wm, ddb);
1654 }
1655
1656 return 0;
1657}
1658
1659/*
1660 * The max latency should be 257 (max the punit can code is 255 and we add 2us
1661 * for the read latency) and cpp should always be <= 8, so that
1662 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
1663 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
1664 */
1665static uint_fixed_16_16_t
1666skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate,
1667 u8 cpp, u32 latency, u32 dbuf_block_size)
1668{
1669 u32 wm_intermediate_val;
1670 uint_fixed_16_16_t ret;
1671
1672 if (latency == 0)
1673 return FP_16_16_MAX;
1674
1675 wm_intermediate_val = latency * pixel_rate * cpp;
1676 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
1677
1678 if (DISPLAY_VER(i915) >= 10)
1679 ret = add_fixed16_u32(ret, 1);
1680
1681 return ret;
1682}
1683
1684static uint_fixed_16_16_t
1685skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
1686 uint_fixed_16_16_t plane_blocks_per_line)
1687{
1688 u32 wm_intermediate_val;
1689 uint_fixed_16_16_t ret;
1690
1691 if (latency == 0)
1692 return FP_16_16_MAX;
1693
1694 wm_intermediate_val = latency * pixel_rate;
1695 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
1696 pipe_htotal * 1000);
1697 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
1698 return ret;
1699}
1700
1701static uint_fixed_16_16_t
1702intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
1703{
1704 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1705 u32 pixel_rate;
1706 u32 crtc_htotal;
1707 uint_fixed_16_16_t linetime_us;
1708
1709 if (!crtc_state->hw.active)
1710 return u32_to_fixed16(0);
1711
1712 pixel_rate = crtc_state->pixel_rate;
1713
1714 if (drm_WARN_ON(&i915->drm, pixel_rate == 0))
1715 return u32_to_fixed16(0);
1716
1717 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
1718 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
1719
1720 return linetime_us;
1721}
1722
1723static int
1724skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
1725 int width, const struct drm_format_info *format,
1726 u64 modifier, unsigned int rotation,
1727 u32 plane_pixel_rate, struct skl_wm_params *wp,
1728 int color_plane)
1729{
1730 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1731 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1732 u32 interm_pbpl;
1733
1734 /* only planar format has two planes */
1735 if (color_plane == 1 &&
1736 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
1737 drm_dbg_kms(&i915->drm,
1738 "Non planar format have single plane\n");
1739 return -EINVAL;
1740 }
1741
1742 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
1743 wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED &&
1744 intel_fb_is_tiled_modifier(modifier);
1745 wp->rc_surface = intel_fb_is_ccs_modifier(modifier);
1746 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
1747
1748 wp->width = width;
1749 if (color_plane == 1 && wp->is_planar)
1750 wp->width /= 2;
1751
1752 wp->cpp = format->cpp[color_plane];
1753 wp->plane_pixel_rate = plane_pixel_rate;
1754
1755 if (DISPLAY_VER(i915) >= 11 &&
1756 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
1757 wp->dbuf_block_size = 256;
1758 else
1759 wp->dbuf_block_size = 512;
1760
1761 if (drm_rotation_90_or_270(rotation)) {
1762 switch (wp->cpp) {
1763 case 1:
1764 wp->y_min_scanlines = 16;
1765 break;
1766 case 2:
1767 wp->y_min_scanlines = 8;
1768 break;
1769 case 4:
1770 wp->y_min_scanlines = 4;
1771 break;
1772 default:
1773 MISSING_CASE(wp->cpp);
1774 return -EINVAL;
1775 }
1776 } else {
1777 wp->y_min_scanlines = 4;
1778 }
1779
1780 if (skl_needs_memory_bw_wa(i915))
1781 wp->y_min_scanlines *= 2;
1782
1783 wp->plane_bytes_per_line = wp->width * wp->cpp;
1784 if (wp->y_tiled) {
1785 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
1786 wp->y_min_scanlines,
1787 wp->dbuf_block_size);
1788
1789 if (DISPLAY_VER(i915) >= 10)
1790 interm_pbpl++;
1791
1792 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
1793 wp->y_min_scanlines);
1794 } else {
1795 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
1796 wp->dbuf_block_size);
1797
1798 if (!wp->x_tiled || DISPLAY_VER(i915) >= 10)
1799 interm_pbpl++;
1800
1801 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
1802 }
1803
1804 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
1805 wp->plane_blocks_per_line);
1806
1807 wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
1808
1809 return 0;
1810}
1811
1812static int
1813skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
1814 const struct intel_plane_state *plane_state,
1815 struct skl_wm_params *wp, int color_plane)
1816{
1817 const struct drm_framebuffer *fb = plane_state->hw.fb;
1818 int width;
1819
1820 /*
1821 * Src coordinates are already rotated by 270 degrees for
1822 * the 90/270 degree plane rotation cases (to match the
1823 * GTT mapping), hence no need to account for rotation here.
1824 */
1825 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1826
1827 return skl_compute_wm_params(crtc_state, width,
1828 fb->format, fb->modifier,
1829 plane_state->hw.rotation,
1830 intel_plane_pixel_rate(crtc_state, plane_state),
1831 wp, color_plane);
1832}
1833
1834static bool skl_wm_has_lines(struct drm_i915_private *i915, int level)
1835{
1836 if (DISPLAY_VER(i915) >= 10)
1837 return true;
1838
1839 /* The number of lines are ignored for the level 0 watermark. */
1840 return level > 0;
1841}
1842
1843static int skl_wm_max_lines(struct drm_i915_private *i915)
1844{
1845 if (DISPLAY_VER(i915) >= 13)
1846 return 255;
1847 else
1848 return 31;
1849}
1850
1851static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
1852 struct intel_plane *plane,
1853 int level,
1854 unsigned int latency,
1855 const struct skl_wm_params *wp,
1856 const struct skl_wm_level *result_prev,
1857 struct skl_wm_level *result /* out */)
1858{
1859 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1860 uint_fixed_16_16_t method1, method2;
1861 uint_fixed_16_16_t selected_result;
1862 u32 blocks, lines, min_ddb_alloc = 0;
1863
1864 if (latency == 0 ||
1865 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
1866 /* reject it */
1867 result->min_ddb_alloc = U16_MAX;
1868 return;
1869 }
1870
1871 method1 = skl_wm_method1(i915, wp->plane_pixel_rate,
1872 wp->cpp, latency, wp->dbuf_block_size);
1873 method2 = skl_wm_method2(wp->plane_pixel_rate,
1874 crtc_state->hw.pipe_mode.crtc_htotal,
1875 latency,
1876 wp->plane_blocks_per_line);
1877
1878 if (wp->y_tiled) {
1879 selected_result = max_fixed16(method2, wp->y_tile_minimum);
1880 } else {
1881 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
1882 wp->dbuf_block_size < 1) &&
1883 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
1884 selected_result = method2;
1885 } else if (latency >= wp->linetime_us) {
1886 if (DISPLAY_VER(i915) == 9)
1887 selected_result = min_fixed16(method1, method2);
1888 else
1889 selected_result = method2;
1890 } else {
1891 selected_result = method1;
1892 }
1893 }
1894
1895 blocks = fixed16_to_u32_round_up(selected_result) + 1;
1896 /*
1897 * Lets have blocks at minimum equivalent to plane_blocks_per_line
1898 * as there will be at minimum one line for lines configuration. This
1899 * is a work around for FIFO underruns observed with resolutions like
1900 * 4k 60 Hz in single channel DRAM configurations.
1901 *
1902 * As per the Bspec 49325, if the ddb allocation can hold at least
1903 * one plane_blocks_per_line, we should have selected method2 in
1904 * the above logic. Assuming that modern versions have enough dbuf
1905 * and method2 guarantees blocks equivalent to at least 1 line,
1906 * select the blocks as plane_blocks_per_line.
1907 *
1908 * TODO: Revisit the logic when we have better understanding on DRAM
1909 * channels' impact on the level 0 memory latency and the relevant
1910 * wm calculations.
