Loading...
Note: File does not exist in v3.1.
1/* SPDX-License-Identifier: MIT */
2/*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11#include <linux/component.h>
12#include <linux/i2c.h>
13#include <linux/random.h>
14
15#include <drm/display/drm_hdcp_helper.h>
16#include <drm/i915_component.h>
17
18#include "i915_drv.h"
19#include "i915_reg.h"
20#include "intel_connector.h"
21#include "intel_de.h"
22#include "intel_display_power.h"
23#include "intel_display_power_well.h"
24#include "intel_display_types.h"
25#include "intel_hdcp.h"
26#include "intel_hdcp_gsc.h"
27#include "intel_hdcp_regs.h"
28#include "intel_pcode.h"
29
30#define KEY_LOAD_TRIES 5
31#define HDCP2_LC_RETRY_CNT 3
32
33static int intel_conn_to_vcpi(struct drm_atomic_state *state,
34 struct intel_connector *connector)
35{
36 struct drm_dp_mst_topology_mgr *mgr;
37 struct drm_dp_mst_atomic_payload *payload;
38 struct drm_dp_mst_topology_state *mst_state;
39 int vcpi = 0;
40
41 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42 if (!connector->port)
43 return 0;
44 mgr = connector->port->mgr;
45
46 drm_modeset_lock(&mgr->base.lock, state->acquire_ctx);
47 mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48 payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49 if (drm_WARN_ON(mgr->dev, !payload))
50 goto out;
51
52 vcpi = payload->vcpi;
53 if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54 vcpi = 0;
55 goto out;
56 }
57out:
58 return vcpi;
59}
60
61/*
62 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63 * content_type for all streams in DP MST topology because security f/w doesn't
64 * have any provision to mark content_type for each stream separately, it marks
65 * all available streams with the content_type proivided at the time of port
66 * authentication. This may prohibit the userspace to use type1 content on
67 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68 * DP MST topology. Though it is not compulsory, security fw should change its
69 * policy to mark different content_types for different streams.
70 */
71static void
72intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
73{
74 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
75 bool enforce_type0 = false;
76 int k;
77
78 if (dig_port->hdcp_auth_status)
79 return;
80
81 if (!dig_port->hdcp_mst_type1_capable)
82 enforce_type0 = true;
83
84 /*
85 * Apply common protection level across all streams in DP MST Topology.
86 * Use highest supported content type for all streams in DP MST Topology.
87 */
88 for (k = 0; k < data->k; k++)
89 data->streams[k].stream_type =
90 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
91}
92
93static void intel_hdcp_prepare_streams(struct intel_connector *connector)
94{
95 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
96 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
97 struct intel_hdcp *hdcp = &connector->hdcp;
98
99 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
100 data->streams[0].stream_type = hdcp->content_type;
101 } else {
102 intel_hdcp_required_content_stream(dig_port);
103 }
104}
105
106static
107bool intel_hdcp_is_ksv_valid(u8 *ksv)
108{
109 int i, ones = 0;
110 /* KSV has 20 1's and 20 0's */
111 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
112 ones += hweight8(ksv[i]);
113 if (ones != 20)
114 return false;
115
116 return true;
117}
118
119static
120int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
121 const struct intel_hdcp_shim *shim, u8 *bksv)
122{
123 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
124 int ret, i, tries = 2;
125
126 /* HDCP spec states that we must retry the bksv if it is invalid */
127 for (i = 0; i < tries; i++) {
128 ret = shim->read_bksv(dig_port, bksv);
129 if (ret)
130 return ret;
131 if (intel_hdcp_is_ksv_valid(bksv))
132 break;
133 }
134 if (i == tries) {
135 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
136 return -ENODEV;
137 }
138
139 return 0;
140}
141
142/* Is HDCP1.4 capable on Platform and Sink */
143bool intel_hdcp_capable(struct intel_connector *connector)
144{
145 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
146 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
147 bool capable = false;
148 u8 bksv[5];
149
150 if (!shim)
151 return capable;
152
153 if (shim->hdcp_capable) {
154 shim->hdcp_capable(dig_port, &capable);
155 } else {
156 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
157 capable = true;
158 }
159
160 return capable;
161}
162
163/* Is HDCP2.2 capable on Platform and Sink */
164bool intel_hdcp2_capable(struct intel_connector *connector)
165{
166 struct drm_i915_private *i915 = to_i915(connector->base.dev);
167 struct intel_hdcp *hdcp = &connector->hdcp;
168 bool capable = false;
169
170 /* I915 support for HDCP2.2 */
171 if (!hdcp->hdcp2_supported)
172 return false;
173
174 /* If MTL+ make sure gsc is loaded and proxy is setup */
175 if (intel_hdcp_gsc_cs_required(i915)) {
176 if (!intel_hdcp_gsc_check_status(i915))
177 return false;
178 }
179
180 /* MEI/GSC interface is solid depending on which is used */
181 mutex_lock(&i915->display.hdcp.hdcp_mutex);
182 if (!i915->display.hdcp.comp_added || !i915->display.hdcp.arbiter) {
183 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
184 return false;
185 }
186 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
187
188 /* Sink's capability for HDCP2.2 */
189 hdcp->shim->hdcp_2_2_capable(connector, &capable);
190
191 return capable;
192}
193
194static bool intel_hdcp_in_use(struct drm_i915_private *i915,
195 enum transcoder cpu_transcoder, enum port port)
196{
197 return intel_de_read(i915,
198 HDCP_STATUS(i915, cpu_transcoder, port)) &
199 HDCP_STATUS_ENC;
200}
201
202static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
203 enum transcoder cpu_transcoder, enum port port)
204{
205 return intel_de_read(i915,
206 HDCP2_STATUS(i915, cpu_transcoder, port)) &
207 LINK_ENCRYPTION_STATUS;
208}
209
210static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
211 const struct intel_hdcp_shim *shim)
212{
213 int ret, read_ret;
214 bool ksv_ready;
215
216 /* Poll for ksv list ready (spec says max time allowed is 5s) */
217 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
218 &ksv_ready),
219 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
220 100 * 1000);
221 if (ret)
222 return ret;
223 if (read_ret)
224 return read_ret;
225 if (!ksv_ready)
226 return -ETIMEDOUT;
227
228 return 0;
229}
230
231static bool hdcp_key_loadable(struct drm_i915_private *i915)
232{
233 enum i915_power_well_id id;
234 intel_wakeref_t wakeref;
235 bool enabled = false;
236
237 /*
238 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
239 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
240 */
241 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
242 id = HSW_DISP_PW_GLOBAL;
243 else
244 id = SKL_DISP_PW_1;
245
246 /* PG1 (power well #1) needs to be enabled */
247 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
248 enabled = intel_display_power_well_is_enabled(i915, id);
249
250 /*
251 * Another req for hdcp key loadability is enabled state of pll for
252 * cdclk. Without active crtc we wont land here. So we are assuming that
253 * cdclk is already on.
254 */
255
256 return enabled;
257}
258
259static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
260{
261 intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
262 intel_de_write(i915, HDCP_KEY_STATUS,
263 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
264}
265
266static int intel_hdcp_load_keys(struct drm_i915_private *i915)
267{
268 int ret;
269 u32 val;
270
271 val = intel_de_read(i915, HDCP_KEY_STATUS);
272 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
273 return 0;
274
275 /*
276 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
277 * out of reset. So if Key is not already loaded, its an error state.
278 */
279 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
280 if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
281 return -ENXIO;
282
283 /*
284 * Initiate loading the HDCP key from fuses.
285 *
286 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
287 * version 9 platforms (minus BXT) differ in the key load trigger
288 * process from other platforms. These platforms use the GT Driver
289 * Mailbox interface.
290 */
291 if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
292 ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
293 if (ret) {
294 drm_err(&i915->drm,
295 "Failed to initiate HDCP key load (%d)\n",
296 ret);
297 return ret;
298 }
299 } else {
300 intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
301 }
302
303 /* Wait for the keys to load (500us) */
304 ret = __intel_wait_for_register(&i915->uncore, HDCP_KEY_STATUS,
305 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
306 10, 1, &val);
307 if (ret)
308 return ret;
309 else if (!(val & HDCP_KEY_LOAD_STATUS))
310 return -ENXIO;
311
312 /* Send Aksv over to PCH display for use in authentication */
313 intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
314
315 return 0;
316}
317
318/* Returns updated SHA-1 index */
319static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
320{
321 intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
322 if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
323 drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
324 return -ETIMEDOUT;
325 }
326 return 0;
327}
328
329static
330u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
331 enum transcoder cpu_transcoder, enum port port)
332{
333 if (DISPLAY_VER(i915) >= 12) {
334 switch (cpu_transcoder) {
335 case TRANSCODER_A:
336 return HDCP_TRANSA_REP_PRESENT |
337 HDCP_TRANSA_SHA1_M0;
338 case TRANSCODER_B:
339 return HDCP_TRANSB_REP_PRESENT |
340 HDCP_TRANSB_SHA1_M0;
341 case TRANSCODER_C:
342 return HDCP_TRANSC_REP_PRESENT |
343 HDCP_TRANSC_SHA1_M0;
344 case TRANSCODER_D:
345 return HDCP_TRANSD_REP_PRESENT |
346 HDCP_TRANSD_SHA1_M0;
347 default:
348 drm_err(&i915->drm, "Unknown transcoder %d\n",
349 cpu_transcoder);
350 return -EINVAL;
351 }
352 }
353
354 switch (port) {
355 case PORT_A:
356 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
357 case PORT_B:
358 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
359 case PORT_C:
360 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
361 case PORT_D:
362 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
363 case PORT_E:
364 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
365 default:
366 drm_err(&i915->drm, "Unknown port %d\n", port);
367 return -EINVAL;
368 }
369}
370
371static
372int intel_hdcp_validate_v_prime(struct intel_connector *connector,
373 const struct intel_hdcp_shim *shim,
374 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
375{
376 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
377 struct drm_i915_private *i915 = to_i915(connector->base.dev);
378 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
379 enum port port = dig_port->base.port;
380 u32 vprime, sha_text, sha_leftovers, rep_ctl;
381 int ret, i, j, sha_idx;
382
383 /* Process V' values from the receiver */
384 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
385 ret = shim->read_v_prime_part(dig_port, i, &vprime);
386 if (ret)
387 return ret;
388 intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
389 }
390
391 /*
392 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
393 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
394 * stream is written via the HDCP_SHA_TEXT register in 32-bit
395 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
396 * index will keep track of our progress through the 64 bytes as well as
397 * helping us work the 40-bit KSVs through our 32-bit register.
