Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2006 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21 * SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/display/drm_dp_helper.h>
  29#include <drm/display/drm_dsc_helper.h>
  30#include <drm/drm_edid.h>
  31
  32#include "i915_drv.h"
  33#include "i915_reg.h"
  34#include "intel_display.h"
  35#include "intel_display_types.h"
  36#include "intel_gmbus.h"
  37
  38#define _INTEL_BIOS_PRIVATE
  39#include "intel_vbt_defs.h"
  40
  41/**
  42 * DOC: Video BIOS Table (VBT)
  43 *
  44 * The Video BIOS Table, or VBT, provides platform and board specific
  45 * configuration information to the driver that is not discoverable or available
  46 * through other means. The configuration is mostly related to display
  47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
  48 * the PCI ROM.
  49 *
  50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
  51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
  52 * contain the actual configuration information. The VBT Header, and thus the
  53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
  54 * BDB Header. The data blocks are concatenated after the BDB Header. The data
  55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
  56 * data. (Block 53, the MIPI Sequence Block is an exception.)
  57 *
  58 * The driver parses the VBT during load. The relevant information is stored in
  59 * driver private data for ease of use, and the actual VBT is not read after
  60 * that.
  61 */
  62
  63/* Wrapper for VBT child device config */
  64struct intel_bios_encoder_data {
  65	struct drm_i915_private *i915;
  66
  67	struct child_device_config child;
  68	struct dsc_compression_parameters_entry *dsc;
  69	struct list_head node;
  70};
  71
  72#define	SLAVE_ADDR1	0x70
  73#define	SLAVE_ADDR2	0x72
  74
  75/* Get BDB block size given a pointer to Block ID. */
  76static u32 _get_blocksize(const u8 *block_base)
  77{
  78	/* The MIPI Sequence Block v3+ has a separate size field. */
  79	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
  80		return *((const u32 *)(block_base + 4));
  81	else
  82		return *((const u16 *)(block_base + 1));
  83}
  84
  85/* Get BDB block size give a pointer to data after Block ID and Block Size. */
  86static u32 get_blocksize(const void *block_data)
  87{
  88	return _get_blocksize(block_data - 3);
  89}
  90
  91static const void *
  92find_raw_section(const void *_bdb, enum bdb_block_id section_id)
  93{
  94	const struct bdb_header *bdb = _bdb;
  95	const u8 *base = _bdb;
  96	int index = 0;
  97	u32 total, current_size;
  98	enum bdb_block_id current_id;
  99
 100	/* skip to first section */
 101	index += bdb->header_size;
 102	total = bdb->bdb_size;
 103
 104	/* walk the sections looking for section_id */
 105	while (index + 3 < total) {
 106		current_id = *(base + index);
 107		current_size = _get_blocksize(base + index);
 108		index += 3;
 109
 110		if (index + current_size > total)
 111			return NULL;
 112
 113		if (current_id == section_id)
 114			return base + index;
 115
 116		index += current_size;
 117	}
 118
 119	return NULL;
 120}
 121
 122/*
 123 * Offset from the start of BDB to the start of the
 124 * block data (just past the block header).
 125 */
 126static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
 127{
 128	const void *block;
 129
 130	block = find_raw_section(bdb, section_id);
 131	if (!block)
 132		return 0;
 133
 134	return block - bdb;
 135}
 136
 137struct bdb_block_entry {
 138	struct list_head node;
 139	enum bdb_block_id section_id;
 140	u8 data[];
 141};
 142
 143static const void *
 144bdb_find_section(struct drm_i915_private *i915,
 145		 enum bdb_block_id section_id)
 146{
 147	struct bdb_block_entry *entry;
 148
 149	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
 150		if (entry->section_id == section_id)
 151			return entry->data + 3;
 152	}
 153
 154	return NULL;
 155}
 156
 157static const struct {
 158	enum bdb_block_id section_id;
 159	size_t min_size;
 160} bdb_blocks[] = {
 161	{ .section_id = BDB_GENERAL_FEATURES,
 162	  .min_size = sizeof(struct bdb_general_features), },
 163	{ .section_id = BDB_GENERAL_DEFINITIONS,
 164	  .min_size = sizeof(struct bdb_general_definitions), },
 165	{ .section_id = BDB_PSR,
 166	  .min_size = sizeof(struct bdb_psr), },
 167	{ .section_id = BDB_DRIVER_FEATURES,
 168	  .min_size = sizeof(struct bdb_driver_features), },
 169	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
 170	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
 171	{ .section_id = BDB_SDVO_PANEL_DTDS,
 172	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
 173	{ .section_id = BDB_EDP,
 174	  .min_size = sizeof(struct bdb_edp), },
 175	{ .section_id = BDB_LVDS_OPTIONS,
 176	  .min_size = sizeof(struct bdb_lvds_options), },
 177	/*
 178	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
 179	 * so keep the two ordered.
 180	 */
 181	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
 182	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
 183	{ .section_id = BDB_LVDS_LFP_DATA,
 184	  .min_size = 0, /* special case */ },
 185	{ .section_id = BDB_LVDS_BACKLIGHT,
 186	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
 187	{ .section_id = BDB_LFP_POWER,
 188	  .min_size = sizeof(struct bdb_lfp_power), },
 189	{ .section_id = BDB_MIPI_CONFIG,
 190	  .min_size = sizeof(struct bdb_mipi_config), },
 191	{ .section_id = BDB_MIPI_SEQUENCE,
 192	  .min_size = sizeof(struct bdb_mipi_sequence) },
 193	{ .section_id = BDB_COMPRESSION_PARAMETERS,
 194	  .min_size = sizeof(struct bdb_compression_parameters), },
 195	{ .section_id = BDB_GENERIC_DTD,
 196	  .min_size = sizeof(struct bdb_generic_dtd), },
 197};
 198
 199static size_t lfp_data_min_size(struct drm_i915_private *i915)
 200{
 201	const struct bdb_lvds_lfp_data_ptrs *ptrs;
 202	size_t size;
 203
 204	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
 205	if (!ptrs)
 206		return 0;
 207
 208	size = sizeof(struct bdb_lvds_lfp_data);
 209	if (ptrs->panel_name.table_size)
 210		size = max(size, ptrs->panel_name.offset +
 211			   sizeof(struct bdb_lvds_lfp_data_tail));
 212
 213	return size;
 214}
 215
 216static bool validate_lfp_data_ptrs(const void *bdb,
 217				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
 218{
 219	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
 220	int data_block_size, lfp_data_size;
 221	const void *data_block;
 222	int i;
 223
 224	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
 225	if (!data_block)
 226		return false;
 227
 228	data_block_size = get_blocksize(data_block);
 229	if (data_block_size == 0)
 230		return false;
 231
 232	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
 233	if (ptrs->lvds_entries != 3)
 234		return false;
 235
 236	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
 237	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
 238	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
 239	panel_name_size = ptrs->panel_name.table_size;
 240
 241	/* fp_timing has variable size */
 242	if (fp_timing_size < 32 ||
 243	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
 244	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
 245		return false;
 246
 247	/* panel_name is not present in old VBTs */
 248	if (panel_name_size != 0 &&
 249	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
 250		return false;
 251
 252	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
 253	if (16 * lfp_data_size > data_block_size)
 254		return false;
 255
 256	/* make sure the table entries have uniform size */
 257	for (i = 1; i < 16; i++) {
 258		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
 259		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
 260		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
 261			return false;
 262
 263		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
 264		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
 265		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
 266			return false;
 267	}
 268
 269	/*
 270	 * Except for vlv/chv machines all real VBTs seem to have 6
 271	 * unaccounted bytes in the fp_timing table. And it doesn't
 272	 * appear to be a really intentional hole as the fp_timing
 273	 * 0xffff terminator is always within those 6 missing bytes.
 274	 */
 275	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
 276		fp_timing_size += 6;
 277
 278	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
 279		return false;
 280
 281	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
 282	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
 283	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
 284		return false;
 285
 286	/* make sure the tables fit inside the data block */
 287	for (i = 0; i < 16; i++) {
 288		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
 289		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
 290		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
 291			return false;
 292	}
 293
 294	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
 295		return false;
 296
 297	/* make sure fp_timing terminators are present at expected locations */
 298	for (i = 0; i < 16; i++) {
 299		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
 300			fp_timing_size - 2;
 301
 302		if (*t != 0xffff)
 303			return false;
 304	}
 305
 306	return true;
 307}
 308
 309/* make the data table offsets relative to the data block */
 310static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
 311{
 312	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
 313	u32 offset;
 314	int i;
 315
 316	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
 317
 318	for (i = 0; i < 16; i++) {
 319		if (ptrs->ptr[i].fp_timing.offset < offset ||
 320		    ptrs->ptr[i].dvo_timing.offset < offset ||
 321		    ptrs->ptr[i].panel_pnp_id.offset < offset)
 322			return false;
 323
 324		ptrs->ptr[i].fp_timing.offset -= offset;
 325		ptrs->ptr[i].dvo_timing.offset -= offset;
 326		ptrs->ptr[i].panel_pnp_id.offset -= offset;
 327	}
 328
 329	if (ptrs->panel_name.table_size) {
 330		if (ptrs->panel_name.offset < offset)
 331			return false;
 332
 333		ptrs->panel_name.offset -= offset;
 334	}
 335
 336	return validate_lfp_data_ptrs(bdb, ptrs);
 337}
 338
 339static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
 340			     int table_size, int total_size)
 341{
 342	if (total_size < table_size)
 343		return total_size;
 344
 345	table->table_size = table_size;
 346	table->offset = total_size - table_size;
 347
 348	return total_size - table_size;
 349}
 350
 351static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
 352			      const struct lvds_lfp_data_ptr_table *prev,
 353			      int size)
 354{
 355	next->table_size = prev->table_size;
 356	next->offset = prev->offset + size;
 357}
 358
 359static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
 360				    const void *bdb)
 361{
 362	int i, size, table_size, block_size, offset, fp_timing_size;
 363	struct bdb_lvds_lfp_data_ptrs *ptrs;
 364	const void *block;
 365	void *ptrs_block;
 366
 367	/*
 368	 * The hardcoded fp_timing_size is only valid for
 369	 * modernish VBTs. All older VBTs definitely should
 370	 * include block 41 and thus we don't need to
 371	 * generate one.
 372	 */
 373	if (i915->display.vbt.version < 155)
 374		return NULL;
 375
 376	fp_timing_size = 38;
 377
 378	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
 379	if (!block)
 380		return NULL;
 381
 382	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
 383
 384	block_size = get_blocksize(block);
 385
 386	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
 387		sizeof(struct lvds_pnp_id);
 388	if (size * 16 > block_size)
 389		return NULL;
 390
 391	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
 392	if (!ptrs_block)
 393		return NULL;
 394
 395	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
 396	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
 397	ptrs = ptrs_block + 3;
 398
 399	table_size = sizeof(struct lvds_pnp_id);
 400	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
 401
 402	table_size = sizeof(struct lvds_dvo_timing);
 403	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
 404
 405	table_size = fp_timing_size;
 406	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
 407
 408	if (ptrs->ptr[0].fp_timing.table_size)
 409		ptrs->lvds_entries++;
 410	if (ptrs->ptr[0].dvo_timing.table_size)
 411		ptrs->lvds_entries++;
 412	if (ptrs->ptr[0].panel_pnp_id.table_size)
 413		ptrs->lvds_entries++;
 414
 415	if (size != 0 || ptrs->lvds_entries != 3) {
 416		kfree(ptrs_block);
 417		return NULL;
 418	}
 419
 420	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
 421		sizeof(struct lvds_pnp_id);
 422	for (i = 1; i < 16; i++) {
 423		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
 424		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
 425		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
 426	}
 427
 428	table_size = sizeof(struct lvds_lfp_panel_name);
 429
 430	if (16 * (size + table_size) <= block_size) {
 431		ptrs->panel_name.table_size = table_size;
 432		ptrs->panel_name.offset = size * 16;
 433	}
 434
 435	offset = block - bdb;
 436
 437	for (i = 0; i < 16; i++) {
 438		ptrs->ptr[i].fp_timing.offset += offset;
 439		ptrs->ptr[i].dvo_timing.offset += offset;
 440		ptrs->ptr[i].panel_pnp_id.offset += offset;
 441	}
 442
 443	if (ptrs->panel_name.table_size)
 444		ptrs->panel_name.offset += offset;
 445
 446	return ptrs_block;
 447}
 448
 449static void
 450init_bdb_block(struct drm_i915_private *i915,
 451	       const void *bdb, enum bdb_block_id section_id,
 452	       size_t min_size)
 453{
 454	struct bdb_block_entry *entry;
 455	void *temp_block = NULL;
 456	const void *block;
 457	size_t block_size;
 458
 459	block = find_raw_section(bdb, section_id);
 460
 461	/* Modern VBTs lack the LFP data table pointers block, make one up */
 462	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
 463		temp_block = generate_lfp_data_ptrs(i915, bdb);
 464		if (temp_block)
 465			block = temp_block + 3;
 466	}
 467	if (!block)
 468		return;
 469
 470	drm_WARN(&i915->drm, min_size == 0,
 471		 "Block %d min_size is zero\n", section_id);
 472
 473	block_size = get_blocksize(block);
 474
 475	/*
 476	 * Version number and new block size are considered
 477	 * part of the header for MIPI sequenece block v3+.