1911 */
1912 if (skl_wm_has_lines(i915, level))
1913 blocks = max(blocks,
1914 fixed16_to_u32_round_up(wp->plane_blocks_per_line));
1915 lines = div_round_up_fixed16(selected_result,
1916 wp->plane_blocks_per_line);
1917
1918 if (DISPLAY_VER(i915) == 9) {
1919 /* Display WA #1125: skl,bxt,kbl */
1920 if (level == 0 && wp->rc_surface)
1921 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1922
1923 /* Display WA #1126: skl,bxt,kbl */
1924 if (level >= 1 && level <= 7) {
1925 if (wp->y_tiled) {
1926 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1927 lines += wp->y_min_scanlines;
1928 } else {
1929 blocks++;
1930 }
1931
1932 /*
1933 * Make sure result blocks for higher latency levels are
1934 * at least as high as level below the current level.
1935 * Assumption in DDB algorithm optimization for special
1936 * cases. Also covers Display WA #1125 for RC.
1937 */
1938 if (result_prev->blocks > blocks)
1939 blocks = result_prev->blocks;
1940 }
1941 }
1942
1943 if (DISPLAY_VER(i915) >= 11) {
1944 if (wp->y_tiled) {
1945 int extra_lines;
1946
1947 if (lines % wp->y_min_scanlines == 0)
1948 extra_lines = wp->y_min_scanlines;
1949 else
1950 extra_lines = wp->y_min_scanlines * 2 -
1951 lines % wp->y_min_scanlines;
1952
1953 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
1954 wp->plane_blocks_per_line);
1955 } else {
1956 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
1957 }
1958 }
1959
1960 if (!skl_wm_has_lines(i915, level))
1961 lines = 0;
1962
1963 if (lines > skl_wm_max_lines(i915)) {
1964 /* reject it */
1965 result->min_ddb_alloc = U16_MAX;
1966 return;
1967 }
1968
1969 /*
1970 * If lines is valid, assume we can use this watermark level
1971 * for now. We'll come back and disable it after we calculate the
1972 * DDB allocation if it turns out we don't actually have enough
1973 * blocks to satisfy it.
1974 */
1975 result->blocks = blocks;
1976 result->lines = lines;
1977 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
1978 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
1979 result->enable = true;
1980
1981 if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us)
1982 result->can_sagv = latency >= i915->display.sagv.block_time_us;
1983}
1984
1985static void
1986skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
1987 struct intel_plane *plane,
1988 const struct skl_wm_params *wm_params,
1989 struct skl_wm_level *levels)
1990{
1991 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1992 struct skl_wm_level *result_prev = &levels[0];
1993 int level;
1994
1995 for (level = 0; level < i915->display.wm.num_levels; level++) {
1996 struct skl_wm_level *result = &levels[level];
1997 unsigned int latency = skl_wm_latency(i915, level, wm_params);
1998
1999 skl_compute_plane_wm(crtc_state, plane, level, latency,
2000 wm_params, result_prev, result);
2001
2002 result_prev = result;
2003 }
2004}
2005
2006static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
2007 struct intel_plane *plane,
2008 const struct skl_wm_params *wm_params,
2009 struct skl_plane_wm *plane_wm)
2010{
2011 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2012 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
2013 struct skl_wm_level *levels = plane_wm->wm;
2014 unsigned int latency = 0;
2015
2016 if (i915->display.sagv.block_time_us)
2017 latency = i915->display.sagv.block_time_us +
2018 skl_wm_latency(i915, 0, wm_params);
2019
2020 skl_compute_plane_wm(crtc_state, plane, 0, latency,
2021 wm_params, &levels[0],
2022 sagv_wm);
2023}
2024
2025static void skl_compute_transition_wm(struct drm_i915_private *i915,
2026 struct skl_wm_level *trans_wm,
2027 const struct skl_wm_level *wm0,
2028 const struct skl_wm_params *wp)
2029{
2030 u16 trans_min, trans_amount, trans_y_tile_min;
2031 u16 wm0_blocks, trans_offset, blocks;
2032
2033 /* Transition WM don't make any sense if ipc is disabled */
2034 if (!skl_watermark_ipc_enabled(i915))
2035 return;
2036
2037 /*
2038 * WaDisableTWM:skl,kbl,cfl,bxt
2039 * Transition WM are not recommended by HW team for GEN9
2040 */
2041 if (DISPLAY_VER(i915) == 9)
2042 return;
2043
2044 if (DISPLAY_VER(i915) >= 11)
2045 trans_min = 4;
2046 else
2047 trans_min = 14;
2048
2049 /* Display WA #1140: glk,cnl */
2050 if (DISPLAY_VER(i915) == 10)
2051 trans_amount = 0;
2052 else
2053 trans_amount = 10; /* This is configurable amount */
2054
2055 trans_offset = trans_min + trans_amount;
2056
2057 /*
2058 * The spec asks for Selected Result Blocks for wm0 (the real value),
2059 * not Result Blocks (the integer value). Pay attention to the capital
2060 * letters. The value wm_l0->blocks is actually Result Blocks, but
2061 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
2062 * and since we later will have to get the ceiling of the sum in the
2063 * transition watermarks calculation, we can just pretend Selected
2064 * Result Blocks is Result Blocks minus 1 and it should work for the
2065 * current platforms.
2066 */
2067 wm0_blocks = wm0->blocks - 1;
2068
2069 if (wp->y_tiled) {
2070 trans_y_tile_min =
2071 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
2072 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
2073 } else {
2074 blocks = wm0_blocks + trans_offset;
2075 }
2076 blocks++;
2077
2078 /*
2079 * Just assume we can enable the transition watermark. After
2080 * computing the DDB we'll come back and disable it if that
2081 * assumption turns out to be false.
