Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/types.h>
25#include <linux/sched/task.h>
26#include <linux/dynamic_debug.h>
27#include <drm/ttm/ttm_tt.h>
28#include <drm/drm_exec.h>
29
30#include "amdgpu_sync.h"
31#include "amdgpu_object.h"
32#include "amdgpu_vm.h"
33#include "amdgpu_hmm.h"
34#include "amdgpu.h"
35#include "amdgpu_xgmi.h"
36#include "kfd_priv.h"
37#include "kfd_svm.h"
38#include "kfd_migrate.h"
39#include "kfd_smi_events.h"
40
41#ifdef dev_fmt
42#undef dev_fmt
43#endif
44#define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46#define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48/* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51#define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53#define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55#else
56#define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58#endif
59
60/* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64static uint64_t max_svm_range_pages;
65
66struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69};
70
71static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72static bool
73svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76static int
77svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81};
82
83/**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
92static void svm_range_unlink(struct svm_range *prange)
93{
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106}
107
108static void
109svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110{
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118}
119
120/**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
128static void svm_range_add_to_svms(struct svm_range *prange)
129{
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137}
138
139static void svm_range_remove_notifier(struct svm_range *prange)
140{
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149}
150
151static bool
152svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153{
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156}
157
158static int
159svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162{
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203}
204
205static int
206svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209{
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233}
234
235void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237{
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251}
252
253void svm_range_dma_unmap(struct svm_range *prange)
254{
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 }
277}
278
279static void svm_range_free(struct svm_range *prange, bool do_unmap)
280{
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(&prange->lock);
307 mutex_destroy(&prange->migrate_mutex);
308 kfree(prange);
309}
310
311static void
312svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
313 uint8_t *granularity, uint32_t *flags)
314{
315 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
316 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *granularity = 9;
318 *flags =
319 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
320}
321
322static struct
323svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
324 uint64_t last, bool update_mem_usage)
325{
326 uint64_t size = last - start + 1;
327 struct svm_range *prange;
328 struct kfd_process *p;
329
330 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
331 if (!prange)
332 return NULL;
333
334 p = container_of(svms, struct kfd_process, svms);
335 if (!p->xnack_enabled && update_mem_usage &&
336 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
337 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
338 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
339 kfree(prange);
340 return NULL;
341 }
342 prange->npages = size;
343 prange->svms = svms;
344 prange->start = start;
345 prange->last = last;
346 INIT_LIST_HEAD(&prange->list);
347 INIT_LIST_HEAD(&prange->update_list);
348 INIT_LIST_HEAD(&prange->svm_bo_list);
349 INIT_LIST_HEAD(&prange->deferred_list);
350 INIT_LIST_HEAD(&prange->child_list);
351 atomic_set(&prange->invalid, 0);
352 prange->validate_timestamp = 0;
353 prange->vram_pages = 0;
354 mutex_init(&prange->migrate_mutex);
355 mutex_init(&prange->lock);
356
357 if (p->xnack_enabled)
358 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
359 MAX_GPU_INSTANCE);
360
361 svm_range_set_default_attributes(&prange->preferred_loc,
362 &prange->prefetch_loc,
363 &prange->granularity, &prange->flags);
364
365 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
366
367 return prange;
368}
369
370static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
371{
372 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
373 return false;
374
375 return true;
376}
377
378static void svm_range_bo_release(struct kref *kref)
379{
380 struct svm_range_bo *svm_bo;
381
382 svm_bo = container_of(kref, struct svm_range_bo, kref);
383 pr_debug("svm_bo 0x%p\n", svm_bo);
384
385 spin_lock(&svm_bo->list_lock);
386 while (!list_empty(&svm_bo->range_list)) {
387 struct svm_range *prange =
388 list_first_entry(&svm_bo->range_list,
389 struct svm_range, svm_bo_list);
390 /* list_del_init tells a concurrent svm_range_vram_node_new when
391 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
392 */
393 list_del_init(&prange->svm_bo_list);
394 spin_unlock(&svm_bo->list_lock);
395
396 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
397 prange->start, prange->last);
398 mutex_lock(&prange->lock);
399 prange->svm_bo = NULL;
400 /* prange should not hold vram page now */
401 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
402 mutex_unlock(&prange->lock);
403
404 spin_lock(&svm_bo->list_lock);
405 }
406 spin_unlock(&svm_bo->list_lock);
407 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
408 /* We're not in the eviction worker. Signal the fence. */
409 dma_fence_signal(&svm_bo->eviction_fence->base);
410 dma_fence_put(&svm_bo->eviction_fence->base);
411 amdgpu_bo_unref(&svm_bo->bo);
412 kfree(svm_bo);
413}
414
415static void svm_range_bo_wq_release(struct work_struct *work)
416{
417 struct svm_range_bo *svm_bo;
418
419 svm_bo = container_of(work, struct svm_range_bo, release_work);
420 svm_range_bo_release(&svm_bo->kref);
421}
422
423static void svm_range_bo_release_async(struct kref *kref)
424{
425 struct svm_range_bo *svm_bo;
426
427 svm_bo = container_of(kref, struct svm_range_bo, kref);
428 pr_debug("svm_bo 0x%p\n", svm_bo);
429 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
430 schedule_work(&svm_bo->release_work);
431}
432
433void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
434{
435 kref_put(&svm_bo->kref, svm_range_bo_release_async);
436}
437
438static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
439{
440 if (svm_bo)
441 kref_put(&svm_bo->kref, svm_range_bo_release);
442}
443
444static bool
445svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
446{
447 mutex_lock(&prange->lock);
448 if (!prange->svm_bo) {
449 mutex_unlock(&prange->lock);
450 return false;
451 }
452 if (prange->ttm_res) {
453 /* We still have a reference, all is well */
454 mutex_unlock(&prange->lock);
455 return true;
456 }
457 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
458 /*
459 * Migrate from GPU to GPU, remove range from source svm_bo->node
460 * range list, and return false to allocate svm_bo from destination
461 * node.
462 */
463 if (prange->svm_bo->node != node) {
464 mutex_unlock(&prange->lock);
465
466 spin_lock(&prange->svm_bo->list_lock);
467 list_del_init(&prange->svm_bo_list);
468 spin_unlock(&prange->svm_bo->list_lock);
469
470 svm_range_bo_unref(prange->svm_bo);
471 return false;
472 }
473 if (READ_ONCE(prange->svm_bo->evicting)) {
474 struct dma_fence *f;
475 struct svm_range_bo *svm_bo;
476 /* The BO is getting evicted,
477 * we need to get a new one
478 */
479 mutex_unlock(&prange->lock);
480 svm_bo = prange->svm_bo;
481 f = dma_fence_get(&svm_bo->eviction_fence->base);
482 svm_range_bo_unref(prange->svm_bo);
483 /* wait for the fence to avoid long spin-loop
484 * at list_empty_careful
485 */
486 dma_fence_wait(f, false);
487 dma_fence_put(f);
488 } else {
489 /* The BO was still around and we got
490 * a new reference to it
491 */
492 mutex_unlock(&prange->lock);
493 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
494 prange->svms, prange->start, prange->last);
495
496 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
497 return true;
498 }
499
500 } else {
501 mutex_unlock(&prange->lock);
502 }
503
504 /* We need a new svm_bo. Spin-loop to wait for concurrent
505 * svm_range_bo_release to finish removing this range from
506 * its range list and set prange->svm_bo to null. After this,
507 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
508 */
509 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
510 cond_resched();
511
512 return false;
513}
514
515static struct svm_range_bo *svm_range_bo_new(void)
516{
517 struct svm_range_bo *svm_bo;
518
519 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
520 if (!svm_bo)
521 return NULL;
522
523 kref_init(&svm_bo->kref);
524 INIT_LIST_HEAD(&svm_bo->range_list);
525 spin_lock_init(&svm_bo->list_lock);
526
527 return svm_bo;
528}
529
530int
531svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
532 bool clear)
533{
534 struct amdgpu_bo_param bp;
535 struct svm_range_bo *svm_bo;
536 struct amdgpu_bo_user *ubo;
537 struct amdgpu_bo *bo;
538 struct kfd_process *p;
539 struct mm_struct *mm;
540 int r;
541
542 p = container_of(prange->svms, struct kfd_process, svms);
543 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
544 prange->start, prange->last);
545
546 if (svm_range_validate_svm_bo(node, prange))
547 return 0;
548
549 svm_bo = svm_range_bo_new();
550 if (!svm_bo) {
551 pr_debug("failed to alloc svm bo\n");
552 return -ENOMEM;
553 }
554 mm = get_task_mm(p->lead_thread);
555 if (!mm) {
556 pr_debug("failed to get mm\n");
557 kfree(svm_bo);
558 return -ESRCH;
559 }
560 svm_bo->node = node;
561 svm_bo->eviction_fence =
562 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
563 mm,
564 svm_bo);
565 mmput(mm);
566 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
567 svm_bo->evicting = 0;
568 memset(&bp, 0, sizeof(bp));
569 bp.size = prange->npages * PAGE_SIZE;
570 bp.byte_align = PAGE_SIZE;
571 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
572 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
573 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
574 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
575 bp.type = ttm_bo_type_device;
576 bp.resv = NULL;
577 if (node->xcp)
578 bp.xcp_id_plus1 = node->xcp->id + 1;
579
580 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
581 if (r) {
582 pr_debug("failed %d to create bo\n", r);
583 goto create_bo_failed;
584 }
585 bo = &ubo->bo;
586
587 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
588 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
589 bp.xcp_id_plus1 - 1);
590
591 r = amdgpu_bo_reserve(bo, true);
592 if (r) {
593 pr_debug("failed %d to reserve bo\n", r);
594 goto reserve_bo_failed;
595 }
596
597 if (clear) {
598 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
599 if (r) {
600 pr_debug("failed %d to sync bo\n", r);
601 amdgpu_bo_unreserve(bo);
602 goto reserve_bo_failed;
603 }
604 }
605
606 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
607 if (r) {
608 pr_debug("failed %d to reserve bo\n", r);
609 amdgpu_bo_unreserve(bo);
610 goto reserve_bo_failed;
611 }
612 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
613
614 amdgpu_bo_unreserve(bo);
615
616 svm_bo->bo = bo;
617 prange->svm_bo = svm_bo;
618 prange->ttm_res = bo->tbo.resource;
619 prange->offset = 0;
620
621 spin_lock(&svm_bo->list_lock);
622 list_add(&prange->svm_bo_list, &svm_bo->range_list);
623 spin_unlock(&svm_bo->list_lock);
624
625 return 0;
626
627reserve_bo_failed:
628 amdgpu_bo_unref(&bo);
629create_bo_failed:
630 dma_fence_put(&svm_bo->eviction_fence->base);
631 kfree(svm_bo);
632 prange->ttm_res = NULL;
633
634 return r;
635}
636
637void svm_range_vram_node_free(struct svm_range *prange)
638{
639 /* serialize prange->svm_bo unref */
640 mutex_lock(&prange->lock);
641 /* prange->svm_bo has not been unref */
642 if (prange->ttm_res) {
643 prange->ttm_res = NULL;
644 mutex_unlock(&prange->lock);
645 svm_range_bo_unref(prange->svm_bo);
646 } else
647 mutex_unlock(&prange->lock);
648}
649
650struct kfd_node *
651svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
652{
653 struct kfd_process *p;
654 struct kfd_process_device *pdd;
655
656 p = container_of(prange->svms, struct kfd_process, svms);
657 pdd = kfd_process_device_data_by_id(p, gpu_id);
658 if (!pdd) {
659 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
660 return NULL;
661 }
662
663 return pdd->dev;
664}
665
666struct kfd_process_device *
667svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
668{
669 struct kfd_process *p;
670
671 p = container_of(prange->svms, struct kfd_process, svms);
672
673 return kfd_get_process_device_data(node, p);
674}
675
676static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
677{
678 struct ttm_operation_ctx ctx = { false, false };
679
680 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
681
682 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
683}
684
685static int
686svm_range_check_attr(struct kfd_process *p,
687 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
688{
689 uint32_t i;
690
691 for (i = 0; i < nattr; i++) {
692 uint32_t val = attrs[i].value;
693 int gpuidx = MAX_GPU_INSTANCE;
694
695 switch (attrs[i].type) {
696 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
697 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
698 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
699 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
700 break;
701 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
702 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
703 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
704 break;
705 case KFD_IOCTL_SVM_ATTR_ACCESS:
706 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
707 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
708 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
709 break;
710 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
711 break;
712 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
713 break;
714 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
715 break;
716 default:
717 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
718 return -EINVAL;
719 }
720
721 if (gpuidx < 0) {
722 pr_debug("no GPU 0x%x found\n", val);
723 return -EINVAL;
724 } else if (gpuidx < MAX_GPU_INSTANCE &&
725 !test_bit(gpuidx, p->svms.bitmap_supported)) {
726 pr_debug("GPU 0x%x not supported\n", val);
727 return -EINVAL;
728 }
729 }
730
731 return 0;
732}
733
734static void
735svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
736 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
737 bool *update_mapping)
738{
739 uint32_t i;
740 int gpuidx;
741
742 for (i = 0; i < nattr; i++) {
743 switch (attrs[i].type) {
744 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
745 prange->preferred_loc = attrs[i].value;
746 break;
747 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
748 prange->prefetch_loc = attrs[i].value;
749 break;
750 case KFD_IOCTL_SVM_ATTR_ACCESS:
751 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
752 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
753 if (!p->xnack_enabled)
754 *update_mapping = true;
755
756 gpuidx = kfd_process_gpuidx_from_gpuid(p,
757 attrs[i].value);
758 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
759 bitmap_clear(prange->bitmap_access, gpuidx, 1);
760 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
761 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
762 bitmap_set(prange->bitmap_access, gpuidx, 1);
763 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
764 } else {
765 bitmap_clear(prange->bitmap_access, gpuidx, 1);
766 bitmap_set(prange->bitmap_aip, gpuidx, 1);
767 }
768 break;
769 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
770 *update_mapping = true;
771 prange->flags |= attrs[i].value;
772 break;
773 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
774 *update_mapping = true;
775 prange->flags &= ~attrs[i].value;
776 break;
777 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
778 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
779 break;
780 default:
781 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
782 }
783 }
784}
785
786static bool
787svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
788 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
789{
790 uint32_t i;
791 int gpuidx;
792
793 for (i = 0; i < nattr; i++) {
794 switch (attrs[i].type) {
795 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
796 if (prange->preferred_loc != attrs[i].value)
797 return false;
798 break;
799 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
800 /* Prefetch should always trigger a migration even
801 * if the value of the attribute didn't change.
