Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
  35#include <linux/notifier.h>
  36
  37#include <asm/early_ioremap.h>
  38
  39struct efi __read_mostly efi = {
  40	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  41	.acpi			= EFI_INVALID_TABLE_ADDR,
  42	.acpi20			= EFI_INVALID_TABLE_ADDR,
  43	.smbios			= EFI_INVALID_TABLE_ADDR,
  44	.smbios3		= EFI_INVALID_TABLE_ADDR,
  45	.esrt			= EFI_INVALID_TABLE_ADDR,
  46	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  47	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  48#ifdef CONFIG_LOAD_UEFI_KEYS
  49	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  50#endif
  51#ifdef CONFIG_EFI_COCO_SECRET
  52	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  53#endif
  54#ifdef CONFIG_UNACCEPTED_MEMORY
  55	.unaccepted		= EFI_INVALID_TABLE_ADDR,
  56#endif
  57};
  58EXPORT_SYMBOL(efi);
  59
  60unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  61static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  62static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  63static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  64
  65extern unsigned long screen_info_table;
  66
  67struct mm_struct efi_mm = {
  68	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  69	.mm_users		= ATOMIC_INIT(2),
  70	.mm_count		= ATOMIC_INIT(1),
  71	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  72	MMAP_LOCK_INITIALIZER(efi_mm)
  73	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  74	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  75	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  76};
  77
  78struct workqueue_struct *efi_rts_wq;
  79
  80static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  81static int __init setup_noefi(char *arg)
  82{
  83	disable_runtime = true;
  84	return 0;
  85}
  86early_param("noefi", setup_noefi);
  87
  88bool efi_runtime_disabled(void)
  89{
  90	return disable_runtime;
  91}
  92
  93bool __pure __efi_soft_reserve_enabled(void)
  94{
  95	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  96}
  97
  98static int __init parse_efi_cmdline(char *str)
  99{
 100	if (!str) {
 101		pr_warn("need at least one option\n");
 102		return -EINVAL;
 103	}
 104
 105	if (parse_option_str(str, "debug"))
 106		set_bit(EFI_DBG, &efi.flags);
 107
 108	if (parse_option_str(str, "noruntime"))
 109		disable_runtime = true;
 110
 111	if (parse_option_str(str, "runtime"))
 112		disable_runtime = false;
 113
 114	if (parse_option_str(str, "nosoftreserve"))
 115		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 116
 117	return 0;
 118}
 119early_param("efi", parse_efi_cmdline);
 120
 121struct kobject *efi_kobj;
 122
 123/*
 124 * Let's not leave out systab information that snuck into
 125 * the efivars driver
 126 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 127 * one value per file rule!
 128 */
 129static ssize_t systab_show(struct kobject *kobj,
 130			   struct kobj_attribute *attr, char *buf)
 131{
 132	char *str = buf;
 133
 134	if (!kobj || !buf)
 135		return -EINVAL;
 136
 137	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 138		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 139	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 140		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 141	/*
 142	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 143	 * SMBIOS3 entry point shall be preferred, so we list it first to
 144	 * let applications stop parsing after the first match.