398 *
399 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
400 */
401 sha_idx = 0;
402 sha_text = 0;
403 sha_leftovers = 0;
404 rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
405 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
406 for (i = 0; i < num_downstream; i++) {
407 unsigned int sha_empty;
408 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
409
410 /* Fill up the empty slots in sha_text and write it out */
411 sha_empty = sizeof(sha_text) - sha_leftovers;
412 for (j = 0; j < sha_empty; j++) {
413 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
414 sha_text |= ksv[j] << off;
415 }
416
417 ret = intel_write_sha_text(i915, sha_text);
418 if (ret < 0)
419 return ret;
420
421 /* Programming guide writes this every 64 bytes */
422 sha_idx += sizeof(sha_text);
423 if (!(sha_idx % 64))
424 intel_de_write(i915, HDCP_REP_CTL,
425 rep_ctl | HDCP_SHA1_TEXT_32);
426
427 /* Store the leftover bytes from the ksv in sha_text */
428 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
429 sha_text = 0;
430 for (j = 0; j < sha_leftovers; j++)
431 sha_text |= ksv[sha_empty + j] <<
432 ((sizeof(sha_text) - j - 1) * 8);
433
434 /*
435 * If we still have room in sha_text for more data, continue.
436 * Otherwise, write it out immediately.
437 */
438 if (sizeof(sha_text) > sha_leftovers)
439 continue;
440
441 ret = intel_write_sha_text(i915, sha_text);
442 if (ret < 0)
443 return ret;
444 sha_leftovers = 0;
445 sha_text = 0;
446 sha_idx += sizeof(sha_text);
447 }
448
449 /*
450 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
451 * bytes are leftover from the last ksv, we might be able to fit them
452 * all in sha_text (first 2 cases), or we might need to split them up
453 * into 2 writes (last 2 cases).
454 */
455 if (sha_leftovers == 0) {
456 /* Write 16 bits of text, 16 bits of M0 */
457 intel_de_write(i915, HDCP_REP_CTL,
458 rep_ctl | HDCP_SHA1_TEXT_16);
459 ret = intel_write_sha_text(i915,
460 bstatus[0] << 8 | bstatus[1]);
461 if (ret < 0)
462 return ret;
463 sha_idx += sizeof(sha_text);
464
465 /* Write 32 bits of M0 */
466 intel_de_write(i915, HDCP_REP_CTL,
467 rep_ctl | HDCP_SHA1_TEXT_0);
468 ret = intel_write_sha_text(i915, 0);
469 if (ret < 0)
470 return ret;
471 sha_idx += sizeof(sha_text);
472
473 /* Write 16 bits of M0 */
474 intel_de_write(i915, HDCP_REP_CTL,
475 rep_ctl | HDCP_SHA1_TEXT_16);
476 ret = intel_write_sha_text(i915, 0);
477 if (ret < 0)
478 return ret;
479 sha_idx += sizeof(sha_text);
480
481 } else if (sha_leftovers == 1) {
482 /* Write 24 bits of text, 8 bits of M0 */
483 intel_de_write(i915, HDCP_REP_CTL,
484 rep_ctl | HDCP_SHA1_TEXT_24);
485 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
486 /* Only 24-bits of data, must be in the LSB */
487 sha_text = (sha_text & 0xffffff00) >> 8;
488 ret = intel_write_sha_text(i915, sha_text);
489 if (ret < 0)
490 return ret;
491 sha_idx += sizeof(sha_text);
492
493 /* Write 32 bits of M0 */
494 intel_de_write(i915, HDCP_REP_CTL,
495 rep_ctl | HDCP_SHA1_TEXT_0);
496 ret = intel_write_sha_text(i915, 0);
497 if (ret < 0)
498 return ret;
499 sha_idx += sizeof(sha_text);
500
501 /* Write 24 bits of M0 */
502 intel_de_write(i915, HDCP_REP_CTL,
503 rep_ctl | HDCP_SHA1_TEXT_8);
504 ret = intel_write_sha_text(i915, 0);
505 if (ret < 0)
506 return ret;
507 sha_idx += sizeof(sha_text);
508
509 } else if (sha_leftovers == 2) {
510 /* Write 32 bits of text */
511 intel_de_write(i915, HDCP_REP_CTL,
512 rep_ctl | HDCP_SHA1_TEXT_32);
513 sha_text |= bstatus[0] << 8 | bstatus[1];
514 ret = intel_write_sha_text(i915, sha_text);
515 if (ret < 0)
516 return ret;
517 sha_idx += sizeof(sha_text);
518
519 /* Write 64 bits of M0 */
520 intel_de_write(i915, HDCP_REP_CTL,
521 rep_ctl | HDCP_SHA1_TEXT_0);
522 for (i = 0; i < 2; i++) {
523 ret = intel_write_sha_text(i915, 0);
524 if (ret < 0)
525 return ret;
526 sha_idx += sizeof(sha_text);
527 }
528
529 /*
530 * Terminate the SHA-1 stream by hand. For the other leftover
531 * cases this is appended by the hardware.
532 */
533 intel_de_write(i915, HDCP_REP_CTL,
534 rep_ctl | HDCP_SHA1_TEXT_32);
535 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
536 ret = intel_write_sha_text(i915, sha_text);
537 if (ret < 0)
538 return ret;
539 sha_idx += sizeof(sha_text);
540 } else if (sha_leftovers == 3) {
541 /* Write 32 bits of text (filled from LSB) */
542 intel_de_write(i915, HDCP_REP_CTL,
543 rep_ctl | HDCP_SHA1_TEXT_32);
544 sha_text |= bstatus[0];
545 ret = intel_write_sha_text(i915, sha_text);
546 if (ret < 0)
547 return ret;
548 sha_idx += sizeof(sha_text);
549
550 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
551 intel_de_write(i915, HDCP_REP_CTL,
552 rep_ctl | HDCP_SHA1_TEXT_8);
553 ret = intel_write_sha_text(i915, bstatus[1]);
554 if (ret < 0)
555 return ret;
556 sha_idx += sizeof(sha_text);
557
558 /* Write 32 bits of M0 */
559 intel_de_write(i915, HDCP_REP_CTL,
560 rep_ctl | HDCP_SHA1_TEXT_0);
561 ret = intel_write_sha_text(i915, 0);
562 if (ret < 0)
563 return ret;
564 sha_idx += sizeof(sha_text);
565
566 /* Write 8 bits of M0 */
567 intel_de_write(i915, HDCP_REP_CTL,
568 rep_ctl | HDCP_SHA1_TEXT_24);
569 ret = intel_write_sha_text(i915, 0);
570 if (ret < 0)
571 return ret;
572 sha_idx += sizeof(sha_text);
573 } else {
574 drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
575 sha_leftovers);
576 return -EINVAL;
577 }
578
579 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
580 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
581 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
582 ret = intel_write_sha_text(i915, 0);
583 if (ret < 0)
584 return ret;
585 sha_idx += sizeof(sha_text);
586 }
587
588 /*
589 * Last write gets the length of the concatenation in bits. That is:
590 * - 5 bytes per device
591 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
592 */
593 sha_text = (num_downstream * 5 + 10) * 8;
594 ret = intel_write_sha_text(i915, sha_text);
595 if (ret < 0)
596 return ret;
597
598 /* Tell the HW we're done with the hash and wait for it to ACK */
599 intel_de_write(i915, HDCP_REP_CTL,
600 rep_ctl | HDCP_SHA1_COMPLETE_HASH);
601 if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
602 HDCP_SHA1_COMPLETE, 1)) {
603 drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
604 return -ETIMEDOUT;
605 }
606 if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
607 drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
608 return -ENXIO;
609 }
610
611 return 0;
612}
613
614/* Implements Part 2 of the HDCP authorization procedure */
615static
616int intel_hdcp_auth_downstream(struct intel_connector *connector)
617{
618 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
619 struct drm_i915_private *i915 = to_i915(connector->base.dev);
620 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
621 u8 bstatus[2], num_downstream, *ksv_fifo;
622 int ret, i, tries = 3;
623
624 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
625 if (ret) {
626 drm_dbg_kms(&i915->drm,
627 "KSV list failed to become ready (%d)\n", ret);
628 return ret;
629 }
630
631 ret = shim->read_bstatus(dig_port, bstatus);
632 if (ret)
633 return ret;
634
635 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
636 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
637 drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
638 return -EPERM;
639 }
640
641 /*
642 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
643 * the HDCP encryption. That implies that repeater can't have its own
644 * display. As there is no consumption of encrypted content in the
645 * repeater with 0 downstream devices, we are failing the
646 * authentication.