2082 */
2083 trans_wm->blocks = blocks;
2084 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
2085 trans_wm->enable = true;
2086}
2087
2088static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
2089 const struct intel_plane_state *plane_state,
2090 struct intel_plane *plane, int color_plane)
2091{
2092 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2093 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2094 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2095 struct skl_wm_params wm_params;
2096 int ret;
2097
2098 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2099 &wm_params, color_plane);
2100 if (ret)
2101 return ret;
2102
2103 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
2104
2105 skl_compute_transition_wm(i915, &wm->trans_wm,
2106 &wm->wm[0], &wm_params);
2107
2108 if (DISPLAY_VER(i915) >= 12) {
2109 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
2110
2111 skl_compute_transition_wm(i915, &wm->sagv.trans_wm,
2112 &wm->sagv.wm0, &wm_params);
2113 }
2114
2115 return 0;
2116}
2117
2118static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
2119 const struct intel_plane_state *plane_state,
2120 struct intel_plane *plane)
2121{
2122 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2123 struct skl_wm_params wm_params;
2124 int ret;
2125
2126 wm->is_planar = true;
2127
2128 /* uv plane watermarks must also be validated for NV12/Planar */
2129 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2130 &wm_params, 1);
2131 if (ret)
2132 return ret;
2133
2134 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
2135
2136 return 0;
2137}
2138
2139static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
2140 const struct intel_plane_state *plane_state)
2141{
2142 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2143 enum plane_id plane_id = plane->id;
2144 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2145 const struct drm_framebuffer *fb = plane_state->hw.fb;
2146 int ret;
2147
2148 memset(wm, 0, sizeof(*wm));
2149
2150 if (!intel_wm_plane_visible(crtc_state, plane_state))
2151 return 0;
2152
2153 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2154 plane, 0);
2155 if (ret)
2156 return ret;
2157
2158 if (fb->format->is_yuv && fb->format->num_planes > 1) {
2159 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
2160 plane);
2161 if (ret)
2162 return ret;
2163 }
2164
2165 return 0;
2166}
2167
2168static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
2169 const struct intel_plane_state *plane_state)
2170{
2171 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2172 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2173 enum plane_id plane_id = plane->id;
2174 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2175 int ret;
2176
2177 /* Watermarks calculated in master */
2178 if (plane_state->planar_slave)
2179 return 0;
2180
2181 memset(wm, 0, sizeof(*wm));
2182
2183 if (plane_state->planar_linked_plane) {
2184 const struct drm_framebuffer *fb = plane_state->hw.fb;
2185
2186 drm_WARN_ON(&i915->drm,
2187 !intel_wm_plane_visible(crtc_state, plane_state));
2188 drm_WARN_ON(&i915->drm, !fb->format->is_yuv ||
2189 fb->format->num_planes == 1);
2190
2191 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2192 plane_state->planar_linked_plane, 0);
2193 if (ret)
2194 return ret;
2195
2196 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2197 plane, 1);
2198 if (ret)
2199 return ret;
2200 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
2201 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2202 plane, 0);
2203 if (ret)
2204 return ret;
2205 }
2206
2207 return 0;
2208}
2209
2210static bool
2211skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state,
2212 int wm0_lines, int latency)
2213{
2214 const struct drm_display_mode *adjusted_mode =
2215 &crtc_state->hw.adjusted_mode;
2216
2217 /* FIXME missing scaler and DSC pre-fill time */
2218 return crtc_state->framestart_delay +
2219 intel_usecs_to_scanlines(adjusted_mode, latency) +
2220 wm0_lines >
2221 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
2222}
2223
2224static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state)
2225{
2226 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2227 enum plane_id plane_id;
2228 int wm0_lines = 0;
2229
2230 for_each_plane_id_on_crtc(crtc, plane_id) {
2231 const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
2232
2233 /* FIXME what about !skl_wm_has_lines() platforms? */
2234 wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines);
2235 }
2236
2237 return wm0_lines;
2238}
2239
2240static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state,
2241 int wm0_lines)
2242{
2243 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2244 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2245 int level;
2246
2247 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
2248 int latency;
2249
2250 /* FIXME should we care about the latency w/a's? */
2251 latency = skl_wm_latency(i915, level, NULL);
2252 if (latency == 0)
2253 continue;
2254
2255 /* FIXME is it correct to use 0 latency for wm0 here? */
2256 if (level == 0)
2257 latency = 0;
2258
2259 if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency))
2260 return level;
2261 }
2262
2263 return -EINVAL;
2264}
2265
2266static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state)
2267{
2268 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2269 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2270 int wm0_lines, level;
2271
2272 if (!crtc_state->hw.active)
2273 return 0;
2274
2275 wm0_lines = skl_max_wm0_lines(crtc_state);
2276
2277 level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines);
2278 if (level < 0)
2279 return level;
2280
2281 /*
2282 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_*
2283 * based on whether we're limited by the vblank duration.
2284 */
2285 crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1;
2286
2287 for (level++; level < i915->display.wm.num_levels; level++) {
2288 enum plane_id plane_id;
2289
2290 for_each_plane_id_on_crtc(crtc, plane_id) {
2291 struct skl_plane_wm *wm =
2292 &crtc_state->wm.skl.optimal.planes[plane_id];
2293
2294 /*
2295 * FIXME just clear enable or flag the entire
2296 * thing as bad via min_ddb_alloc=U16_MAX?
2297 */
2298 wm->wm[level].enable = false;
2299 wm->uv_wm[level].enable = false;
2300 }
2301 }
2302
2303 if (DISPLAY_VER(i915) >= 12 &&
2304 i915->display.sagv.block_time_us &&
2305 skl_is_vblank_too_short(crtc_state, wm0_lines,
2306 i915->display.sagv.block_time_us)) {
2307 enum plane_id plane_id;
2308
2309 for_each_plane_id_on_crtc(crtc, plane_id) {
2310 struct skl_plane_wm *wm =
2311 &crtc_state->wm.skl.optimal.planes[plane_id];
2312
2313 wm->sagv.wm0.enable = false;
2314 wm->sagv.trans_wm.enable = false;
2315 }
2316 }
2317
2318 return 0;
2319}
2320
2321static int skl_build_pipe_wm(struct intel_atomic_state *state,
2322 struct intel_crtc *crtc)
2323{
2324 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2325 struct intel_crtc_state *crtc_state =
2326 intel_atomic_get_new_crtc_state(state, crtc);
2327 const struct intel_plane_state *plane_state;
2328 struct intel_plane *plane;
2329 int ret, i;
2330
2331 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2332 /*
2333 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
2334 * instead but we don't populate that correctly for NV12 Y
2335 * planes so for now hack this.
2336 */
2337 if (plane->pipe != crtc->pipe)
2338 continue;
2339
2340 if (DISPLAY_VER(i915) >= 11)
2341 ret = icl_build_plane_wm(crtc_state, plane_state);
2342 else
2343 ret = skl_build_plane_wm(crtc_state, plane_state);
2344 if (ret)
2345 return ret;
2346 }
2347
2348 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
2349
2350 return skl_wm_check_vblank(crtc_state);
2351}
2352
2353static void skl_ddb_entry_write(struct drm_i915_private *i915,
2354 i915_reg_t reg,
2355 const struct skl_ddb_entry *entry)
2356{
2357 if (entry->end)
2358 intel_de_write_fw(i915, reg,
2359 PLANE_BUF_END(entry->end - 1) |
2360 PLANE_BUF_START(entry->start));
2361 else
2362 intel_de_write_fw(i915, reg, 0);
2363}
2364
2365static void skl_write_wm_level(struct drm_i915_private *i915,
2366 i915_reg_t reg,
2367 const struct skl_wm_level *level)
2368{
2369 u32 val = 0;
2370
2371 if (level->enable)
2372 val |= PLANE_WM_EN;
2373 if (level->ignore_lines)
2374 val |= PLANE_WM_IGNORE_LINES;
2375 val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
2376 val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
2377
2378 intel_de_write_fw(i915, reg, val);
2379}
2380
2381void skl_write_plane_wm(struct intel_plane *plane,
2382 const struct intel_crtc_state *crtc_state)
2383{
2384 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2385 enum plane_id plane_id = plane->id;
2386 enum pipe pipe = plane->pipe;
2387 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2388 const struct skl_ddb_entry *ddb =
2389 &crtc_state->wm.skl.plane_ddb[plane_id];
2390 const struct skl_ddb_entry *ddb_y =
2391 &crtc_state->wm.skl.plane_ddb_y[plane_id];
2392 int level;
2393
2394 for (level = 0; level < i915->display.wm.num_levels; level++)
2395 skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level),
2396 skl_plane_wm_level(pipe_wm, plane_id, level));
2397
2398 skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id),
2399 skl_plane_trans_wm(pipe_wm, plane_id));
2400
2401 if (HAS_HW_SAGV_WM(i915)) {
2402 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2403
2404 skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id),
2405 &wm->sagv.wm0);
2406 skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id),
2407 &wm->sagv.trans_wm);
2408 }
2409
2410 skl_ddb_entry_write(i915,
2411 PLANE_BUF_CFG(pipe, plane_id), ddb);
2412
2413 if (DISPLAY_VER(i915) < 11)
2414 skl_ddb_entry_write(i915,
2415 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
2416}
2417
2418void skl_write_cursor_wm(struct intel_plane *plane,
2419 const struct intel_crtc_state *crtc_state)
2420{
2421 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2422 enum plane_id plane_id = plane->id;
2423 enum pipe pipe = plane->pipe;
2424 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2425 const struct skl_ddb_entry *ddb =
2426 &crtc_state->wm.skl.plane_ddb[plane_id];
2427 int level;
2428
2429 for (level = 0; level < i915->display.wm.num_levels; level++)
2430 skl_write_wm_level(i915, CUR_WM(pipe, level),
2431 skl_plane_wm_level(pipe_wm, plane_id, level));
2432
2433 skl_write_wm_level(i915, CUR_WM_TRANS(pipe),
2434 skl_plane_trans_wm(pipe_wm, plane_id));
2435
2436 if (HAS_HW_SAGV_WM(i915)) {
2437 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2438
2439 skl_write_wm_level(i915, CUR_WM_SAGV(pipe),
2440 &wm->sagv.wm0);
2441 skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe),
2442 &wm->sagv.trans_wm);
2443 }
2444
2445 skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb);
2446}
2447
2448static bool skl_wm_level_equals(const struct skl_wm_level *l1,
2449 const struct skl_wm_level *l2)
2450{
2451 return l1->enable == l2->enable &&
2452 l1->ignore_lines == l2->ignore_lines &&
2453 l1->lines == l2->lines &&
2454 l1->blocks == l2->blocks;
2455}
2456
2457static bool skl_plane_wm_equals(struct drm_i915_private *i915,
2458 const struct skl_plane_wm *wm1,
2459 const struct skl_plane_wm *wm2)
2460{
2461 int level;
2462
2463 for (level = 0; level < i915->display.wm.num_levels; level++) {
2464 /*
2465 * We don't check uv_wm as the hardware doesn't actually
2466 * use it. It only gets used for calculating the required
2467 * ddb allocation.