 145	 */
 146	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 147		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 148	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 149		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 150
 151	if (IS_ENABLED(CONFIG_X86))
 152		str = efi_systab_show_arch(str);
 153
 154	return str - buf;
 155}
 156
 157static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 158
 159static ssize_t fw_platform_size_show(struct kobject *kobj,
 160				     struct kobj_attribute *attr, char *buf)
 161{
 162	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 163}
 164
 165extern __weak struct kobj_attribute efi_attr_fw_vendor;
 166extern __weak struct kobj_attribute efi_attr_runtime;
 167extern __weak struct kobj_attribute efi_attr_config_table;
 168static struct kobj_attribute efi_attr_fw_platform_size =
 169	__ATTR_RO(fw_platform_size);
 170
 171static struct attribute *efi_subsys_attrs[] = {
 172	&efi_attr_systab.attr,
 173	&efi_attr_fw_platform_size.attr,
 174	&efi_attr_fw_vendor.attr,
 175	&efi_attr_runtime.attr,
 176	&efi_attr_config_table.attr,
 177	NULL,
 178};
 179
 180umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 181				   int n)
 182{
 183	return attr->mode;
 184}
 185
 186static const struct attribute_group efi_subsys_attr_group = {
 187	.attrs = efi_subsys_attrs,
 188	.is_visible = efi_attr_is_visible,
 189};
 190
 191struct blocking_notifier_head efivar_ops_nh;
 192EXPORT_SYMBOL_GPL(efivar_ops_nh);
 193
 194static struct efivars generic_efivars;
 195static struct efivar_operations generic_ops;
 196
 197static bool generic_ops_supported(void)
 198{
 199	unsigned long name_size;
 200	efi_status_t status;
 201	efi_char16_t name;
 202	efi_guid_t guid;
 203
 204	name_size = sizeof(name);
 205
 206	status = efi.get_next_variable(&name_size, &name, &guid);
 207	if (status == EFI_UNSUPPORTED)
 208		return false;
 209
 210	return true;
 211}
 212
 213static int generic_ops_register(void)
 214{
 215	if (!generic_ops_supported())
 216		return 0;
 217
 218	generic_ops.get_variable = efi.get_variable;
 219	generic_ops.get_next_variable = efi.get_next_variable;
 220	generic_ops.query_variable_store = efi_query_variable_store;
 221	generic_ops.query_variable_info = efi.query_variable_info;
 222
 223	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 224		generic_ops.set_variable = efi.set_variable;
 225		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 226	}
 227	return efivars_register(&generic_efivars, &generic_ops);
 228}
 229
 230static void generic_ops_unregister(void)
 231{
 232	if (!generic_ops.get_variable)
 233		return;
 234
 235	efivars_unregister(&generic_efivars);
 236}
 237
 238void efivars_generic_ops_register(void)
 239{
 240	generic_ops_register();
 241}
 242EXPORT_SYMBOL_GPL(efivars_generic_ops_register);
 243
 244void efivars_generic_ops_unregister(void)
 245{
 246	generic_ops_unregister();
 247}
 248EXPORT_SYMBOL_GPL(efivars_generic_ops_unregister);
 249
 250#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 251#define EFIVAR_SSDT_NAME_MAX	16UL
 252static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 253static int __init efivar_ssdt_setup(char *str)
 254{
 255	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 256
 257	if (ret)
 258		return ret;
 259
 260	if (strlen(str) < sizeof(efivar_ssdt))
 261		memcpy(efivar_ssdt, str, strlen(str));
 262	else
 263		pr_warn("efivar_ssdt: name too long: %s\n", str);
 264	return 1;
 265}
 266__setup("efivar_ssdt=", efivar_ssdt_setup);
 267
 268static __init int efivar_ssdt_load(void)
 269{
 270	unsigned long name_size = 256;
 271	efi_char16_t *name = NULL;
 272	efi_status_t status;
 273	efi_guid_t guid;
 274
 275	if (!efivar_ssdt[0])
 276		return 0;
 277
 278	name = kzalloc(name_size, GFP_KERNEL);
 279	if (!name)
 280		return -ENOMEM;
 281
 282	for (;;) {
 283		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 284		unsigned long data_size = 0;
 285		void *data;
 286		int limit;
 287
 288		status = efi.get_next_variable(&name_size, name, &guid);
 289		if (status == EFI_NOT_FOUND) {
 290			break;
 291		} else if (status == EFI_BUFFER_TOO_SMALL) {
 292			efi_char16_t *name_tmp =
 293				krealloc(name, name_size, GFP_KERNEL);
 294			if (!name_tmp) {
 295				kfree(name);
 296				return -ENOMEM;
 297			}
 298			name = name_tmp;
 299			continue;
 300		}
 301
 302		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 303		ucs2_as_utf8(utf8_name, name, limit - 1);
 304		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 305			continue;
 306
 307		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 308
 309		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 310		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
 311			return -EIO;
 312
 313		data = kmalloc(data_size, GFP_KERNEL);
 314		if (!data)
 315			return -ENOMEM;
 316
 317		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 318		if (status == EFI_SUCCESS) {
 319			acpi_status ret = acpi_load_table(data, NULL);
 320			if (ret)
 321				pr_err("failed to load table: %u\n", ret);
 322			else
 323				continue;
 324		} else {
 325			pr_err("failed to get var data: 0x%lx\n", status);
 326		}
 327		kfree(data);
 328	}
 329	return 0;
 330}
 331#else