647 */
648 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
649 if (num_downstream == 0) {
650 drm_dbg_kms(&i915->drm,
651 "Repeater with zero downstream devices\n");
652 return -EINVAL;
653 }
654
655 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
656 if (!ksv_fifo) {
657 drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
658 return -ENOMEM;
659 }
660
661 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
662 if (ret)
663 goto err;
664
665 if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
666 num_downstream) > 0) {
667 drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
668 ret = -EPERM;
669 goto err;
670 }
671
672 /*
673 * When V prime mismatches, DP Spec mandates re-read of
674 * V prime atleast twice.
675 */
676 for (i = 0; i < tries; i++) {
677 ret = intel_hdcp_validate_v_prime(connector, shim,
678 ksv_fifo, num_downstream,
679 bstatus);
680 if (!ret)
681 break;
682 }
683
684 if (i == tries) {
685 drm_dbg_kms(&i915->drm,
686 "V Prime validation failed.(%d)\n", ret);
687 goto err;
688 }
689
690 drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
691 num_downstream);
692 ret = 0;
693err:
694 kfree(ksv_fifo);
695 return ret;
696}
697
698/* Implements Part 1 of the HDCP authorization procedure */
699static int intel_hdcp_auth(struct intel_connector *connector)
700{
701 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
702 struct drm_i915_private *i915 = to_i915(connector->base.dev);
703 struct intel_hdcp *hdcp = &connector->hdcp;
704 const struct intel_hdcp_shim *shim = hdcp->shim;
705 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
706 enum port port = dig_port->base.port;
707 unsigned long r0_prime_gen_start;
708 int ret, i, tries = 2;
709 union {
710 u32 reg[2];
711 u8 shim[DRM_HDCP_AN_LEN];
712 } an;
713 union {
714 u32 reg[2];
715 u8 shim[DRM_HDCP_KSV_LEN];
716 } bksv;
717 union {
718 u32 reg;
719 u8 shim[DRM_HDCP_RI_LEN];
720 } ri;
721 bool repeater_present, hdcp_capable;
722
723 /*
724 * Detects whether the display is HDCP capable. Although we check for
725 * valid Bksv below, the HDCP over DP spec requires that we check
726 * whether the display supports HDCP before we write An. For HDMI
727 * displays, this is not necessary.
728 */
729 if (shim->hdcp_capable) {
730 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
731 if (ret)
732 return ret;
733 if (!hdcp_capable) {
734 drm_dbg_kms(&i915->drm,
735 "Panel is not HDCP capable\n");
736 return -EINVAL;
737 }
738 }
739
740 /* Initialize An with 2 random values and acquire it */
741 for (i = 0; i < 2; i++)
742 intel_de_write(i915,
743 HDCP_ANINIT(i915, cpu_transcoder, port),
744 get_random_u32());
745 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
746 HDCP_CONF_CAPTURE_AN);
747
748 /* Wait for An to be acquired */
749 if (intel_de_wait_for_set(i915,
750 HDCP_STATUS(i915, cpu_transcoder, port),
751 HDCP_STATUS_AN_READY, 1)) {
752 drm_err(&i915->drm, "Timed out waiting for An\n");
753 return -ETIMEDOUT;
754 }
755
756 an.reg[0] = intel_de_read(i915,
757 HDCP_ANLO(i915, cpu_transcoder, port));
758 an.reg[1] = intel_de_read(i915,
759 HDCP_ANHI(i915, cpu_transcoder, port));
760 ret = shim->write_an_aksv(dig_port, an.shim);
761 if (ret)
762 return ret;
763
764 r0_prime_gen_start = jiffies;
765
766 memset(&bksv, 0, sizeof(bksv));
767
768 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
769 if (ret < 0)
770 return ret;
771
772 if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
773 drm_err(&i915->drm, "BKSV is revoked\n");
774 return -EPERM;
775 }
776
777 intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
778 bksv.reg[0]);
779 intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
780 bksv.reg[1]);
781
782 ret = shim->repeater_present(dig_port, &repeater_present);
783 if (ret)
784 return ret;
785 if (repeater_present)
786 intel_de_write(i915, HDCP_REP_CTL,
787 intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
788
789 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
790 if (ret)
791 return ret;
792
793 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
794 HDCP_CONF_AUTH_AND_ENC);
795
796 /* Wait for R0 ready */
797 if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
798 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
799 drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
800 return -ETIMEDOUT;
801 }
802
803 /*
804 * Wait for R0' to become available. The spec says 100ms from Aksv, but
805 * some monitors can take longer than this. We'll set the timeout at
806 * 300ms just to be sure.
807 *
808 * On DP, there's an R0_READY bit available but no such bit
809 * exists on HDMI. Since the upper-bound is the same, we'll just do
810 * the stupid thing instead of polling on one and not the other.
811 */
812 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
813
814 tries = 3;
815
816 /*
817 * DP HDCP Spec mandates the two more reattempt to read R0, incase
818 * of R0 mismatch.
819 */
820 for (i = 0; i < tries; i++) {
821 ri.reg = 0;
822 ret = shim->read_ri_prime(dig_port, ri.shim);
823 if (ret)
824 return ret;
825 intel_de_write(i915,
826 HDCP_RPRIME(i915, cpu_transcoder, port),
827 ri.reg);
828
829 /* Wait for Ri prime match */
830 if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
831 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
832 break;
833 }
834
835 if (i == tries) {
836 drm_dbg_kms(&i915->drm,
837 "Timed out waiting for Ri prime match (%x)\n",
838 intel_de_read(i915,
839 HDCP_STATUS(i915, cpu_transcoder, port)));
840 return -ETIMEDOUT;
841 }
842
843 /* Wait for encryption confirmation */
844 if (intel_de_wait_for_set(i915,
845 HDCP_STATUS(i915, cpu_transcoder, port),
846 HDCP_STATUS_ENC,
847 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
848 drm_err(&i915->drm, "Timed out waiting for encryption\n");
849 return -ETIMEDOUT;
850 }
851
852 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
853 if (shim->stream_encryption) {
854 ret = shim->stream_encryption(connector, true);
855 if (ret) {
856 drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
857 connector->base.name, connector->base.base.id);
858 return ret;
859 }
860 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
861 transcoder_name(hdcp->stream_transcoder));
862 }
863
864 if (repeater_present)
865 return intel_hdcp_auth_downstream(connector);
866
867 drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
868 return 0;
869}
870
871static int _intel_hdcp_disable(struct intel_connector *connector)
872{
873 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
874 struct drm_i915_private *i915 = to_i915(connector->base.dev);
875 struct intel_hdcp *hdcp = &connector->hdcp;
876 enum port port = dig_port->base.port;
877 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
878 u32 repeater_ctl;
879 int ret;
880
881 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being disabled...\n",
882 connector->base.name, connector->base.base.id);
883
884 if (hdcp->shim->stream_encryption) {
885 ret = hdcp->shim->stream_encryption(connector, false);
886 if (ret) {
887 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
888 connector->base.name, connector->base.base.id);
889 return ret;
890 }
891 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
892 transcoder_name(hdcp->stream_transcoder));
893 /*
894 * If there are other connectors on this port using HDCP,
895 * don't disable it until it disabled HDCP encryption for
896 * all connectors in MST topology.