 478	 */
 479	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
 480		block_size += 5;
 481
 482	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
 483			GFP_KERNEL);
 484	if (!entry) {
 485		kfree(temp_block);
 486		return;
 487	}
 488
 489	entry->section_id = section_id;
 490	memcpy(entry->data, block - 3, block_size + 3);
 491
 492	kfree(temp_block);
 493
 494	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
 495		    section_id, block_size, min_size);
 496
 497	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
 498	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
 499		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
 500		kfree(entry);
 501		return;
 502	}
 503
 504	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
 505}
 506
 507static void init_bdb_blocks(struct drm_i915_private *i915,
 508			    const void *bdb)
 509{
 510	int i;
 511
 512	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
 513		enum bdb_block_id section_id = bdb_blocks[i].section_id;
 514		size_t min_size = bdb_blocks[i].min_size;
 515
 516		if (section_id == BDB_LVDS_LFP_DATA)
 517			min_size = lfp_data_min_size(i915);
 518
 519		init_bdb_block(i915, bdb, section_id, min_size);
 520	}
 521}
 522
 523static void
 524fill_detail_timing_data(struct drm_i915_private *i915,
 525			struct drm_display_mode *panel_fixed_mode,
 526			const struct lvds_dvo_timing *dvo_timing)
 527{
 528	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
 529		dvo_timing->hactive_lo;
 530	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
 531		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
 532	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
 533		((dvo_timing->hsync_pulse_width_hi << 8) |
 534			dvo_timing->hsync_pulse_width_lo);
 535	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
 536		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
 537
 538	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
 539		dvo_timing->vactive_lo;
 540	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
 541		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
 542	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
 543		((dvo_timing->vsync_pulse_width_hi << 4) |
 544			dvo_timing->vsync_pulse_width_lo);
 545	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
 546		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
 547	panel_fixed_mode->clock = dvo_timing->clock * 10;
 548	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
 549
 550	if (dvo_timing->hsync_positive)
 551		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
 552	else
 553		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
 554
 555	if (dvo_timing->vsync_positive)
 556		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
 557	else
 558		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
 559
 560	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
 561		dvo_timing->himage_lo;
 562	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
 563		dvo_timing->vimage_lo;
 564
 565	/* Some VBTs have bogus h/vsync_end values */
 566	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
 567		drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n",
 568			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
 569		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
 570	}
 571	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
 572		drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n",
 573			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
 574		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
 575	}
 576
 577	drm_mode_set_name(panel_fixed_mode);
 578}
 579
 580static const struct lvds_dvo_timing *
 581get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
 582		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
 583		    int index)
 584{
 585	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
 586}
 587
 588static const struct lvds_fp_timing *
 589get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
 590		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
 591		   int index)
 592{
 593	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
 594}
 595
 596static const struct lvds_pnp_id *
 597get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
 598		const struct bdb_lvds_lfp_data_ptrs *ptrs,
 599		int index)
 600{
 601	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
 602}
 603
 604static const struct bdb_lvds_lfp_data_tail *
 605get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
 606		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
 607{
 608	if (ptrs->panel_name.table_size)
 609		return (const void *)data + ptrs->panel_name.offset;
 610	else
 611		return NULL;
 612}
 613
 614static void dump_pnp_id(struct drm_i915_private *i915,
 615			const struct lvds_pnp_id *pnp_id,
 616			const char *name)
 617{
 618	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
 619	char vend[4];
 620
 621	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
 622		    name, drm_edid_decode_mfg_id(mfg_name, vend),
 623		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
 624		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
 625}
 626
 627static int opregion_get_panel_type(struct drm_i915_private *i915,
 628				   const struct intel_bios_encoder_data *devdata,
 629				   const struct drm_edid *drm_edid, bool use_fallback)
 630{
 631	return intel_opregion_get_panel_type(i915);
 632}
 633
 634static int vbt_get_panel_type(struct drm_i915_private *i915,
 635			      const struct intel_bios_encoder_data *devdata,
 636			      const struct drm_edid *drm_edid, bool use_fallback)
 637{
 638	const struct bdb_lvds_options *lvds_options;
 639
 640	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
 641	if (!lvds_options)
 642		return -1;
 643
 644	if (lvds_options->panel_type > 0xf &&
 645	    lvds_options->panel_type != 0xff) {
 646		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
 647			    lvds_options->panel_type);
 648		return -1;
 649	}
 650
 651	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
 652		return lvds_options->panel_type2;
 653
 654	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
 655
 656	return lvds_options->panel_type;
 657}
 658
 659static int pnpid_get_panel_type(struct drm_i915_private *i915,
 660				const struct intel_bios_encoder_data *devdata,
 661				const struct drm_edid *drm_edid, bool use_fallback)
 662{
 663	const struct bdb_lvds_lfp_data *data;
 664	const struct bdb_lvds_lfp_data_ptrs *ptrs;
 665	const struct lvds_pnp_id *edid_id;
 666	struct lvds_pnp_id edid_id_nodate;
 667	const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
 668	int i, best = -1;
 669
 670	if (!edid)
 671		return -1;
 672
 673	edid_id = (const void *)&edid->mfg_id[0];
 674
 675	edid_id_nodate = *edid_id;
 676	edid_id_nodate.mfg_week = 0;
 677	edid_id_nodate.mfg_year = 0;
 678
 679	dump_pnp_id(i915, edid_id, "EDID");
 680
 681	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
 682	if (!ptrs)
 683		return -1;
 684
 685	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
 686	if (!data)
 687		return -1;
 688
 689	for (i = 0; i < 16; i++) {
 690		const struct lvds_pnp_id *vbt_id =
 691			get_lvds_pnp_id(data, ptrs, i);
 692
 693		/* full match? */
 694		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
 695			return i;
 696
 697		/*
 698		 * Accept a match w/o date if no full match is found,
 699		 * and the VBT entry does not specify a date.
 700		 */
 701		if (best < 0 &&
 702		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
 703			best = i;
 704	}
 705
 706	return best;
 707}
 708
 709static int fallback_get_panel_type(struct drm_i915_private *i915,
 710				   const struct intel_bios_encoder_data *devdata,
 711				   const struct drm_edid *drm_edid, bool use_fallback)
 712{
 713	return use_fallback ? 0 : -1;
 714}
 715
 716enum panel_type {
 717	PANEL_TYPE_OPREGION,
 718	PANEL_TYPE_VBT,
 719	PANEL_TYPE_PNPID,
 720	PANEL_TYPE_FALLBACK,
 721};
 722
 723static int get_panel_type(struct drm_i915_private *i915,
 724			  const struct intel_bios_encoder_data *devdata,
 725			  const struct drm_edid *drm_edid, bool use_fallback)
 726{
 727	struct {
 728		const char *name;
 729		int (*get_panel_type)(struct drm_i915_private *i915,
 730				      const struct intel_bios_encoder_data *devdata,
 731				      const struct drm_edid *drm_edid, bool use_fallback);
 732		int panel_type;
 733	} panel_types[] = {
 734		[PANEL_TYPE_OPREGION] = {
 735			.name = "OpRegion",
 736			.get_panel_type = opregion_get_panel_type,
 737		},
 738		[PANEL_TYPE_VBT] = {
 739			.name = "VBT",
 740			.get_panel_type = vbt_get_panel_type,
 741		},
 742		[PANEL_TYPE_PNPID] = {
 743			.name = "PNPID",
 744			.get_panel_type = pnpid_get_panel_type,
 745		},
 746		[PANEL_TYPE_FALLBACK] = {
 747			.name = "fallback",
 748			.get_panel_type = fallback_get_panel_type,
 749		},
 750	};
 751	int i;
 752
 753	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
 754		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
 755									  drm_edid, use_fallback);
 756
 757		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
 758			    panel_types[i].panel_type != 0xff);
 759
 760		if (panel_types[i].panel_type >= 0)
 761			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
 762				    panel_types[i].name, panel_types[i].panel_type);
 763	}
 764
 765	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
 766		i = PANEL_TYPE_OPREGION;
 767	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
 768		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
 769		i = PANEL_TYPE_PNPID;
 770	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
 771		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
 772		i = PANEL_TYPE_VBT;
 773	else
 774		i = PANEL_TYPE_FALLBACK;
 775
 776	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
 777		    panel_types[i].name, panel_types[i].panel_type);
 778
 779	return panel_types[i].panel_type;
 780}
 781
 782static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
 783{
 784	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
 785}
 786
 787static bool panel_bool(unsigned int value, int panel_type)
 788{
 789	return panel_bits(value, panel_type, 1);
 790}
 791
 792/* Parse general panel options */
 793static void
 794parse_panel_options(struct drm_i915_private *i915,
 795		    struct intel_panel *panel)
 796{
 797	const struct bdb_lvds_options *lvds_options;
 798	int panel_type = panel->vbt.panel_type;
 799	int drrs_mode;
 800
 801	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
 802	if (!lvds_options)
 803		return;
 804
 805	panel->vbt.lvds_dither = lvds_options->pixel_dither;
 806
 807	/*
 808	 * Empirical evidence indicates the block size can be
 809	 * either 4,14,16,24+ bytes. For older VBTs no clear
 810	 * relationship between the block size vs. BDB version.
 811	 */
 812	if (get_blocksize(lvds_options) < 16)
 813		return;
 814
 815	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
 816			       panel_type, 2);
 817	/*
 818	 * VBT has static DRRS = 0 and seamless DRRS = 2.
 819	 * The below piece of code is required to adjust vbt.drrs_type
 820	 * to match the enum drrs_support_type.
 821	 */
 822	switch (drrs_mode) {
 823	case 0:
 824		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
 825		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
 826		break;
 827	case 2:
 828		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
 829		drm_dbg_kms(&i915->drm,
 830			    "DRRS supported mode is seamless\n");
 831		break;
 832	default:
 833		panel->vbt.drrs_type = DRRS_TYPE_NONE;
 834		drm_dbg_kms(&i915->drm,
 835			    "DRRS not supported (VBT input)\n");
 836		break;
 837	}
 838}
 839
 840static void
 841parse_lfp_panel_dtd(struct drm_i915_private *i915,
 842		    struct intel_panel *panel,
 843		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
 844		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
 845{
 846	const struct lvds_dvo_timing *panel_dvo_timing;
 847	const struct lvds_fp_timing *fp_timing;
 848	struct drm_display_mode *panel_fixed_mode;
 849	int panel_type = panel->vbt.panel_type;
 850
 851	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
 852					       lvds_lfp_data_ptrs,
 853					       panel_type);
 854
 855	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
 856	if (!panel_fixed_mode)
 857		return;
 858
 859	fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing);
 860
 861	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
 862
 863	drm_dbg_kms(&i915->drm,
 864		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
 865		    DRM_MODE_ARG(panel_fixed_mode));
 866
 867	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
 868				       lvds_lfp_data_ptrs,
 869				       panel_type);
 870
 871	/* check the resolution, just to be sure */
 872	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
 873	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
 874		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
 875		drm_dbg_kms(&i915->drm,
 876			    "VBT initial LVDS value %x\n",
 877			    panel->vbt.bios_lvds_val);
 878	}
 879}
 880
 881static void
 882parse_lfp_data(struct drm_i915_private *i915,
 883	       struct intel_panel *panel)
 884{
 885	const struct bdb_lvds_lfp_data *data;
 886	const struct bdb_lvds_lfp_data_tail *tail;
 887	const struct bdb_lvds_lfp_data_ptrs *ptrs;
 888	const struct lvds_pnp_id *pnp_id;
 889	int panel_type = panel->vbt.panel_type;
 890
 891	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
 892	if (!ptrs)
 893		return;
 894
 895	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
 896	if (!data)
 897		return;
 898
 899	if (!panel->vbt.lfp_lvds_vbt_mode)
 900		parse_lfp_panel_dtd(i915, panel, data, ptrs);
 901
 902	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
 903	dump_pnp_id(i915, pnp_id, "Panel");
 904
 905	tail = get_lfp_data_tail(data, ptrs);
 906	if (!tail)
 907		return;
 908
 909	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
 910		    (int)sizeof(tail->panel_name[0].name),
 911		    tail->panel_name[panel_type].name);
 912
 913	if (i915->display.vbt.version >= 188) {
 914		panel->vbt.seamless_drrs_min_refresh_rate =
 915			tail->seamless_drrs_min_refresh_rate[panel_type];
 916		drm_dbg_kms(&i915->drm,
 917			    "Seamless DRRS min refresh rate: %d Hz\n",
 918			    panel->vbt.seamless_drrs_min_refresh_rate);
 919	}
 920}
 921
 922static void
 923parse_generic_dtd(struct drm_i915_private *i915,
 924		  struct intel_panel *panel)
 925{
 926	const struct bdb_generic_dtd *generic_dtd;
 927	const struct generic_dtd_entry *dtd;
 928	struct drm_display_mode *panel_fixed_mode;
 929	int num_dtd;
 930
 931	/*
 932	 * Older VBTs provided DTD information for internal displays through
 933	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
 934	 * DTD information should be provided via a newer "generic DTD"
 935	 * block (58).  Just to be safe, we'll try the new generic DTD block
 936	 * first on VBT >= 229, but still fall back to trying the old LFP
 937	 * block if that fails.