802 */
803 return false;
804 case KFD_IOCTL_SVM_ATTR_ACCESS:
805 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
806 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
807 gpuidx = kfd_process_gpuidx_from_gpuid(p,
808 attrs[i].value);
809 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
810 if (test_bit(gpuidx, prange->bitmap_access) ||
811 test_bit(gpuidx, prange->bitmap_aip))
812 return false;
813 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
814 if (!test_bit(gpuidx, prange->bitmap_access))
815 return false;
816 } else {
817 if (!test_bit(gpuidx, prange->bitmap_aip))
818 return false;
819 }
820 break;
821 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
822 if ((prange->flags & attrs[i].value) != attrs[i].value)
823 return false;
824 break;
825 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
826 if ((prange->flags & attrs[i].value) != 0)
827 return false;
828 break;
829 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
830 if (prange->granularity != attrs[i].value)
831 return false;
832 break;
833 default:
834 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
835 }
836 }
837
838 return true;
839}
840
841/**
842 * svm_range_debug_dump - print all range information from svms
843 * @svms: svm range list header
844 *
845 * debug output svm range start, end, prefetch location from svms
846 * interval tree and link list
847 *
848 * Context: The caller must hold svms->lock
849 */
850static void svm_range_debug_dump(struct svm_range_list *svms)
851{
852 struct interval_tree_node *node;
853 struct svm_range *prange;
854
855 pr_debug("dump svms 0x%p list\n", svms);
856 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
857
858 list_for_each_entry(prange, &svms->list, list) {
859 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
860 prange, prange->start, prange->npages,
861 prange->start + prange->npages - 1,
862 prange->actual_loc);
863 }
864
865 pr_debug("dump svms 0x%p interval tree\n", svms);
866 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
867 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
868 while (node) {
869 prange = container_of(node, struct svm_range, it_node);
870 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
871 prange, prange->start, prange->npages,
872 prange->start + prange->npages - 1,
873 prange->actual_loc);
874 node = interval_tree_iter_next(node, 0, ~0ULL);
875 }
876}
877
878static void *
879svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
880 uint64_t offset, uint64_t *vram_pages)
881{
882 unsigned char *src = (unsigned char *)psrc + offset;
883 unsigned char *dst;
884 uint64_t i;
885
886 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
887 if (!dst)
888 return NULL;
889
890 if (!vram_pages) {
891 memcpy(dst, src, num_elements * size);
892 return (void *)dst;
893 }
894
895 *vram_pages = 0;
896 for (i = 0; i < num_elements; i++) {
897 dma_addr_t *temp;
898 temp = (dma_addr_t *)dst + i;
899 *temp = *((dma_addr_t *)src + i);
900 if (*temp&SVM_RANGE_VRAM_DOMAIN)
901 (*vram_pages)++;
902 }
903
904 return (void *)dst;
905}
906
907static int
908svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
909{
910 int i;
911
912 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
913 if (!src->dma_addr[i])
914 continue;
915 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
916 sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
917 if (!dst->dma_addr[i])
918 return -ENOMEM;
919 }
920
921 return 0;
922}
923
924static int
925svm_range_split_array(void *ppnew, void *ppold, size_t size,
926 uint64_t old_start, uint64_t old_n,
927 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
928{
929 unsigned char *new, *old, *pold;
930 uint64_t d;
931
932 if (!ppold)
933 return 0;
934 pold = *(unsigned char **)ppold;
935 if (!pold)
936 return 0;
937
938 d = (new_start - old_start) * size;
939 /* get dma addr array for new range and calculte its vram page number */
940 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
941 if (!new)
942 return -ENOMEM;
943 d = (new_start == old_start) ? new_n * size : 0;
944 old = svm_range_copy_array(pold, size, old_n, d, NULL);
945 if (!old) {
946 kvfree(new);
947 return -ENOMEM;
948 }
949 kvfree(pold);
950 *(void **)ppold = old;
951 *(void **)ppnew = new;
952
953 return 0;
954}
955
956static int
957svm_range_split_pages(struct svm_range *new, struct svm_range *old,
958 uint64_t start, uint64_t last)
959{
960 uint64_t npages = last - start + 1;
961 int i, r;
962
963 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
964 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
965 sizeof(*old->dma_addr[i]), old->start,
966 npages, new->start, new->npages,
967 old->actual_loc ? &new->vram_pages : NULL);
968 if (r)
969 return r;
970 }
971 if (old->actual_loc)
972 old->vram_pages -= new->vram_pages;
973
974 return 0;
975}
976
977static int
978svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
979 uint64_t start, uint64_t last)
980{
981 uint64_t npages = last - start + 1;
982
983 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
984 new->svms, new, new->start, start, last);
985
986 if (new->start == old->start) {
987 new->offset = old->offset;
988 old->offset += new->npages;
989 } else {
990 new->offset = old->offset + npages;
991 }
992
993 new->svm_bo = svm_range_bo_ref(old->svm_bo);
994 new->ttm_res = old->ttm_res;
995
996 spin_lock(&new->svm_bo->list_lock);
997 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
998 spin_unlock(&new->svm_bo->list_lock);
999
1000 return 0;
1001}
1002
1003/**
1004 * svm_range_split_adjust - split range and adjust
1005 *
1006 * @new: new range
1007 * @old: the old range
1008 * @start: the old range adjust to start address in pages
1009 * @last: the old range adjust to last address in pages
1010 *
1011 * Copy system memory dma_addr or vram ttm_res in old range to new
1012 * range from new_start up to size new->npages, the remaining old range is from
1013 * start to last
1014 *
1015 * Return:
1016 * 0 - OK, -ENOMEM - out of memory
1017 */
1018static int
1019svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1020 uint64_t start, uint64_t last)
1021{
1022 int r;
1023
1024 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1025 new->svms, new->start, old->start, old->last, start, last);
1026
1027 if (new->start < old->start ||
1028 new->last > old->last) {
1029 WARN_ONCE(1, "invalid new range start or last\n");
1030 return -EINVAL;
1031 }
1032
1033 r = svm_range_split_pages(new, old, start, last);
1034 if (r)
1035 return r;
1036
1037 if (old->actual_loc && old->ttm_res) {
1038 r = svm_range_split_nodes(new, old, start, last);
1039 if (r)
1040 return r;
1041 }
1042
1043 old->npages = last - start + 1;
1044 old->start = start;
1045 old->last = last;
1046 new->flags = old->flags;
1047 new->preferred_loc = old->preferred_loc;
1048 new->prefetch_loc = old->prefetch_loc;
1049 new->actual_loc = old->actual_loc;
1050 new->granularity = old->granularity;
1051 new->mapped_to_gpu = old->mapped_to_gpu;
1052 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1053 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1054
1055 return 0;
1056}
1057
1058/**
1059 * svm_range_split - split a range in 2 ranges
1060 *
1061 * @prange: the svm range to split
1062 * @start: the remaining range start address in pages
1063 * @last: the remaining range last address in pages
1064 * @new: the result new range generated
1065 *
1066 * Two cases only:
1067 * case 1: if start == prange->start
1068 * prange ==> prange[start, last]
1069 * new range [last + 1, prange->last]
1070 *
1071 * case 2: if last == prange->last
1072 * prange ==> prange[start, last]
1073 * new range [prange->start, start - 1]
1074 *
1075 * Return:
1076 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1077 */
1078static int
1079svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1080 struct svm_range **new)
1081{
1082 uint64_t old_start = prange->start;
1083 uint64_t old_last = prange->last;
1084 struct svm_range_list *svms;
1085 int r = 0;
1086
1087 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1088 old_start, old_last, start, last);
1089
1090 if (old_start != start && old_last != last)
1091 return -EINVAL;
1092 if (start < old_start || last > old_last)
1093 return -EINVAL;
1094
1095 svms = prange->svms;
1096 if (old_start == start)
1097 *new = svm_range_new(svms, last + 1, old_last, false);
1098 else
1099 *new = svm_range_new(svms, old_start, start - 1, false);
1100 if (!*new)
1101 return -ENOMEM;
1102
1103 r = svm_range_split_adjust(*new, prange, start, last);
1104 if (r) {
1105 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1106 r, old_start, old_last, start, last);
1107 svm_range_free(*new, false);
1108 *new = NULL;
1109 }
1110
1111 return r;
1112}
1113
1114static int
1115svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1116 struct list_head *insert_list, struct list_head *remap_list)
1117{
1118 struct svm_range *tail = NULL;
1119 int r = svm_range_split(prange, prange->start, new_last, &tail);
1120
1121 if (!r) {
1122 list_add(&tail->list, insert_list);
1123 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1124 list_add(&tail->update_list, remap_list);
1125 }
1126 return r;
1127}
1128
1129static int
1130svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1131 struct list_head *insert_list, struct list_head *remap_list)
1132{
1133 struct svm_range *head = NULL;
1134 int r = svm_range_split(prange, new_start, prange->last, &head);
1135
1136 if (!r) {
1137 list_add(&head->list, insert_list);
1138 if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1139 list_add(&head->update_list, remap_list);
1140 }
1141 return r;
1142}
1143
1144static void
1145svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1146 struct svm_range *pchild, enum svm_work_list_ops op)
1147{
1148 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1149 pchild, pchild->start, pchild->last, prange, op);
1150
1151 pchild->work_item.mm = mm;
1152 pchild->work_item.op = op;
1153 list_add_tail(&pchild->child_list, &prange->child_list);
1154}
1155
1156static bool
1157svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1158{
1159 return (node_a->adev == node_b->adev ||
1160 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1161}
1162
1163static uint64_t
1164svm_range_get_pte_flags(struct kfd_node *node,
1165 struct svm_range *prange, int domain)
1166{
1167 struct kfd_node *bo_node;
1168 uint32_t flags = prange->flags;
1169 uint32_t mapping_flags = 0;
1170 uint64_t pte_flags;
1171 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1172 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1173 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1174 bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1175 unsigned int mtype_local;
1176
1177 if (domain == SVM_RANGE_VRAM_DOMAIN)
1178 bo_node = prange->svm_bo->node;
1179
1180 switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1181 case IP_VERSION(9, 4, 1):
1182 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1183 if (bo_node == node) {
1184 mapping_flags |= coherent ?
1185 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1186 } else {
1187 mapping_flags |= coherent ?
1188 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1189 if (svm_nodes_in_same_hive(node, bo_node))
1190 snoop = true;
1191 }
1192 } else {
1193 mapping_flags |= coherent ?
1194 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1195 }
1196 break;
1197 case IP_VERSION(9, 4, 2):
1198 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1199 if (bo_node == node) {
1200 mapping_flags |= coherent ?
1201 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1202 if (node->adev->gmc.xgmi.connected_to_cpu)
1203 snoop = true;
1204 } else {
1205 mapping_flags |= coherent ?
1206 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1207 if (svm_nodes_in_same_hive(node, bo_node))
1208 snoop = true;
1209 }
1210 } else {
1211 mapping_flags |= coherent ?
1212 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1213 }
1214 break;
1215 case IP_VERSION(9, 4, 3):
1216 if (ext_coherent)
1217 mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1218 else
1219 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1220 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1221 snoop = true;
1222 if (uncached) {
1223 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1224 } else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 /* local HBM region close to partition */
1226 if (bo_node->adev == node->adev &&
1227 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1228 mapping_flags |= mtype_local;
1229 /* local HBM region far from partition or remote XGMI GPU
1230 * with regular system scope coherence
1231 */
1232 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1233 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1234 /* PCIe P2P or extended system scope coherence */
1235 else
1236 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1237 /* system memory accessed by the APU */
1238 } else if (node->adev->flags & AMD_IS_APU) {
1239 /* On NUMA systems, locality is determined per-page
1240 * in amdgpu_gmc_override_vm_pte_flags
1241 */
1242 if (num_possible_nodes() <= 1)
1243 mapping_flags |= mtype_local;
1244 else
1245 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1246 /* system memory accessed by the dGPU */
1247 } else {
1248 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1249 }
1250 break;
1251 default:
1252 mapping_flags |= coherent ?