897 */
898 if (dig_port->num_hdcp_streams > 0)
899 return 0;
900 }
901
902 hdcp->hdcp_encrypted = false;
903 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
904 if (intel_de_wait_for_clear(i915,
905 HDCP_STATUS(i915, cpu_transcoder, port),
906 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
907 drm_err(&i915->drm,
908 "Failed to disable HDCP, timeout clearing status\n");
909 return -ETIMEDOUT;
910 }
911
912 repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
913 port);
914 intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
915
916 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
917 if (ret) {
918 drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
919 return ret;
920 }
921
922 drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
923 return 0;
924}
925
926static int intel_hdcp1_enable(struct intel_connector *connector)
927{
928 struct drm_i915_private *i915 = to_i915(connector->base.dev);
929 struct intel_hdcp *hdcp = &connector->hdcp;
930 int i, ret, tries = 3;
931
932 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being enabled...\n",
933 connector->base.name, connector->base.base.id);
934
935 if (!hdcp_key_loadable(i915)) {
936 drm_err(&i915->drm, "HDCP key Load is not possible\n");
937 return -ENXIO;
938 }
939
940 for (i = 0; i < KEY_LOAD_TRIES; i++) {
941 ret = intel_hdcp_load_keys(i915);
942 if (!ret)
943 break;
944 intel_hdcp_clear_keys(i915);
945 }
946 if (ret) {
947 drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
948 ret);
949 return ret;
950 }
951
952 /* Incase of authentication failures, HDCP spec expects reauth. */
953 for (i = 0; i < tries; i++) {
954 ret = intel_hdcp_auth(connector);
955 if (!ret) {
956 hdcp->hdcp_encrypted = true;
957 return 0;
958 }
959
960 drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
961
962 /* Ensuring HDCP encryption and signalling are stopped. */
963 _intel_hdcp_disable(connector);
964 }
965
966 drm_dbg_kms(&i915->drm,
967 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
968 return ret;
969}
970
971static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
972{
973 return container_of(hdcp, struct intel_connector, hdcp);
974}
975
976static void intel_hdcp_update_value(struct intel_connector *connector,
977 u64 value, bool update_property)
978{
979 struct drm_device *dev = connector->base.dev;
980 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
981 struct intel_hdcp *hdcp = &connector->hdcp;
982 struct drm_i915_private *i915 = to_i915(connector->base.dev);
983
984 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
985
986 if (hdcp->value == value)
987 return;
988
989 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
990
991 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
992 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
993 dig_port->num_hdcp_streams--;
994 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
995 dig_port->num_hdcp_streams++;
996 }
997
998 hdcp->value = value;
999 if (update_property) {
1000 drm_connector_get(&connector->base);
1001 queue_work(i915->unordered_wq, &hdcp->prop_work);
1002 }
1003}
1004
1005/* Implements Part 3 of the HDCP authorization procedure */
1006static int intel_hdcp_check_link(struct intel_connector *connector)
1007{
1008 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1009 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1010 struct intel_hdcp *hdcp = &connector->hdcp;
1011 enum port port = dig_port->base.port;
1012 enum transcoder cpu_transcoder;
1013 int ret = 0;
1014
1015 mutex_lock(&hdcp->mutex);
1016 mutex_lock(&dig_port->hdcp_mutex);
1017
1018 cpu_transcoder = hdcp->cpu_transcoder;
1019
1020 /* Check_link valid only when HDCP1.4 is enabled */
1021 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1022 !hdcp->hdcp_encrypted) {
1023 ret = -EINVAL;
1024 goto out;
1025 }
1026
1027 if (drm_WARN_ON(&i915->drm,
1028 !intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1029 drm_err(&i915->drm,
1030 "%s:%d HDCP link stopped encryption,%x\n",
1031 connector->base.name, connector->base.base.id,
1032 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1033 ret = -ENXIO;
1034 intel_hdcp_update_value(connector,
1035 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1036 true);
1037 goto out;
1038 }
1039
1040 if (hdcp->shim->check_link(dig_port, connector)) {
1041 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1042 intel_hdcp_update_value(connector,
1043 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1044 }
1045 goto out;
1046 }
1047
1048 drm_dbg_kms(&i915->drm,
1049 "[%s:%d] HDCP link failed, retrying authentication\n",
1050 connector->base.name, connector->base.base.id);
1051
1052 ret = _intel_hdcp_disable(connector);
1053 if (ret) {
1054 drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1055 intel_hdcp_update_value(connector,
1056 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1057 true);
1058 goto out;
1059 }
1060
1061 ret = intel_hdcp1_enable(connector);
1062 if (ret) {
1063 drm_err(&i915->drm, "Failed to enable hdcp (%d)\n", ret);
1064 intel_hdcp_update_value(connector,
1065 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1066 true);
1067 goto out;
1068 }
1069
1070out:
1071 mutex_unlock(&dig_port->hdcp_mutex);
1072 mutex_unlock(&hdcp->mutex);
1073 return ret;
1074}
1075
1076static void intel_hdcp_prop_work(struct work_struct *work)
1077{
1078 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1079 prop_work);
1080 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1081 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1082
1083 drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1084 mutex_lock(&hdcp->mutex);
1085
1086 /*
1087 * This worker is only used to flip between ENABLED/DESIRED. Either of
1088 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1089 * we're running just after hdcp has been disabled, so just exit
1090 */
1091 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1092 drm_hdcp_update_content_protection(&connector->base,
1093 hdcp->value);
1094
1095 mutex_unlock(&hdcp->mutex);
1096 drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1097
1098 drm_connector_put(&connector->base);
1099}
1100
1101bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1102{
1103 return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1104 (DISPLAY_VER(i915) >= 12 || port < PORT_E);
1105}
1106
1107static int
1108hdcp2_prepare_ake_init(struct intel_connector *connector,
1109 struct hdcp2_ake_init *ake_data)
1110{
1111 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1112 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1113 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1114 struct i915_hdcp_arbiter *arbiter;
1115 int ret;
1116
1117 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1118 arbiter = i915->display.hdcp.arbiter;
1119
1120 if (!arbiter || !arbiter->ops) {
1121 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1122 return -EINVAL;
1123 }
1124
1125 ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1126 if (ret)
1127 drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1128 ret);
1129 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1130
1131 return ret;
1132}
1133
1134static int
1135hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1136 struct hdcp2_ake_send_cert *rx_cert,
1137 bool *paired,
1138 struct hdcp2_ake_no_stored_km *ek_pub_km,
1139 size_t *msg_sz)
1140{
1141 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1142 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1143 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1144 struct i915_hdcp_arbiter *arbiter;
1145 int ret;
1146
1147 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1148 arbiter = i915->display.hdcp.arbiter;
1149
1150 if (!arbiter || !arbiter->ops) {
1151 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1152 return -EINVAL;
1153 }
1154
1155 ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1156 rx_cert, paired,
1157 ek_pub_km, msg_sz);
1158 if (ret < 0)
1159 drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1160 ret);
1161 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1162
1163 return ret;
1164}
1165
1166static int hdcp2_verify_hprime(struct intel_connector *connector,
1167 struct hdcp2_ake_send_hprime *rx_hprime)
1168{
1169 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1170 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1171 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1172 struct i915_hdcp_arbiter *arbiter;
1173 int ret;
1174
1175 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1176 arbiter = i915->display.hdcp.arbiter;
1177
1178 if (!arbiter || !arbiter->ops) {
1179 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1180 return -EINVAL;
1181 }
1182
1183 ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1184 if (ret < 0)
1185 drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1186 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1187
1188 return ret;
1189}
1190
1191static int
1192hdcp2_store_pairing_info(struct intel_connector *connector,
1193 struct hdcp2_ake_send_pairing_info *pairing_info)
1194{
1195 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1196 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1197 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1198 struct i915_hdcp_arbiter *arbiter;
1199 int ret;
1200
1201 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1202 arbiter = i915->display.hdcp.arbiter;
1203
1204 if (!arbiter || !arbiter->ops) {
1205 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1206 return -EINVAL;
1207 }
1208
1209 ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1210 if (ret < 0)
1211 drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1212 ret);
1213 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1214
1215 return ret;
1216}
1217
1218static int
1219hdcp2_prepare_lc_init(struct intel_connector *connector,
1220 struct hdcp2_lc_init *lc_init)
1221{