 332static inline int efivar_ssdt_load(void) { return 0; }
 333#endif
 334
 335#ifdef CONFIG_DEBUG_FS
 336
 337#define EFI_DEBUGFS_MAX_BLOBS 32
 338
 339static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 340
 341static void __init efi_debugfs_init(void)
 342{
 343	struct dentry *efi_debugfs;
 344	efi_memory_desc_t *md;
 345	char name[32];
 346	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 347	int i = 0;
 348
 349	efi_debugfs = debugfs_create_dir("efi", NULL);
 350	if (IS_ERR_OR_NULL(efi_debugfs))
 351		return;
 352
 353	for_each_efi_memory_desc(md) {
 354		switch (md->type) {
 355		case EFI_BOOT_SERVICES_CODE:
 356			snprintf(name, sizeof(name), "boot_services_code%d",
 357				 type_count[md->type]++);
 358			break;
 359		case EFI_BOOT_SERVICES_DATA:
 360			snprintf(name, sizeof(name), "boot_services_data%d",
 361				 type_count[md->type]++);
 362			break;
 363		default:
 364			continue;
 365		}
 366
 367		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 368			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 369				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 370			break;
 371		}
 372
 373		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 374		debugfs_blob[i].data = memremap(md->phys_addr,
 375						debugfs_blob[i].size,
 376						MEMREMAP_WB);
 377		if (!debugfs_blob[i].data)
 378			continue;
 379
 380		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 381		i++;
 382	}
 383}
 384#else
 385static inline void efi_debugfs_init(void) {}
 386#endif
 387
 388/*
 389 * We register the efi subsystem with the firmware subsystem and the
 390 * efivars subsystem with the efi subsystem, if the system was booted with
 391 * EFI.
 392 */
 393static int __init efisubsys_init(void)
 394{
 395	int error;
 396
 397	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 398		efi.runtime_supported_mask = 0;
 399
 400	if (!efi_enabled(EFI_BOOT))
 401		return 0;
 402
 403	if (efi.runtime_supported_mask) {
 404		/*
 405		 * Since we process only one efi_runtime_service() at a time, an
 406		 * ordered workqueue (which creates only one execution context)
 407		 * should suffice for all our needs.
 408		 */
 409		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 410		if (!efi_rts_wq) {
 411			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 412			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 413			efi.runtime_supported_mask = 0;
 414			return 0;
 415		}
 416	}
 417
 418	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 419		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 420
 421	/* We register the efi directory at /sys/firmware/efi */
 422	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 423	if (!efi_kobj) {
 424		pr_err("efi: Firmware registration failed.\n");
 425		error = -ENOMEM;
 426		goto err_destroy_wq;
 427	}
 428
 429	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 430				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 431		error = generic_ops_register();
 432		if (error)
 433			goto err_put;
 434		efivar_ssdt_load();
 435		platform_device_register_simple("efivars", 0, NULL, 0);
 436	}
 437
 438	BLOCKING_INIT_NOTIFIER_HEAD(&efivar_ops_nh);
 439
 440	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 441	if (error) {
 442		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 443		       error);
 444		goto err_unregister;
 445	}
 446
 447	/* and the standard mountpoint for efivarfs */
 448	error = sysfs_create_mount_point(efi_kobj, "efivars");
 449	if (error) {
 450		pr_err("efivars: Subsystem registration failed.\n");
 451		goto err_remove_group;
 452	}
 453
 454	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 455		efi_debugfs_init();
 456
 457#ifdef CONFIG_EFI_COCO_SECRET
 458	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 459		platform_device_register_simple("efi_secret", 0, NULL, 0);
 460#endif
 461
 462	return 0;
 463
 464err_remove_group:
 465	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 466err_unregister:
 467	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 468				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 469		generic_ops_unregister();
 470err_put:
 471	kobject_put(efi_kobj);
 472	efi_kobj = NULL;
 473err_destroy_wq:
 474	if (efi_rts_wq)
 475		destroy_workqueue(efi_rts_wq);
 476
 477	return error;
 478}
 479
 480subsys_initcall(efisubsys_init);
 481
 482void __init efi_find_mirror(void)
 483{
 484	efi_memory_desc_t *md;
 485	u64 mirror_size = 0, total_size = 0;
 486
 487	if (!efi_enabled(EFI_MEMMAP))
 488		return;
 489
 490	for_each_efi_memory_desc(md) {
 491		unsigned long long start = md->phys_addr;
 492		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 493
 494		total_size += size;
 495		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 496			memblock_mark_mirror(start, size);
 497			mirror_size += size;
 498		}
 499	}
 500	if (mirror_size)
 501		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 502			mirror_size>>20, total_size>>20);
 503}
 504
 505/*
 506 * Find the efi memory descriptor for a given physical address.  Given a
 507 * physical address, determine if it exists within an EFI Memory Map entry,
 508 * and if so, populate the supplied memory descriptor with the appropriate
 509 * data.