1253 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1254 }
1255
1256 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1257
1258 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1259 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1260 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1261 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1262
1263 pte_flags = AMDGPU_PTE_VALID;
1264 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1265 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1266
1267 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1268 return pte_flags;
1269}
1270
1271static int
1272svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1273 uint64_t start, uint64_t last,
1274 struct dma_fence **fence)
1275{
1276 uint64_t init_pte_value = 0;
1277
1278 pr_debug("[0x%llx 0x%llx]\n", start, last);
1279
1280 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1281 last, init_pte_value, 0, 0, NULL, NULL,
1282 fence);
1283}
1284
1285static int
1286svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1287 unsigned long last, uint32_t trigger)
1288{
1289 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1290 struct kfd_process_device *pdd;
1291 struct dma_fence *fence = NULL;
1292 struct kfd_process *p;
1293 uint32_t gpuidx;
1294 int r = 0;
1295
1296 if (!prange->mapped_to_gpu) {
1297 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1298 prange, prange->start, prange->last);
1299 return 0;
1300 }
1301
1302 if (prange->start == start && prange->last == last) {
1303 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1304 prange->mapped_to_gpu = false;
1305 }
1306
1307 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1308 MAX_GPU_INSTANCE);
1309 p = container_of(prange->svms, struct kfd_process, svms);
1310
1311 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1312 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1313 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1314 if (!pdd) {
1315 pr_debug("failed to find device idx %d\n", gpuidx);
1316 return -EINVAL;
1317 }
1318
1319 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1320 start, last, trigger);
1321
1322 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1323 drm_priv_to_vm(pdd->drm_priv),
1324 start, last, &fence);
1325 if (r)
1326 break;
1327
1328 if (fence) {
1329 r = dma_fence_wait(fence, false);
1330 dma_fence_put(fence);
1331 fence = NULL;
1332 if (r)
1333 break;
1334 }
1335 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1336 }
1337
1338 return r;
1339}
1340
1341static int
1342svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1343 unsigned long offset, unsigned long npages, bool readonly,
1344 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1345 struct dma_fence **fence, bool flush_tlb)
1346{
1347 struct amdgpu_device *adev = pdd->dev->adev;
1348 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1349 uint64_t pte_flags;
1350 unsigned long last_start;
1351 int last_domain;
1352 int r = 0;
1353 int64_t i, j;
1354
1355 last_start = prange->start + offset;
1356
1357 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1358 last_start, last_start + npages - 1, readonly);
1359
1360 for (i = offset; i < offset + npages; i++) {
1361 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1362 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1363
1364 /* Collect all pages in the same address range and memory domain
1365 * that can be mapped with a single call to update mapping.
1366 */
1367 if (i < offset + npages - 1 &&
1368 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1369 continue;
1370
1371 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1372 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1373
1374 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1375 if (readonly)
1376 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1377
1378 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1379 prange->svms, last_start, prange->start + i,
1380 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1381 pte_flags);
1382
1383 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1384 * different memory partition based on fpfn/lpfn, we should use
1385 * same vm_manager.vram_base_offset regardless memory partition.
1386 */
1387 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1388 NULL, last_start, prange->start + i,
1389 pte_flags,
1390 (last_start - prange->start) << PAGE_SHIFT,
1391 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1392 NULL, dma_addr, &vm->last_update);
1393
1394 for (j = last_start - prange->start; j <= i; j++)
1395 dma_addr[j] |= last_domain;
1396
1397 if (r) {
1398 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1399 goto out;
1400 }
1401 last_start = prange->start + i + 1;
1402 }
1403
1404 r = amdgpu_vm_update_pdes(adev, vm, false);
1405 if (r) {
1406 pr_debug("failed %d to update directories 0x%lx\n", r,
1407 prange->start);
1408 goto out;
1409 }
1410
1411 if (fence)
1412 *fence = dma_fence_get(vm->last_update);
1413
1414out:
1415 return r;
1416}
1417
1418static int
1419svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1420 unsigned long npages, bool readonly,
1421 unsigned long *bitmap, bool wait, bool flush_tlb)
1422{
1423 struct kfd_process_device *pdd;
1424 struct amdgpu_device *bo_adev = NULL;
1425 struct kfd_process *p;
1426 struct dma_fence *fence = NULL;
1427 uint32_t gpuidx;
1428 int r = 0;
1429
1430 if (prange->svm_bo && prange->ttm_res)
1431 bo_adev = prange->svm_bo->node->adev;
1432
1433 p = container_of(prange->svms, struct kfd_process, svms);
1434 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1435 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1436 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1437 if (!pdd) {
1438 pr_debug("failed to find device idx %d\n", gpuidx);
1439 return -EINVAL;
1440 }
1441
1442 pdd = kfd_bind_process_to_device(pdd->dev, p);
1443 if (IS_ERR(pdd))
1444 return -EINVAL;
1445
1446 if (bo_adev && pdd->dev->adev != bo_adev &&
1447 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1448 pr_debug("cannot map to device idx %d\n", gpuidx);
1449 continue;
1450 }
1451
1452 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1453 prange->dma_addr[gpuidx],
1454 bo_adev, wait ? &fence : NULL,
1455 flush_tlb);
1456 if (r)
1457 break;
1458
1459 if (fence) {
1460 r = dma_fence_wait(fence, false);
1461 dma_fence_put(fence);
1462 fence = NULL;
1463 if (r) {
1464 pr_debug("failed %d to dma fence wait\n", r);
1465 break;
1466 }
1467 }
1468
1469 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1470 }
1471
1472 return r;
1473}
1474
1475struct svm_validate_context {
1476 struct kfd_process *process;
1477 struct svm_range *prange;
1478 bool intr;
1479 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1480 struct drm_exec exec;
1481};
1482
1483static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1484{
1485 struct kfd_process_device *pdd;
1486 struct amdgpu_vm *vm;
1487 uint32_t gpuidx;
1488 int r;
1489
1490 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1491 drm_exec_until_all_locked(&ctx->exec) {
1492 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1493 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1494 if (!pdd) {
1495 pr_debug("failed to find device idx %d\n", gpuidx);
1496 r = -EINVAL;
1497 goto unreserve_out;
1498 }
1499 vm = drm_priv_to_vm(pdd->drm_priv);
1500
1501 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1502 drm_exec_retry_on_contention(&ctx->exec);
1503 if (unlikely(r)) {
1504 pr_debug("failed %d to reserve bo\n", r);
1505 goto unreserve_out;
1506 }
1507 }
1508 }
1509
1510 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1511 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1512 if (!pdd) {
1513 pr_debug("failed to find device idx %d\n", gpuidx);
1514 r = -EINVAL;
1515 goto unreserve_out;
1516 }
1517
1518 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1519 drm_priv_to_vm(pdd->drm_priv),
1520 svm_range_bo_validate, NULL);
1521 if (r) {
1522 pr_debug("failed %d validate pt bos\n", r);
1523 goto unreserve_out;
1524 }
1525 }
1526
1527 return 0;
1528
1529unreserve_out:
1530 drm_exec_fini(&ctx->exec);
1531 return r;
1532}
1533
1534static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1535{
1536 drm_exec_fini(&ctx->exec);
1537}
1538
1539static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1540{
1541 struct kfd_process_device *pdd;
1542
1543 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1544 if (!pdd)
1545 return NULL;
1546
1547 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1548}
1549
1550/*
1551 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1552 *
1553 * To prevent concurrent destruction or change of range attributes, the
1554 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1555 * because that would block concurrent evictions and lead to deadlocks. To
1556 * serialize concurrent migrations or validations of the same range, the
1557 * prange->migrate_mutex must be held.
1558 *
1559 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1560 * eviction fence.
1561 *
1562 * The following sequence ensures race-free validation and GPU mapping:
1563 *
1564 * 1. Reserve page table (and SVM BO if range is in VRAM)
1565 * 2. hmm_range_fault to get page addresses (if system memory)
1566 * 3. DMA-map pages (if system memory)
1567 * 4-a. Take notifier lock
1568 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1569 * 4-c. Check that the range was not split or otherwise invalidated
1570 * 4-d. Update GPU page table
1571 * 4.e. Release notifier lock
1572 * 5. Release page table (and SVM BO) reservation
1573 */
1574static int svm_range_validate_and_map(struct mm_struct *mm,
1575 unsigned long map_start, unsigned long map_last,
1576 struct svm_range *prange, int32_t gpuidx,
1577 bool intr, bool wait, bool flush_tlb)
1578{
1579 struct svm_validate_context *ctx;
1580 unsigned long start, end, addr;
1581 struct kfd_process *p;
1582 void *owner;
1583 int32_t idx;
1584 int r = 0;
1585
1586 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1587 if (!ctx)
1588 return -ENOMEM;
1589 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1590 ctx->prange = prange;
1591 ctx->intr = intr;
1592
1593 if (gpuidx < MAX_GPU_INSTANCE) {
1594 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1595 bitmap_set(ctx->bitmap, gpuidx, 1);
1596 } else if (ctx->process->xnack_enabled) {
1597 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1598
1599 /* If prefetch range to GPU, or GPU retry fault migrate range to
1600 * GPU, which has ACCESS attribute to the range, create mapping
1601 * on that GPU.
1602 */
1603 if (prange->actual_loc) {
1604 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1605 prange->actual_loc);
1606 if (gpuidx < 0) {
1607 WARN_ONCE(1, "failed get device by id 0x%x\n",
1608 prange->actual_loc);
1609 r = -EINVAL;
1610 goto free_ctx;
1611 }
1612 if (test_bit(gpuidx, prange->bitmap_access))
1613 bitmap_set(ctx->bitmap, gpuidx, 1);
1614 }
1615
1616 /*
1617 * If prange is already mapped or with always mapped flag,
1618 * update mapping on GPUs with ACCESS attribute
1619 */
1620 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1621 if (prange->mapped_to_gpu ||
1622 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1623 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1624 }
1625 } else {
1626 bitmap_or(ctx->bitmap, prange->bitmap_access,
1627 prange->bitmap_aip, MAX_GPU_INSTANCE);
1628 }
1629
1630 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1631 r = 0;
1632 goto free_ctx;
1633 }
1634
1635 if (prange->actual_loc && !prange->ttm_res) {
1636 /* This should never happen. actual_loc gets set by
1637 * svm_migrate_ram_to_vram after allocating a BO.
1638 */
1639 WARN_ONCE(1, "VRAM BO missing during validation\n");
1640 r = -EINVAL;
1641 goto free_ctx;
1642 }
1643
1644 svm_range_reserve_bos(ctx, intr);
1645
1646 p = container_of(prange->svms, struct kfd_process, svms);
1647 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1648 MAX_GPU_INSTANCE));
1649 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1650 if (kfd_svm_page_owner(p, idx) != owner) {
1651 owner = NULL;
1652 break;
1653 }
1654 }
1655
1656 start = map_start << PAGE_SHIFT;
1657 end = (map_last + 1) << PAGE_SHIFT;
1658 for (addr = start; !r && addr < end; ) {
1659 struct hmm_range *hmm_range;
1660 unsigned long map_start_vma;
1661 unsigned long map_last_vma;
1662 struct vm_area_struct *vma;
1663 unsigned long next = 0;
1664 unsigned long offset;
1665 unsigned long npages;
1666 bool readonly;
1667
1668 vma = vma_lookup(mm, addr);
1669 if (vma) {
1670 readonly = !(vma->vm_flags & VM_WRITE);
1671
1672 next = min(vma->vm_end, end);
1673 npages = (next - addr) >> PAGE_SHIFT;
1674 WRITE_ONCE(p->svms.faulting_task, current);
1675 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1676 readonly, owner, NULL,
1677 &hmm_range);
1678 WRITE_ONCE(p->svms.faulting_task, NULL);
1679 if (r) {
1680 pr_debug("failed %d to get svm range pages\n", r);
1681 if (r == -EBUSY)
1682 r = -EAGAIN;
1683 }
1684 } else {
1685 r = -EFAULT;
1686 }
1687
1688 if (!r) {
1689 offset = (addr >> PAGE_SHIFT) - prange->start;
1690 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1691 hmm_range->hmm_pfns);
1692 if (r)
1693 pr_debug("failed %d to dma map range\n", r);
1694 }
1695
1696 svm_range_lock(prange);
1697 if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1698 pr_debug("hmm update the range, need validate again\n");
1699 r = -EAGAIN;
1700 }
1701
1702 if (!r && !list_empty(&prange->child_list)) {
1703 pr_debug("range split by unmap in parallel, validate again\n");
1704 r = -EAGAIN;
1705 }
1706
1707 if (!r) {
1708 map_start_vma = max(map_start, prange->start + offset);
1709 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1710 if (map_start_vma <= map_last_vma) {
1711 offset = map_start_vma - prange->start;
1712 npages = map_last_vma - map_start_vma + 1;
1713 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1714 ctx->bitmap, wait, flush_tlb);
1715 }
1716 }
1717
1718 if (!r && next == end)
1719 prange->mapped_to_gpu = true;
1720
1721 svm_range_unlock(prange);
1722
1723 addr = next;
1724 }
1725
1726 svm_range_unreserve_bos(ctx);
1727 if (!r)
1728 prange->validate_timestamp = ktime_get_boottime();
1729
1730free_ctx:
1731 kfree(ctx);
1732
1733 return r;
1734}
1735
1736/**
1737 * svm_range_list_lock_and_flush_work - flush pending deferred work
1738 *
1739 * @svms: the svm range list
1740 * @mm: the mm structure
1741 *
1742 * Context: Returns with mmap write lock held, pending deferred work flushed
1743 *
1744 */
1745void
1746svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1747 struct mm_struct *mm)
1748{
1749retry_flush_work:
1750 flush_work(&svms->deferred_list_work);
1751 mmap_write_lock(mm);
1752
1753 if (list_empty(&svms->deferred_range_list))
1754 return;
1755 mmap_write_unlock(mm);
1756 pr_debug("retry flush\n");
1757 goto retry_flush_work;
1758}
1759
1760static void svm_range_restore_work(struct work_struct *work)
1761{
1762 struct delayed_work *dwork = to_delayed_work(work);
1763 struct amdkfd_process_info *process_info;
1764 struct svm_range_list *svms;
1765 struct svm_range *prange;
1766 struct kfd_process *p;
1767 struct mm_struct *mm;
1768 int evicted_ranges;
1769 int invalid;
1770 int r;
1771
1772 svms = container_of(dwork, struct svm_range_list, restore_work);
1773 evicted_ranges = atomic_read(&svms->evicted_ranges);
1774 if (!evicted_ranges)
1775 return;
1776
1777 pr_debug("restore svm ranges\n");
1778
1779 p = container_of(svms, struct kfd_process, svms);
1780 process_info = p->kgd_process_info;
1781
1782 /* Keep mm reference when svm_range_validate_and_map ranges */
1783 mm = get_task_mm(p->lead_thread);
1784 if (!mm) {
1785 pr_debug("svms 0x%p process mm gone\n", svms);
1786 return;
1787 }
1788
1789 mutex_lock(&process_info->lock);
1790 svm_range_list_lock_and_flush_work(svms, mm);
1791 mutex_lock(&svms->lock);
1792
1793 evicted_ranges = atomic_read(&svms->evicted_ranges);
1794
1795 list_for_each_entry(prange, &svms->list, list) {
1796 invalid = atomic_read(&prange->invalid);
1797 if (!invalid)
1798 continue;
1799
1800 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1801 prange->svms, prange, prange->start, prange->last,
1802 invalid);
1803
1804 /*
1805 * If range is migrating, wait for migration is done.