2468 */
2469 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
2470 return false;
2471 }
2472
2473 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
2474 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
2475 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
2476}
2477
2478static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
2479 const struct skl_ddb_entry *b)
2480{
2481 return a->start < b->end && b->start < a->end;
2482}
2483
2484static void skl_ddb_entry_union(struct skl_ddb_entry *a,
2485 const struct skl_ddb_entry *b)
2486{
2487 if (a->end && b->end) {
2488 a->start = min(a->start, b->start);
2489 a->end = max(a->end, b->end);
2490 } else if (b->end) {
2491 a->start = b->start;
2492 a->end = b->end;
2493 }
2494}
2495
2496bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
2497 const struct skl_ddb_entry *entries,
2498 int num_entries, int ignore_idx)
2499{
2500 int i;
2501
2502 for (i = 0; i < num_entries; i++) {
2503 if (i != ignore_idx &&
2504 skl_ddb_entries_overlap(ddb, &entries[i]))
2505 return true;
2506 }
2507
2508 return false;
2509}
2510
2511static int
2512skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
2513 struct intel_crtc_state *new_crtc_state)
2514{
2515 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
2516 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2517 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2518 struct intel_plane *plane;
2519
2520 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2521 struct intel_plane_state *plane_state;
2522 enum plane_id plane_id = plane->id;
2523
2524 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
2525 &new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
2526 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
2527 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
2528 continue;
2529
2530 plane_state = intel_atomic_get_plane_state(state, plane);
2531 if (IS_ERR(plane_state))
2532 return PTR_ERR(plane_state);
2533
2534 new_crtc_state->update_planes |= BIT(plane_id);
2535 new_crtc_state->async_flip_planes = 0;
2536 new_crtc_state->do_async_flip = false;
2537 }
2538
2539 return 0;
2540}
2541
2542static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
2543{
2544 struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev);
2545 u8 enabled_slices;
2546 enum pipe pipe;
2547
2548 /*
2549 * FIXME: For now we always enable slice S1 as per
2550 * the Bspec display initialization sequence.
2551 */
2552 enabled_slices = BIT(DBUF_S1);
2553
2554 for_each_pipe(i915, pipe)
2555 enabled_slices |= dbuf_state->slices[pipe];
2556
2557 return enabled_slices;
2558}
2559
2560static int
2561skl_compute_ddb(struct intel_atomic_state *state)
2562{
2563 struct drm_i915_private *i915 = to_i915(state->base.dev);
2564 const struct intel_dbuf_state *old_dbuf_state;
2565 struct intel_dbuf_state *new_dbuf_state = NULL;
2566 const struct intel_crtc_state *old_crtc_state;
2567 struct intel_crtc_state *new_crtc_state;
2568 struct intel_crtc *crtc;
2569 int ret, i;
2570
2571 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2572 new_dbuf_state = intel_atomic_get_dbuf_state(state);
2573 if (IS_ERR(new_dbuf_state))
2574 return PTR_ERR(new_dbuf_state);
2575
2576 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
2577 break;
2578 }
2579
2580 if (!new_dbuf_state)
2581 return 0;
2582
2583 new_dbuf_state->active_pipes =
2584 intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
2585
2586 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
2587 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2588 if (ret)
2589 return ret;
2590 }
2591
2592 if (HAS_MBUS_JOINING(i915))
2593 new_dbuf_state->joined_mbus =
2594 adlp_check_mbus_joined(new_dbuf_state->active_pipes);
2595
2596 for_each_intel_crtc(&i915->drm, crtc) {
2597 enum pipe pipe = crtc->pipe;
2598
2599 new_dbuf_state->slices[pipe] =
2600 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
2601 new_dbuf_state->joined_mbus);
2602
2603 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
2604 continue;
2605
2606 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2607 if (ret)
2608 return ret;
2609 }
2610
2611 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
2612
2613 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
2614 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2615 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
2616 if (ret)
2617 return ret;
2618
2619 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2620 /* TODO: Implement vblank synchronized MBUS joining changes */
2621 ret = intel_modeset_all_pipes_late(state, "MBUS joining change");
2622 if (ret)
2623 return ret;
2624 }
2625
2626 drm_dbg_kms(&i915->drm,
2627 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
2628 old_dbuf_state->enabled_slices,
2629 new_dbuf_state->enabled_slices,
2630 DISPLAY_INFO(i915)->dbuf.slice_mask,
2631 str_yes_no(old_dbuf_state->joined_mbus),
2632 str_yes_no(new_dbuf_state->joined_mbus));
2633 }
2634
2635 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2636 enum pipe pipe = crtc->pipe;
2637
2638 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
2639
2640 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
2641 continue;
2642
2643 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2644 if (ret)
2645 return ret;
2646 }
2647
2648 for_each_intel_crtc(&i915->drm, crtc) {
2649 ret = skl_crtc_allocate_ddb(state, crtc);
2650 if (ret)
2651 return ret;
2652 }
2653
2654 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2655 new_crtc_state, i) {
2656 ret = skl_crtc_allocate_plane_ddb(state, crtc);
2657 if (ret)
2658 return ret;
2659
2660 ret = skl_ddb_add_affected_planes(old_crtc_state,
2661 new_crtc_state);
2662 if (ret)
2663 return ret;
2664 }
2665
2666 return 0;
2667}
2668
2669static char enast(bool enable)
2670{
2671 return enable ? '*' : ' ';
2672}
2673
2674static void
2675skl_print_wm_changes(struct intel_atomic_state *state)
2676{
2677 struct drm_i915_private *i915 = to_i915(state->base.dev);
2678 const struct intel_crtc_state *old_crtc_state;
2679 const struct intel_crtc_state *new_crtc_state;
2680 struct intel_plane *plane;
2681 struct intel_crtc *crtc;
2682 int i;
2683
2684 if (!drm_debug_enabled(DRM_UT_KMS))
2685 return;
2686
2687 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2688 new_crtc_state, i) {
2689 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
2690
2691 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
2692 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
2693
2694 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2695 enum plane_id plane_id = plane->id;
2696 const struct skl_ddb_entry *old, *new;
2697
2698 old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
2699 new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
2700
2701 if (skl_ddb_entry_equal(old, new))
2702 continue;
2703
2704 drm_dbg_kms(&i915->drm,
2705 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
2706 plane->base.base.id, plane->base.name,
2707 old->start, old->end, new->start, new->end,
2708 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
2709 }
2710
2711 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2712 enum plane_id plane_id = plane->id;
2713 const struct skl_plane_wm *old_wm, *new_wm;
2714
2715 old_wm = &old_pipe_wm->planes[plane_id];
2716 new_wm = &new_pipe_wm->planes[plane_id];
2717
2718 if (skl_plane_wm_equals(i915, old_wm, new_wm))
2719 continue;
2720
2721 drm_dbg_kms(&i915->drm,
2722 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
2723 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
2724 plane->base.base.id, plane->base.name,
2725 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
2726 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
2727 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
2728 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