1222 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1223 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1224 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1225 struct i915_hdcp_arbiter *arbiter;
1226 int ret;
1227
1228 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1229 arbiter = i915->display.hdcp.arbiter;
1230
1231 if (!arbiter || !arbiter->ops) {
1232 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1233 return -EINVAL;
1234 }
1235
1236 ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1237 if (ret < 0)
1238 drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1239 ret);
1240 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1241
1242 return ret;
1243}
1244
1245static int
1246hdcp2_verify_lprime(struct intel_connector *connector,
1247 struct hdcp2_lc_send_lprime *rx_lprime)
1248{
1249 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1250 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1251 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1252 struct i915_hdcp_arbiter *arbiter;
1253 int ret;
1254
1255 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1256 arbiter = i915->display.hdcp.arbiter;
1257
1258 if (!arbiter || !arbiter->ops) {
1259 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1260 return -EINVAL;
1261 }
1262
1263 ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1264 if (ret < 0)
1265 drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1266 ret);
1267 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1268
1269 return ret;
1270}
1271
1272static int hdcp2_prepare_skey(struct intel_connector *connector,
1273 struct hdcp2_ske_send_eks *ske_data)
1274{
1275 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1276 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1277 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1278 struct i915_hdcp_arbiter *arbiter;
1279 int ret;
1280
1281 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1282 arbiter = i915->display.hdcp.arbiter;
1283
1284 if (!arbiter || !arbiter->ops) {
1285 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1286 return -EINVAL;
1287 }
1288
1289 ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1290 if (ret < 0)
1291 drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1292 ret);
1293 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1294
1295 return ret;
1296}
1297
1298static int
1299hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1300 struct hdcp2_rep_send_receiverid_list
1301 *rep_topology,
1302 struct hdcp2_rep_send_ack *rep_send_ack)
1303{
1304 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1305 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1306 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1307 struct i915_hdcp_arbiter *arbiter;
1308 int ret;
1309
1310 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1311 arbiter = i915->display.hdcp.arbiter;
1312
1313 if (!arbiter || !arbiter->ops) {
1314 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1315 return -EINVAL;
1316 }
1317
1318 ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1319 data,
1320 rep_topology,
1321 rep_send_ack);
1322 if (ret < 0)
1323 drm_dbg_kms(&i915->drm,
1324 "Verify rep topology failed. %d\n", ret);
1325 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1326
1327 return ret;
1328}
1329
1330static int
1331hdcp2_verify_mprime(struct intel_connector *connector,
1332 struct hdcp2_rep_stream_ready *stream_ready)
1333{
1334 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1335 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1336 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1337 struct i915_hdcp_arbiter *arbiter;
1338 int ret;
1339
1340 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1341 arbiter = i915->display.hdcp.arbiter;
1342
1343 if (!arbiter || !arbiter->ops) {
1344 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1345 return -EINVAL;
1346 }
1347
1348 ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1349 if (ret < 0)
1350 drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1351 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1352
1353 return ret;
1354}
1355
1356static int hdcp2_authenticate_port(struct intel_connector *connector)
1357{
1358 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1359 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1360 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1361 struct i915_hdcp_arbiter *arbiter;
1362 int ret;
1363
1364 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1365 arbiter = i915->display.hdcp.arbiter;
1366
1367 if (!arbiter || !arbiter->ops) {
1368 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1369 return -EINVAL;
1370 }
1371
1372 ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1373 if (ret < 0)
1374 drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1375 ret);
1376 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1377
1378 return ret;
1379}
1380
1381static int hdcp2_close_session(struct intel_connector *connector)
1382{
1383 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1384 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1385 struct i915_hdcp_arbiter *arbiter;
1386 int ret;
1387
1388 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1389 arbiter = i915->display.hdcp.arbiter;
1390
1391 if (!arbiter || !arbiter->ops) {
1392 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1393 return -EINVAL;
1394 }
1395
1396 ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1397 &dig_port->hdcp_port_data);
1398 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1399
1400 return ret;
1401}
1402
1403static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1404{
1405 return hdcp2_close_session(connector);
1406}
1407
1408/* Authentication flow starts from here */
1409static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1410{
1411 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1412 struct intel_hdcp *hdcp = &connector->hdcp;
1413 union {
1414 struct hdcp2_ake_init ake_init;
1415 struct hdcp2_ake_send_cert send_cert;
1416 struct hdcp2_ake_no_stored_km no_stored_km;
1417 struct hdcp2_ake_send_hprime send_hprime;
1418 struct hdcp2_ake_send_pairing_info pairing_info;
1419 } msgs;
1420 const struct intel_hdcp_shim *shim = hdcp->shim;
1421 size_t size;
1422 int ret;
1423
1424 /* Init for seq_num */
1425 hdcp->seq_num_v = 0;
1426 hdcp->seq_num_m = 0;
1427
1428 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1429 if (ret < 0)
1430 return ret;
1431
1432 ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1433 sizeof(msgs.ake_init));
1434 if (ret < 0)
1435 return ret;
1436
1437 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1438 &msgs.send_cert, sizeof(msgs.send_cert));
1439 if (ret < 0)
1440 return ret;
1441
1442 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1443 drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1444 return -EINVAL;
1445 }
1446
1447 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1448
1449 if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1450 msgs.send_cert.cert_rx.receiver_id,
1451 1) > 0) {
1452 drm_err(&i915->drm, "Receiver ID is revoked\n");
1453 return -EPERM;
1454 }
1455
1456 /*
1457 * Here msgs.no_stored_km will hold msgs corresponding to the km
1458 * stored also.
1459 */
1460 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1461 &hdcp->is_paired,
1462 &msgs.no_stored_km, &size);
1463 if (ret < 0)
1464 return ret;
1465
1466 ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1467 if (ret < 0)
1468 return ret;
1469
1470 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1471 &msgs.send_hprime, sizeof(msgs.send_hprime));
1472 if (ret < 0)
1473 return ret;
1474
1475 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1476 if (ret < 0)
1477 return ret;
1478
1479 if (!hdcp->is_paired) {
1480 /* Pairing is required */
1481 ret = shim->read_2_2_msg(connector,
1482 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1483 &msgs.pairing_info,
1484 sizeof(msgs.pairing_info));
1485 if (ret < 0)
1486 return ret;
1487
1488 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1489 if (ret < 0)
1490 return ret;
1491 hdcp->is_paired = true;
1492 }
1493
1494 return 0;
1495}
1496
1497static int hdcp2_locality_check(struct intel_connector *connector)
1498{
1499 struct intel_hdcp *hdcp = &connector->hdcp;
1500 union {
1501 struct hdcp2_lc_init lc_init;
1502 struct hdcp2_lc_send_lprime send_lprime;
1503 } msgs;
1504 const struct intel_hdcp_shim *shim = hdcp->shim;
1505 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1506
1507 for (i = 0; i < tries; i++) {
1508 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1509 if (ret < 0)
1510 continue;
1511
1512 ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1513 sizeof(msgs.lc_init));
1514 if (ret < 0)
1515 continue;
1516
1517 ret = shim->read_2_2_msg(connector,
1518 HDCP_2_2_LC_SEND_LPRIME,
1519 &msgs.send_lprime,
1520 sizeof(msgs.send_lprime));
1521 if (ret < 0)
1522 continue;
1523
1524 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1525 if (!ret)
1526 break;
1527 }
1528
1529 return ret;
1530}
1531
1532static int hdcp2_session_key_exchange(struct intel_connector *connector)
1533{
1534 struct intel_hdcp *hdcp = &connector->hdcp;
1535 struct hdcp2_ske_send_eks send_eks;
1536 int ret;
1537
1538 ret = hdcp2_prepare_skey(connector, &send_eks);
1539 if (ret < 0)
1540 return ret;
1541
1542 ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1543 sizeof(send_eks));
1544 if (ret < 0)
1545 return ret;
1546
1547 return 0;
1548}
1549
1550static
1551int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1552{
1553 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1554 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1555 struct intel_hdcp *hdcp = &connector->hdcp;
1556 union {
1557 struct hdcp2_rep_stream_manage stream_manage;
1558 struct hdcp2_rep_stream_ready stream_ready;
1559 } msgs;
1560 const struct intel_hdcp_shim *shim = hdcp->shim;
1561 int ret, streams_size_delta, i;
1562
1563 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1564 return -ERANGE;
1565
1566 /* Prepare RepeaterAuth_Stream_Manage msg */