 938	 */
 939	if (i915->display.vbt.version < 229)
 940		return;
 941
 942	generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
 943	if (!generic_dtd)
 944		return;
 945
 946	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
 947		drm_err(&i915->drm, "GDTD size %u is too small.\n",
 948			generic_dtd->gdtd_size);
 949		return;
 950	} else if (generic_dtd->gdtd_size !=
 951		   sizeof(struct generic_dtd_entry)) {
 952		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
 953			generic_dtd->gdtd_size);
 954		/* DTD has unknown fields, but keep going */
 955	}
 956
 957	num_dtd = (get_blocksize(generic_dtd) -
 958		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
 959	if (panel->vbt.panel_type >= num_dtd) {
 960		drm_err(&i915->drm,
 961			"Panel type %d not found in table of %d DTD's\n",
 962			panel->vbt.panel_type, num_dtd);
 963		return;
 964	}
 965
 966	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
 967
 968	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
 969	if (!panel_fixed_mode)
 970		return;
 971
 972	panel_fixed_mode->hdisplay = dtd->hactive;
 973	panel_fixed_mode->hsync_start =
 974		panel_fixed_mode->hdisplay + dtd->hfront_porch;
 975	panel_fixed_mode->hsync_end =
 976		panel_fixed_mode->hsync_start + dtd->hsync;
 977	panel_fixed_mode->htotal =
 978		panel_fixed_mode->hdisplay + dtd->hblank;
 979
 980	panel_fixed_mode->vdisplay = dtd->vactive;
 981	panel_fixed_mode->vsync_start =
 982		panel_fixed_mode->vdisplay + dtd->vfront_porch;
 983	panel_fixed_mode->vsync_end =
 984		panel_fixed_mode->vsync_start + dtd->vsync;
 985	panel_fixed_mode->vtotal =
 986		panel_fixed_mode->vdisplay + dtd->vblank;
 987
 988	panel_fixed_mode->clock = dtd->pixel_clock;
 989	panel_fixed_mode->width_mm = dtd->width_mm;
 990	panel_fixed_mode->height_mm = dtd->height_mm;
 991
 992	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
 993	drm_mode_set_name(panel_fixed_mode);
 994
 995	if (dtd->hsync_positive_polarity)
 996		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
 997	else
 998		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
 999
1000	if (dtd->vsync_positive_polarity)
1001		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1002	else
1003		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1004
1005	drm_dbg_kms(&i915->drm,
1006		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1007		    DRM_MODE_ARG(panel_fixed_mode));
1008
1009	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1010}
1011
1012static void
1013parse_lfp_backlight(struct drm_i915_private *i915,
1014		    struct intel_panel *panel)
1015{
1016	const struct bdb_lfp_backlight_data *backlight_data;
1017	const struct lfp_backlight_data_entry *entry;
1018	int panel_type = panel->vbt.panel_type;
1019	u16 level;
1020
1021	backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1022	if (!backlight_data)
1023		return;
1024
1025	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1026		drm_dbg_kms(&i915->drm,
1027			    "Unsupported backlight data entry size %u\n",
1028			    backlight_data->entry_size);
1029		return;
1030	}
1031
1032	entry = &backlight_data->data[panel_type];
1033
1034	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1035	if (!panel->vbt.backlight.present) {
1036		drm_dbg_kms(&i915->drm,
1037			    "PWM backlight not present in VBT (type %u)\n",
1038			    entry->type);
1039		return;
1040	}
1041
1042	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1043	panel->vbt.backlight.controller = 0;
1044	if (i915->display.vbt.version >= 191) {
1045		size_t exp_size;
1046
1047		if (i915->display.vbt.version >= 236)
1048			exp_size = sizeof(struct bdb_lfp_backlight_data);
1049		else if (i915->display.vbt.version >= 234)
1050			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1051		else
1052			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1053
1054		if (get_blocksize(backlight_data) >= exp_size) {
1055			const struct lfp_backlight_control_method *method;
1056
1057			method = &backlight_data->backlight_control[panel_type];
1058			panel->vbt.backlight.type = method->type;
1059			panel->vbt.backlight.controller = method->controller;
1060		}
1061	}
1062
1063	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1064	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1065
1066	if (i915->display.vbt.version >= 234) {
1067		u16 min_level;
1068		bool scale;
1069
1070		level = backlight_data->brightness_level[panel_type].level;
1071		min_level = backlight_data->brightness_min_level[panel_type].level;
1072
1073		if (i915->display.vbt.version >= 236)
1074			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1075		else
1076			scale = level > 255;
1077
1078		if (scale)
1079			min_level = min_level / 255;
1080
1081		if (min_level > 255) {
1082			drm_warn(&i915->drm, "Brightness min level > 255\n");
1083			level = 255;
1084		}
1085		panel->vbt.backlight.min_brightness = min_level;
1086
1087		panel->vbt.backlight.brightness_precision_bits =
1088			backlight_data->brightness_precision_bits[panel_type];
1089	} else {
1090		level = backlight_data->level[panel_type];
1091		panel->vbt.backlight.min_brightness = entry->min_brightness;
1092	}
1093
1094	if (i915->display.vbt.version >= 239)
1095		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1096			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1097	else
1098		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1099
1100	drm_dbg_kms(&i915->drm,
1101		    "VBT backlight PWM modulation frequency %u Hz, "
1102		    "active %s, min brightness %u, level %u, controller %u\n",
1103		    panel->vbt.backlight.pwm_freq_hz,
1104		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1105		    panel->vbt.backlight.min_brightness,
1106		    level,
1107		    panel->vbt.backlight.controller);
1108}
1109
1110/* Try to find sdvo panel data */
1111static void
1112parse_sdvo_panel_data(struct drm_i915_private *i915,
1113		      struct intel_panel *panel)
1114{
1115	const struct bdb_sdvo_panel_dtds *dtds;
1116	struct drm_display_mode *panel_fixed_mode;
1117	int index;
1118
1119	index = i915->display.params.vbt_sdvo_panel_type;
1120	if (index == -2) {
1121		drm_dbg_kms(&i915->drm,
1122			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1123		return;
1124	}
1125
1126	if (index == -1) {
1127		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1128
1129		sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1130		if (!sdvo_lvds_options)
1131			return;
1132
1133		index = sdvo_lvds_options->panel_type;
1134	}
1135
1136	dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1137	if (!dtds)
1138		return;
1139
1140	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1141	if (!panel_fixed_mode)
1142		return;
1143
1144	fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]);
1145
1146	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1147
1148	drm_dbg_kms(&i915->drm,
1149		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1150		    DRM_MODE_ARG(panel_fixed_mode));
1151}
1152
1153static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1154				    bool alternate)
1155{
1156	switch (DISPLAY_VER(i915)) {
1157	case 2:
1158		return alternate ? 66667 : 48000;
1159	case 3:
1160	case 4:
1161		return alternate ? 100000 : 96000;
1162	default:
1163		return alternate ? 100000 : 120000;
1164	}
1165}
1166
1167static void
1168parse_general_features(struct drm_i915_private *i915)
1169{
1170	const struct bdb_general_features *general;
1171
1172	general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1173	if (!general)
1174		return;
1175
1176	i915->display.vbt.int_tv_support = general->int_tv_support;
1177	/* int_crt_support can't be trusted on earlier platforms */
1178	if (i915->display.vbt.version >= 155 &&
1179	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1180		i915->display.vbt.int_crt_support = general->int_crt_support;
1181	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1182	i915->display.vbt.lvds_ssc_freq =
1183		intel_bios_ssc_frequency(i915, general->ssc_freq);
1184	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1185	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1186	if (i915->display.vbt.version >= 181) {
1187		i915->display.vbt.orientation = general->rotate_180 ?
1188			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1189			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1190	} else {
1191		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1192	}
1193
1194	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1195		i915->display.vbt.override_afc_startup = true;
1196		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1197	}
1198
1199	drm_dbg_kms(&i915->drm,
1200		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1201		    i915->display.vbt.int_tv_support,
1202		    i915->display.vbt.int_crt_support,
1203		    i915->display.vbt.lvds_use_ssc,
1204		    i915->display.vbt.lvds_ssc_freq,
1205		    i915->display.vbt.display_clock_mode,
1206		    i915->display.vbt.fdi_rx_polarity_inverted);
1207}
1208
1209static const struct child_device_config *
1210child_device_ptr(const struct bdb_general_definitions *defs, int i)
1211{
1212	return (const void *) &defs->devices[i * defs->child_dev_size];
1213}
1214
1215static void
1216parse_sdvo_device_mapping(struct drm_i915_private *i915)
1217{
1218	const struct intel_bios_encoder_data *devdata;
1219	int count = 0;
1220
1221	/*
1222	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1223	 * accurate and doesn't have to be, as long as it's not too strict.
1224	 */
1225	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1226		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1227		return;
1228	}
1229
1230	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1231		const struct child_device_config *child = &devdata->child;
1232		struct sdvo_device_mapping *mapping;
1233
1234		if (child->slave_addr != SLAVE_ADDR1 &&
1235		    child->slave_addr != SLAVE_ADDR2) {
1236			/*
1237			 * If the slave address is neither 0x70 nor 0x72,
1238			 * it is not a SDVO device. Skip it.
1239			 */
1240			continue;
1241		}
1242		if (child->dvo_port != DEVICE_PORT_DVOB &&
1243		    child->dvo_port != DEVICE_PORT_DVOC) {
1244			/* skip the incorrect SDVO port */
1245			drm_dbg_kms(&i915->drm,
1246				    "Incorrect SDVO port. Skip it\n");
1247			continue;
1248		}
1249		drm_dbg_kms(&i915->drm,
1250			    "the SDVO device with slave addr %2x is found on"
1251			    " %s port\n",
1252			    child->slave_addr,
1253			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1254			    "SDVOB" : "SDVOC");
1255		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1256		if (!mapping->initialized) {
1257			mapping->dvo_port = child->dvo_port;
1258			mapping->slave_addr = child->slave_addr;
1259			mapping->dvo_wiring = child->dvo_wiring;
1260			mapping->ddc_pin = child->ddc_pin;
1261			mapping->i2c_pin = child->i2c_pin;
1262			mapping->initialized = 1;
1263			drm_dbg_kms(&i915->drm,
1264				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1265				    mapping->dvo_port, mapping->slave_addr,
1266				    mapping->dvo_wiring, mapping->ddc_pin,
1267				    mapping->i2c_pin);
1268		} else {
1269			drm_dbg_kms(&i915->drm,
1270				    "Maybe one SDVO port is shared by "
1271				    "two SDVO device.\n");
1272		}
1273		if (child->slave2_addr) {
1274			/* Maybe this is a SDVO device with multiple inputs */
1275			/* And the mapping info is not added */
1276			drm_dbg_kms(&i915->drm,
1277				    "there exists the slave2_addr. Maybe this"
1278				    " is a SDVO device with multiple inputs.\n");
1279		}
1280		count++;
1281	}
1282
1283	if (!count) {
1284		/* No SDVO device info is found */
1285		drm_dbg_kms(&i915->drm,
1286			    "No SDVO device info is found in VBT\n");
1287	}
1288}
1289
1290static void
1291parse_driver_features(struct drm_i915_private *i915)
1292{
1293	const struct bdb_driver_features *driver;
1294
1295	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1296	if (!driver)
1297		return;
1298
1299	if (DISPLAY_VER(i915) >= 5) {
1300		/*
1301		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1302		 * to mean "eDP". The VBT spec doesn't agree with that
1303		 * interpretation, but real world VBTs seem to.
1304		 */
1305		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1306			i915->display.vbt.int_lvds_support = 0;
1307	} else {
1308		/*
1309		 * FIXME it's not clear which BDB version has the LVDS config
1310		 * bits defined. Revision history in the VBT spec says:
1311		 * "0.92 | Add two definitions for VBT value of LVDS Active
1312		 *  Config (00b and 11b values defined) | 06/13/2005"
1313		 * but does not the specify the BDB version.