1806 */
1807 mutex_lock(&prange->migrate_mutex);
1808
1809 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1810 MAX_GPU_INSTANCE, false, true, false);
1811 if (r)
1812 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1813 prange->start);
1814
1815 mutex_unlock(&prange->migrate_mutex);
1816 if (r)
1817 goto out_reschedule;
1818
1819 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1820 goto out_reschedule;
1821 }
1822
1823 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1824 evicted_ranges)
1825 goto out_reschedule;
1826
1827 evicted_ranges = 0;
1828
1829 r = kgd2kfd_resume_mm(mm);
1830 if (r) {
1831 /* No recovery from this failure. Probably the CP is
1832 * hanging. No point trying again.
1833 */
1834 pr_debug("failed %d to resume KFD\n", r);
1835 }
1836
1837 pr_debug("restore svm ranges successfully\n");
1838
1839out_reschedule:
1840 mutex_unlock(&svms->lock);
1841 mmap_write_unlock(mm);
1842 mutex_unlock(&process_info->lock);
1843
1844 /* If validation failed, reschedule another attempt */
1845 if (evicted_ranges) {
1846 pr_debug("reschedule to restore svm range\n");
1847 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1848 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1849
1850 kfd_smi_event_queue_restore_rescheduled(mm);
1851 }
1852 mmput(mm);
1853}
1854
1855/**
1856 * svm_range_evict - evict svm range
1857 * @prange: svm range structure
1858 * @mm: current process mm_struct
1859 * @start: starting process queue number
1860 * @last: last process queue number
1861 * @event: mmu notifier event when range is evicted or migrated
1862 *
1863 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1864 * return to let CPU evict the buffer and proceed CPU pagetable update.
1865 *
1866 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1867 * If invalidation happens while restore work is running, restore work will
1868 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1869 * the queues.
1870 */
1871static int
1872svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1873 unsigned long start, unsigned long last,
1874 enum mmu_notifier_event event)
1875{
1876 struct svm_range_list *svms = prange->svms;
1877 struct svm_range *pchild;
1878 struct kfd_process *p;
1879 int r = 0;
1880
1881 p = container_of(svms, struct kfd_process, svms);
1882
1883 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1884 svms, prange->start, prange->last, start, last);
1885
1886 if (!p->xnack_enabled ||
1887 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1888 int evicted_ranges;
1889 bool mapped = prange->mapped_to_gpu;
1890
1891 list_for_each_entry(pchild, &prange->child_list, child_list) {
1892 if (!pchild->mapped_to_gpu)
1893 continue;
1894 mapped = true;
1895 mutex_lock_nested(&pchild->lock, 1);
1896 if (pchild->start <= last && pchild->last >= start) {
1897 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1898 pchild->start, pchild->last);
1899 atomic_inc(&pchild->invalid);
1900 }
1901 mutex_unlock(&pchild->lock);
1902 }
1903
1904 if (!mapped)
1905 return r;
1906
1907 if (prange->start <= last && prange->last >= start)
1908 atomic_inc(&prange->invalid);
1909
1910 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1911 if (evicted_ranges != 1)
1912 return r;
1913
1914 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1915 prange->svms, prange->start, prange->last);
1916
1917 /* First eviction, stop the queues */
1918 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1919 if (r)
1920 pr_debug("failed to quiesce KFD\n");
1921
1922 pr_debug("schedule to restore svm %p ranges\n", svms);
1923 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1924 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1925 } else {
1926 unsigned long s, l;
1927 uint32_t trigger;
1928
1929 if (event == MMU_NOTIFY_MIGRATE)
1930 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1931 else
1932 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1933
1934 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1935 prange->svms, start, last);
1936 list_for_each_entry(pchild, &prange->child_list, child_list) {
1937 mutex_lock_nested(&pchild->lock, 1);
1938 s = max(start, pchild->start);
1939 l = min(last, pchild->last);
1940 if (l >= s)
1941 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1942 mutex_unlock(&pchild->lock);
1943 }
1944 s = max(start, prange->start);
1945 l = min(last, prange->last);
1946 if (l >= s)
1947 svm_range_unmap_from_gpus(prange, s, l, trigger);
1948 }
1949
1950 return r;
1951}
1952
1953static struct svm_range *svm_range_clone(struct svm_range *old)
1954{
1955 struct svm_range *new;
1956
1957 new = svm_range_new(old->svms, old->start, old->last, false);
1958 if (!new)
1959 return NULL;
1960 if (svm_range_copy_dma_addrs(new, old)) {
1961 svm_range_free(new, false);
1962 return NULL;
1963 }
1964 if (old->svm_bo) {
1965 new->ttm_res = old->ttm_res;
1966 new->offset = old->offset;
1967 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1968 spin_lock(&new->svm_bo->list_lock);
1969 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1970 spin_unlock(&new->svm_bo->list_lock);
1971 }
1972 new->flags = old->flags;
1973 new->preferred_loc = old->preferred_loc;
1974 new->prefetch_loc = old->prefetch_loc;
1975 new->actual_loc = old->actual_loc;
1976 new->granularity = old->granularity;
1977 new->mapped_to_gpu = old->mapped_to_gpu;
1978 new->vram_pages = old->vram_pages;
1979 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1980 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1981
1982 return new;
1983}
1984
1985void svm_range_set_max_pages(struct amdgpu_device *adev)
1986{
1987 uint64_t max_pages;
1988 uint64_t pages, _pages;
1989 uint64_t min_pages = 0;
1990 int i, id;
1991
1992 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
1993 if (adev->kfd.dev->nodes[i]->xcp)
1994 id = adev->kfd.dev->nodes[i]->xcp->id;
1995 else
1996 id = -1;
1997 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
1998 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
1999 pages = rounddown_pow_of_two(pages);
2000 min_pages = min_not_zero(min_pages, pages);
2001 }
2002
2003 do {
2004 max_pages = READ_ONCE(max_svm_range_pages);
2005 _pages = min_not_zero(max_pages, min_pages);
2006 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2007}
2008
2009static int
2010svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2011 uint64_t max_pages, struct list_head *insert_list,
2012 struct list_head *update_list)
2013{
2014 struct svm_range *prange;
2015 uint64_t l;
2016
2017 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2018 max_pages, start, last);
2019
2020 while (last >= start) {
2021 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2022
2023 prange = svm_range_new(svms, start, l, true);
2024 if (!prange)
2025 return -ENOMEM;
2026 list_add(&prange->list, insert_list);
2027 list_add(&prange->update_list, update_list);
2028
2029 start = l + 1;
2030 }
2031 return 0;
2032}
2033
2034/**
2035 * svm_range_add - add svm range and handle overlap
2036 * @p: the range add to this process svms
2037 * @start: page size aligned
2038 * @size: page size aligned
2039 * @nattr: number of attributes
2040 * @attrs: array of attributes
2041 * @update_list: output, the ranges need validate and update GPU mapping
2042 * @insert_list: output, the ranges need insert to svms
2043 * @remove_list: output, the ranges are replaced and need remove from svms
2044 * @remap_list: output, remap unaligned svm ranges
2045 *
2046 * Check if the virtual address range has overlap with any existing ranges,
2047 * split partly overlapping ranges and add new ranges in the gaps. All changes
2048 * should be applied to the range_list and interval tree transactionally. If
2049 * any range split or allocation fails, the entire update fails. Therefore any
2050 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2051 * unchanged.
2052 *
2053 * If the transaction succeeds, the caller can update and insert clones and
2054 * new ranges, then free the originals.
2055 *
2056 * Otherwise the caller can free the clones and new ranges, while the old
2057 * svm_ranges remain unchanged.
2058 *
2059 * Context: Process context, caller must hold svms->lock
2060 *
2061 * Return:
2062 * 0 - OK, otherwise error code
2063 */
2064static int
2065svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2066 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2067 struct list_head *update_list, struct list_head *insert_list,
2068 struct list_head *remove_list, struct list_head *remap_list)
2069{
2070 unsigned long last = start + size - 1UL;
2071 struct svm_range_list *svms = &p->svms;
2072 struct interval_tree_node *node;
2073 struct svm_range *prange;
2074 struct svm_range *tmp;
2075 struct list_head new_list;
2076 int r = 0;
2077
2078 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2079
2080 INIT_LIST_HEAD(update_list);
2081 INIT_LIST_HEAD(insert_list);
2082 INIT_LIST_HEAD(remove_list);
2083 INIT_LIST_HEAD(&new_list);
2084 INIT_LIST_HEAD(remap_list);
2085
2086 node = interval_tree_iter_first(&svms->objects, start, last);
2087 while (node) {
2088 struct interval_tree_node *next;
2089 unsigned long next_start;
2090
2091 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2092 node->last);
2093
2094 prange = container_of(node, struct svm_range, it_node);
2095 next = interval_tree_iter_next(node, start, last);
2096 next_start = min(node->last, last) + 1;
2097
2098 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2099 prange->mapped_to_gpu) {
2100 /* nothing to do */
2101 } else if (node->start < start || node->last > last) {
2102 /* node intersects the update range and its attributes
2103 * will change. Clone and split it, apply updates only
2104 * to the overlapping part
2105 */
2106 struct svm_range *old = prange;
2107
2108 prange = svm_range_clone(old);
2109 if (!prange) {
2110 r = -ENOMEM;
2111 goto out;
2112 }
2113
2114 list_add(&old->update_list, remove_list);
2115 list_add(&prange->list, insert_list);
2116 list_add(&prange->update_list, update_list);
2117
2118 if (node->start < start) {
2119 pr_debug("change old range start\n");
2120 r = svm_range_split_head(prange, start,
2121 insert_list, remap_list);
2122 if (r)
2123 goto out;
2124 }
2125 if (node->last > last) {
2126 pr_debug("change old range last\n");
2127 r = svm_range_split_tail(prange, last,
2128 insert_list, remap_list);
2129 if (r)
2130 goto out;
2131 }
2132 } else {
2133 /* The node is contained within start..last,
2134 * just update it
2135 */
2136 list_add(&prange->update_list, update_list);
2137 }
2138
2139 /* insert a new node if needed */
2140 if (node->start > start) {
2141 r = svm_range_split_new(svms, start, node->start - 1,
2142 READ_ONCE(max_svm_range_pages),
2143 &new_list, update_list);
2144 if (r)
2145 goto out;
2146 }
2147
2148 node = next;
2149 start = next_start;
2150 }
2151
2152 /* add a final range at the end if needed */
2153 if (start <= last)
2154 r = svm_range_split_new(svms, start, last,
2155 READ_ONCE(max_svm_range_pages),
2156 &new_list, update_list);
2157
2158out:
2159 if (r) {
2160 list_for_each_entry_safe(prange, tmp, insert_list, list)
2161 svm_range_free(prange, false);
2162 list_for_each_entry_safe(prange, tmp, &new_list, list)
2163 svm_range_free(prange, true);
2164 } else {
2165 list_splice(&new_list, insert_list);
2166 }
2167
2168 return r;
2169}
2170
2171static void
2172svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2173 struct svm_range *prange)
2174{
2175 unsigned long start;
2176 unsigned long last;
2177
2178 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2179 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2180
2181 if (prange->start == start && prange->last == last)
2182 return;
2183
2184 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2185 prange->svms, prange, start, last, prange->start,
2186 prange->last);
2187
2188 if (start != 0 && last != 0) {
2189 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2190 svm_range_remove_notifier(prange);
2191 }
2192 prange->it_node.start = prange->start;
2193 prange->it_node.last = prange->last;
2194
2195 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2196 svm_range_add_notifier_locked(mm, prange);
2197}
2198
2199static void
2200svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2201 struct mm_struct *mm)
2202{
2203 switch (prange->work_item.op) {
2204 case SVM_OP_NULL:
2205 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2206 svms, prange, prange->start, prange->last);
2207 break;
2208 case SVM_OP_UNMAP_RANGE:
2209 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2210 svms, prange, prange->start, prange->last);
2211 svm_range_unlink(prange);
2212 svm_range_remove_notifier(prange);
2213 svm_range_free(prange, true);
2214 break;
2215 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2216 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2217 svms, prange, prange->start, prange->last);
2218 svm_range_update_notifier_and_interval_tree(mm, prange);
2219 break;
2220 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2221 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2222 svms, prange, prange->start, prange->last);
2223 svm_range_update_notifier_and_interval_tree(mm, prange);
2224 /* TODO: implement deferred validation and mapping */
2225 break;
2226 case SVM_OP_ADD_RANGE:
2227 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2228 prange->start, prange->last);
2229 svm_range_add_to_svms(prange);
2230 svm_range_add_notifier_locked(mm, prange);
2231 break;
2232 case SVM_OP_ADD_RANGE_AND_MAP:
2233 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2234 prange, prange->start, prange->last);
2235 svm_range_add_to_svms(prange);
2236 svm_range_add_notifier_locked(mm, prange);
2237 /* TODO: implement deferred validation and mapping */
2238 break;
2239 default:
2240 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2241 prange->work_item.op);
2242 }
2243}
2244
2245static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2246{
2247 struct kfd_process_device *pdd;
2248 struct kfd_process *p;
2249 int drain;
2250 uint32_t i;
2251
2252 p = container_of(svms, struct kfd_process, svms);
2253
2254restart:
2255 drain = atomic_read(&svms->drain_pagefaults);
2256 if (!drain)
2257 return;
2258
2259 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2260 pdd = p->pdds[i];
2261 if (!pdd)
2262 continue;
2263
2264 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2265
2266 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2267 pdd->dev->adev->irq.retry_cam_enabled ?