1567 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1568 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1569
1570 msgs.stream_manage.k = cpu_to_be16(data->k);
1571
1572 for (i = 0; i < data->k; i++) {
1573 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1574 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1575 }
1576
1577 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1578 sizeof(struct hdcp2_streamid_type);
1579 /* Send it to Repeater */
1580 ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1581 sizeof(msgs.stream_manage) - streams_size_delta);
1582 if (ret < 0)
1583 goto out;
1584
1585 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1586 &msgs.stream_ready, sizeof(msgs.stream_ready));
1587 if (ret < 0)
1588 goto out;
1589
1590 data->seq_num_m = hdcp->seq_num_m;
1591
1592 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1593
1594out:
1595 hdcp->seq_num_m++;
1596
1597 return ret;
1598}
1599
1600static
1601int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1602{
1603 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1604 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1605 struct intel_hdcp *hdcp = &connector->hdcp;
1606 union {
1607 struct hdcp2_rep_send_receiverid_list recvid_list;
1608 struct hdcp2_rep_send_ack rep_ack;
1609 } msgs;
1610 const struct intel_hdcp_shim *shim = hdcp->shim;
1611 u32 seq_num_v, device_cnt;
1612 u8 *rx_info;
1613 int ret;
1614
1615 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1616 &msgs.recvid_list, sizeof(msgs.recvid_list));
1617 if (ret < 0)
1618 return ret;
1619
1620 rx_info = msgs.recvid_list.rx_info;
1621
1622 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1623 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1624 drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1625 return -EINVAL;
1626 }
1627
1628 /*
1629 * MST topology is not Type 1 capable if it contains a downstream
1630 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1631 */
1632 dig_port->hdcp_mst_type1_capable =
1633 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1634 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1635
1636 /* Converting and Storing the seq_num_v to local variable as DWORD */
1637 seq_num_v =
1638 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1639
1640 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1641 drm_dbg_kms(&i915->drm,
1642 "Non zero Seq_num_v at first RecvId_List msg\n");
1643 return -EINVAL;
1644 }
1645
1646 if (seq_num_v < hdcp->seq_num_v) {
1647 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1648 drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1649 return -EINVAL;
1650 }
1651
1652 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1653 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1654 if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1655 msgs.recvid_list.receiver_ids,
1656 device_cnt) > 0) {
1657 drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1658 return -EPERM;
1659 }
1660
1661 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1662 &msgs.recvid_list,
1663 &msgs.rep_ack);
1664 if (ret < 0)
1665 return ret;
1666
1667 hdcp->seq_num_v = seq_num_v;
1668 ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1669 sizeof(msgs.rep_ack));
1670 if (ret < 0)
1671 return ret;
1672
1673 return 0;
1674}
1675
1676static int hdcp2_authenticate_sink(struct intel_connector *connector)
1677{
1678 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1679 struct intel_hdcp *hdcp = &connector->hdcp;
1680 const struct intel_hdcp_shim *shim = hdcp->shim;
1681 int ret;
1682
1683 ret = hdcp2_authentication_key_exchange(connector);
1684 if (ret < 0) {
1685 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1686 return ret;
1687 }
1688
1689 ret = hdcp2_locality_check(connector);
1690 if (ret < 0) {
1691 drm_dbg_kms(&i915->drm,
1692 "Locality Check failed. Err : %d\n", ret);
1693 return ret;
1694 }
1695
1696 ret = hdcp2_session_key_exchange(connector);
1697 if (ret < 0) {
1698 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1699 return ret;
1700 }
1701
1702 if (shim->config_stream_type) {
1703 ret = shim->config_stream_type(connector,
1704 hdcp->is_repeater,
1705 hdcp->content_type);
1706 if (ret < 0)
1707 return ret;
1708 }
1709
1710 if (hdcp->is_repeater) {
1711 ret = hdcp2_authenticate_repeater_topology(connector);
1712 if (ret < 0) {
1713 drm_dbg_kms(&i915->drm,
1714 "Repeater Auth Failed. Err: %d\n", ret);
1715 return ret;
1716 }
1717 }
1718
1719 return ret;
1720}
1721
1722static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1723{
1724 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1725 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1726 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1727 struct intel_hdcp *hdcp = &connector->hdcp;
1728 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1729 enum port port = dig_port->base.port;
1730 int ret = 0;
1731
1732 if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1733 LINK_ENCRYPTION_STATUS)) {
1734 drm_err(&i915->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1735 connector->base.name, connector->base.base.id);
1736 ret = -EPERM;
1737 goto link_recover;
1738 }
1739
1740 if (hdcp->shim->stream_2_2_encryption) {
1741 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1742 if (ret) {
1743 drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1744 connector->base.name, connector->base.base.id);
1745 return ret;
1746 }
1747 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1748 transcoder_name(hdcp->stream_transcoder));
1749 }
1750
1751 return 0;
1752
1753link_recover:
1754 if (hdcp2_deauthenticate_port(connector) < 0)
1755 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1756
1757 dig_port->hdcp_auth_status = false;
1758 data->k = 0;
1759
1760 return ret;
1761}
1762
1763static int hdcp2_enable_encryption(struct intel_connector *connector)
1764{
1765 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1766 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1767 struct intel_hdcp *hdcp = &connector->hdcp;
1768 enum port port = dig_port->base.port;
1769 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1770 int ret;
1771
1772 drm_WARN_ON(&i915->drm,
1773 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1774 LINK_ENCRYPTION_STATUS);
1775 if (hdcp->shim->toggle_signalling) {
1776 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1777 true);
1778 if (ret) {
1779 drm_err(&i915->drm,
1780 "Failed to enable HDCP signalling. %d\n",
1781 ret);
1782 return ret;
1783 }
1784 }
1785
1786 if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1787 LINK_AUTH_STATUS)
1788 /* Link is Authenticated. Now set for Encryption */
1789 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1790 0, CTL_LINK_ENCRYPTION_REQ);
1791
1792 ret = intel_de_wait_for_set(i915,
1793 HDCP2_STATUS(i915, cpu_transcoder,
1794 port),
1795 LINK_ENCRYPTION_STATUS,
1796 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1797 dig_port->hdcp_auth_status = true;
1798
1799 return ret;
1800}
1801
1802static int hdcp2_disable_encryption(struct intel_connector *connector)
1803{
1804 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1805 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1806 struct intel_hdcp *hdcp = &connector->hdcp;
1807 enum port port = dig_port->base.port;
1808 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1809 int ret;
1810
1811 drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1812 LINK_ENCRYPTION_STATUS));
1813
1814 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1815 CTL_LINK_ENCRYPTION_REQ, 0);
1816
1817 ret = intel_de_wait_for_clear(i915,
1818 HDCP2_STATUS(i915, cpu_transcoder,
1819 port),
1820 LINK_ENCRYPTION_STATUS,
1821 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1822 if (ret == -ETIMEDOUT)
1823 drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1824
1825 if (hdcp->shim->toggle_signalling) {
1826 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1827 false);
1828 if (ret) {
1829 drm_err(&i915->drm,
1830 "Failed to disable HDCP signalling. %d\n",
1831 ret);
1832 return ret;
1833 }
1834 }
1835
1836 return ret;
1837}
1838
1839static int
1840hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1841{
1842 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1843 int i, tries = 3, ret;
1844
1845 if (!connector->hdcp.is_repeater)
1846 return 0;
1847
1848 for (i = 0; i < tries; i++) {
1849 ret = _hdcp2_propagate_stream_management_info(connector);
1850 if (!ret)
1851 break;
1852
1853 /* Lets restart the auth incase of seq_num_m roll over */
1854 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1855 drm_dbg_kms(&i915->drm,
1856 "seq_num_m roll over.(%d)\n", ret);
1857 break;
1858 }
1859
1860 drm_dbg_kms(&i915->drm,
1861 "HDCP2 stream management %d of %d Failed.(%d)\n",
1862 i + 1, tries, ret);
1863 }
1864
1865 return ret;
1866}
1867
1868static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1869{
1870 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1871 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1872 int ret = 0, i, tries = 3;
1873
1874 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1875 ret = hdcp2_authenticate_sink(connector);
1876 if (!ret) {
1877 intel_hdcp_prepare_streams(connector);
1878
1879 ret = hdcp2_propagate_stream_management_info(connector);
1880 if (ret) {
1881 drm_dbg_kms(&i915->drm,
1882 "Stream management failed.(%d)\n",
1883 ret);
1884 break;
1885 }
1886
1887 ret = hdcp2_authenticate_port(connector);
1888 if (!ret)
1889 break;
1890 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1891 ret);
1892 }
1893
1894 /* Clearing the mei hdcp session */
1895 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1896 i + 1, tries, ret);
1897 if (hdcp2_deauthenticate_port(connector) < 0)
1898 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1899 }
1900
1901 if (!ret && !dig_port->hdcp_auth_status) {
1902 /*
1903 * Ensuring the required 200mSec min time interval between
1904 * Session Key Exchange and encryption.