1314		 *
1315		 * So far version 134 (on i945gm) is the oldest VBT observed
1316		 * in the wild with the bits correctly populated. Version
1317		 * 108 (on i85x) does not have the bits correctly populated.
1318		 */
1319		if (i915->display.vbt.version >= 134 &&
1320		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1321		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1322			i915->display.vbt.int_lvds_support = 0;
1323	}
1324}
1325
1326static void
1327parse_panel_driver_features(struct drm_i915_private *i915,
1328			    struct intel_panel *panel)
1329{
1330	const struct bdb_driver_features *driver;
1331
1332	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1333	if (!driver)
1334		return;
1335
1336	if (i915->display.vbt.version < 228) {
1337		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1338			    driver->drrs_enabled);
1339		/*
1340		 * If DRRS is not supported, drrs_type has to be set to 0.
1341		 * This is because, VBT is configured in such a way that
1342		 * static DRRS is 0 and DRRS not supported is represented by
1343		 * driver->drrs_enabled=false
1344		 */
1345		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1346			/*
1347			 * FIXME Should DMRRS perhaps be treated as seamless
1348			 * but without the automatic downclocking?
1349			 */
1350			if (driver->dmrrs_enabled)
1351				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1352			else
1353				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1354		}
1355
1356		panel->vbt.psr.enable = driver->psr_enabled;
1357	}
1358}
1359
1360static void
1361parse_power_conservation_features(struct drm_i915_private *i915,
1362				  struct intel_panel *panel)
1363{
1364	const struct bdb_lfp_power *power;
1365	u8 panel_type = panel->vbt.panel_type;
1366
1367	panel->vbt.vrr = true; /* matches Windows behaviour */
1368
1369	if (i915->display.vbt.version < 228)
1370		return;
1371
1372	power = bdb_find_section(i915, BDB_LFP_POWER);
1373	if (!power)
1374		return;
1375
1376	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1377
1378	/*
1379	 * If DRRS is not supported, drrs_type has to be set to 0.
1380	 * This is because, VBT is configured in such a way that
1381	 * static DRRS is 0 and DRRS not supported is represented by
1382	 * power->drrs & BIT(panel_type)=false
1383	 */
1384	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1385		/*
1386		 * FIXME Should DMRRS perhaps be treated as seamless
1387		 * but without the automatic downclocking?
1388		 */
1389		if (panel_bool(power->dmrrs, panel_type))
1390			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1391		else
1392			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1393	}
1394
1395	if (i915->display.vbt.version >= 232)
1396		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1397
1398	if (i915->display.vbt.version >= 233)
1399		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1400					    panel_type);
1401}
1402
1403static void
1404parse_edp(struct drm_i915_private *i915,
1405	  struct intel_panel *panel)
1406{
1407	const struct bdb_edp *edp;
1408	const struct edp_power_seq *edp_pps;
1409	const struct edp_fast_link_params *edp_link_params;
1410	int panel_type = panel->vbt.panel_type;
1411
1412	edp = bdb_find_section(i915, BDB_EDP);
1413	if (!edp)
1414		return;
1415
1416	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1417	case EDP_18BPP:
1418		panel->vbt.edp.bpp = 18;
1419		break;
1420	case EDP_24BPP:
1421		panel->vbt.edp.bpp = 24;
1422		break;
1423	case EDP_30BPP:
1424		panel->vbt.edp.bpp = 30;
1425		break;
1426	}
1427
1428	/* Get the eDP sequencing and link info */
1429	edp_pps = &edp->power_seqs[panel_type];
1430	edp_link_params = &edp->fast_link_params[panel_type];
1431
1432	panel->vbt.edp.pps = *edp_pps;
1433
1434	if (i915->display.vbt.version >= 224) {
1435		panel->vbt.edp.rate =
1436			edp->edp_fast_link_training_rate[panel_type] * 20;
1437	} else {
1438		switch (edp_link_params->rate) {
1439		case EDP_RATE_1_62:
1440			panel->vbt.edp.rate = 162000;
1441			break;
1442		case EDP_RATE_2_7:
1443			panel->vbt.edp.rate = 270000;
1444			break;
1445		case EDP_RATE_5_4:
1446			panel->vbt.edp.rate = 540000;
1447			break;
1448		default:
1449			drm_dbg_kms(&i915->drm,
1450				    "VBT has unknown eDP link rate value %u\n",
1451				    edp_link_params->rate);
1452			break;
1453		}
1454	}
1455
1456	switch (edp_link_params->lanes) {
1457	case EDP_LANE_1:
1458		panel->vbt.edp.lanes = 1;
1459		break;
1460	case EDP_LANE_2:
1461		panel->vbt.edp.lanes = 2;
1462		break;
1463	case EDP_LANE_4:
1464		panel->vbt.edp.lanes = 4;
1465		break;
1466	default:
1467		drm_dbg_kms(&i915->drm,
1468			    "VBT has unknown eDP lane count value %u\n",
1469			    edp_link_params->lanes);
1470		break;
1471	}
1472
1473	switch (edp_link_params->preemphasis) {
1474	case EDP_PREEMPHASIS_NONE:
1475		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1476		break;
1477	case EDP_PREEMPHASIS_3_5dB:
1478		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1479		break;
1480	case EDP_PREEMPHASIS_6dB:
1481		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1482		break;
1483	case EDP_PREEMPHASIS_9_5dB:
1484		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1485		break;
1486	default:
1487		drm_dbg_kms(&i915->drm,
1488			    "VBT has unknown eDP pre-emphasis value %u\n",
1489			    edp_link_params->preemphasis);
1490		break;
1491	}
1492
1493	switch (edp_link_params->vswing) {
1494	case EDP_VSWING_0_4V:
1495		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1496		break;
1497	case EDP_VSWING_0_6V:
1498		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1499		break;
1500	case EDP_VSWING_0_8V:
1501		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1502		break;
1503	case EDP_VSWING_1_2V:
1504		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1505		break;
1506	default:
1507		drm_dbg_kms(&i915->drm,
1508			    "VBT has unknown eDP voltage swing value %u\n",
1509			    edp_link_params->vswing);
1510		break;
1511	}
1512
1513	if (i915->display.vbt.version >= 173) {
1514		u8 vswing;
1515
1516		/* Don't read from VBT if module parameter has valid value*/
1517		if (i915->display.params.edp_vswing) {
1518			panel->vbt.edp.low_vswing =
1519				i915->display.params.edp_vswing == 1;
1520		} else {
1521			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1522			panel->vbt.edp.low_vswing = vswing == 0;
1523		}
1524	}
1525
1526	panel->vbt.edp.drrs_msa_timing_delay =
1527		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1528
1529	if (i915->display.vbt.version >= 244)
1530		panel->vbt.edp.max_link_rate =
1531			edp->edp_max_port_link_rate[panel_type] * 20;
1532}
1533
1534static void
1535parse_psr(struct drm_i915_private *i915,
1536	  struct intel_panel *panel)
1537{
1538	const struct bdb_psr *psr;
1539	const struct psr_table *psr_table;
1540	int panel_type = panel->vbt.panel_type;
1541
1542	psr = bdb_find_section(i915, BDB_PSR);
1543	if (!psr) {
1544		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1545		return;
1546	}
1547
1548	psr_table = &psr->psr_table[panel_type];
1549
1550	panel->vbt.psr.full_link = psr_table->full_link;
1551	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1552
1553	/* Allowed VBT values goes from 0 to 15 */
1554	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1555		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1556
1557	/*
1558	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1559	 * Old decimal value is wake up time in multiples of 100 us.
1560	 */
1561	if (i915->display.vbt.version >= 205 &&
1562	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1563		switch (psr_table->tp1_wakeup_time) {
1564		case 0:
1565			panel->vbt.psr.tp1_wakeup_time_us = 500;
1566			break;
1567		case 1:
1568			panel->vbt.psr.tp1_wakeup_time_us = 100;
1569			break;
1570		case 3:
1571			panel->vbt.psr.tp1_wakeup_time_us = 0;
1572			break;
1573		default:
1574			drm_dbg_kms(&i915->drm,
1575				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1576				    psr_table->tp1_wakeup_time);
1577			fallthrough;
1578		case 2:
1579			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1580			break;
1581		}
1582
1583		switch (psr_table->tp2_tp3_wakeup_time) {
1584		case 0:
1585			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1586			break;
1587		case 1:
1588			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1589			break;
1590		case 3:
1591			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1592			break;
1593		default:
1594			drm_dbg_kms(&i915->drm,
1595				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1596				    psr_table->tp2_tp3_wakeup_time);
1597			fallthrough;
1598		case 2:
1599			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1600		break;
1601		}
1602	} else {
1603		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1604		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1605	}
1606
1607	if (i915->display.vbt.version >= 226) {
1608		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1609
1610		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1611		switch (wakeup_time) {
1612		case 0:
1613			wakeup_time = 500;
1614			break;
1615		case 1:
1616			wakeup_time = 100;
1617			break;
1618		case 3:
1619			wakeup_time = 50;
1620			break;
1621		default:
1622		case 2:
1623			wakeup_time = 2500;
1624			break;
1625		}
1626		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1627	} else {
1628		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1629		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1630	}
1631}
1632
1633static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1634				      struct intel_panel *panel,
1635				      enum port port)
1636{
1637	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1638
1639	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1640		panel->vbt.dsi.bl_ports = BIT(port);
1641		if (panel->vbt.dsi.config->cabc_supported)
1642			panel->vbt.dsi.cabc_ports = BIT(port);
1643
1644		return;
1645	}
1646
1647	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1648	case DL_DCS_PORT_A:
1649		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1650		break;
1651	case DL_DCS_PORT_C:
1652		panel->vbt.dsi.bl_ports = BIT(port_bc);
1653		break;
1654	default:
1655	case DL_DCS_PORT_A_AND_C:
1656		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1657		break;
1658	}
1659
1660	if (!panel->vbt.dsi.config->cabc_supported)
1661		return;
1662
1663	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1664	case DL_DCS_PORT_A:
1665		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1666		break;
1667	case DL_DCS_PORT_C:
1668		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1669		break;
1670	default:
1671	case DL_DCS_PORT_A_AND_C:
1672		panel->vbt.dsi.cabc_ports =
1673					BIT(PORT_A) | BIT(port_bc);
1674		break;
1675	}
1676}
1677
1678static void
1679parse_mipi_config(struct drm_i915_private *i915,
1680		  struct intel_panel *panel)
1681{
1682	const struct bdb_mipi_config *start;
1683	const struct mipi_config *config;
1684	const struct mipi_pps_data *pps;
1685	int panel_type = panel->vbt.panel_type;
1686	enum port port;
1687
1688	/* parse MIPI blocks only if LFP type is MIPI */
1689	if (!intel_bios_is_dsi_present(i915, &port))
1690		return;
1691
1692	/* Initialize this to undefined indicating no generic MIPI support */
1693	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1694
1695	/* Block #40 is already parsed and panel_fixed_mode is
1696	 * stored in i915->lfp_lvds_vbt_mode
1697	 * resuse this when needed
1698	 */
1699
1700	/* Parse #52 for panel index used from panel_type already
1701	 * parsed
1702	 */
1703	start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1704	if (!start) {
1705		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1706		return;
1707	}
1708
1709	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1710		panel_type);
1711
1712	/*
1713	 * get hold of the correct configuration block and pps data as per
1714	 * the panel_type as index
1715	 */
1716	config = &start->config[panel_type];
1717	pps = &start->pps[panel_type];
1718
1719	/* store as of now full data. Trim when we realise all is not needed */
1720	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1721	if (!panel->vbt.dsi.config)
1722		return;
1723
1724	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1725	if (!panel->vbt.dsi.pps) {
1726		kfree(panel->vbt.dsi.config);
1727		return;
1728	}
1729
1730	parse_dsi_backlight_ports(i915, panel, port);
1731
1732	/* FIXME is the 90 vs. 270 correct? */
1733	switch (config->rotation) {
1734	case ENABLE_ROTATION_0:
1735		/*
1736		 * Most (all?) VBTs claim 0 degrees despite having
1737		 * an upside down panel, thus we do not trust this.