2729 enast(old_wm->trans_wm.enable),
2730 enast(old_wm->sagv.wm0.enable),
2731 enast(old_wm->sagv.trans_wm.enable),
2732 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
2733 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
2734 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
2735 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
2736 enast(new_wm->trans_wm.enable),
2737 enast(new_wm->sagv.wm0.enable),
2738 enast(new_wm->sagv.trans_wm.enable));
2739
2740 drm_dbg_kms(&i915->drm,
2741 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
2742 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
2743 plane->base.base.id, plane->base.name,
2744 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
2745 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
2746 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
2747 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
2748 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
2749 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
2750 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
2751 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
2752 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
2753 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
2754 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
2755 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
2756 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
2757 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
2758 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
2759 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
2760 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
2761 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
2762 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
2763 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
2764 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
2765 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
2766
2767 drm_dbg_kms(&i915->drm,
2768 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2769 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2770 plane->base.base.id, plane->base.name,
2771 old_wm->wm[0].blocks, old_wm->wm[1].blocks,
2772 old_wm->wm[2].blocks, old_wm->wm[3].blocks,
2773 old_wm->wm[4].blocks, old_wm->wm[5].blocks,
2774 old_wm->wm[6].blocks, old_wm->wm[7].blocks,
2775 old_wm->trans_wm.blocks,
2776 old_wm->sagv.wm0.blocks,
2777 old_wm->sagv.trans_wm.blocks,
2778 new_wm->wm[0].blocks, new_wm->wm[1].blocks,
2779 new_wm->wm[2].blocks, new_wm->wm[3].blocks,
2780 new_wm->wm[4].blocks, new_wm->wm[5].blocks,
2781 new_wm->wm[6].blocks, new_wm->wm[7].blocks,
2782 new_wm->trans_wm.blocks,
2783 new_wm->sagv.wm0.blocks,
2784 new_wm->sagv.trans_wm.blocks);
2785
2786 drm_dbg_kms(&i915->drm,
2787 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2788 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2789 plane->base.base.id, plane->base.name,
2790 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
2791 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
2792 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
2793 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
2794 old_wm->trans_wm.min_ddb_alloc,
2795 old_wm->sagv.wm0.min_ddb_alloc,
2796 old_wm->sagv.trans_wm.min_ddb_alloc,
2797 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
2798 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
2799 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
2800 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
2801 new_wm->trans_wm.min_ddb_alloc,
2802 new_wm->sagv.wm0.min_ddb_alloc,
2803 new_wm->sagv.trans_wm.min_ddb_alloc);
2804 }
2805 }
2806}
2807
2808static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
2809 const struct skl_pipe_wm *old_pipe_wm,
2810 const struct skl_pipe_wm *new_pipe_wm)
2811{
2812 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2813 int level;
2814
2815 for (level = 0; level < i915->display.wm.num_levels; level++) {
2816 /*
2817 * We don't check uv_wm as the hardware doesn't actually
2818 * use it. It only gets used for calculating the required
2819 * ddb allocation.
2820 */
2821 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
2822 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
2823 return false;
2824 }
2825
2826 if (HAS_HW_SAGV_WM(i915)) {
2827 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
2828 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
2829
2830 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
2831 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
2832 return false;
2833 }
2834
2835 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
2836 skl_plane_trans_wm(new_pipe_wm, plane->id));
2837}
2838
2839/*
2840 * To make sure the cursor watermark registers are always consistent
2841 * with our computed state the following scenario needs special
2842 * treatment:
2843 *
2844 * 1. enable cursor
2845 * 2. move cursor entirely offscreen
2846 * 3. disable cursor
2847 *
2848 * Step 2. does call .disable_plane() but does not zero the watermarks
2849 * (since we consider an offscreen cursor still active for the purposes
2850 * of watermarks). Step 3. would not normally call .disable_plane()
2851 * because the actual plane visibility isn't changing, and we don't
2852 * deallocate the cursor ddb until the pipe gets disabled. So we must
2853 * force step 3. to call .disable_plane() to update the watermark
2854 * registers properly.
2855 *
2856 * Other planes do not suffer from this issues as their watermarks are
2857 * calculated based on the actual plane visibility. The only time this
2858 * can trigger for the other planes is during the initial readout as the
2859 * default value of the watermarks registers is not zero.
2860 */
2861static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
2862 struct intel_crtc *crtc)
2863{
2864 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2865 const struct intel_crtc_state *old_crtc_state =
2866 intel_atomic_get_old_crtc_state(state, crtc);
2867 struct intel_crtc_state *new_crtc_state =
2868 intel_atomic_get_new_crtc_state(state, crtc);
2869 struct intel_plane *plane;
2870
2871 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2872 struct intel_plane_state *plane_state;
2873 enum plane_id plane_id = plane->id;
2874
2875 /*
2876 * Force a full wm update for every plane on modeset.
2877 * Required because the reset value of the wm registers
2878 * is non-zero, whereas we want all disabled planes to
2879 * have zero watermarks. So if we turn off the relevant
2880 * power well the hardware state will go out of sync
2881 * with the software state.
2882 */
2883 if (!intel_crtc_needs_modeset(new_crtc_state) &&
2884 skl_plane_selected_wm_equals(plane,
2885 &old_crtc_state->wm.skl.optimal,
2886 &new_crtc_state->wm.skl.optimal))
2887 continue;
2888
2889 plane_state = intel_atomic_get_plane_state(state, plane);
2890 if (IS_ERR(plane_state))
2891 return PTR_ERR(plane_state);
2892
2893 new_crtc_state->update_planes |= BIT(plane_id);
2894 new_crtc_state->async_flip_planes = 0;
2895 new_crtc_state->do_async_flip = false;
2896 }
2897
2898 return 0;
2899}
2900
2901static int
2902skl_compute_wm(struct intel_atomic_state *state)
2903{
2904 struct intel_crtc *crtc;
2905 struct intel_crtc_state __maybe_unused *new_crtc_state;
2906 int ret, i;
2907
2908 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2909 ret = skl_build_pipe_wm(state, crtc);
2910 if (ret)
2911 return ret;
2912 }
2913
2914 ret = skl_compute_ddb(state);
2915 if (ret)
2916 return ret;
2917
2918 ret = intel_compute_sagv_mask(state);
2919 if (ret)
2920 return ret;
2921
2922 /*
2923 * skl_compute_ddb() will have adjusted the final watermarks
2924 * based on how much ddb is available. Now we can actually
2925 * check if the final watermarks changed.