1905 */
1906 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1907 ret = hdcp2_enable_encryption(connector);
1908 if (ret < 0) {
1909 drm_dbg_kms(&i915->drm,
1910 "Encryption Enable Failed.(%d)\n", ret);
1911 if (hdcp2_deauthenticate_port(connector) < 0)
1912 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1913 }
1914 }
1915
1916 if (!ret)
1917 ret = hdcp2_enable_stream_encryption(connector);
1918
1919 return ret;
1920}
1921
1922static int _intel_hdcp2_enable(struct intel_connector *connector)
1923{
1924 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1925 struct intel_hdcp *hdcp = &connector->hdcp;
1926 int ret;
1927
1928 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1929 connector->base.name, connector->base.base.id,
1930 hdcp->content_type);
1931
1932 ret = hdcp2_authenticate_and_encrypt(connector);
1933 if (ret) {
1934 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
1935 hdcp->content_type, ret);
1936 return ret;
1937 }
1938
1939 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1940 connector->base.name, connector->base.base.id,
1941 hdcp->content_type);
1942
1943 hdcp->hdcp2_encrypted = true;
1944 return 0;
1945}
1946
1947static int
1948_intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1949{
1950 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1951 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1952 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1953 struct intel_hdcp *hdcp = &connector->hdcp;
1954 int ret;
1955
1956 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1957 connector->base.name, connector->base.base.id);
1958
1959 if (hdcp->shim->stream_2_2_encryption) {
1960 ret = hdcp->shim->stream_2_2_encryption(connector, false);
1961 if (ret) {
1962 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1963 connector->base.name, connector->base.base.id);
1964 return ret;
1965 }
1966 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1967 transcoder_name(hdcp->stream_transcoder));
1968
1969 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1970 return 0;
1971 }
1972
1973 ret = hdcp2_disable_encryption(connector);
1974
1975 if (hdcp2_deauthenticate_port(connector) < 0)
1976 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1977
1978 connector->hdcp.hdcp2_encrypted = false;
1979 dig_port->hdcp_auth_status = false;
1980 data->k = 0;
1981
1982 return ret;
1983}
1984
1985/* Implements the Link Integrity Check for HDCP2.2 */
1986static int intel_hdcp2_check_link(struct intel_connector *connector)
1987{
1988 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1989 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1990 struct intel_hdcp *hdcp = &connector->hdcp;
1991 enum port port = dig_port->base.port;
1992 enum transcoder cpu_transcoder;
1993 int ret = 0;
1994
1995 mutex_lock(&hdcp->mutex);
1996 mutex_lock(&dig_port->hdcp_mutex);
1997 cpu_transcoder = hdcp->cpu_transcoder;
1998
1999 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2000 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2001 !hdcp->hdcp2_encrypted) {
2002 ret = -EINVAL;
2003 goto out;
2004 }
2005
2006 if (drm_WARN_ON(&i915->drm,
2007 !intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2008 drm_err(&i915->drm,
2009 "HDCP2.2 link stopped the encryption, %x\n",
2010 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2011 ret = -ENXIO;
2012 _intel_hdcp2_disable(connector, true);
2013 intel_hdcp_update_value(connector,
2014 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2015 true);
2016 goto out;
2017 }
2018
2019 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2020 if (ret == HDCP_LINK_PROTECTED) {
2021 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2022 intel_hdcp_update_value(connector,
2023 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2024 true);
2025 }
2026 goto out;
2027 }
2028
2029 if (ret == HDCP_TOPOLOGY_CHANGE) {
2030 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2031 goto out;
2032
2033 drm_dbg_kms(&i915->drm,
2034 "HDCP2.2 Downstream topology change\n");
2035 ret = hdcp2_authenticate_repeater_topology(connector);
2036 if (!ret) {
2037 intel_hdcp_update_value(connector,
2038 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2039 true);
2040 goto out;
2041 }
2042 drm_dbg_kms(&i915->drm,
2043 "[%s:%d] Repeater topology auth failed.(%d)\n",
2044 connector->base.name, connector->base.base.id,
2045 ret);
2046 } else {
2047 drm_dbg_kms(&i915->drm,
2048 "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2049 connector->base.name, connector->base.base.id);
2050 }
2051
2052 ret = _intel_hdcp2_disable(connector, true);
2053 if (ret) {
2054 drm_err(&i915->drm,
2055 "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2056 connector->base.name, connector->base.base.id, ret);
2057 intel_hdcp_update_value(connector,
2058 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2059 goto out;
2060 }
2061
2062 ret = _intel_hdcp2_enable(connector);
2063 if (ret) {
2064 drm_dbg_kms(&i915->drm,
2065 "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2066 connector->base.name, connector->base.base.id,
2067 ret);
2068 intel_hdcp_update_value(connector,
2069 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2070 true);
2071 goto out;
2072 }
2073
2074out:
2075 mutex_unlock(&dig_port->hdcp_mutex);
2076 mutex_unlock(&hdcp->mutex);
2077 return ret;
2078}
2079
2080static void intel_hdcp_check_work(struct work_struct *work)
2081{
2082 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2083 struct intel_hdcp,
2084 check_work);
2085 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2086 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2087
2088 if (drm_connector_is_unregistered(&connector->base))
2089 return;
2090
2091 if (!intel_hdcp2_check_link(connector))
2092 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2093 DRM_HDCP2_CHECK_PERIOD_MS);
2094 else if (!intel_hdcp_check_link(connector))
2095 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2096 DRM_HDCP_CHECK_PERIOD_MS);
2097}
2098
2099static int i915_hdcp_component_bind(struct device *i915_kdev,
2100 struct device *mei_kdev, void *data)
2101{
2102 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2103
2104 drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2105 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2106 i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2107 i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2108 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2109
2110 return 0;
2111}
2112
2113static void i915_hdcp_component_unbind(struct device *i915_kdev,
2114 struct device *mei_kdev, void *data)
2115{
2116 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2117
2118 drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2119 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2120 i915->display.hdcp.arbiter = NULL;
2121 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2122}
2123
2124static const struct component_ops i915_hdcp_ops = {
2125 .bind = i915_hdcp_component_bind,
2126 .unbind = i915_hdcp_component_unbind,
2127};
2128
2129static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2130{
2131 switch (port) {
2132 case PORT_A:
2133 return HDCP_DDI_A;
2134 case PORT_B ... PORT_F:
2135 return (enum hdcp_ddi)port;
2136 default:
2137 return HDCP_DDI_INVALID_PORT;
2138 }
2139}
2140
2141static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2142{
2143 switch (cpu_transcoder) {
2144 case TRANSCODER_A ... TRANSCODER_D:
2145 return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2146 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2147 return HDCP_INVALID_TRANSCODER;
2148 }
2149}
2150
2151static int initialize_hdcp_port_data(struct intel_connector *connector,
2152 struct intel_digital_port *dig_port,
2153 const struct intel_hdcp_shim *shim)
2154{
2155 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2156 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2157 enum port port = dig_port->base.port;
2158
2159 if (DISPLAY_VER(i915) < 12)
2160 data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2161 else
2162 /*
2163 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2164 * with zero(INVALID PORT index).
2165 */
2166 data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2167
2168 /*
2169 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2170 * is initialized to zero (invalid transcoder index). This will be
2171 * retained for <Gen12 forever.
2172 */
2173 data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2174
2175 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2176 data->protocol = (u8)shim->protocol;
2177
2178 if (!data->streams)
2179 data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2180 sizeof(struct hdcp2_streamid_type),
2181 GFP_KERNEL);
2182 if (!data->streams) {
2183 drm_err(&i915->drm, "Out of Memory\n");
2184 return -ENOMEM;
2185 }
2186
2187 return 0;
2188}
2189
2190static bool is_hdcp2_supported(struct drm_i915_private *i915)
2191{
2192 if (intel_hdcp_gsc_cs_required(i915))
2193 return true;
2194
2195 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2196 return false;
2197
2198 return (DISPLAY_VER(i915) >= 10 ||
2199 IS_KABYLAKE(i915) ||
2200 IS_COFFEELAKE(i915) ||
2201 IS_COMETLAKE(i915));
2202}
2203
2204void intel_hdcp_component_init(struct drm_i915_private *i915)
2205{
2206 int ret;
2207
2208 if (!is_hdcp2_supported(i915))
2209 return;
2210
2211 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2212 drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2213
2214 i915->display.hdcp.comp_added = true;
2215 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2216 if (intel_hdcp_gsc_cs_required(i915))
2217 ret = intel_hdcp_gsc_init(i915);
2218 else
2219 ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2220 I915_COMPONENT_HDCP);
2221
2222 if (ret < 0) {
2223 drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2224 ret);
2225 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2226 i915->display.hdcp.comp_added = false;
2227 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2228 return;
2229 }
2230}
2231
2232static void intel_hdcp2_init(struct intel_connector *connector,
2233 struct intel_digital_port *dig_port,
2234 const struct intel_hdcp_shim *shim)
2235{
2236 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2237 struct intel_hdcp *hdcp = &connector->hdcp;
2238 int ret;
2239
2240 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2241 if (ret) {
2242 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2243 return;
2244 }
2245
2246 hdcp->hdcp2_supported = true;
2247}
2248
2249int intel_hdcp_init(struct intel_connector *connector,
2250 struct intel_digital_port *dig_port,
2251 const struct intel_hdcp_shim *shim)
2252{
2253 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2254 struct intel_hdcp *hdcp = &connector->hdcp;
2255 int ret;
2256
2257 if (!shim)
2258 return -EINVAL;
2259
2260 if (is_hdcp2_supported(i915))
2261 intel_hdcp2_init(connector, dig_port, shim);
2262
2263 ret =
2264 drm_connector_attach_content_protection_property(&connector->base,
2265 hdcp->hdcp2_supported);
2266 if (ret) {
2267 hdcp->hdcp2_supported = false;
2268 kfree(dig_port->hdcp_port_data.streams);
2269 return ret;
2270 }
2271
2272 hdcp->shim = shim;
2273 mutex_init(&hdcp->mutex);
2274 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2275 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2276 init_waitqueue_head(&hdcp->cp_irq_queue);
2277
2278 return 0;
2279}
2280
2281static int
2282intel_hdcp_set_streams(struct intel_digital_port *dig_port,
2283 struct intel_atomic_state *state)
2284{
2285 struct drm_connector_list_iter conn_iter;
2286 struct intel_digital_port *conn_dig_port;
2287 struct intel_connector *connector;
2288 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
2289 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2290
2291 if (!intel_encoder_is_mst(&dig_port->base)) {
2292 data->k = 1;
2293 data->streams[0].stream_id = 0;
2294 return 0;
2295 }
2296
2297 data->k = 0;
2298
2299 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
2300 for_each_intel_connector_iter(connector, &conn_iter) {
2301 if (connector->base.status == connector_status_disconnected)
2302 continue;
2303
2304 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
2305 continue;
2306
2307 conn_dig_port = intel_attached_dig_port(connector);
2308 if (conn_dig_port != dig_port)
2309 continue;
2310
2311 data->streams[data->k].stream_id =
2312 intel_conn_to_vcpi(&state->base, connector);
2313 data->k++;
2314
2315 /* if there is only one active stream */
2316 if (dig_port->dp.active_mst_links <= 1)
2317 break;
2318 }
2319 drm_connector_list_iter_end(&conn_iter);
2320
2321 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
2322 return -EINVAL;
2323
2324 return 0;
2325}
2326
2327static int _intel_hdcp_enable(struct intel_atomic_state *state,
2328 struct intel_encoder *encoder,
2329 const struct intel_crtc_state *pipe_config,
2330 const struct drm_connector_state *conn_state)
2331{
2332 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2333 struct intel_connector *connector =
2334 to_intel_connector(conn_state->connector);
2335 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2336 struct intel_hdcp *hdcp = &connector->hdcp;
2337 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2338 int ret = -EINVAL;
2339
2340 if (!hdcp->shim)
2341 return -ENOENT;
2342
2343 if (!connector->encoder) {
2344 drm_err(&i915->drm, "[%s:%d] encoder is not initialized\n",
2345 connector->base.name, connector->base.base.id);
2346 return -ENODEV;
2347 }
2348
2349 mutex_lock(&hdcp->mutex);
2350 mutex_lock(&dig_port->hdcp_mutex);
2351 drm_WARN_ON(&i915->drm,
2352 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2353 hdcp->content_type = (u8)conn_state->hdcp_content_type;
2354
2355 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2356 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2357 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2358 } else {
2359 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2360 hdcp->stream_transcoder = INVALID_TRANSCODER;
2361 }
2362
2363 if (DISPLAY_VER(i915) >= 12)
2364 dig_port->hdcp_port_data.hdcp_transcoder =
2365 intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2366
2367 /*
2368 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2369 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2370 */
2371 if (intel_hdcp2_capable(connector)) {
2372 ret = intel_hdcp_set_streams(dig_port, state);
2373 if (!ret) {
2374 ret = _intel_hdcp2_enable(connector);
2375 if (!ret)
2376 check_link_interval =
2377 DRM_HDCP2_CHECK_PERIOD_MS;
2378 } else {
2379 drm_dbg_kms(&i915->drm,
2380 "Set content streams failed: (%d)\n",
2381 ret);
2382 }
2383 }
2384
2385 /*
2386 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2387 * be attempted.