1738		 */
1739		panel->vbt.dsi.orientation =
1740			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1741		break;
1742	case ENABLE_ROTATION_90:
1743		panel->vbt.dsi.orientation =
1744			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1745		break;
1746	case ENABLE_ROTATION_180:
1747		panel->vbt.dsi.orientation =
1748			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1749		break;
1750	case ENABLE_ROTATION_270:
1751		panel->vbt.dsi.orientation =
1752			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1753		break;
1754	}
1755
1756	/* We have mandatory mipi config blocks. Initialize as generic panel */
1757	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1758}
1759
1760/* Find the sequence block and size for the given panel. */
1761static const u8 *
1762find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1763			  u16 panel_id, u32 *seq_size)
1764{
1765	u32 total = get_blocksize(sequence);
1766	const u8 *data = &sequence->data[0];
1767	u8 current_id;
1768	u32 current_size;
1769	int header_size = sequence->version >= 3 ? 5 : 3;
1770	int index = 0;
1771	int i;
1772
1773	/* skip new block size */
1774	if (sequence->version >= 3)
1775		data += 4;
1776
1777	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1778		if (index + header_size > total) {
1779			DRM_ERROR("Invalid sequence block (header)\n");
1780			return NULL;
1781		}
1782
1783		current_id = *(data + index);
1784		if (sequence->version >= 3)
1785			current_size = *((const u32 *)(data + index + 1));
1786		else
1787			current_size = *((const u16 *)(data + index + 1));
1788
1789		index += header_size;
1790
1791		if (index + current_size > total) {
1792			DRM_ERROR("Invalid sequence block\n");
1793			return NULL;
1794		}
1795
1796		if (current_id == panel_id) {
1797			*seq_size = current_size;
1798			return data + index;
1799		}
1800
1801		index += current_size;
1802	}
1803
1804	DRM_ERROR("Sequence block detected but no valid configuration\n");
1805
1806	return NULL;
1807}
1808
1809static int goto_next_sequence(const u8 *data, int index, int total)
1810{
1811	u16 len;
1812
1813	/* Skip Sequence Byte. */
1814	for (index = index + 1; index < total; index += len) {
1815		u8 operation_byte = *(data + index);
1816		index++;
1817
1818		switch (operation_byte) {
1819		case MIPI_SEQ_ELEM_END:
1820			return index;
1821		case MIPI_SEQ_ELEM_SEND_PKT:
1822			if (index + 4 > total)
1823				return 0;
1824
1825			len = *((const u16 *)(data + index + 2)) + 4;
1826			break;
1827		case MIPI_SEQ_ELEM_DELAY:
1828			len = 4;
1829			break;
1830		case MIPI_SEQ_ELEM_GPIO:
1831			len = 2;
1832			break;
1833		case MIPI_SEQ_ELEM_I2C:
1834			if (index + 7 > total)
1835				return 0;
1836			len = *(data + index + 6) + 7;
1837			break;
1838		default:
1839			DRM_ERROR("Unknown operation byte\n");
1840			return 0;
1841		}
1842	}
1843
1844	return 0;
1845}
1846
1847static int goto_next_sequence_v3(const u8 *data, int index, int total)
1848{
1849	int seq_end;
1850	u16 len;
1851	u32 size_of_sequence;
1852
1853	/*
1854	 * Could skip sequence based on Size of Sequence alone, but also do some
1855	 * checking on the structure.
1856	 */
1857	if (total < 5) {
1858		DRM_ERROR("Too small sequence size\n");
1859		return 0;
1860	}
1861
1862	/* Skip Sequence Byte. */
1863	index++;
1864
1865	/*
1866	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1867	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1868	 * byte.
1869	 */
1870	size_of_sequence = *((const u32 *)(data + index));
1871	index += 4;
1872
1873	seq_end = index + size_of_sequence;
1874	if (seq_end > total) {
1875		DRM_ERROR("Invalid sequence size\n");
1876		return 0;
1877	}
1878
1879	for (; index < total; index += len) {
1880		u8 operation_byte = *(data + index);
1881		index++;
1882
1883		if (operation_byte == MIPI_SEQ_ELEM_END) {
1884			if (index != seq_end) {
1885				DRM_ERROR("Invalid element structure\n");
1886				return 0;
1887			}
1888			return index;
1889		}
1890
1891		len = *(data + index);
1892		index++;
1893
1894		/*
1895		 * FIXME: Would be nice to check elements like for v1/v2 in
1896		 * goto_next_sequence() above.
1897		 */
1898		switch (operation_byte) {
1899		case MIPI_SEQ_ELEM_SEND_PKT:
1900		case MIPI_SEQ_ELEM_DELAY:
1901		case MIPI_SEQ_ELEM_GPIO:
1902		case MIPI_SEQ_ELEM_I2C:
1903		case MIPI_SEQ_ELEM_SPI:
1904		case MIPI_SEQ_ELEM_PMIC:
1905			break;
1906		default:
1907			DRM_ERROR("Unknown operation byte %u\n",
1908				  operation_byte);
1909			break;
1910		}
1911	}
1912
1913	return 0;
1914}
1915
1916/*
1917 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1918 * skip all delay + gpio operands and stop at the first DSI packet op.
1919 */
1920static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1921					      struct intel_panel *panel)
1922{
1923	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1924	int index, len;
1925
1926	if (drm_WARN_ON(&i915->drm,
1927			!data || panel->vbt.dsi.seq_version != 1))
1928		return 0;
1929
1930	/* index = 1 to skip sequence byte */
1931	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1932		switch (data[index]) {
1933		case MIPI_SEQ_ELEM_SEND_PKT:
1934			return index == 1 ? 0 : index;
1935		case MIPI_SEQ_ELEM_DELAY:
1936			len = 5; /* 1 byte for operand + uint32 */
1937			break;
1938		case MIPI_SEQ_ELEM_GPIO:
1939			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1940			break;
1941		default:
1942			return 0;
1943		}
1944	}
1945
1946	return 0;
1947}
1948
1949/*
1950 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1951 * The deassert must be done before calling intel_dsi_device_ready, so for
1952 * these devices we split the init OTP sequence into a deassert sequence and
1953 * the actual init OTP part.
1954 */
1955static void fixup_mipi_sequences(struct drm_i915_private *i915,
1956				 struct intel_panel *panel)
1957{
1958	u8 *init_otp;
1959	int len;
1960
1961	/* Limit this to VLV for now. */
1962	if (!IS_VALLEYVIEW(i915))
1963		return;
1964
1965	/* Limit this to v1 vid-mode sequences */
1966	if (panel->vbt.dsi.config->is_cmd_mode ||
1967	    panel->vbt.dsi.seq_version != 1)
1968		return;
1969
1970	/* Only do this if there are otp and assert seqs and no deassert seq */
1971	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1972	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1973	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1974		return;
1975
1976	/* The deassert-sequence ends at the first DSI packet */
1977	len = get_init_otp_deassert_fragment_len(i915, panel);
1978	if (!len)
1979		return;
1980
1981	drm_dbg_kms(&i915->drm,
1982		    "Using init OTP fragment to deassert reset\n");
1983
1984	/* Copy the fragment, update seq byte and terminate it */
1985	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1986	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1987	if (!panel->vbt.dsi.deassert_seq)
1988		return;
1989	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1990	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1991	/* Use the copy for deassert */
1992	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1993		panel->vbt.dsi.deassert_seq;
1994	/* Replace the last byte of the fragment with init OTP seq byte */
1995	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1996	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1997	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1998}
1999
2000static void
2001parse_mipi_sequence(struct drm_i915_private *i915,
2002		    struct intel_panel *panel)
2003{
2004	int panel_type = panel->vbt.panel_type;
2005	const struct bdb_mipi_sequence *sequence;
2006	const u8 *seq_data;
2007	u32 seq_size;
2008	u8 *data;
2009	int index = 0;
2010
2011	/* Only our generic panel driver uses the sequence block. */
2012	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2013		return;
2014
2015	sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2016	if (!sequence) {
2017		drm_dbg_kms(&i915->drm,
2018			    "No MIPI Sequence found, parsing complete\n");
2019		return;
2020	}
2021
2022	/* Fail gracefully for forward incompatible sequence block. */
2023	if (sequence->version >= 4) {
2024		drm_err(&i915->drm,
2025			"Unable to parse MIPI Sequence Block v%u\n",
2026			sequence->version);
2027		return;
2028	}
2029
2030	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2031		sequence->version);
2032
2033	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2034	if (!seq_data)
2035		return;
2036
2037	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2038	if (!data)
2039		return;
2040
2041	/* Parse the sequences, store pointers to each sequence. */
2042	for (;;) {
2043		u8 seq_id = *(data + index);
2044		if (seq_id == MIPI_SEQ_END)
2045			break;
2046
2047		if (seq_id >= MIPI_SEQ_MAX) {
2048			drm_err(&i915->drm, "Unknown sequence %u\n",
2049				seq_id);
2050			goto err;
2051		}
2052
2053		/* Log about presence of sequences we won't run. */
2054		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2055			drm_dbg_kms(&i915->drm,
2056				    "Unsupported sequence %u\n", seq_id);
2057
2058		panel->vbt.dsi.sequence[seq_id] = data + index;
2059
2060		if (sequence->version >= 3)
2061			index = goto_next_sequence_v3(data, index, seq_size);
2062		else
2063			index = goto_next_sequence(data, index, seq_size);
2064		if (!index) {
2065			drm_err(&i915->drm, "Invalid sequence %u\n",
2066				seq_id);
2067			goto err;
2068		}
2069	}
2070
2071	panel->vbt.dsi.data = data;
2072	panel->vbt.dsi.size = seq_size;
2073	panel->vbt.dsi.seq_version = sequence->version;
2074
2075	fixup_mipi_sequences(i915, panel);
2076
2077	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2078	return;
2079
2080err:
2081	kfree(data);
2082	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2083}
2084
2085static void
2086parse_compression_parameters(struct drm_i915_private *i915)
2087{
2088	const struct bdb_compression_parameters *params;
2089	struct intel_bios_encoder_data *devdata;
2090	u16 block_size;
2091	int index;
2092
2093	if (i915->display.vbt.version < 198)
2094		return;
2095
2096	params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2097	if (params) {
2098		/* Sanity checks */
2099		if (params->entry_size != sizeof(params->data[0])) {
2100			drm_dbg_kms(&i915->drm,
2101				    "VBT: unsupported compression param entry size\n");
2102			return;
2103		}
2104
2105		block_size = get_blocksize(params);
2106		if (block_size < sizeof(*params)) {
2107			drm_dbg_kms(&i915->drm,
2108				    "VBT: expected 16 compression param entries\n");
2109			return;
2110		}
2111	}
2112
2113	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2114		const struct child_device_config *child = &devdata->child;
2115
2116		if (!child->compression_enable)
2117			continue;
2118
2119		if (!params) {
2120			drm_dbg_kms(&i915->drm,
2121				    "VBT: compression params not available\n");
2122			continue;
2123		}
2124
2125		if (child->compression_method_cps) {
2126			drm_dbg_kms(&i915->drm,
2127				    "VBT: CPS compression not supported\n");
2128			continue;
2129		}
2130
2131		index = child->compression_structure_index;
2132
2133		devdata->dsc = kmemdup(&params->data[index],
2134				       sizeof(*devdata->dsc), GFP_KERNEL);
2135	}
2136}
2137
2138static u8 translate_iboost(u8 val)
2139{
2140	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2141
2142	if (val >= ARRAY_SIZE(mapping)) {
2143		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2144		return 0;
2145	}
2146	return mapping[val];
2147}
2148
2149static const u8 cnp_ddc_pin_map[] = {
2150	[0] = 0, /* N/A */
2151	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2152	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2153	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2154	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2155};
2156
2157static const u8 icp_ddc_pin_map[] = {
2158	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2159	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2160	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2161	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2162	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2163	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2164	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2165	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2166	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2167};
2168
2169static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2170	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2171	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2172	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2173	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2174};
2175
2176static const u8 adls_ddc_pin_map[] = {
2177	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2178	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2179	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2180	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2181	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2182};
2183
2184static const u8 gen9bc_tgp_ddc_pin_map[] = {
2185	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2186	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2187	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2188};
2189
2190static const u8 adlp_ddc_pin_map[] = {
2191	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2192	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2193	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2194	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2195	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2196	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2197};
2198
2199static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2200{
2201	const u8 *ddc_pin_map;
2202	int i, n_entries;
2203
2204	if (IS_DGFX(i915))
2205		return vbt_pin;
2206
2207	if (INTEL_PCH_TYPE(i915) >= PCH_LNL || HAS_PCH_MTP(i915) ||
2208	    IS_ALDERLAKE_P(i915)) {
2209		ddc_pin_map = adlp_ddc_pin_map;
2210		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2211	} else if (IS_ALDERLAKE_S(i915)) {
2212		ddc_pin_map = adls_ddc_pin_map;
2213		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2214	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2215		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2216		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2217	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2218		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2219		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2220	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2221		ddc_pin_map = icp_ddc_pin_map;
2222		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2223	} else if (HAS_PCH_CNP(i915)) {
2224		ddc_pin_map = cnp_ddc_pin_map;
2225		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2226	} else {
2227		/* Assuming direct map */
2228		return vbt_pin;
2229	}
2230
2231	for (i = 0; i < n_entries; i++) {
2232		if (ddc_pin_map[i] == vbt_pin)
2233			return i;
2234	}
2235
2236	drm_dbg_kms(&i915->drm,
2237		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2238		    vbt_pin);
2239	return 0;
2240}
2241
2242static u8 dvo_port_type(u8 dvo_port)
2243{
2244	switch (dvo_port) {
2245	case DVO_PORT_HDMIA:
2246	case DVO_PORT_HDMIB:
2247	case DVO_PORT_HDMIC:
2248	case DVO_PORT_HDMID:
2249	case DVO_PORT_HDMIE:
2250	case DVO_PORT_HDMIF:
2251	case DVO_PORT_HDMIG:
2252	case DVO_PORT_HDMIH:
2253	case DVO_PORT_HDMII:
2254		return DVO_PORT_HDMIA;
2255	case DVO_PORT_DPA:
2256	case DVO_PORT_DPB:
2257	case DVO_PORT_DPC:
2258	case DVO_PORT_DPD:
2259	case DVO_PORT_DPE:
2260	case DVO_PORT_DPF:
2261	case DVO_PORT_DPG:
2262	case DVO_PORT_DPH:
2263	case DVO_PORT_DPI:
2264		return DVO_PORT_DPA;
2265	case DVO_PORT_MIPIA:
2266	case DVO_PORT_MIPIB:
2267	case DVO_PORT_MIPIC:
2268	case DVO_PORT_MIPID:
2269		return DVO_PORT_MIPIA;
2270	default:
2271		return dvo_port;
2272	}
2273}
2274
2275static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2276				    const int port_mapping[][3], u8 dvo_port)
2277{
2278	enum port port;
2279	int i;
2280
2281	for (port = PORT_A; port < n_ports; port++) {
2282		for (i = 0; i < n_dvo; i++) {
2283			if (port_mapping[port][i] == -1)
2284				break;
2285
2286			if (dvo_port == port_mapping[port][i])
2287				return port;
2288		}
2289	}
2290
2291	return PORT_NONE;
2292}
2293
2294static enum port dvo_port_to_port(struct drm_i915_private *i915,
2295				  u8 dvo_port)
2296{
2297	/*
2298	 * Each DDI port can have more than one value on the "DVO Port" field,
2299	 * so look for all the possible values for each port.