2926 */
2927 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2928 ret = skl_wm_add_affected_planes(state, crtc);
2929 if (ret)
2930 return ret;
2931 }
2932
2933 skl_print_wm_changes(state);
2934
2935 return 0;
2936}
2937
2938static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
2939{
2940 level->enable = val & PLANE_WM_EN;
2941 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
2942 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
2943 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
2944}
2945
2946static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
2947 struct skl_pipe_wm *out)
2948{
2949 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2950 enum pipe pipe = crtc->pipe;
2951 enum plane_id plane_id;
2952 int level;
2953 u32 val;
2954
2955 for_each_plane_id_on_crtc(crtc, plane_id) {
2956 struct skl_plane_wm *wm = &out->planes[plane_id];
2957
2958 for (level = 0; level < i915->display.wm.num_levels; level++) {
2959 if (plane_id != PLANE_CURSOR)
2960 val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level));
2961 else
2962 val = intel_de_read(i915, CUR_WM(pipe, level));
2963
2964 skl_wm_level_from_reg_val(val, &wm->wm[level]);
2965 }
2966
2967 if (plane_id != PLANE_CURSOR)
2968 val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id));
2969 else
2970 val = intel_de_read(i915, CUR_WM_TRANS(pipe));
2971
2972 skl_wm_level_from_reg_val(val, &wm->trans_wm);
2973
2974 if (HAS_HW_SAGV_WM(i915)) {
2975 if (plane_id != PLANE_CURSOR)
2976 val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id));
2977 else
2978 val = intel_de_read(i915, CUR_WM_SAGV(pipe));
2979
2980 skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
2981
2982 if (plane_id != PLANE_CURSOR)
2983 val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id));
2984 else
2985 val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe));
2986
2987 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
2988 } else if (DISPLAY_VER(i915) >= 12) {
2989 wm->sagv.wm0 = wm->wm[0];
2990 wm->sagv.trans_wm = wm->trans_wm;
2991 }
2992 }
2993}
2994
2995static void skl_wm_get_hw_state(struct drm_i915_private *i915)
2996{
2997 struct intel_dbuf_state *dbuf_state =
2998 to_intel_dbuf_state(i915->display.dbuf.obj.state);
2999 struct intel_crtc *crtc;
3000
3001 if (HAS_MBUS_JOINING(i915))
3002 dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN;
3003
3004 for_each_intel_crtc(&i915->drm, crtc) {
3005 struct intel_crtc_state *crtc_state =
3006 to_intel_crtc_state(crtc->base.state);
3007 enum pipe pipe = crtc->pipe;
3008 unsigned int mbus_offset;
3009 enum plane_id plane_id;
3010 u8 slices;
3011
3012 memset(&crtc_state->wm.skl.optimal, 0,
3013 sizeof(crtc_state->wm.skl.optimal));
3014 if (crtc_state->hw.active)
3015 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
3016 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
3017
3018 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
3019
3020 for_each_plane_id_on_crtc(crtc, plane_id) {
3021 struct skl_ddb_entry *ddb =
3022 &crtc_state->wm.skl.plane_ddb[plane_id];
3023 struct skl_ddb_entry *ddb_y =
3024 &crtc_state->wm.skl.plane_ddb_y[plane_id];
3025
3026 if (!crtc_state->hw.active)
3027 continue;
3028
3029 skl_ddb_get_hw_plane_state(i915, crtc->pipe,
3030 plane_id, ddb, ddb_y);
3031
3032 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
3033 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
3034 }
3035
3036 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
3037
3038 /*
3039 * Used for checking overlaps, so we need absolute
3040 * offsets instead of MBUS relative offsets.
3041 */
3042 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3043 dbuf_state->joined_mbus);
3044 mbus_offset = mbus_ddb_offset(i915, slices);
3045 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
3046 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
3047
3048 /* The slices actually used by the planes on the pipe */
3049 dbuf_state->slices[pipe] =
3050 skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb);
3051
3052 drm_dbg_kms(&i915->drm,
3053 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
3054 crtc->base.base.id, crtc->base.name,
3055 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
3056 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
3057 str_yes_no(dbuf_state->joined_mbus));
3058 }
3059
3060 dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices;
3061}
3062
3063static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
3064{
3065 const struct intel_dbuf_state *dbuf_state =
3066 to_intel_dbuf_state(i915->display.dbuf.obj.state);
3067 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
3068 struct intel_crtc *crtc;
3069
3070 for_each_intel_crtc(&i915->drm, crtc) {
3071 const struct intel_crtc_state *crtc_state =
3072 to_intel_crtc_state(crtc->base.state);
3073
3074 entries[crtc->pipe] = crtc_state->wm.skl.ddb;
3075 }
3076
3077 for_each_intel_crtc(&i915->drm, crtc) {
3078 const struct intel_crtc_state *crtc_state =
3079 to_intel_crtc_state(crtc->base.state);
3080 u8 slices;
3081
3082 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3083 dbuf_state->joined_mbus);
3084 if (dbuf_state->slices[crtc->pipe] & ~slices)
3085 return true;
3086
3087 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
3088 I915_MAX_PIPES, crtc->pipe))
3089 return true;
3090 }
3091
3092 return false;
3093}
3094
3095static void skl_wm_sanitize(struct drm_i915_private *i915)
3096{
3097 struct intel_crtc *crtc;
3098
3099 /*
3100 * On TGL/RKL (at least) the BIOS likes to assign the planes
3101 * to the wrong DBUF slices. This will cause an infinite loop
3102 * in skl_commit_modeset_enables() as it can't find a way to
3103 * transition between the old bogus DBUF layout to the new
3104 * proper DBUF layout without DBUF allocation overlaps between
3105 * the planes (which cannot be allowed or else the hardware
3106 * may hang). If we detect a bogus DBUF layout just turn off
3107 * all the planes so that skl_commit_modeset_enables() can
3108 * simply ignore them.
3109 */
3110 if (!skl_dbuf_is_misconfigured(i915))
3111 return;
3112
3113 drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
3114
3115 for_each_intel_crtc(&i915->drm, crtc) {
3116 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
3117 const struct intel_plane_state *plane_state =
3118 to_intel_plane_state(plane->base.state);
3119 struct intel_crtc_state *crtc_state =
3120 to_intel_crtc_state(crtc->base.state);
3121
3122 if (plane_state->uapi.visible)
3123 intel_plane_disable_noatomic(crtc, plane);
3124
3125 drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
3126
3127 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3128 }
3129}
3130
3131static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3132{
3133 skl_wm_get_hw_state(i915);
3134 skl_wm_sanitize(i915);
3135}
3136
3137void intel_wm_state_verify(struct intel_atomic_state *state,
3138 struct intel_crtc *crtc)
3139{
3140 struct drm_i915_private *i915 = to_i915(state->base.dev);
3141 const struct intel_crtc_state *new_crtc_state =
3142 intel_atomic_get_new_crtc_state(state, crtc);
3143 struct skl_hw_state {
3144 struct skl_ddb_entry ddb[I915_MAX_PLANES];
3145 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
3146 struct skl_pipe_wm wm;
3147 } *hw;
3148 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
3149 struct intel_plane *plane;
3150 u8 hw_enabled_slices;
3151 int level;
3152
3153 if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active)
3154 return;
3155
3156 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3157 if (!hw)
3158 return;
3159
3160 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
3161
3162 skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y);
3163
3164 hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915);
3165
3166 if (DISPLAY_VER(i915) >= 11 &&
3167 hw_enabled_slices != i915->display.dbuf.enabled_slices)
3168 drm_err(&i915->drm,
3169 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
3170 i915->display.dbuf.enabled_slices,
3171 hw_enabled_slices);
3172
3173 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
3174 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
3175 const struct skl_wm_level *hw_wm_level, *sw_wm_level;
3176
3177 /* Watermarks */
3178 for (level = 0; level < i915->display.wm.num_levels; level++) {
3179 hw_wm_level = &hw->wm.planes[plane->id].wm[level];
3180 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
3181
3182 if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
3183 continue;
3184
3185 drm_err(&i915->drm,
3186 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3187 plane->base.base.id, plane->base.name, level,
3188 sw_wm_level->enable,
3189 sw_wm_level->blocks,
3190 sw_wm_level->lines,
3191 hw_wm_level->enable,
3192 hw_wm_level->blocks,
3193 hw_wm_level->lines);
3194 }
3195
3196 hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
3197 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
3198
3199 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3200 drm_err(&i915->drm,
3201 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3202 plane->base.base.id, plane->base.name,
3203 sw_wm_level->enable,
3204 sw_wm_level->blocks,
3205 sw_wm_level->lines,
3206 hw_wm_level->enable,
3207 hw_wm_level->blocks,
3208 hw_wm_level->lines);
3209 }
3210
3211 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
3212 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
3213
3214 if (HAS_HW_SAGV_WM(i915) &&
3215 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3216 drm_err(&i915->drm,
3217 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3218 plane->base.base.id, plane->base.name,
3219 sw_wm_level->enable,
3220 sw_wm_level->blocks,
3221 sw_wm_level->lines,
3222 hw_wm_level->enable,
3223 hw_wm_level->blocks,
3224 hw_wm_level->lines);
3225 }
3226
3227 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
3228 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
3229
3230 if (HAS_HW_SAGV_WM(i915) &&
3231 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3232 drm_err(&i915->drm,
3233 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3234 plane->base.base.id, plane->base.name,
3235 sw_wm_level->enable,
3236 sw_wm_level->blocks,
3237 sw_wm_level->lines,
3238 hw_wm_level->enable,
3239 hw_wm_level->blocks,
3240 hw_wm_level->lines);
3241 }
3242
3243 /* DDB */
3244 hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
3245 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
3246
3247 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
3248 drm_err(&i915->drm,
3249 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
3250 plane->base.base.id, plane->base.name,
3251 sw_ddb_entry->start, sw_ddb_entry->end,
3252 hw_ddb_entry->start, hw_ddb_entry->end);
3253 }
3254 }
3255
3256 kfree(hw);
3257}
3258
3259bool skl_watermark_ipc_enabled(struct drm_i915_private *i915)
3260{
3261 return i915->display.wm.ipc_enabled;
3262}
3263
3264void skl_watermark_ipc_update(struct drm_i915_private *i915)
3265{
3266 if (!HAS_IPC(i915))
3267 return;
3268
3269 intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE,
3270 skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0);
3271}
3272
3273static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915)
3274{
3275 /* Display WA #0477 WaDisableIPC: skl */
3276 if (IS_SKYLAKE(i915))
3277 return false;
3278
3279 /* Display WA #1141: SKL:all KBL:all CFL */
3280 if (IS_KABYLAKE(i915) ||
3281 IS_COFFEELAKE(i915) ||
3282 IS_COMETLAKE(i915))
3283 return i915->dram_info.symmetric_memory;
3284
3285 return true;
3286}
3287
3288void skl_watermark_ipc_init(struct drm_i915_private *i915)
3289{
3290 if (!HAS_IPC(i915))
3291 return;
3292
3293 i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915);
3294
3295 skl_watermark_ipc_update(i915);
3296}
3297
3298static void
3299adjust_wm_latency(struct drm_i915_private *i915,
3300 u16 wm[], int num_levels, int read_latency)
3301{
3302 bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed;
3303 int i, level;
3304
3305 /*
3306 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
3307 * need to be disabled. We make sure to sanitize the values out
3308 * of the punit to satisfy this requirement.