2268 &pdd->dev->adev->irq.ih :
2269 &pdd->dev->adev->irq.ih1);
2270
2271 if (pdd->dev->adev->irq.retry_cam_enabled)
2272 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2273 &pdd->dev->adev->irq.ih_soft);
2274
2275
2276 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2277 }
2278 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2279 goto restart;
2280}
2281
2282static void svm_range_deferred_list_work(struct work_struct *work)
2283{
2284 struct svm_range_list *svms;
2285 struct svm_range *prange;
2286 struct mm_struct *mm;
2287
2288 svms = container_of(work, struct svm_range_list, deferred_list_work);
2289 pr_debug("enter svms 0x%p\n", svms);
2290
2291 spin_lock(&svms->deferred_list_lock);
2292 while (!list_empty(&svms->deferred_range_list)) {
2293 prange = list_first_entry(&svms->deferred_range_list,
2294 struct svm_range, deferred_list);
2295 spin_unlock(&svms->deferred_list_lock);
2296
2297 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2298 prange->start, prange->last, prange->work_item.op);
2299
2300 mm = prange->work_item.mm;
2301retry:
2302 mmap_write_lock(mm);
2303
2304 /* Checking for the need to drain retry faults must be inside
2305 * mmap write lock to serialize with munmap notifiers.
2306 */
2307 if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2308 mmap_write_unlock(mm);
2309 svm_range_drain_retry_fault(svms);
2310 goto retry;
2311 }
2312
2313 /* Remove from deferred_list must be inside mmap write lock, for
2314 * two race cases:
2315 * 1. unmap_from_cpu may change work_item.op and add the range
2316 * to deferred_list again, cause use after free bug.
2317 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2318 * lock and continue because deferred_list is empty, but
2319 * deferred_list work is actually waiting for mmap lock.
2320 */
2321 spin_lock(&svms->deferred_list_lock);
2322 list_del_init(&prange->deferred_list);
2323 spin_unlock(&svms->deferred_list_lock);
2324
2325 mutex_lock(&svms->lock);
2326 mutex_lock(&prange->migrate_mutex);
2327 while (!list_empty(&prange->child_list)) {
2328 struct svm_range *pchild;
2329
2330 pchild = list_first_entry(&prange->child_list,
2331 struct svm_range, child_list);
2332 pr_debug("child prange 0x%p op %d\n", pchild,
2333 pchild->work_item.op);
2334 list_del_init(&pchild->child_list);
2335 svm_range_handle_list_op(svms, pchild, mm);
2336 }
2337 mutex_unlock(&prange->migrate_mutex);
2338
2339 svm_range_handle_list_op(svms, prange, mm);
2340 mutex_unlock(&svms->lock);
2341 mmap_write_unlock(mm);
2342
2343 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2344 * last mm refcount, schedule release work to avoid circular locking
2345 */
2346 mmput_async(mm);
2347
2348 spin_lock(&svms->deferred_list_lock);
2349 }
2350 spin_unlock(&svms->deferred_list_lock);
2351 pr_debug("exit svms 0x%p\n", svms);
2352}
2353
2354void
2355svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2356 struct mm_struct *mm, enum svm_work_list_ops op)
2357{
2358 spin_lock(&svms->deferred_list_lock);
2359 /* if prange is on the deferred list */
2360 if (!list_empty(&prange->deferred_list)) {
2361 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2362 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2363 if (op != SVM_OP_NULL &&
2364 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2365 prange->work_item.op = op;
2366 } else {
2367 prange->work_item.op = op;
2368
2369 /* Pairs with mmput in deferred_list_work */
2370 mmget(mm);
2371 prange->work_item.mm = mm;
2372 list_add_tail(&prange->deferred_list,
2373 &prange->svms->deferred_range_list);
2374 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2375 prange, prange->start, prange->last, op);
2376 }
2377 spin_unlock(&svms->deferred_list_lock);
2378}
2379
2380void schedule_deferred_list_work(struct svm_range_list *svms)
2381{
2382 spin_lock(&svms->deferred_list_lock);
2383 if (!list_empty(&svms->deferred_range_list))
2384 schedule_work(&svms->deferred_list_work);
2385 spin_unlock(&svms->deferred_list_lock);
2386}
2387
2388static void
2389svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2390 struct svm_range *prange, unsigned long start,
2391 unsigned long last)
2392{
2393 struct svm_range *head;
2394 struct svm_range *tail;
2395
2396 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2397 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2398 prange->start, prange->last);
2399 return;
2400 }
2401 if (start > prange->last || last < prange->start)
2402 return;
2403
2404 head = tail = prange;
2405 if (start > prange->start)
2406 svm_range_split(prange, prange->start, start - 1, &tail);
2407 if (last < tail->last)
2408 svm_range_split(tail, last + 1, tail->last, &head);
2409
2410 if (head != prange && tail != prange) {
2411 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2412 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2413 } else if (tail != prange) {
2414 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2415 } else if (head != prange) {
2416 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2417 } else if (parent != prange) {
2418 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2419 }
2420}
2421
2422static void
2423svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2424 unsigned long start, unsigned long last)
2425{
2426 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2427 struct svm_range_list *svms;
2428 struct svm_range *pchild;
2429 struct kfd_process *p;
2430 unsigned long s, l;
2431 bool unmap_parent;
2432
2433 p = kfd_lookup_process_by_mm(mm);
2434 if (!p)
2435 return;
2436 svms = &p->svms;
2437
2438 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2439 prange, prange->start, prange->last, start, last);
2440
2441 /* Make sure pending page faults are drained in the deferred worker
2442 * before the range is freed to avoid straggler interrupts on
2443 * unmapped memory causing "phantom faults".
2444 */
2445 atomic_inc(&svms->drain_pagefaults);
2446
2447 unmap_parent = start <= prange->start && last >= prange->last;
2448
2449 list_for_each_entry(pchild, &prange->child_list, child_list) {
2450 mutex_lock_nested(&pchild->lock, 1);
2451 s = max(start, pchild->start);
2452 l = min(last, pchild->last);
2453 if (l >= s)
2454 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2455 svm_range_unmap_split(mm, prange, pchild, start, last);
2456 mutex_unlock(&pchild->lock);
2457 }
2458 s = max(start, prange->start);
2459 l = min(last, prange->last);
2460 if (l >= s)
2461 svm_range_unmap_from_gpus(prange, s, l, trigger);
2462 svm_range_unmap_split(mm, prange, prange, start, last);
2463
2464 if (unmap_parent)
2465 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2466 else
2467 svm_range_add_list_work(svms, prange, mm,
2468 SVM_OP_UPDATE_RANGE_NOTIFIER);
2469 schedule_deferred_list_work(svms);
2470
2471 kfd_unref_process(p);
2472}
2473
2474/**
2475 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2476 * @mni: mmu_interval_notifier struct
2477 * @range: mmu_notifier_range struct
2478 * @cur_seq: value to pass to mmu_interval_set_seq()
2479 *
2480 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2481 * is from migration, or CPU page invalidation callback.
2482 *
2483 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2484 * work thread, and split prange if only part of prange is unmapped.
2485 *
2486 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2487 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2488 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2489 * update GPU mapping to recover.
2490 *
2491 * Context: mmap lock, notifier_invalidate_start lock are held
2492 * for invalidate event, prange lock is held if this is from migration
2493 */
2494static bool
2495svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2496 const struct mmu_notifier_range *range,
2497 unsigned long cur_seq)
2498{
2499 struct svm_range *prange;
2500 unsigned long start;
2501 unsigned long last;
2502
2503 if (range->event == MMU_NOTIFY_RELEASE)
2504 return true;
2505 if (!mmget_not_zero(mni->mm))
2506 return true;
2507
2508 start = mni->interval_tree.start;
2509 last = mni->interval_tree.last;
2510 start = max(start, range->start) >> PAGE_SHIFT;
2511 last = min(last, range->end - 1) >> PAGE_SHIFT;
2512 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2513 start, last, range->start >> PAGE_SHIFT,
2514 (range->end - 1) >> PAGE_SHIFT,
2515 mni->interval_tree.start >> PAGE_SHIFT,
2516 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2517
2518 prange = container_of(mni, struct svm_range, notifier);
2519
2520 svm_range_lock(prange);
2521 mmu_interval_set_seq(mni, cur_seq);
2522
2523 switch (range->event) {
2524 case MMU_NOTIFY_UNMAP:
2525 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2526 break;
2527 default:
2528 svm_range_evict(prange, mni->mm, start, last, range->event);
2529 break;
2530 }
2531
2532 svm_range_unlock(prange);
2533 mmput(mni->mm);
2534
2535 return true;
2536}
2537
2538/**
2539 * svm_range_from_addr - find svm range from fault address
2540 * @svms: svm range list header
2541 * @addr: address to search range interval tree, in pages
2542 * @parent: parent range if range is on child list
2543 *
2544 * Context: The caller must hold svms->lock
2545 *
2546 * Return: the svm_range found or NULL
2547 */
2548struct svm_range *
2549svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2550 struct svm_range **parent)
2551{
2552 struct interval_tree_node *node;
2553 struct svm_range *prange;
2554 struct svm_range *pchild;
2555
2556 node = interval_tree_iter_first(&svms->objects, addr, addr);
2557 if (!node)
2558 return NULL;
2559
2560 prange = container_of(node, struct svm_range, it_node);
2561 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2562 addr, prange->start, prange->last, node->start, node->last);
2563
2564 if (addr >= prange->start && addr <= prange->last) {
2565 if (parent)
2566 *parent = prange;
2567 return prange;
2568 }
2569 list_for_each_entry(pchild, &prange->child_list, child_list)
2570 if (addr >= pchild->start && addr <= pchild->last) {
2571 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2572 addr, pchild->start, pchild->last);
2573 if (parent)
2574 *parent = prange;
2575 return pchild;
2576 }
2577
2578 return NULL;
2579}
2580
2581/* svm_range_best_restore_location - decide the best fault restore location
2582 * @prange: svm range structure
2583 * @adev: the GPU on which vm fault happened
2584 *
2585 * This is only called when xnack is on, to decide the best location to restore
2586 * the range mapping after GPU vm fault. Caller uses the best location to do
2587 * migration if actual loc is not best location, then update GPU page table
2588 * mapping to the best location.
2589 *
2590 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2591 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2592 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2593 * if range actual loc is cpu, best_loc is cpu
2594 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2595 * range actual loc.
2596 * Otherwise, GPU no access, best_loc is -1.