2300	 */
2301	static const int port_mapping[][3] = {
2302		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2303		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2304		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2305		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2306		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2307		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2308		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2309		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2310		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2311	};
2312	/*
2313	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2314	 * map to DDI A,B,TC1,TC2 respectively.
2315	 */
2316	static const int rkl_port_mapping[][3] = {
2317		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2318		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2319		[PORT_C] = { -1 },
2320		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2321		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2322	};
2323	/*
2324	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2325	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2326	 */
2327	static const int adls_port_mapping[][3] = {
2328		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2329		[PORT_B] = { -1 },
2330		[PORT_C] = { -1 },
2331		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2332		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2333		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2334		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2335	};
2336	static const int xelpd_port_mapping[][3] = {
2337		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2338		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2339		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2340		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2341		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2342		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2343		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2344		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2345		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2346	};
2347
2348	if (DISPLAY_VER(i915) >= 13)
2349		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2350					  ARRAY_SIZE(xelpd_port_mapping[0]),
2351					  xelpd_port_mapping,
2352					  dvo_port);
2353	else if (IS_ALDERLAKE_S(i915))
2354		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2355					  ARRAY_SIZE(adls_port_mapping[0]),
2356					  adls_port_mapping,
2357					  dvo_port);
2358	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2359		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2360					  ARRAY_SIZE(rkl_port_mapping[0]),
2361					  rkl_port_mapping,
2362					  dvo_port);
2363	else
2364		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2365					  ARRAY_SIZE(port_mapping[0]),
2366					  port_mapping,
2367					  dvo_port);
2368}
2369
2370static enum port
2371dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2372{
2373	switch (dvo_port) {
2374	case DVO_PORT_MIPIA:
2375		return PORT_A;
2376	case DVO_PORT_MIPIC:
2377		if (DISPLAY_VER(i915) >= 11)
2378			return PORT_B;
2379		else
2380			return PORT_C;
2381	default:
2382		return PORT_NONE;
2383	}
2384}
2385
2386enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2387{
2388	struct drm_i915_private *i915 = devdata->i915;
2389	const struct child_device_config *child = &devdata->child;
2390	enum port port;
2391
2392	port = dvo_port_to_port(i915, child->dvo_port);
2393	if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2394		port = dsi_dvo_port_to_port(i915, child->dvo_port);
2395
2396	return port;
2397}
2398
2399static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2400{
2401	switch (vbt_max_link_rate) {
2402	default:
2403	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2404		return 0;
2405	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2406		return 2000000;
2407	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2408		return 1350000;
2409	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2410		return 1000000;
2411	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2412		return 810000;
2413	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2414		return 540000;
2415	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2416		return 270000;
2417	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2418		return 162000;
2419	}
2420}
2421
2422static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2423{
2424	switch (vbt_max_link_rate) {
2425	default:
2426	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2427		return 810000;
2428	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2429		return 540000;
2430	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2431		return 270000;
2432	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2433		return 162000;
2434	}
2435}
2436
2437int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2438{
2439	if (!devdata || devdata->i915->display.vbt.version < 216)
2440		return 0;
2441
2442	if (devdata->i915->display.vbt.version >= 230)
2443		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2444	else
2445		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2446}
2447
2448int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2449{
2450	if (!devdata || devdata->i915->display.vbt.version < 244)
2451		return 0;
2452
2453	return devdata->child.dp_max_lane_count + 1;
2454}
2455
2456static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2457				 enum port port)
2458{
2459	struct drm_i915_private *i915 = devdata->i915;
2460	bool is_hdmi;
2461
2462	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2463		return;
2464
2465	if (!intel_bios_encoder_supports_dvi(devdata))
2466		return;
2467
2468	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2469
2470	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2471		    is_hdmi ? "/HDMI" : "");
2472
2473	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2474	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2475}
2476
2477static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2478				      enum port port)
2479{
2480	struct drm_i915_private *i915 = devdata->i915;
2481
2482	if (!intel_bios_encoder_supports_dvi(devdata))
2483		return;
2484
2485	/*
2486	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2487	 * with a HSW VBT where the level shifter value goes
2488	 * up to 11, whereas the BDW max is 9.
2489	 */
2490	if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) {
2491		drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2492			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2493
2494		devdata->child.hdmi_level_shifter_value = 9;
2495	}
2496}
2497
2498static bool
2499intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2500{
2501	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2502}
2503
2504bool
2505intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2506{
2507	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2508}
2509
2510bool
2511intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2512{
2513	return intel_bios_encoder_supports_dvi(devdata) &&
2514		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2515}
2516
2517bool
2518intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2519{
2520	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2521}
2522
2523bool
2524intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2525{
2526	return intel_bios_encoder_supports_dp(devdata) &&
2527		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2528}
2529
2530bool
2531intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2532{
2533	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2534}
2535
2536bool
2537intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2538{
2539	return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2540}
2541
2542/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2543int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2544{
2545	if (!devdata || devdata->i915->display.vbt.version < 158 ||
2546	    DISPLAY_VER(devdata->i915) >= 14)
2547		return -1;
2548
2549	return devdata->child.hdmi_level_shifter_value;
2550}
2551
2552int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2553{
2554	if (!devdata || devdata->i915->display.vbt.version < 204)
2555		return 0;
2556
2557	switch (devdata->child.hdmi_max_data_rate) {
2558	default:
2559		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2560		fallthrough;
2561	case HDMI_MAX_DATA_RATE_PLATFORM:
2562		return 0;
2563	case HDMI_MAX_DATA_RATE_594:
2564		return 594000;
2565	case HDMI_MAX_DATA_RATE_340:
2566		return 340000;
2567	case HDMI_MAX_DATA_RATE_300:
2568		return 300000;
2569	case HDMI_MAX_DATA_RATE_297:
2570		return 297000;
2571	case HDMI_MAX_DATA_RATE_165:
2572		return 165000;
2573	}
2574}
2575
2576static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2577{
2578	/*
2579	 * On some ICL SKUs port F is not present, but broken VBTs mark
2580	 * the port as present. Only try to initialize port F for the
2581	 * SKUs that may actually have it.
2582	 */
2583	if (port == PORT_F && IS_ICELAKE(i915))
2584		return IS_ICL_WITH_PORT_F(i915);
2585
2586	return true;
2587}
2588
2589static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2590{
2591	struct drm_i915_private *i915 = devdata->i915;
2592	const struct child_device_config *child = &devdata->child;
2593	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2594	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2595	enum port port;
2596
2597	port = intel_bios_encoder_port(devdata);
2598	if (port == PORT_NONE)
2599		return;
2600
2601	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2602	is_dp = intel_bios_encoder_supports_dp(devdata);
2603	is_crt = intel_bios_encoder_supports_crt(devdata);
2604	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2605	is_edp = intel_bios_encoder_supports_edp(devdata);
2606	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2607
2608	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2609	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2610
2611	drm_dbg_kms(&i915->drm,
2612		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2613		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2614		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2615		    intel_bios_encoder_is_lspcon(devdata),
2616		    supports_typec_usb, supports_tbt,
2617		    devdata->dsc != NULL);
2618
2619	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2620	if (hdmi_level_shift >= 0) {
2621		drm_dbg_kms(&i915->drm,
2622			    "Port %c VBT HDMI level shift: %d\n",
2623			    port_name(port), hdmi_level_shift);
2624	}
2625
2626	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2627	if (max_tmds_clock)
2628		drm_dbg_kms(&i915->drm,
2629			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2630			    port_name(port), max_tmds_clock);
2631
2632	/* I_boost config for SKL and above */
2633	dp_boost_level = intel_bios_dp_boost_level(devdata);
2634	if (dp_boost_level)
2635		drm_dbg_kms(&i915->drm,
2636			    "Port %c VBT (e)DP boost level: %d\n",
2637			    port_name(port), dp_boost_level);
2638
2639	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2640	if (hdmi_boost_level)
2641		drm_dbg_kms(&i915->drm,
2642			    "Port %c VBT HDMI boost level: %d\n",
2643			    port_name(port), hdmi_boost_level);
2644
2645	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2646	if (dp_max_link_rate)
2647		drm_dbg_kms(&i915->drm,
2648			    "Port %c VBT DP max link rate: %d\n",
2649			    port_name(port), dp_max_link_rate);
2650
2651	/*
2652	 * FIXME need to implement support for VBT
2653	 * vswing/preemph tables should this ever trigger.
2654	 */
2655	drm_WARN(&i915->drm, child->use_vbt_vswing,
2656		 "Port %c asks to use VBT vswing/preemph tables\n",
2657		 port_name(port));
2658}
2659
2660static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2661{
2662	struct drm_i915_private *i915 = devdata->i915;
2663	enum port port;
2664
2665	port = intel_bios_encoder_port(devdata);
2666	if (port == PORT_NONE)
2667		return;
2668
2669	if (!is_port_valid(i915, port)) {
2670		drm_dbg_kms(&i915->drm,
2671			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2672			    port_name(port));
2673		return;
2674	}
2675
2676	sanitize_device_type(devdata, port);
2677	sanitize_hdmi_level_shift(devdata, port);
2678}
2679
2680static bool has_ddi_port_info(struct drm_i915_private *i915)
2681{
2682	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2683}
2684
2685static void parse_ddi_ports(struct drm_i915_private *i915)
2686{
2687	struct intel_bios_encoder_data *devdata;
2688
2689	if (!has_ddi_port_info(i915))
2690		return;
2691
2692	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2693		parse_ddi_port(devdata);
2694
2695	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2696		print_ddi_port(devdata);
2697}
2698
2699static void
2700parse_general_definitions(struct drm_i915_private *i915)
2701{
2702	const struct bdb_general_definitions *defs;
2703	struct intel_bios_encoder_data *devdata;
2704	const struct child_device_config *child;
2705	int i, child_device_num;
2706	u8 expected_size;
2707	u16 block_size;
2708	int bus_pin;
2709
2710	defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2711	if (!defs) {
2712		drm_dbg_kms(&i915->drm,
2713			    "No general definition block is found, no devices defined.\n");
2714		return;
2715	}
2716
2717	block_size = get_blocksize(defs);
2718	if (block_size < sizeof(*defs)) {
2719		drm_dbg_kms(&i915->drm,
2720			    "General definitions block too small (%u)\n",
2721			    block_size);
2722		return;
2723	}
2724
2725	bus_pin = defs->crt_ddc_gmbus_pin;
2726	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2727	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2728		i915->display.vbt.crt_ddc_pin = bus_pin;
2729
2730	if (i915->display.vbt.version < 106) {
2731		expected_size = 22;
2732	} else if (i915->display.vbt.version < 111) {
2733		expected_size = 27;
2734	} else if (i915->display.vbt.version < 195) {
2735		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2736	} else if (i915->display.vbt.version == 195) {
2737		expected_size = 37;
2738	} else if (i915->display.vbt.version <= 215) {
2739		expected_size = 38;
2740	} else if (i915->display.vbt.version <= 250) {
2741		expected_size = 39;
2742	} else {
2743		expected_size = sizeof(*child);
2744		BUILD_BUG_ON(sizeof(*child) < 39);
2745		drm_dbg(&i915->drm,
2746			"Expected child device config size for VBT version %u not known; assuming %u\n",
2747			i915->display.vbt.version, expected_size);
2748	}
2749
2750	/* Flag an error for unexpected size, but continue anyway. */
2751	if (defs->child_dev_size != expected_size)
2752		drm_err(&i915->drm,
2753			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2754			defs->child_dev_size, expected_size, i915->display.vbt.version);
2755
2756	/* The legacy sized child device config is the minimum we need. */
2757	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2758		drm_dbg_kms(&i915->drm,
2759			    "Child device config size %u is too small.\n",
2760			    defs->child_dev_size);
2761		return;
2762	}
2763
2764	/* get the number of child device */
2765	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2766
2767	for (i = 0; i < child_device_num; i++) {
2768		child = child_device_ptr(defs, i);
2769		if (!child->device_type)
2770			continue;
2771
2772		drm_dbg_kms(&i915->drm,
2773			    "Found VBT child device with type 0x%x\n",
2774			    child->device_type);
2775
2776		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2777		if (!devdata)
2778			break;
2779
2780		devdata->i915 = i915;
2781
2782		/*
2783		 * Copy as much as we know (sizeof) and is available
2784		 * (child_dev_size) of the child device config. Accessing the
2785		 * data must depend on VBT version.