 510 */
 511int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 512{
 513	efi_memory_desc_t *md;
 514
 515	if (!efi_enabled(EFI_MEMMAP)) {
 516		pr_err_once("EFI_MEMMAP is not enabled.\n");
 517		return -EINVAL;
 518	}
 519
 520	if (!out_md) {
 521		pr_err_once("out_md is null.\n");
 522		return -EINVAL;
 523        }
 524
 525	for_each_efi_memory_desc(md) {
 526		u64 size;
 527		u64 end;
 528
 529		/* skip bogus entries (including empty ones) */
 530		if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
 531		    (md->num_pages <= 0) ||
 532		    (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
 533			continue;
 534
 535		size = md->num_pages << EFI_PAGE_SHIFT;
 536		end = md->phys_addr + size;
 537		if (phys_addr >= md->phys_addr && phys_addr < end) {
 538			memcpy(out_md, md, sizeof(*out_md));
 539			return 0;
 540		}
 541	}
 542	return -ENOENT;
 543}
 544
 545extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 546	__weak __alias(__efi_mem_desc_lookup);
 547
 548/*
 549 * Calculate the highest address of an efi memory descriptor.
 550 */
 551u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 552{
 553	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 554	u64 end = md->phys_addr + size;
 555	return end;
 556}
 557
 558void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 559
 560/**
 561 * efi_mem_reserve - Reserve an EFI memory region
 562 * @addr: Physical address to reserve
 563 * @size: Size of reservation
 564 *
 565 * Mark a region as reserved from general kernel allocation and
 566 * prevent it being released by efi_free_boot_services().
 567 *
 568 * This function should be called drivers once they've parsed EFI
 569 * configuration tables to figure out where their data lives, e.g.
 570 * efi_esrt_init().
 571 */
 572void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 573{
 574	/* efi_mem_reserve() does not work under Xen */
 575	if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
 576		return;
 577
 578	if (!memblock_is_region_reserved(addr, size))
 579		memblock_reserve(addr, size);
 580
 581	/*
 582	 * Some architectures (x86) reserve all boot services ranges
 583	 * until efi_free_boot_services() because of buggy firmware
 584	 * implementations. This means the above memblock_reserve() is
 585	 * superfluous on x86 and instead what it needs to do is
 586	 * ensure the @start, @size is not freed.
 587	 */
 588	efi_arch_mem_reserve(addr, size);
 589}
 590
 591static const efi_config_table_type_t common_tables[] __initconst = {
 592	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 593	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 594	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 595	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 596	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 597	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 598	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 599	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 600	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 601	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 602	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 603	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 604#ifdef CONFIG_EFI_RCI2_TABLE
 605	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 606#endif
 607#ifdef CONFIG_LOAD_UEFI_KEYS
 608	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 609#endif
 610#ifdef CONFIG_EFI_COCO_SECRET
 611	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 612#endif
 613#ifdef CONFIG_UNACCEPTED_MEMORY
 614	{LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,	&efi.unaccepted,	"Unaccepted"	},
 615#endif
 616#ifdef CONFIG_EFI_GENERIC_STUB
 617	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 618#endif
 619	{},
 620};
 621
 622static __init int match_config_table(const efi_guid_t *guid,
 623				     unsigned long table,
 624				     const efi_config_table_type_t *table_types)
 625{
 626	int i;
 627
 628	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 629		if (efi_guidcmp(*guid, table_types[i].guid))
 630			continue;
 631
 632		if (!efi_config_table_is_usable(guid, table)) {
 633			if (table_types[i].name[0])
 634				pr_cont("(%s=0x%lx unusable) ",
 635					table_types[i].name, table);
 636			return 1;
 637		}
 638
 639		*(table_types[i].ptr) = table;
 640		if (table_types[i].name[0])
 641			pr_cont("%s=0x%lx ", table_types[i].name, table);
 642		return 1;
 643	}
 644
 645	return 0;
 646}
 647
 648/**
 649 * reserve_unaccepted - Map and reserve unaccepted configuration table
 650 * @unaccepted: Pointer to unaccepted memory table
 651 *
 652 * memblock_add() makes sure that the table is mapped in direct mapping. During
 653 * normal boot it happens automatically because the table is allocated from
 654 * usable memory. But during crashkernel boot only memory specifically reserved
 655 * for crash scenario is mapped. memblock_add() forces the table to be mapped
 656 * in crashkernel case.