2597 *
2598 * Return:
2599 * -1 means vm fault GPU no access
2600 * 0 for CPU or GPU id
2601 */
2602static int32_t
2603svm_range_best_restore_location(struct svm_range *prange,
2604 struct kfd_node *node,
2605 int32_t *gpuidx)
2606{
2607 struct kfd_node *bo_node, *preferred_node;
2608 struct kfd_process *p;
2609 uint32_t gpuid;
2610 int r;
2611
2612 p = container_of(prange->svms, struct kfd_process, svms);
2613
2614 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2615 if (r < 0) {
2616 pr_debug("failed to get gpuid from kgd\n");
2617 return -1;
2618 }
2619
2620 if (node->adev->gmc.is_app_apu)
2621 return 0;
2622
2623 if (prange->preferred_loc == gpuid ||
2624 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2625 return prange->preferred_loc;
2626 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2627 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2628 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2629 return prange->preferred_loc;
2630 /* fall through */
2631 }
2632
2633 if (test_bit(*gpuidx, prange->bitmap_access))
2634 return gpuid;
2635
2636 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2637 if (!prange->actual_loc)
2638 return 0;
2639
2640 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2641 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2642 return prange->actual_loc;
2643 else
2644 return 0;
2645 }
2646
2647 return -1;
2648}
2649
2650static int
2651svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2652 unsigned long *start, unsigned long *last,
2653 bool *is_heap_stack)
2654{
2655 struct vm_area_struct *vma;
2656 struct interval_tree_node *node;
2657 struct rb_node *rb_node;
2658 unsigned long start_limit, end_limit;
2659
2660 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2661 if (!vma) {
2662 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2663 return -EFAULT;
2664 }
2665
2666 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2667
2668 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2669 (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2670 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2671 (unsigned long)ALIGN(addr + 1, 2UL << 8));
2672 /* First range that starts after the fault address */
2673 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2674 if (node) {
2675 end_limit = min(end_limit, node->start);
2676 /* Last range that ends before the fault address */
2677 rb_node = rb_prev(&node->rb);
2678 } else {
2679 /* Last range must end before addr because
2680 * there was no range after addr
2681 */
2682 rb_node = rb_last(&p->svms.objects.rb_root);
2683 }
2684 if (rb_node) {
2685 node = container_of(rb_node, struct interval_tree_node, rb);
2686 if (node->last >= addr) {
2687 WARN(1, "Overlap with prev node and page fault addr\n");
2688 return -EFAULT;
2689 }
2690 start_limit = max(start_limit, node->last + 1);
2691 }
2692
2693 *start = start_limit;
2694 *last = end_limit - 1;
2695
2696 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2697 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2698 *start, *last, *is_heap_stack);
2699
2700 return 0;
2701}
2702
2703static int
2704svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2705 uint64_t *bo_s, uint64_t *bo_l)
2706{
2707 struct amdgpu_bo_va_mapping *mapping;
2708 struct interval_tree_node *node;
2709 struct amdgpu_bo *bo = NULL;
2710 unsigned long userptr;
2711 uint32_t i;
2712 int r;
2713
2714 for (i = 0; i < p->n_pdds; i++) {
2715 struct amdgpu_vm *vm;
2716
2717 if (!p->pdds[i]->drm_priv)
2718 continue;
2719
2720 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2721 r = amdgpu_bo_reserve(vm->root.bo, false);
2722 if (r)
2723 return r;
2724
2725 /* Check userptr by searching entire vm->va interval tree */
2726 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2727 while (node) {
2728 mapping = container_of((struct rb_node *)node,
2729 struct amdgpu_bo_va_mapping, rb);
2730 bo = mapping->bo_va->base.bo;
2731
2732 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2733 start << PAGE_SHIFT,
2734 last << PAGE_SHIFT,
2735 &userptr)) {
2736 node = interval_tree_iter_next(node, 0, ~0ULL);
2737 continue;
2738 }
2739
2740 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2741 start, last);
2742 if (bo_s && bo_l) {
2743 *bo_s = userptr >> PAGE_SHIFT;
2744 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2745 }
2746 amdgpu_bo_unreserve(vm->root.bo);
2747 return -EADDRINUSE;
2748 }
2749 amdgpu_bo_unreserve(vm->root.bo);
2750 }
2751 return 0;
2752}
2753
2754static struct
2755svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2756 struct kfd_process *p,
2757 struct mm_struct *mm,
2758 int64_t addr)
2759{
2760 struct svm_range *prange = NULL;
2761 unsigned long start, last;
2762 uint32_t gpuid, gpuidx;
2763 bool is_heap_stack;
2764 uint64_t bo_s = 0;
2765 uint64_t bo_l = 0;
2766 int r;
2767
2768 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2769 &is_heap_stack))
2770 return NULL;
2771
2772 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2773 if (r != -EADDRINUSE)
2774 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2775
2776 if (r == -EADDRINUSE) {
2777 if (addr >= bo_s && addr <= bo_l)
2778 return NULL;
2779
2780 /* Create one page svm range if 2MB range overlapping */
2781 start = addr;
2782 last = addr;
2783 }
2784
2785 prange = svm_range_new(&p->svms, start, last, true);
2786 if (!prange) {
2787 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2788 return NULL;
2789 }
2790 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2791 pr_debug("failed to get gpuid from kgd\n");
2792 svm_range_free(prange, true);
2793 return NULL;
2794 }
2795
2796 if (is_heap_stack)
2797 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2798
2799 svm_range_add_to_svms(prange);
2800 svm_range_add_notifier_locked(mm, prange);
2801
2802 return prange;
2803}
2804
2805/* svm_range_skip_recover - decide if prange can be recovered
2806 * @prange: svm range structure
2807 *
2808 * GPU vm retry fault handle skip recover the range for cases:
2809 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2810 * deferred list work will drain the stale fault before free the prange.
2811 * 2. prange is on deferred list to add interval notifier after split, or
2812 * 3. prange is child range, it is split from parent prange, recover later
2813 * after interval notifier is added.
2814 *
2815 * Return: true to skip recover, false to recover
2816 */
2817static bool svm_range_skip_recover(struct svm_range *prange)
2818{
2819 struct svm_range_list *svms = prange->svms;
2820
2821 spin_lock(&svms->deferred_list_lock);
2822 if (list_empty(&prange->deferred_list) &&
2823 list_empty(&prange->child_list)) {
2824 spin_unlock(&svms->deferred_list_lock);
2825 return false;
2826 }
2827 spin_unlock(&svms->deferred_list_lock);
2828
2829 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2830 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2831 svms, prange, prange->start, prange->last);
2832 return true;
2833 }
2834 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2835 prange->work_item.op == SVM_OP_ADD_RANGE) {
2836 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2837 svms, prange, prange->start, prange->last);
2838 return true;
2839 }
2840 return false;
2841}
2842
2843static void
2844svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2845 int32_t gpuidx)
2846{
2847 struct kfd_process_device *pdd;
2848
2849 /* fault is on different page of same range
2850 * or fault is skipped to recover later
2851 * or fault is on invalid virtual address
2852 */
2853 if (gpuidx == MAX_GPU_INSTANCE) {
2854 uint32_t gpuid;
2855 int r;
2856
2857 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2858 if (r < 0)
2859 return;
2860 }
2861
2862 /* fault is recovered
2863 * or fault cannot recover because GPU no access on the range
2864 */
2865 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2866 if (pdd)
2867 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2868}
2869
2870static bool
2871svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2872{
2873 unsigned long requested = VM_READ;
2874
2875 if (write_fault)
2876 requested |= VM_WRITE;
2877
2878 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2879 vma->vm_flags);
2880 return (vma->vm_flags & requested) == requested;
2881}
2882
2883int
2884svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2885 uint32_t vmid, uint32_t node_id,
2886 uint64_t addr, bool write_fault)
2887{
2888 unsigned long start, last, size;
2889 struct mm_struct *mm = NULL;
2890 struct svm_range_list *svms;
2891 struct svm_range *prange;
2892 struct kfd_process *p;
2893 ktime_t timestamp = ktime_get_boottime();
2894 struct kfd_node *node;
2895 int32_t best_loc;
2896 int32_t gpuidx = MAX_GPU_INSTANCE;
2897 bool write_locked = false;
2898 struct vm_area_struct *vma;
2899 bool migration = false;
2900 int r = 0;
2901
2902 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2903 pr_debug("device does not support SVM\n");
2904 return -EFAULT;
2905 }
2906
2907 p = kfd_lookup_process_by_pasid(pasid);
2908 if (!p) {
2909 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2910 return 0;
2911 }
2912 svms = &p->svms;
2913
2914 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2915
2916 if (atomic_read(&svms->drain_pagefaults)) {
2917 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2918 r = 0;
2919 goto out;
2920 }
2921
2922 if (!p->xnack_enabled) {
2923 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2924 r = -EFAULT;
2925 goto out;
2926 }
2927
2928 /* p->lead_thread is available as kfd_process_wq_release flush the work
2929 * before releasing task ref.
2930 */
2931 mm = get_task_mm(p->lead_thread);
2932 if (!mm) {
2933 pr_debug("svms 0x%p failed to get mm\n", svms);
2934 r = 0;
2935 goto out;
2936 }
2937
2938 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2939 if (!node) {
2940 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2941 vmid);
2942 r = -EFAULT;
2943 goto out;
2944 }
2945 mmap_read_lock(mm);
2946retry_write_locked:
2947 mutex_lock(&svms->lock);
2948 prange = svm_range_from_addr(svms, addr, NULL);
2949 if (!prange) {
2950 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2951 svms, addr);
2952 if (!write_locked) {
2953 /* Need the write lock to create new range with MMU notifier.
2954 * Also flush pending deferred work to make sure the interval
2955 * tree is up to date before we add a new range
2956 */
2957 mutex_unlock(&svms->lock);
2958 mmap_read_unlock(mm);
2959 mmap_write_lock(mm);
2960 write_locked = true;
2961 goto retry_write_locked;
2962 }
2963 prange = svm_range_create_unregistered_range(node, p, mm, addr);
2964 if (!prange) {
2965 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2966 svms, addr);
2967 mmap_write_downgrade(mm);
2968 r = -EFAULT;
2969 goto out_unlock_svms;
2970 }
2971 }
2972 if (write_locked)
2973 mmap_write_downgrade(mm);
2974
2975 mutex_lock(&prange->migrate_mutex);
2976
2977 if (svm_range_skip_recover(prange)) {
2978 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
2979 r = 0;
2980 goto out_unlock_range;
2981 }
2982
2983 /* skip duplicate vm fault on different pages of same range */
2984 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2985 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2986 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2987 svms, prange->start, prange->last);
2988 r = 0;
2989 goto out_unlock_range;
2990 }
2991
2992 /* __do_munmap removed VMA, return success as we are handling stale
2993 * retry fault.
2994 */
2995 vma = vma_lookup(mm, addr << PAGE_SHIFT);
2996 if (!vma) {
2997 pr_debug("address 0x%llx VMA is removed\n", addr);
2998 r = 0;
2999 goto out_unlock_range;
3000 }
3001
3002 if (!svm_fault_allowed(vma, write_fault)) {
3003 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3004 write_fault ? "write" : "read");
3005 r = -EPERM;
3006 goto out_unlock_range;
3007 }
3008
3009 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3010 if (best_loc == -1) {
3011 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3012 svms, prange->start, prange->last);
3013 r = -EACCES;
3014 goto out_unlock_range;
3015 }
3016
3017 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3018 svms, prange->start, prange->last, best_loc,
3019 prange->actual_loc);
3020
3021 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3022 write_fault, timestamp);
3023
3024 /* Align migration range start and size to granularity size */
3025 size = 1UL << prange->granularity;
3026 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3027 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3028 if (prange->actual_loc != 0 || best_loc != 0) {
3029 migration = true;
3030
3031 if (best_loc) {
3032 r = svm_migrate_to_vram(prange, best_loc, start, last,
3033 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3034 if (r) {
3035 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3036 r, addr);
3037 /* Fallback to system memory if migration to
3038 * VRAM failed
3039 */
3040 if (prange->actual_loc && prange->actual_loc != best_loc)
3041 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3042 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3043 else
3044 r = 0;
3045 }
3046 } else {
3047 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3048 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3049 }
3050 if (r) {
3051 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3052 r, svms, start, last);
3053 goto out_unlock_range;
3054 }
3055 }
3056
3057 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3058 false, false);
3059 if (r)
3060 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3061 r, svms, start, last);
3062
3063 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3064 migration);
3065
3066out_unlock_range:
3067 mutex_unlock(&prange->migrate_mutex);
3068out_unlock_svms:
3069 mutex_unlock(&svms->lock);
3070 mmap_read_unlock(mm);
3071
3072 svm_range_count_fault(node, p, gpuidx);
3073
3074 mmput(mm);
3075out:
3076 kfd_unref_process(p);
3077
3078 if (r == -EAGAIN) {
3079 pr_debug("recover vm fault later\n");
3080 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3081 r = 0;
3082 }
3083 return r;
3084}
3085
3086int
3087svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3088{
3089 struct svm_range *prange, *pchild;
3090 uint64_t reserved_size = 0;
3091 uint64_t size;
3092 int r = 0;
3093
3094 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3095
3096 mutex_lock(&p->svms.lock);
3097
3098 list_for_each_entry(prange, &p->svms.list, list) {
3099 svm_range_lock(prange);
3100 list_for_each_entry(pchild, &prange->child_list, child_list) {
3101 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3102 if (xnack_enabled) {
3103 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3104 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3105 } else {
3106 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3107 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3108 if (r)
3109 goto out_unlock;
3110 reserved_size += size;
3111 }
3112 }
3113
3114 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3115 if (xnack_enabled) {
3116 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3117 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3118 } else {
3119 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3120 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3121 if (r)
3122 goto out_unlock;
3123 reserved_size += size;
3124 }
3125out_unlock:
3126 svm_range_unlock(prange);
3127 if (r)
3128 break;
3129 }
3130
3131 if (r)
3132 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3133 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3134 else
3135 /* Change xnack mode must be inside svms lock, to avoid race with
3136 * svm_range_deferred_list_work unreserve memory in parallel.
3137 */
3138 p->xnack_enabled = xnack_enabled;
3139
3140 mutex_unlock(&p->svms.lock);
3141 return r;
3142}
3143
3144void svm_range_list_fini(struct kfd_process *p)
3145{
3146 struct svm_range *prange;
3147 struct svm_range *next;
3148
3149 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3150
3151 cancel_delayed_work_sync(&p->svms.restore_work);
3152
3153 /* Ensure list work is finished before process is destroyed */
3154 flush_work(&p->svms.deferred_list_work);
3155
3156 /*
3157 * Ensure no retry fault comes in afterwards, as page fault handler will
3158 * not find kfd process and take mm lock to recover fault.
3159 */
3160 atomic_inc(&p->svms.drain_pagefaults);
3161 svm_range_drain_retry_fault(&p->svms);
3162
3163 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3164 svm_range_unlink(prange);
3165 svm_range_remove_notifier(prange);
3166 svm_range_free(prange, true);
3167 }
3168
3169 mutex_destroy(&p->svms.lock);
3170
3171 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3172}
3173
3174int svm_range_list_init(struct kfd_process *p)
3175{
3176 struct svm_range_list *svms = &p->svms;
3177 int i;
3178
3179 svms->objects = RB_ROOT_CACHED;
3180 mutex_init(&svms->lock);
3181 INIT_LIST_HEAD(&svms->list);
3182 atomic_set(&svms->evicted_ranges, 0);
3183 atomic_set(&svms->drain_pagefaults, 0);
3184 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3185 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3186 INIT_LIST_HEAD(&svms->deferred_range_list);
3187 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3188 spin_lock_init(&svms->deferred_list_lock);
3189
3190 for (i = 0; i < p->n_pdds; i++)
3191 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3192 bitmap_set(svms->bitmap_supported, i, 1);
3193
3194 return 0;
3195}
3196
3197/**
3198 * svm_range_check_vm - check if virtual address range mapped already
3199 * @p: current kfd_process
3200 * @start: range start address, in pages
3201 * @last: range last address, in pages
3202 * @bo_s: mapping start address in pages if address range already mapped
3203 * @bo_l: mapping last address in pages if address range already mapped
3204 *
3205 * The purpose is to avoid virtual address ranges already allocated by
3206 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3207 * It looks for each pdd in the kfd_process.