2786		 */
2787		memcpy(&devdata->child, child,
2788		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2789
2790		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2791	}
2792
2793	if (list_empty(&i915->display.vbt.display_devices))
2794		drm_dbg_kms(&i915->drm,
2795			    "no child dev is parsed from VBT\n");
2796}
2797
2798/* Common defaults which may be overridden by VBT. */
2799static void
2800init_vbt_defaults(struct drm_i915_private *i915)
2801{
2802	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2803
2804	/* general features */
2805	i915->display.vbt.int_tv_support = 1;
2806	i915->display.vbt.int_crt_support = 1;
2807
2808	/* driver features */
2809	i915->display.vbt.int_lvds_support = 1;
2810
2811	/* Default to using SSC */
2812	i915->display.vbt.lvds_use_ssc = 1;
2813	/*
2814	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2815	 * clock for LVDS.
2816	 */
2817	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2818								   !HAS_PCH_SPLIT(i915));
2819	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2820		    i915->display.vbt.lvds_ssc_freq);
2821}
2822
2823/* Common defaults which may be overridden by VBT. */
2824static void
2825init_vbt_panel_defaults(struct intel_panel *panel)
2826{
2827	/* Default to having backlight */
2828	panel->vbt.backlight.present = true;
2829
2830	/* LFP panel data */
2831	panel->vbt.lvds_dither = true;
2832}
2833
2834/* Defaults to initialize only if there is no VBT. */
2835static void
2836init_vbt_missing_defaults(struct drm_i915_private *i915)
2837{
2838	enum port port;
2839	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2840		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2841
2842	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2843		return;
2844
2845	for_each_port_masked(port, ports) {
2846		struct intel_bios_encoder_data *devdata;
2847		struct child_device_config *child;
2848		enum phy phy = intel_port_to_phy(i915, port);
2849
2850		/*
2851		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2852		 * to detect it.
2853		 */
2854		if (intel_phy_is_tc(i915, phy))
2855			continue;
2856
2857		/* Create fake child device config */
2858		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2859		if (!devdata)
2860			break;
2861
2862		devdata->i915 = i915;
2863		child = &devdata->child;
2864
2865		if (port == PORT_F)
2866			child->dvo_port = DVO_PORT_HDMIF;
2867		else if (port == PORT_E)
2868			child->dvo_port = DVO_PORT_HDMIE;
2869		else
2870			child->dvo_port = DVO_PORT_HDMIA + port;
2871
2872		if (port != PORT_A && port != PORT_E)
2873			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2874
2875		if (port != PORT_E)
2876			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2877
2878		if (port == PORT_A)
2879			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2880
2881		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2882
2883		drm_dbg_kms(&i915->drm,
2884			    "Generating default VBT child device with type 0x04%x on port %c\n",
2885			    child->device_type, port_name(port));
2886	}
2887
2888	/* Bypass some minimum baseline VBT version checks */
2889	i915->display.vbt.version = 155;
2890}
2891
2892static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2893{
2894	const void *_vbt = vbt;
2895
2896	return _vbt + vbt->bdb_offset;
2897}
2898
2899/**
2900 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2901 * @buf:	pointer to a buffer to validate
2902 * @size:	size of the buffer
2903 *
2904 * Returns true on valid VBT.
2905 */
2906bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2907{
2908	const struct vbt_header *vbt = buf;
2909	const struct bdb_header *bdb;
2910
2911	if (!vbt)
2912		return false;
2913
2914	if (sizeof(struct vbt_header) > size) {
2915		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2916		return false;
2917	}
2918
2919	if (memcmp(vbt->signature, "$VBT", 4)) {
2920		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2921		return false;
2922	}
2923
2924	if (vbt->vbt_size > size) {
2925		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2926		return false;
2927	}
2928
2929	size = vbt->vbt_size;
2930
2931	if (range_overflows_t(size_t,
2932			      vbt->bdb_offset,
2933			      sizeof(struct bdb_header),
2934			      size)) {
2935		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2936		return false;
2937	}
2938
2939	bdb = get_bdb_header(vbt);
2940	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2941		DRM_DEBUG_DRIVER("BDB incomplete\n");
2942		return false;
2943	}
2944
2945	return vbt;
2946}
2947
2948static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2949{
2950	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2951
2952	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2953}
2954
2955static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2956{
2957	u32 count, data, found, store = 0;
2958	u32 static_region, oprom_offset;
2959	u32 oprom_size = 0x200000;
2960	u16 vbt_size;
2961	u32 *vbt;
2962
2963	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2964	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2965	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2966
2967	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2968	oprom_offset &= OROM_OFFSET_MASK;
2969
2970	for (count = 0; count < oprom_size; count += 4) {
2971		data = intel_spi_read(&i915->uncore, oprom_offset + count);
2972		if (data == *((const u32 *)"$VBT")) {
2973			found = oprom_offset + count;
2974			break;
2975		}
2976	}
2977
2978	if (count >= oprom_size)
2979		goto err_not_found;
2980
2981	/* Get VBT size and allocate space for the VBT */
2982	vbt_size = intel_spi_read(&i915->uncore,
2983				  found + offsetof(struct vbt_header, vbt_size));
2984	vbt_size &= 0xffff;
2985
2986	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2987	if (!vbt)
2988		goto err_not_found;
2989
2990	for (count = 0; count < vbt_size; count += 4)
2991		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
2992
2993	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2994		goto err_free_vbt;
2995
2996	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2997
2998	return (struct vbt_header *)vbt;
2999
3000err_free_vbt:
3001	kfree(vbt);
3002err_not_found:
3003	return NULL;
3004}
3005
3006static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3007{
3008	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3009	void __iomem *p = NULL, *oprom;
3010	struct vbt_header *vbt;
3011	u16 vbt_size;
3012	size_t i, size;
3013
3014	oprom = pci_map_rom(pdev, &size);
3015	if (!oprom)
3016		return NULL;
3017
3018	/* Scour memory looking for the VBT signature. */
3019	for (i = 0; i + 4 < size; i += 4) {
3020		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3021			continue;
3022
3023		p = oprom + i;
3024		size -= i;
3025		break;
3026	}
3027
3028	if (!p)
3029		goto err_unmap_oprom;
3030
3031	if (sizeof(struct vbt_header) > size) {
3032		drm_dbg(&i915->drm, "VBT header incomplete\n");
3033		goto err_unmap_oprom;
3034	}
3035
3036	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3037	if (vbt_size > size) {
3038		drm_dbg(&i915->drm,
3039			"VBT incomplete (vbt_size overflows)\n");
3040		goto err_unmap_oprom;
3041	}
3042
3043	/* The rest will be validated by intel_bios_is_valid_vbt() */
3044	vbt = kmalloc(vbt_size, GFP_KERNEL);
3045	if (!vbt)
3046		goto err_unmap_oprom;
3047
3048	memcpy_fromio(vbt, p, vbt_size);
3049
3050	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3051		goto err_free_vbt;
3052
3053	pci_unmap_rom(pdev, oprom);
3054
3055	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3056
3057	return vbt;
3058
3059err_free_vbt:
3060	kfree(vbt);
3061err_unmap_oprom:
3062	pci_unmap_rom(pdev, oprom);
3063
3064	return NULL;
3065}
3066
3067/**
3068 * intel_bios_init - find VBT and initialize settings from the BIOS
3069 * @i915: i915 device instance
3070 *
3071 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3072 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3073 * initialize some defaults if the VBT is not present at all.
3074 */
3075void intel_bios_init(struct drm_i915_private *i915)
3076{
3077	const struct vbt_header *vbt = i915->display.opregion.vbt;
3078	struct vbt_header *oprom_vbt = NULL;
3079	const struct bdb_header *bdb;
3080
3081	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3082	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3083
3084	if (!HAS_DISPLAY(i915)) {
3085		drm_dbg_kms(&i915->drm,
3086			    "Skipping VBT init due to disabled display.\n");
3087		return;
3088	}
3089
3090	init_vbt_defaults(i915);
3091
3092	/*
3093	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3094	 * PCI mapping
3095	 */
3096	if (!vbt && IS_DGFX(i915)) {
3097		oprom_vbt = spi_oprom_get_vbt(i915);
3098		vbt = oprom_vbt;
3099	}
3100
3101	if (!vbt) {
3102		oprom_vbt = oprom_get_vbt(i915);
3103		vbt = oprom_vbt;
3104	}
3105
3106	if (!vbt)
3107		goto out;
3108
3109	bdb = get_bdb_header(vbt);
3110	i915->display.vbt.version = bdb->version;
3111
3112	drm_dbg_kms(&i915->drm,
3113		    "VBT signature \"%.*s\", BDB version %d\n",
3114		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3115
3116	init_bdb_blocks(i915, bdb);
3117
3118	/* Grab useful general definitions */
3119	parse_general_features(i915);
3120	parse_general_definitions(i915);
3121	parse_driver_features(i915);
3122
3123	/* Depends on child device list */
3124	parse_compression_parameters(i915);
3125
3126out:
3127	if (!vbt) {
3128		drm_info(&i915->drm,
3129			 "Failed to find VBIOS tables (VBT)\n");
3130		init_vbt_missing_defaults(i915);
3131	}
3132
3133	/* Further processing on pre-parsed or generated child device data */
3134	parse_sdvo_device_mapping(i915);
3135	parse_ddi_ports(i915);
3136
3137	kfree(oprom_vbt);
3138}
3139
3140static void intel_bios_init_panel(struct drm_i915_private *i915,
3141				  struct intel_panel *panel,
3142				  const struct intel_bios_encoder_data *devdata,
3143				  const struct drm_edid *drm_edid,
3144				  bool use_fallback)
3145{
3146	/* already have it? */
3147	if (panel->vbt.panel_type >= 0) {
3148		drm_WARN_ON(&i915->drm, !use_fallback);
3149		return;
3150	}
3151
3152	panel->vbt.panel_type = get_panel_type(i915, devdata,
3153					       drm_edid, use_fallback);
3154	if (panel->vbt.panel_type < 0) {
3155		drm_WARN_ON(&i915->drm, use_fallback);
3156		return;
3157	}
3158
3159	init_vbt_panel_defaults(panel);
3160
3161	parse_panel_options(i915, panel);
3162	parse_generic_dtd(i915, panel);
3163	parse_lfp_data(i915, panel);
3164	parse_lfp_backlight(i915, panel);
3165	parse_sdvo_panel_data(i915, panel);
3166	parse_panel_driver_features(i915, panel);
3167	parse_power_conservation_features(i915, panel);
3168	parse_edp(i915, panel);
3169	parse_psr(i915, panel);
3170	parse_mipi_config(i915, panel);
3171	parse_mipi_sequence(i915, panel);
3172}
3173
3174void intel_bios_init_panel_early(struct drm_i915_private *i915,
3175				 struct intel_panel *panel,
3176				 const struct intel_bios_encoder_data *devdata)
3177{
3178	intel_bios_init_panel(i915, panel, devdata, NULL, false);
3179}
3180
3181void intel_bios_init_panel_late(struct drm_i915_private *i915,
3182				struct intel_panel *panel,
3183				const struct intel_bios_encoder_data *devdata,
3184				const struct drm_edid *drm_edid)
3185{
3186	intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3187}
3188
3189/**
3190 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3191 * @i915: i915 device instance
3192 */
3193void intel_bios_driver_remove(struct drm_i915_private *i915)
3194{
3195	struct intel_bios_encoder_data *devdata, *nd;
3196	struct bdb_block_entry *entry, *ne;
3197
3198	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3199		list_del(&devdata->node);
3200		kfree(devdata->dsc);
3201		kfree(devdata);
3202	}
3203
3204	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3205		list_del(&entry->node);
3206		kfree(entry);
3207	}
3208}
3209
3210void intel_bios_fini_panel(struct intel_panel *panel)
3211{
3212	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3213	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3214	kfree(panel->vbt.lfp_lvds_vbt_mode);
3215	panel->vbt.lfp_lvds_vbt_mode = NULL;
3216	kfree(panel->vbt.dsi.data);
3217	panel->vbt.dsi.data = NULL;
3218	kfree(panel->vbt.dsi.pps);
3219	panel->vbt.dsi.pps = NULL;
3220	kfree(panel->vbt.dsi.config);
3221	panel->vbt.dsi.config = NULL;
3222	kfree(panel->vbt.dsi.deassert_seq);
3223	panel->vbt.dsi.deassert_seq = NULL;
3224}
3225
3226/**
3227 * intel_bios_is_tv_present - is integrated TV present in VBT
3228 * @i915: i915 device instance
3229 *
3230 * Return true if TV is present. If no child devices were parsed from VBT,
3231 * assume TV is present.