2388 */
2389 if (ret && intel_hdcp_capable(connector) &&
2390 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2391 ret = intel_hdcp1_enable(connector);
2392 }
2393
2394 if (!ret) {
2395 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2396 check_link_interval);
2397 intel_hdcp_update_value(connector,
2398 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2399 true);
2400 }
2401
2402 mutex_unlock(&dig_port->hdcp_mutex);
2403 mutex_unlock(&hdcp->mutex);
2404 return ret;
2405}
2406
2407void intel_hdcp_enable(struct intel_atomic_state *state,
2408 struct intel_encoder *encoder,
2409 const struct intel_crtc_state *crtc_state,
2410 const struct drm_connector_state *conn_state)
2411{
2412 struct intel_connector *connector =
2413 to_intel_connector(conn_state->connector);
2414 struct intel_hdcp *hdcp = &connector->hdcp;
2415
2416 /*
2417 * Enable hdcp if it's desired or if userspace is enabled and
2418 * driver set its state to undesired
2419 */
2420 if (conn_state->content_protection ==
2421 DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2422 (conn_state->content_protection ==
2423 DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2424 DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2425 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2426}
2427
2428int intel_hdcp_disable(struct intel_connector *connector)
2429{
2430 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2431 struct intel_hdcp *hdcp = &connector->hdcp;
2432 int ret = 0;
2433
2434 if (!hdcp->shim)
2435 return -ENOENT;
2436
2437 mutex_lock(&hdcp->mutex);
2438 mutex_lock(&dig_port->hdcp_mutex);
2439
2440 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2441 goto out;
2442
2443 intel_hdcp_update_value(connector,
2444 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2445 if (hdcp->hdcp2_encrypted)
2446 ret = _intel_hdcp2_disable(connector, false);
2447 else if (hdcp->hdcp_encrypted)
2448 ret = _intel_hdcp_disable(connector);
2449
2450out:
2451 mutex_unlock(&dig_port->hdcp_mutex);
2452 mutex_unlock(&hdcp->mutex);
2453 cancel_delayed_work_sync(&hdcp->check_work);
2454 return ret;
2455}
2456
2457void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2458 struct intel_encoder *encoder,
2459 const struct intel_crtc_state *crtc_state,
2460 const struct drm_connector_state *conn_state)
2461{
2462 struct intel_connector *connector =
2463 to_intel_connector(conn_state->connector);
2464 struct intel_hdcp *hdcp = &connector->hdcp;
2465 bool content_protection_type_changed, desired_and_not_enabled = false;
2466 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2467
2468 if (!connector->hdcp.shim)
2469 return;
2470
2471 content_protection_type_changed =
2472 (conn_state->hdcp_content_type != hdcp->content_type &&
2473 conn_state->content_protection !=
2474 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2475
2476 /*
2477 * During the HDCP encryption session if Type change is requested,
2478 * disable the HDCP and reenable it with new TYPE value.
2479 */
2480 if (conn_state->content_protection ==
2481 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2482 content_protection_type_changed)
2483 intel_hdcp_disable(connector);
2484
2485 /*
2486 * Mark the hdcp state as DESIRED after the hdcp disable of type
2487 * change procedure.
2488 */
2489 if (content_protection_type_changed) {
2490 mutex_lock(&hdcp->mutex);
2491 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2492 drm_connector_get(&connector->base);
2493 queue_work(i915->unordered_wq, &hdcp->prop_work);
2494 mutex_unlock(&hdcp->mutex);
2495 }
2496
2497 if (conn_state->content_protection ==
2498 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2499 mutex_lock(&hdcp->mutex);
2500 /* Avoid enabling hdcp, if it already ENABLED */
2501 desired_and_not_enabled =
2502 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2503 mutex_unlock(&hdcp->mutex);
2504 /*
2505 * If HDCP already ENABLED and CP property is DESIRED, schedule
2506 * prop_work to update correct CP property to user space.
2507 */
2508 if (!desired_and_not_enabled && !content_protection_type_changed) {
2509 drm_connector_get(&connector->base);
2510 queue_work(i915->unordered_wq, &hdcp->prop_work);
2511 }
2512 }
2513
2514 if (desired_and_not_enabled || content_protection_type_changed)
2515 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2516}
2517
2518void intel_hdcp_component_fini(struct drm_i915_private *i915)
2519{
2520 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2521 if (!i915->display.hdcp.comp_added) {
2522 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2523 return;
2524 }
2525
2526 i915->display.hdcp.comp_added = false;
2527 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2528
2529 if (intel_hdcp_gsc_cs_required(i915))
2530 intel_hdcp_gsc_fini(i915);
2531 else
2532 component_del(i915->drm.dev, &i915_hdcp_ops);
2533}
2534
2535void intel_hdcp_cleanup(struct intel_connector *connector)
2536{
2537 struct intel_hdcp *hdcp = &connector->hdcp;
2538
2539 if (!hdcp->shim)
2540 return;
2541
2542 /*
2543 * If the connector is registered, it's possible userspace could kick
2544 * off another HDCP enable, which would re-spawn the workers.
2545 */
2546 drm_WARN_ON(connector->base.dev,
2547 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2548
2549 /*
2550 * Now that the connector is not registered, check_work won't be run,
2551 * but cancel any outstanding instances of it
2552 */
2553 cancel_delayed_work_sync(&hdcp->check_work);
2554
2555 /*
2556 * We don't cancel prop_work in the same way as check_work since it
2557 * requires connection_mutex which could be held while calling this
2558 * function. Instead, we rely on the connector references grabbed before
2559 * scheduling prop_work to ensure the connector is alive when prop_work
2560 * is run. So if we're in the destroy path (which is where this
2561 * function should be called), we're "guaranteed" that prop_work is not
2562 * active (tl;dr This Should Never Happen).
2563 */
2564 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2565
2566 mutex_lock(&hdcp->mutex);
2567 hdcp->shim = NULL;
2568 mutex_unlock(&hdcp->mutex);
2569}
2570
2571void intel_hdcp_atomic_check(struct drm_connector *connector,
2572 struct drm_connector_state *old_state,
2573 struct drm_connector_state *new_state)
2574{
2575 u64 old_cp = old_state->content_protection;
2576 u64 new_cp = new_state->content_protection;
2577 struct drm_crtc_state *crtc_state;
2578
2579 if (!new_state->crtc) {
2580 /*
2581 * If the connector is being disabled with CP enabled, mark it
2582 * desired so it's re-enabled when the connector is brought back
2583 */
2584 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2585 new_state->content_protection =
2586 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2587 return;
2588 }
2589
2590 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2591 new_state->crtc);
2592 /*
2593 * Fix the HDCP uapi content protection state in case of modeset.
2594 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2595 * need to be sent if there is transition from ENABLED->DESIRED.
2596 */
2597 if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2598 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2599 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2600 new_state->content_protection =
2601 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2602
2603 /*
2604 * Nothing to do if the state didn't change, or HDCP was activated since
2605 * the last commit. And also no change in hdcp content type.
2606 */
2607 if (old_cp == new_cp ||
2608 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2609 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2610 if (old_state->hdcp_content_type ==
2611 new_state->hdcp_content_type)
2612 return;
2613 }
2614
2615 crtc_state->mode_changed = true;
2616}
2617
2618/* Handles the CP_IRQ raised from the DP HDCP sink */
2619void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2620{
2621 struct intel_hdcp *hdcp = &connector->hdcp;
2622 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2623
2624 if (!hdcp->shim)
2625 return;
2626
2627 atomic_inc(&connector->hdcp.cp_irq_count);
2628 wake_up_all(&connector->hdcp.cp_irq_queue);
2629
2630 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2631}