3208 *
3209 * Context: Process context
3210 *
3211 * Return 0 - OK, if the range is not mapped.
3212 * Otherwise error code:
3213 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3214 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3215 * a signal. Release all buffer reservations and return to user-space.
3216 */
3217static int
3218svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3219 uint64_t *bo_s, uint64_t *bo_l)
3220{
3221 struct amdgpu_bo_va_mapping *mapping;
3222 struct interval_tree_node *node;
3223 uint32_t i;
3224 int r;
3225
3226 for (i = 0; i < p->n_pdds; i++) {
3227 struct amdgpu_vm *vm;
3228
3229 if (!p->pdds[i]->drm_priv)
3230 continue;
3231
3232 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3233 r = amdgpu_bo_reserve(vm->root.bo, false);
3234 if (r)
3235 return r;
3236
3237 node = interval_tree_iter_first(&vm->va, start, last);
3238 if (node) {
3239 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3240 start, last);
3241 mapping = container_of((struct rb_node *)node,
3242 struct amdgpu_bo_va_mapping, rb);
3243 if (bo_s && bo_l) {
3244 *bo_s = mapping->start;
3245 *bo_l = mapping->last;
3246 }
3247 amdgpu_bo_unreserve(vm->root.bo);
3248 return -EADDRINUSE;
3249 }
3250 amdgpu_bo_unreserve(vm->root.bo);
3251 }
3252
3253 return 0;
3254}
3255
3256/**
3257 * svm_range_is_valid - check if virtual address range is valid
3258 * @p: current kfd_process
3259 * @start: range start address, in pages
3260 * @size: range size, in pages
3261 *
3262 * Valid virtual address range means it belongs to one or more VMAs
3263 *
3264 * Context: Process context
3265 *
3266 * Return:
3267 * 0 - OK, otherwise error code
3268 */
3269static int
3270svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3271{
3272 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3273 struct vm_area_struct *vma;
3274 unsigned long end;
3275 unsigned long start_unchg = start;
3276
3277 start <<= PAGE_SHIFT;
3278 end = start + (size << PAGE_SHIFT);
3279 do {
3280 vma = vma_lookup(p->mm, start);
3281 if (!vma || (vma->vm_flags & device_vma))
3282 return -EFAULT;
3283 start = min(end, vma->vm_end);
3284 } while (start < end);
3285
3286 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3287 NULL);
3288}
3289
3290/**
3291 * svm_range_best_prefetch_location - decide the best prefetch location
3292 * @prange: svm range structure
3293 *
3294 * For xnack off:
3295 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3296 * can be CPU or GPU.
3297 *
3298 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3299 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3300 * the best prefetch location is always CPU, because GPU can not have coherent
3301 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3302 *
3303 * For xnack on:
3304 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3305 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3306 *
3307 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3308 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3309 * prefetch location is always CPU.
3310 *
3311 * Context: Process context
3312 *
3313 * Return:
3314 * 0 for CPU or GPU id
3315 */
3316static uint32_t
3317svm_range_best_prefetch_location(struct svm_range *prange)
3318{
3319 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3320 uint32_t best_loc = prange->prefetch_loc;
3321 struct kfd_process_device *pdd;
3322 struct kfd_node *bo_node;
3323 struct kfd_process *p;
3324 uint32_t gpuidx;
3325
3326 p = container_of(prange->svms, struct kfd_process, svms);
3327
3328 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3329 goto out;
3330
3331 bo_node = svm_range_get_node_by_id(prange, best_loc);
3332 if (!bo_node) {
3333 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3334 best_loc = 0;
3335 goto out;
3336 }
3337
3338 if (bo_node->adev->gmc.is_app_apu) {
3339 best_loc = 0;
3340 goto out;
3341 }
3342
3343 if (p->xnack_enabled)
3344 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3345 else
3346 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3347 MAX_GPU_INSTANCE);
3348
3349 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3350 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3351 if (!pdd) {
3352 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3353 continue;
3354 }
3355
3356 if (pdd->dev->adev == bo_node->adev)
3357 continue;
3358
3359 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3360 best_loc = 0;
3361 break;
3362 }
3363 }
3364
3365out:
3366 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3367 p->xnack_enabled, &p->svms, prange->start, prange->last,
3368 best_loc);
3369
3370 return best_loc;
3371}
3372
3373/* svm_range_trigger_migration - start page migration if prefetch loc changed
3374 * @mm: current process mm_struct
3375 * @prange: svm range structure
3376 * @migrated: output, true if migration is triggered
3377 *
3378 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3379 * from ram to vram.
3380 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3381 * from vram to ram.
3382 *
3383 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3384 * and restore work:
3385 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3386 * stops all queues, schedule restore work
3387 * 2. svm_range_restore_work wait for migration is done by
3388 * a. svm_range_validate_vram takes prange->migrate_mutex
3389 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3390 * 3. restore work update mappings of GPU, resume all queues.
3391 *
3392 * Context: Process context
3393 *
3394 * Return:
3395 * 0 - OK, otherwise - error code of migration
3396 */
3397static int
3398svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3399 bool *migrated)
3400{
3401 uint32_t best_loc;
3402 int r = 0;
3403
3404 *migrated = false;
3405 best_loc = svm_range_best_prefetch_location(prange);
3406
3407 /* when best_loc is a gpu node and same as prange->actual_loc
3408 * we still need do migration as prange->actual_loc !=0 does
3409 * not mean all pages in prange are vram. hmm migrate will pick
3410 * up right pages during migration.
3411 */
3412 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3413 (best_loc == 0 && prange->actual_loc == 0))
3414 return 0;
3415
3416 if (!best_loc) {
3417 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3418 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3419 *migrated = !r;
3420 return r;
3421 }
3422
3423 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3424 mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3425 *migrated = !r;
3426
3427 return r;
3428}
3429
3430int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3431{
3432 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3433 * signaled yet and we're under the protection of the fence->lock.
3434 * After the fence is signaled in svm_range_bo_release, we cannot get
3435 * here any more.
3436 *
3437 * Reference is dropped in svm_range_evict_svm_bo_worker.
3438 */
3439 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3440 WRITE_ONCE(fence->svm_bo->evicting, 1);
3441 schedule_work(&fence->svm_bo->eviction_work);
3442 }
3443
3444 return 0;
3445}
3446
3447static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3448{
3449 struct svm_range_bo *svm_bo;
3450 struct mm_struct *mm;
3451 int r = 0;
3452
3453 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3454
3455 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3456 mm = svm_bo->eviction_fence->mm;
3457 } else {
3458 svm_range_bo_unref(svm_bo);
3459 return;
3460 }
3461
3462 mmap_read_lock(mm);
3463 spin_lock(&svm_bo->list_lock);
3464 while (!list_empty(&svm_bo->range_list) && !r) {
3465 struct svm_range *prange =
3466 list_first_entry(&svm_bo->range_list,
3467 struct svm_range, svm_bo_list);
3468 int retries = 3;
3469
3470 list_del_init(&prange->svm_bo_list);
3471 spin_unlock(&svm_bo->list_lock);
3472
3473 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3474 prange->start, prange->last);
3475
3476 mutex_lock(&prange->migrate_mutex);
3477 do {
3478 /* migrate all vram pages in this prange to sys ram
3479 * after that prange->actual_loc should be zero
3480 */
3481 r = svm_migrate_vram_to_ram(prange, mm,
3482 prange->start, prange->last,
3483 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3484 } while (!r && prange->actual_loc && --retries);
3485
3486 if (!r && prange->actual_loc)
3487 pr_info_once("Migration failed during eviction");
3488
3489 if (!prange->actual_loc) {
3490 mutex_lock(&prange->lock);
3491 prange->svm_bo = NULL;
3492 mutex_unlock(&prange->lock);
3493 }
3494 mutex_unlock(&prange->migrate_mutex);
3495
3496 spin_lock(&svm_bo->list_lock);
3497 }
3498 spin_unlock(&svm_bo->list_lock);
3499 mmap_read_unlock(mm);
3500 mmput(mm);
3501
3502 dma_fence_signal(&svm_bo->eviction_fence->base);
3503
3504 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3505 * has been called in svm_migrate_vram_to_ram
3506 */
3507 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3508 svm_range_bo_unref(svm_bo);
3509}
3510
3511static int
3512svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3513 uint64_t start, uint64_t size, uint32_t nattr,
3514 struct kfd_ioctl_svm_attribute *attrs)
3515{
3516 struct amdkfd_process_info *process_info = p->kgd_process_info;
3517 struct list_head update_list;
3518 struct list_head insert_list;
3519 struct list_head remove_list;
3520 struct list_head remap_list;
3521 struct svm_range_list *svms;
3522 struct svm_range *prange;
3523 struct svm_range *next;
3524 bool update_mapping = false;
3525 bool flush_tlb;
3526 int r, ret = 0;
3527
3528 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3529 p->pasid, &p->svms, start, start + size - 1, size);
3530
3531 r = svm_range_check_attr(p, nattr, attrs);
3532 if (r)
3533 return r;
3534
3535 svms = &p->svms;
3536
3537 mutex_lock(&process_info->lock);
3538
3539 svm_range_list_lock_and_flush_work(svms, mm);
3540
3541 r = svm_range_is_valid(p, start, size);
3542 if (r) {
3543 pr_debug("invalid range r=%d\n", r);
3544 mmap_write_unlock(mm);
3545 goto out;
3546 }
3547
3548 mutex_lock(&svms->lock);
3549
3550 /* Add new range and split existing ranges as needed */
3551 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3552 &insert_list, &remove_list, &remap_list);
3553 if (r) {
3554 mutex_unlock(&svms->lock);
3555 mmap_write_unlock(mm);
3556 goto out;
3557 }
3558 /* Apply changes as a transaction */
3559 list_for_each_entry_safe(prange, next, &insert_list, list) {
3560 svm_range_add_to_svms(prange);
3561 svm_range_add_notifier_locked(mm, prange);
3562 }
3563 list_for_each_entry(prange, &update_list, update_list) {
3564 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3565 /* TODO: unmap ranges from GPU that lost access */
3566 }
3567 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3568 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3569 prange->svms, prange, prange->start,
3570 prange->last);
3571 svm_range_unlink(prange);
3572 svm_range_remove_notifier(prange);
3573 svm_range_free(prange, false);
3574 }
3575
3576 mmap_write_downgrade(mm);
3577 /* Trigger migrations and revalidate and map to GPUs as needed. If
3578 * this fails we may be left with partially completed actions. There
3579 * is no clean way of rolling back to the previous state in such a
3580 * case because the rollback wouldn't be guaranteed to work either.
3581 */
3582 list_for_each_entry(prange, &update_list, update_list) {
3583 bool migrated;
3584
3585 mutex_lock(&prange->migrate_mutex);
3586
3587 r = svm_range_trigger_migration(mm, prange, &migrated);
3588 if (r)
3589 goto out_unlock_range;
3590
3591 if (migrated && (!p->xnack_enabled ||
3592 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3593 prange->mapped_to_gpu) {
3594 pr_debug("restore_work will update mappings of GPUs\n");
3595 mutex_unlock(&prange->migrate_mutex);
3596 continue;
3597 }
3598
3599 if (!migrated && !update_mapping) {
3600 mutex_unlock(&prange->migrate_mutex);
3601 continue;
3602 }
3603
3604 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3605
3606 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3607 MAX_GPU_INSTANCE, true, true, flush_tlb);
3608 if (r)
3609 pr_debug("failed %d to map svm range\n", r);
3610
3611out_unlock_range:
3612 mutex_unlock(&prange->migrate_mutex);
3613 if (r)
3614 ret = r;
3615 }
3616
3617 list_for_each_entry(prange, &remap_list, update_list) {
3618 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3619 prange, prange->start, prange->last);
3620 mutex_lock(&prange->migrate_mutex);
3621 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3622 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3623 if (r)
3624 pr_debug("failed %d on remap svm range\n", r);
3625 mutex_unlock(&prange->migrate_mutex);
3626 if (r)
3627 ret = r;
3628 }
3629
3630 dynamic_svm_range_dump(svms);
3631
3632 mutex_unlock(&svms->lock);
3633 mmap_read_unlock(mm);
3634out:
3635 mutex_unlock(&process_info->lock);
3636
3637 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3638 &p->svms, start, start + size - 1, r);
3639
3640 return ret ? ret : r;
3641}
3642
3643static int
3644svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3645 uint64_t start, uint64_t size, uint32_t nattr,
3646 struct kfd_ioctl_svm_attribute *attrs)
3647{
3648 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3649 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3650 bool get_preferred_loc = false;
3651 bool get_prefetch_loc = false;
3652 bool get_granularity = false;
3653 bool get_accessible = false;
3654 bool get_flags = false;
3655 uint64_t last = start + size - 1UL;
3656 uint8_t granularity = 0xff;
3657 struct interval_tree_node *node;
3658 struct svm_range_list *svms;
3659 struct svm_range *prange;
3660 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3661 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3662 uint32_t flags_and = 0xffffffff;
3663 uint32_t flags_or = 0;
3664 int gpuidx;
3665 uint32_t i;
3666 int r = 0;
3667
3668 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3669 start + size - 1, nattr);
3670
3671 /* Flush pending deferred work to avoid racing with deferred actions from
3672 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3673 * can still race with get_attr because we don't hold the mmap lock. But that
3674 * would be a race condition in the application anyway, and undefined
3675 * behaviour is acceptable in that case.