3232 */
3233bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3234{
3235	const struct intel_bios_encoder_data *devdata;
3236
3237	if (!i915->display.vbt.int_tv_support)
3238		return false;
3239
3240	if (list_empty(&i915->display.vbt.display_devices))
3241		return true;
3242
3243	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3244		const struct child_device_config *child = &devdata->child;
3245
3246		/*
3247		 * If the device type is not TV, continue.
3248		 */
3249		switch (child->device_type) {
3250		case DEVICE_TYPE_INT_TV:
3251		case DEVICE_TYPE_TV:
3252		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3253			break;
3254		default:
3255			continue;
3256		}
3257		/* Only when the addin_offset is non-zero, it is regarded
3258		 * as present.
3259		 */
3260		if (child->addin_offset)
3261			return true;
3262	}
3263
3264	return false;
3265}
3266
3267/**
3268 * intel_bios_is_lvds_present - is LVDS present in VBT
3269 * @i915:	i915 device instance
3270 * @i2c_pin:	i2c pin for LVDS if present
3271 *
3272 * Return true if LVDS is present. If no child devices were parsed from VBT,
3273 * assume LVDS is present.
3274 */
3275bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3276{
3277	const struct intel_bios_encoder_data *devdata;
3278
3279	if (list_empty(&i915->display.vbt.display_devices))
3280		return true;
3281
3282	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3283		const struct child_device_config *child = &devdata->child;
3284
3285		/* If the device type is not LFP, continue.
3286		 * We have to check both the new identifiers as well as the
3287		 * old for compatibility with some BIOSes.
3288		 */
3289		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3290		    child->device_type != DEVICE_TYPE_LFP)
3291			continue;
3292
3293		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3294			*i2c_pin = child->i2c_pin;
3295
3296		/* However, we cannot trust the BIOS writers to populate
3297		 * the VBT correctly.  Since LVDS requires additional
3298		 * information from AIM blocks, a non-zero addin offset is
3299		 * a good indicator that the LVDS is actually present.
3300		 */
3301		if (child->addin_offset)
3302			return true;
3303
3304		/* But even then some BIOS writers perform some black magic
3305		 * and instantiate the device without reference to any
3306		 * additional data.  Trust that if the VBT was written into
3307		 * the OpRegion then they have validated the LVDS's existence.
3308		 */
3309		if (i915->display.opregion.vbt)
3310			return true;
3311	}
3312
3313	return false;
3314}
3315
3316/**
3317 * intel_bios_is_port_present - is the specified digital port present
3318 * @i915:	i915 device instance
3319 * @port:	port to check
3320 *
3321 * Return true if the device in %port is present.
3322 */
3323bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3324{
3325	const struct intel_bios_encoder_data *devdata;
3326
3327	if (WARN_ON(!has_ddi_port_info(i915)))
3328		return true;
3329
3330	if (!is_port_valid(i915, port))
3331		return false;
3332
3333	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3334		const struct child_device_config *child = &devdata->child;
3335
3336		if (dvo_port_to_port(i915, child->dvo_port) == port)
3337			return true;
3338	}
3339
3340	return false;
3341}
3342
3343bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3344{
3345	const struct child_device_config *child = &devdata->child;
3346
3347	if (!intel_bios_encoder_supports_dp(devdata) ||
3348	    !intel_bios_encoder_supports_hdmi(devdata))
3349		return false;
3350
3351	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3352		return true;
3353
3354	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3355	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3356	    child->aux_channel != 0)
3357		return true;
3358
3359	return false;
3360}
3361
3362/**
3363 * intel_bios_is_dsi_present - is DSI present in VBT
3364 * @i915:	i915 device instance
3365 * @port:	port for DSI if present
3366 *
3367 * Return true if DSI is present, and return the port in %port.
3368 */
3369bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3370			       enum port *port)
3371{
3372	const struct intel_bios_encoder_data *devdata;
3373
3374	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3375		const struct child_device_config *child = &devdata->child;
3376		u8 dvo_port = child->dvo_port;
3377
3378		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3379			continue;
3380
3381		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3382			drm_dbg_kms(&i915->drm,
3383				    "VBT has unsupported DSI port %c\n",
3384				    port_name(dvo_port - DVO_PORT_MIPIA));
3385			continue;
3386		}
3387
3388		if (port)
3389			*port = dsi_dvo_port_to_port(i915, dvo_port);
3390		return true;
3391	}
3392
3393	return false;
3394}
3395
3396static void fill_dsc(struct intel_crtc_state *crtc_state,
3397		     struct dsc_compression_parameters_entry *dsc,
3398		     int dsc_max_bpc)
3399{
3400	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3401	int bpc = 8;
3402
3403	vdsc_cfg->dsc_version_major = dsc->version_major;
3404	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3405
3406	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3407		bpc = 12;
3408	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3409		bpc = 10;
3410	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3411		bpc = 8;
3412	else
3413		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3414			      dsc_max_bpc);
3415
3416	crtc_state->pipe_bpp = bpc * 3;
3417
3418	crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp,
3419							    VBT_DSC_MAX_BPP(dsc->max_bpp)));
3420
3421	/*
3422	 * FIXME: This is ugly, and slice count should take DSC engine
3423	 * throughput etc. into account.
3424	 *
3425	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3426	 */
3427	if (dsc->slices_per_line & BIT(2)) {
3428		crtc_state->dsc.slice_count = 4;
3429	} else if (dsc->slices_per_line & BIT(1)) {
3430		crtc_state->dsc.slice_count = 2;
3431	} else {
3432		/* FIXME */
3433		if (!(dsc->slices_per_line & BIT(0)))
3434			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3435
3436		crtc_state->dsc.slice_count = 1;
3437	}
3438
3439	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3440	    crtc_state->dsc.slice_count != 0)
3441		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3442			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3443			      crtc_state->dsc.slice_count);
3444
3445	/*
3446	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3447	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3448	 */
3449	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3450							    dsc->rc_buffer_size);
3451
3452	/* FIXME: DSI spec says bpc + 1 for this one */
3453	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3454
3455	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3456
3457	vdsc_cfg->slice_height = dsc->slice_height;
3458}
3459
3460/* FIXME: initially DSI specific */
3461bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3462			       struct intel_crtc_state *crtc_state,
3463			       int dsc_max_bpc)
3464{
3465	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3466	const struct intel_bios_encoder_data *devdata;
3467
3468	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3469		const struct child_device_config *child = &devdata->child;
3470
3471		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3472			continue;
3473
3474		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3475			if (!devdata->dsc)
3476				return false;
3477
3478			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3479
3480			return true;
3481		}
3482	}
3483
3484	return false;
3485}
3486
3487static const u8 adlp_aux_ch_map[] = {
3488	[AUX_CH_A] = DP_AUX_A,
3489	[AUX_CH_B] = DP_AUX_B,
3490	[AUX_CH_C] = DP_AUX_C,
3491	[AUX_CH_D_XELPD] = DP_AUX_D,
3492	[AUX_CH_E_XELPD] = DP_AUX_E,
3493	[AUX_CH_USBC1] = DP_AUX_F,
3494	[AUX_CH_USBC2] = DP_AUX_G,
3495	[AUX_CH_USBC3] = DP_AUX_H,
3496	[AUX_CH_USBC4] = DP_AUX_I,
3497};
3498
3499/*
3500 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3501 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3502 */
3503static const u8 adls_aux_ch_map[] = {
3504	[AUX_CH_A] = DP_AUX_A,
3505	[AUX_CH_USBC1] = DP_AUX_B,
3506	[AUX_CH_USBC2] = DP_AUX_C,
3507	[AUX_CH_USBC3] = DP_AUX_D,
3508	[AUX_CH_USBC4] = DP_AUX_E,
3509};
3510
3511/*
3512 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3513 * map to DDI A,B,TC1,TC2 respectively.
3514 */
3515static const u8 rkl_aux_ch_map[] = {
3516	[AUX_CH_A] = DP_AUX_A,
3517	[AUX_CH_B] = DP_AUX_B,
3518	[AUX_CH_USBC1] = DP_AUX_C,
3519	[AUX_CH_USBC2] = DP_AUX_D,
3520};
3521
3522static const u8 direct_aux_ch_map[] = {
3523	[AUX_CH_A] = DP_AUX_A,
3524	[AUX_CH_B] = DP_AUX_B,
3525	[AUX_CH_C] = DP_AUX_C,
3526	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3527	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3528	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3529	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3530	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3531	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3532};
3533
3534static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3535{
3536	const u8 *aux_ch_map;
3537	int i, n_entries;
3538
3539	if (DISPLAY_VER(i915) >= 13) {
3540		aux_ch_map = adlp_aux_ch_map;
3541		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3542	} else if (IS_ALDERLAKE_S(i915)) {
3543		aux_ch_map = adls_aux_ch_map;
3544		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3545	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3546		aux_ch_map = rkl_aux_ch_map;
3547		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3548	} else {
3549		aux_ch_map = direct_aux_ch_map;
3550		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3551	}
3552
3553	for (i = 0; i < n_entries; i++) {
3554		if (aux_ch_map[i] == aux_channel)
3555			return i;
3556	}
3557
3558	drm_dbg_kms(&i915->drm,
3559		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3560		    aux_channel);
3561
3562	return AUX_CH_NONE;
3563}
3564
3565enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3566{
3567	if (!devdata || !devdata->child.aux_channel)
3568		return AUX_CH_NONE;
3569
3570	return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3571}
3572
3573bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3574{
3575	struct drm_i915_private *i915;
3576	u8 aux_channel;
3577	int count = 0;
3578
3579	if (!devdata || !devdata->child.aux_channel)
3580		return false;
3581
3582	i915 = devdata->i915;
3583	aux_channel = devdata->child.aux_channel;
3584
3585	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3586		if (intel_bios_encoder_supports_dp(devdata) &&
3587		    aux_channel == devdata->child.aux_channel)
3588			count++;
3589	}
3590
3591	return count > 1;
3592}
3593
3594int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3595{
3596	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3597		return 0;
3598
3599	return translate_iboost(devdata->child.dp_iboost_level);
3600}
3601
3602int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3603{
3604	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3605		return 0;
3606
3607	return translate_iboost(devdata->child.hdmi_iboost_level);
3608}
3609
3610int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3611{
3612	if (!devdata || !devdata->child.ddc_pin)
3613		return 0;
3614
3615	return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3616}
3617
3618bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3619{
3620	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3621}
3622
3623bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3624{
3625	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3626}
3627
3628bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3629{
3630	return devdata && devdata->child.lane_reversal;
3631}
3632
3633bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3634{
3635	return devdata && devdata->child.hpd_invert;
3636}
3637
3638const struct intel_bios_encoder_data *
3639intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3640{
3641	struct intel_bios_encoder_data *devdata;
3642
3643	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3644		if (intel_bios_encoder_port(devdata) == port)
3645			return devdata;
3646	}
3647
3648	return NULL;
3649}
3650
3651void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3652				 void (*func)(struct drm_i915_private *i915,
3653					      const struct intel_bios_encoder_data *devdata))
3654{
3655	struct intel_bios_encoder_data *devdata;
3656
3657	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3658		func(i915, devdata);
3659}