3309 */
3310 for (level = 1; level < num_levels; level++) {
3311 if (wm[level] == 0) {
3312 for (i = level + 1; i < num_levels; i++)
3313 wm[i] = 0;
3314
3315 num_levels = level;
3316 break;
3317 }
3318 }
3319
3320 /*
3321 * WaWmMemoryReadLatency
3322 *
3323 * punit doesn't take into account the read latency so we need
3324 * to add proper adjustement to each valid level we retrieve
3325 * from the punit when level 0 response data is 0us.
3326 */
3327 if (wm[0] == 0) {
3328 for (level = 0; level < num_levels; level++)
3329 wm[level] += read_latency;
3330 }
3331
3332 /*
3333 * WA Level-0 adjustment for 16GB DIMMs: SKL+
3334 * If we could not get dimm info enable this WA to prevent from
3335 * any underrun. If not able to get Dimm info assume 16GB dimm
3336 * to avoid any underrun.
3337 */
3338 if (wm_lv_0_adjust_needed)
3339 wm[0] += 1;
3340}
3341
3342static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3343{
3344 int num_levels = i915->display.wm.num_levels;
3345 u32 val;
3346
3347 val = intel_de_read(i915, MTL_LATENCY_LP0_LP1);
3348 wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3349 wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3350
3351 val = intel_de_read(i915, MTL_LATENCY_LP2_LP3);
3352 wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3353 wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3354
3355 val = intel_de_read(i915, MTL_LATENCY_LP4_LP5);
3356 wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3357 wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3358
3359 adjust_wm_latency(i915, wm, num_levels, 6);
3360}
3361
3362static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3363{
3364 int num_levels = i915->display.wm.num_levels;
3365 int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2;
3366 int mult = IS_DG2(i915) ? 2 : 1;
3367 u32 val;
3368 int ret;
3369
3370 /* read the first set of memory latencies[0:3] */
3371 val = 0; /* data0 to be programmed to 0 for first set */
3372 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3373 if (ret) {
3374 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3375 return;
3376 }
3377
3378 wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3379 wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3380 wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3381 wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3382
3383 /* read the second set of memory latencies[4:7] */
3384 val = 1; /* data0 to be programmed to 1 for second set */
3385 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3386 if (ret) {
3387 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3388 return;
3389 }
3390
3391 wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3392 wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3393 wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3394 wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3395
3396 adjust_wm_latency(i915, wm, num_levels, read_latency);
3397}
3398
3399static void skl_setup_wm_latency(struct drm_i915_private *i915)
3400{
3401 if (HAS_HW_SAGV_WM(i915))
3402 i915->display.wm.num_levels = 6;
3403 else
3404 i915->display.wm.num_levels = 8;
3405
3406 if (DISPLAY_VER(i915) >= 14)
3407 mtl_read_wm_latency(i915, i915->display.wm.skl_latency);
3408 else
3409 skl_read_wm_latency(i915, i915->display.wm.skl_latency);
3410
3411 intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency);
3412}
3413
3414static const struct intel_wm_funcs skl_wm_funcs = {
3415 .compute_global_watermarks = skl_compute_wm,
3416 .get_hw_state = skl_wm_get_hw_state_and_sanitize,
3417};
3418
3419void skl_wm_init(struct drm_i915_private *i915)
3420{
3421 intel_sagv_init(i915);
3422
3423 skl_setup_wm_latency(i915);
3424
3425 i915->display.funcs.wm = &skl_wm_funcs;
3426}
3427
3428static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
3429{
3430 struct intel_dbuf_state *dbuf_state;
3431
3432 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
3433 if (!dbuf_state)
3434 return NULL;
3435
3436 return &dbuf_state->base;
3437}
3438
3439static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
3440 struct intel_global_state *state)
3441{
3442 kfree(state);
3443}
3444
3445static const struct intel_global_state_funcs intel_dbuf_funcs = {
3446 .atomic_duplicate_state = intel_dbuf_duplicate_state,
3447 .atomic_destroy_state = intel_dbuf_destroy_state,
3448};
3449
3450struct intel_dbuf_state *
3451intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
3452{
3453 struct drm_i915_private *i915 = to_i915(state->base.dev);
3454 struct intel_global_state *dbuf_state;
3455
3456 dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj);
3457 if (IS_ERR(dbuf_state))
3458 return ERR_CAST(dbuf_state);
3459
3460 return to_intel_dbuf_state(dbuf_state);
3461}
3462
3463int intel_dbuf_init(struct drm_i915_private *i915)
3464{
3465 struct intel_dbuf_state *dbuf_state;
3466
3467 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
3468 if (!dbuf_state)
3469 return -ENOMEM;
3470
3471 intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj,
3472 &dbuf_state->base, &intel_dbuf_funcs);
3473
3474 return 0;
3475}
3476
3477/*
3478 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
3479 * update the request state of all DBUS slices.
3480 */
3481static void update_mbus_pre_enable(struct intel_atomic_state *state)
3482{
3483 struct drm_i915_private *i915 = to_i915(state->base.dev);
3484 u32 mbus_ctl, dbuf_min_tracker_val;
3485 enum dbuf_slice slice;
3486 const struct intel_dbuf_state *dbuf_state =
3487 intel_atomic_get_new_dbuf_state(state);
3488
3489 if (!HAS_MBUS_JOINING(i915))
3490 return;
3491
3492 /*
3493 * TODO: Implement vblank synchronized MBUS joining changes.
3494 * Must be properly coordinated with dbuf reprogramming.