3676 */
3677 flush_work(&p->svms.deferred_list_work);
3678
3679 mmap_read_lock(mm);
3680 r = svm_range_is_valid(p, start, size);
3681 mmap_read_unlock(mm);
3682 if (r) {
3683 pr_debug("invalid range r=%d\n", r);
3684 return r;
3685 }
3686
3687 for (i = 0; i < nattr; i++) {
3688 switch (attrs[i].type) {
3689 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3690 get_preferred_loc = true;
3691 break;
3692 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3693 get_prefetch_loc = true;
3694 break;
3695 case KFD_IOCTL_SVM_ATTR_ACCESS:
3696 get_accessible = true;
3697 break;
3698 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3699 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3700 get_flags = true;
3701 break;
3702 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3703 get_granularity = true;
3704 break;
3705 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3706 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3707 fallthrough;
3708 default:
3709 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3710 return -EINVAL;
3711 }
3712 }
3713
3714 svms = &p->svms;
3715
3716 mutex_lock(&svms->lock);
3717
3718 node = interval_tree_iter_first(&svms->objects, start, last);
3719 if (!node) {
3720 pr_debug("range attrs not found return default values\n");
3721 svm_range_set_default_attributes(&location, &prefetch_loc,
3722 &granularity, &flags_and);
3723 flags_or = flags_and;
3724 if (p->xnack_enabled)
3725 bitmap_copy(bitmap_access, svms->bitmap_supported,
3726 MAX_GPU_INSTANCE);
3727 else
3728 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3729 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3730 goto fill_values;
3731 }
3732 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3733 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3734
3735 while (node) {
3736 struct interval_tree_node *next;
3737
3738 prange = container_of(node, struct svm_range, it_node);
3739 next = interval_tree_iter_next(node, start, last);
3740
3741 if (get_preferred_loc) {
3742 if (prange->preferred_loc ==
3743 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3744 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3745 location != prange->preferred_loc)) {
3746 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3747 get_preferred_loc = false;
3748 } else {
3749 location = prange->preferred_loc;
3750 }
3751 }
3752 if (get_prefetch_loc) {
3753 if (prange->prefetch_loc ==
3754 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3755 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3756 prefetch_loc != prange->prefetch_loc)) {
3757 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3758 get_prefetch_loc = false;
3759 } else {
3760 prefetch_loc = prange->prefetch_loc;
3761 }
3762 }
3763 if (get_accessible) {
3764 bitmap_and(bitmap_access, bitmap_access,
3765 prange->bitmap_access, MAX_GPU_INSTANCE);
3766 bitmap_and(bitmap_aip, bitmap_aip,
3767 prange->bitmap_aip, MAX_GPU_INSTANCE);
3768 }
3769 if (get_flags) {
3770 flags_and &= prange->flags;
3771 flags_or |= prange->flags;
3772 }
3773
3774 if (get_granularity && prange->granularity < granularity)
3775 granularity = prange->granularity;
3776
3777 node = next;
3778 }
3779fill_values:
3780 mutex_unlock(&svms->lock);
3781
3782 for (i = 0; i < nattr; i++) {
3783 switch (attrs[i].type) {
3784 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3785 attrs[i].value = location;
3786 break;
3787 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3788 attrs[i].value = prefetch_loc;
3789 break;
3790 case KFD_IOCTL_SVM_ATTR_ACCESS:
3791 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3792 attrs[i].value);
3793 if (gpuidx < 0) {
3794 pr_debug("invalid gpuid %x\n", attrs[i].value);
3795 return -EINVAL;
3796 }
3797 if (test_bit(gpuidx, bitmap_access))
3798 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3799 else if (test_bit(gpuidx, bitmap_aip))
3800 attrs[i].type =
3801 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3802 else
3803 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3804 break;
3805 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3806 attrs[i].value = flags_and;
3807 break;
3808 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3809 attrs[i].value = ~flags_or;
3810 break;
3811 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3812 attrs[i].value = (uint32_t)granularity;
3813 break;
3814 }
3815 }
3816
3817 return 0;
3818}
3819
3820int kfd_criu_resume_svm(struct kfd_process *p)
3821{
3822 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3823 int nattr_common = 4, nattr_accessibility = 1;
3824 struct criu_svm_metadata *criu_svm_md = NULL;
3825 struct svm_range_list *svms = &p->svms;
3826 struct criu_svm_metadata *next = NULL;
3827 uint32_t set_flags = 0xffffffff;
3828 int i, j, num_attrs, ret = 0;
3829 uint64_t set_attr_size;
3830 struct mm_struct *mm;
3831
3832 if (list_empty(&svms->criu_svm_metadata_list)) {
3833 pr_debug("No SVM data from CRIU restore stage 2\n");
3834 return ret;
3835 }
3836
3837 mm = get_task_mm(p->lead_thread);
3838 if (!mm) {
3839 pr_err("failed to get mm for the target process\n");
3840 return -ESRCH;
3841 }
3842
3843 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3844
3845 i = j = 0;
3846 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3847 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3848 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3849
3850 for (j = 0; j < num_attrs; j++) {
3851 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3852 i, j, criu_svm_md->data.attrs[j].type,
3853 i, j, criu_svm_md->data.attrs[j].value);
3854 switch (criu_svm_md->data.attrs[j].type) {
3855 /* During Checkpoint operation, the query for
3856 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3857 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3858 * not used by the range which was checkpointed. Care
3859 * must be taken to not restore with an invalid value
3860 * otherwise the gpuidx value will be invalid and
3861 * set_attr would eventually fail so just replace those
3862 * with another dummy attribute such as
3863 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3864 */
3865 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3866 if (criu_svm_md->data.attrs[j].value ==
3867 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3868 criu_svm_md->data.attrs[j].type =
3869 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3870 criu_svm_md->data.attrs[j].value = 0;
3871 }
3872 break;
3873 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3874 set_flags = criu_svm_md->data.attrs[j].value;
3875 break;
3876 default:
3877 break;
3878 }
3879 }
3880
3881 /* CLR_FLAGS is not available via get_attr during checkpoint but
3882 * it needs to be inserted before restoring the ranges so
3883 * allocate extra space for it before calling set_attr
3884 */
3885 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3886 (num_attrs + 1);
3887 set_attr_new = krealloc(set_attr, set_attr_size,
3888 GFP_KERNEL);
3889 if (!set_attr_new) {
3890 ret = -ENOMEM;
3891 goto exit;
3892 }
3893 set_attr = set_attr_new;
3894
3895 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3896 sizeof(struct kfd_ioctl_svm_attribute));
3897 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3898 set_attr[num_attrs].value = ~set_flags;
3899
3900 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3901 criu_svm_md->data.size, num_attrs + 1,
3902 set_attr);
3903 if (ret) {
3904 pr_err("CRIU: failed to set range attributes\n");
3905 goto exit;
3906 }
3907
3908 i++;
3909 }
3910exit:
3911 kfree(set_attr);
3912 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3913 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3914 criu_svm_md->data.start_addr);
3915 kfree(criu_svm_md);
3916 }
3917
3918 mmput(mm);
3919 return ret;
3920
3921}
3922
3923int kfd_criu_restore_svm(struct kfd_process *p,
3924 uint8_t __user *user_priv_ptr,
3925 uint64_t *priv_data_offset,
3926 uint64_t max_priv_data_size)
3927{
3928 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3929 int nattr_common = 4, nattr_accessibility = 1;
3930 struct criu_svm_metadata *criu_svm_md = NULL;
3931 struct svm_range_list *svms = &p->svms;
3932 uint32_t num_devices;
3933 int ret = 0;
3934
3935 num_devices = p->n_pdds;
3936 /* Handle one SVM range object at a time, also the number of gpus are
3937 * assumed to be same on the restore node, checking must be done while
3938 * evaluating the topology earlier
3939 */
3940
3941 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3942 (nattr_common + nattr_accessibility * num_devices);
3943 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3944
3945 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3946 svm_attrs_size;
3947
3948 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3949 if (!criu_svm_md) {
3950 pr_err("failed to allocate memory to store svm metadata\n");
3951 return -ENOMEM;
3952 }
3953 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3954 ret = -EINVAL;
3955 goto exit;
3956 }
3957
3958 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3959 svm_priv_data_size);
3960 if (ret) {
3961 ret = -EFAULT;
3962 goto exit;
3963 }
3964 *priv_data_offset += svm_priv_data_size;
3965
3966 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3967
3968 return 0;
3969
3970
3971exit:
3972 kfree(criu_svm_md);
3973 return ret;
3974}
3975
3976int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3977 uint64_t *svm_priv_data_size)
3978{
3979 uint64_t total_size, accessibility_size, common_attr_size;
3980 int nattr_common = 4, nattr_accessibility = 1;
3981 int num_devices = p->n_pdds;
3982 struct svm_range_list *svms;
3983 struct svm_range *prange;
3984 uint32_t count = 0;
3985
3986 *svm_priv_data_size = 0;
3987
3988 svms = &p->svms;
3989 if (!svms)
3990 return -EINVAL;
3991
3992 mutex_lock(&svms->lock);
3993 list_for_each_entry(prange, &svms->list, list) {
3994 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3995 prange, prange->start, prange->npages,
3996 prange->start + prange->npages - 1);
3997 count++;
3998 }
3999 mutex_unlock(&svms->lock);
4000
4001 *num_svm_ranges = count;
4002 /* Only the accessbility attributes need to be queried for all the gpus
4003 * individually, remaining ones are spanned across the entire process
4004 * regardless of the various gpu nodes. Of the remaining attributes,
4005 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4006 *
4007 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4008 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4009 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4010 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4011 *
4012 * ** ACCESSBILITY ATTRIBUTES **
4013 * (Considered as one, type is altered during query, value is gpuid)
4014 * KFD_IOCTL_SVM_ATTR_ACCESS
4015 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4016 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4017 */
4018 if (*num_svm_ranges > 0) {
4019 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4020 nattr_common;
4021 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4022 nattr_accessibility * num_devices;
4023
4024 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4025 common_attr_size + accessibility_size;
4026
4027 *svm_priv_data_size = *num_svm_ranges * total_size;
4028 }
4029
4030 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4031 *svm_priv_data_size);
4032 return 0;
4033}
4034
4035int kfd_criu_checkpoint_svm(struct kfd_process *p,
4036 uint8_t __user *user_priv_data,
4037 uint64_t *priv_data_offset)
4038{
4039 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4040 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4041 uint64_t svm_priv_data_size, query_attr_size = 0;
4042 int index, nattr_common = 4, ret = 0;
4043 struct svm_range_list *svms;
4044 int num_devices = p->n_pdds;
4045 struct svm_range *prange;
4046 struct mm_struct *mm;
4047
4048 svms = &p->svms;
4049 if (!svms)
4050 return -EINVAL;
4051
4052 mm = get_task_mm(p->lead_thread);
4053 if (!mm) {
4054 pr_err("failed to get mm for the target process\n");
4055 return -ESRCH;
4056 }
4057
4058 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4059 (nattr_common + num_devices);
4060
4061 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4062 if (!query_attr) {
4063 ret = -ENOMEM;
4064 goto exit;
4065 }
4066
4067 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4068 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4069 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4070 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4071
4072 for (index = 0; index < num_devices; index++) {
4073 struct kfd_process_device *pdd = p->pdds[index];
4074
4075 query_attr[index + nattr_common].type =
4076 KFD_IOCTL_SVM_ATTR_ACCESS;
4077 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4078 }
4079
4080 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4081
4082 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4083 if (!svm_priv) {
4084 ret = -ENOMEM;
4085 goto exit_query;
4086 }
4087
4088 index = 0;
4089 list_for_each_entry(prange, &svms->list, list) {
4090
4091 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4092 svm_priv->start_addr = prange->start;
4093 svm_priv->size = prange->npages;
4094 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4095 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4096 prange, prange->start, prange->npages,
4097 prange->start + prange->npages - 1,
4098 prange->npages * PAGE_SIZE);
4099
4100 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4101 svm_priv->size,
4102 (nattr_common + num_devices),
4103 svm_priv->attrs);
4104 if (ret) {
4105 pr_err("CRIU: failed to obtain range attributes\n");
4106 goto exit_priv;
4107 }
4108
4109 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4110 svm_priv_data_size)) {
4111 pr_err("Failed to copy svm priv to user\n");
4112 ret = -EFAULT;
4113 goto exit_priv;
4114 }
4115
4116 *priv_data_offset += svm_priv_data_size;
4117
4118 }
4119
4120
4121exit_priv:
4122 kfree(svm_priv);
4123exit_query:
4124 kfree(query_attr);
4125exit:
4126 mmput(mm);
4127 return ret;
4128}
4129
4130int
4131svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4132 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4133{
4134 struct mm_struct *mm = current->mm;
4135 int r;
4136
4137 start >>= PAGE_SHIFT;
4138 size >>= PAGE_SHIFT;
4139
4140 switch (op) {
4141 case KFD_IOCTL_SVM_OP_SET_ATTR:
4142 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4143 break;
4144 case KFD_IOCTL_SVM_OP_GET_ATTR:
4145 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4146 break;
4147 default:
4148 r = EINVAL;
4149 break;
4150 }
4151
4152 return r;
4153}