3495 */
3496 if (dbuf_state->joined_mbus) {
3497 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
3498 MBUS_JOIN_PIPE_SELECT_NONE;
3499 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
3500 } else {
3501 mbus_ctl = MBUS_HASHING_MODE_2x2 |
3502 MBUS_JOIN_PIPE_SELECT_NONE;
3503 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
3504 }
3505
3506 intel_de_rmw(i915, MBUS_CTL,
3507 MBUS_HASHING_MODE_MASK | MBUS_JOIN |
3508 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
3509
3510 for_each_dbuf_slice(i915, slice)
3511 intel_de_rmw(i915, DBUF_CTL_S(slice),
3512 DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
3513 dbuf_min_tracker_val);
3514}
3515
3516void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
3517{
3518 struct drm_i915_private *i915 = to_i915(state->base.dev);
3519 const struct intel_dbuf_state *new_dbuf_state =
3520 intel_atomic_get_new_dbuf_state(state);
3521 const struct intel_dbuf_state *old_dbuf_state =
3522 intel_atomic_get_old_dbuf_state(state);
3523
3524 if (!new_dbuf_state ||
3525 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3526 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3527 return;
3528
3529 WARN_ON(!new_dbuf_state->base.changed);
3530
3531 update_mbus_pre_enable(state);
3532 gen9_dbuf_slices_update(i915,
3533 old_dbuf_state->enabled_slices |
3534 new_dbuf_state->enabled_slices);
3535}
3536
3537void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
3538{
3539 struct drm_i915_private *i915 = to_i915(state->base.dev);
3540 const struct intel_dbuf_state *new_dbuf_state =
3541 intel_atomic_get_new_dbuf_state(state);
3542 const struct intel_dbuf_state *old_dbuf_state =
3543 intel_atomic_get_old_dbuf_state(state);
3544
3545 if (!new_dbuf_state ||
3546 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3547 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3548 return;
3549
3550 WARN_ON(!new_dbuf_state->base.changed);
3551
3552 gen9_dbuf_slices_update(i915,
3553 new_dbuf_state->enabled_slices);
3554}
3555
3556static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes)
3557{
3558 switch (pipe) {
3559 case PIPE_A:
3560 return !(active_pipes & BIT(PIPE_D));
3561 case PIPE_D:
3562 return !(active_pipes & BIT(PIPE_A));
3563 case PIPE_B:
3564 return !(active_pipes & BIT(PIPE_C));
3565 case PIPE_C:
3566 return !(active_pipes & BIT(PIPE_B));
3567 default: /* to suppress compiler warning */
3568 MISSING_CASE(pipe);
3569 break;
3570 }
3571
3572 return false;
3573}
3574
3575void intel_mbus_dbox_update(struct intel_atomic_state *state)
3576{
3577 struct drm_i915_private *i915 = to_i915(state->base.dev);
3578 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3579 const struct intel_crtc_state *new_crtc_state;
3580 const struct intel_crtc *crtc;
3581 u32 val = 0;
3582 int i;
3583
3584 if (DISPLAY_VER(i915) < 11)
3585 return;
3586
3587 new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3588 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3589 if (!new_dbuf_state ||
3590 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
3591 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
3592 return;
3593
3594 if (DISPLAY_VER(i915) >= 14)
3595 val |= MBUS_DBOX_I_CREDIT(2);
3596
3597 if (DISPLAY_VER(i915) >= 12) {
3598 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
3599 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
3600 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
3601 }
3602
3603 if (DISPLAY_VER(i915) >= 14)
3604 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) :
3605 MBUS_DBOX_A_CREDIT(8);
3606 else if (IS_ALDERLAKE_P(i915))
3607 /* Wa_22010947358:adl-p */
3608 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
3609 MBUS_DBOX_A_CREDIT(4);
3610 else
3611 val |= MBUS_DBOX_A_CREDIT(2);
3612
3613 if (DISPLAY_VER(i915) >= 14) {
3614 val |= MBUS_DBOX_B_CREDIT(0xA);
3615 } else if (IS_ALDERLAKE_P(i915)) {
3616 val |= MBUS_DBOX_BW_CREDIT(2);
3617 val |= MBUS_DBOX_B_CREDIT(8);
3618 } else if (DISPLAY_VER(i915) >= 12) {
3619 val |= MBUS_DBOX_BW_CREDIT(2);
3620 val |= MBUS_DBOX_B_CREDIT(12);
3621 } else {
3622 val |= MBUS_DBOX_BW_CREDIT(1);
3623 val |= MBUS_DBOX_B_CREDIT(8);
3624 }
3625
3626 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
3627 u32 pipe_val = val;
3628
3629 if (!new_crtc_state->hw.active)
3630 continue;
3631
3632 if (DISPLAY_VER(i915) >= 14) {
3633 if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe,
3634 new_dbuf_state->active_pipes))
3635 pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL;
3636 else
3637 pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL;
3638 }
3639
3640 intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val);
3641 }
3642}
3643
3644static int skl_watermark_ipc_status_show(struct seq_file *m, void *data)
3645{
3646 struct drm_i915_private *i915 = m->private;
3647
3648 seq_printf(m, "Isochronous Priority Control: %s\n",
3649 str_yes_no(skl_watermark_ipc_enabled(i915)));
3650 return 0;
3651}
3652
3653static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file)
3654{
3655 struct drm_i915_private *i915 = inode->i_private;
3656
3657 return single_open(file, skl_watermark_ipc_status_show, i915);
3658}
3659
3660static ssize_t skl_watermark_ipc_status_write(struct file *file,
3661 const char __user *ubuf,
3662 size_t len, loff_t *offp)
3663{
3664 struct seq_file *m = file->private_data;
3665 struct drm_i915_private *i915 = m->private;
3666 intel_wakeref_t wakeref;
3667 bool enable;
3668 int ret;
3669
3670 ret = kstrtobool_from_user(ubuf, len, &enable);
3671 if (ret < 0)
3672 return ret;
3673
3674 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
3675 if (!skl_watermark_ipc_enabled(i915) && enable)
3676 drm_info(&i915->drm,
3677 "Enabling IPC: WM will be proper only after next commit\n");
3678 i915->display.wm.ipc_enabled = enable;
3679 skl_watermark_ipc_update(i915);
3680 }
3681
3682 return len;
3683}
3684
3685static const struct file_operations skl_watermark_ipc_status_fops = {
3686 .owner = THIS_MODULE,
3687 .open = skl_watermark_ipc_status_open,
3688 .read = seq_read,
3689 .llseek = seq_lseek,
3690 .release = single_release,
3691 .write = skl_watermark_ipc_status_write
3692};
3693
3694static int intel_sagv_status_show(struct seq_file *m, void *unused)
3695{
3696 struct drm_i915_private *i915 = m->private;
3697 static const char * const sagv_status[] = {
3698 [I915_SAGV_UNKNOWN] = "unknown",
3699 [I915_SAGV_DISABLED] = "disabled",
3700 [I915_SAGV_ENABLED] = "enabled",
3701 [I915_SAGV_NOT_CONTROLLED] = "not controlled",
3702 };
3703
3704 seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915)));
3705 seq_printf(m, "SAGV modparam: %s\n",
3706 str_enabled_disabled(i915->display.params.enable_sagv));
3707 seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]);
3708 seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us);
3709
3710 return 0;
3711}
3712
3713DEFINE_SHOW_ATTRIBUTE(intel_sagv_status);
3714
3715void skl_watermark_debugfs_register(struct drm_i915_private *i915)
3716{
3717 struct drm_minor *minor = i915->drm.primary;
3718
3719 if (HAS_IPC(i915))
3720 debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915,
3721 &skl_watermark_ipc_status_fops);
3722
3723 if (HAS_SAGV(i915))
3724 debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915,
3725 &intel_sagv_status_fops);
3726}
3727
3728unsigned int skl_watermark_max_latency(struct drm_i915_private *i915)
3729{
3730 int level;
3731
3732 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
3733 unsigned int latency = skl_wm_latency(i915, level, NULL);
3734
3735 if (latency)
3736 return latency;
3737 }
3738
3739 return 0;
3740}