 657 *
 658 * Align the range to the nearest page borders. Ranges smaller than page size
 659 * are not going to be mapped.
 660 *
 661 * memblock_reserve() makes sure that future allocations will not touch the
 662 * table.
 663 */
 664
 665static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted)
 666{
 667	phys_addr_t start, size;
 668
 669	start = PAGE_ALIGN_DOWN(efi.unaccepted);
 670	size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size);
 671
 672	memblock_add(start, size);
 673	memblock_reserve(start, size);
 674}
 675
 676int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 677				   int count,
 678				   const efi_config_table_type_t *arch_tables)
 679{
 680	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 681	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 682	const efi_guid_t *guid;
 683	unsigned long table;
 684	int i;
 685
 686	pr_info("");
 687	for (i = 0; i < count; i++) {
 688		if (!IS_ENABLED(CONFIG_X86)) {
 689			guid = &config_tables[i].guid;
 690			table = (unsigned long)config_tables[i].table;
 691		} else if (efi_enabled(EFI_64BIT)) {
 692			guid = &tbl64[i].guid;
 693			table = tbl64[i].table;
 694
 695			if (IS_ENABLED(CONFIG_X86_32) &&
 696			    tbl64[i].table > U32_MAX) {
 697				pr_cont("\n");
 698				pr_err("Table located above 4GB, disabling EFI.\n");
 699				return -EINVAL;
 700			}
 701		} else {
 702			guid = &tbl32[i].guid;
 703			table = tbl32[i].table;
 704		}
 705
 706		if (!match_config_table(guid, table, common_tables) && arch_tables)
 707			match_config_table(guid, table, arch_tables);
 708	}
 709	pr_cont("\n");
 710	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 711
 712	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 713		struct linux_efi_random_seed *seed;
 714		u32 size = 0;
 715
 716		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 717		if (seed != NULL) {
 718			size = min_t(u32, seed->size, SZ_1K); // sanity check
 719			early_memunmap(seed, sizeof(*seed));
 720		} else {
 721			pr_err("Could not map UEFI random seed!\n");
 722		}
 723		if (size > 0) {
 724			seed = early_memremap(efi_rng_seed,
 725					      sizeof(*seed) + size);
 726			if (seed != NULL) {
 727				add_bootloader_randomness(seed->bits, size);
 728				memzero_explicit(seed->bits, size);
 729				early_memunmap(seed, sizeof(*seed) + size);
 730			} else {
 731				pr_err("Could not map UEFI random seed!\n");
 732			}
 733		}
 734	}
 735
 736	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 737		efi_memattr_init();
 738
 739	efi_tpm_eventlog_init();
 740
 741	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 742		unsigned long prsv = mem_reserve;
 743
 744		while (prsv) {
 745			struct linux_efi_memreserve *rsv;
 746			u8 *p;
 747
 748			/*
 749			 * Just map a full page: that is what we will get
 750			 * anyway, and it permits us to map the entire entry
 751			 * before knowing its size.
 752			 */
 753			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 754					   PAGE_SIZE);
 755			if (p == NULL) {
 756				pr_err("Could not map UEFI memreserve entry!\n");
 757				return -ENOMEM;
 758			}
 759
 760			rsv = (void *)(p + prsv % PAGE_SIZE);
 761
 762			/* reserve the entry itself */
 763			memblock_reserve(prsv,
 764					 struct_size(rsv, entry, rsv->size));
 765
 766			for (i = 0; i < atomic_read(&rsv->count); i++) {
 767				memblock_reserve(rsv->entry[i].base,
 768						 rsv->entry[i].size);
 769			}
 770
 771			prsv = rsv->next;
 772			early_memunmap(p, PAGE_SIZE);
 773		}
 774	}
 775
 776	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 777		efi_rt_properties_table_t *tbl;
 778
 779		tbl = early_memremap(rt_prop, sizeof(*tbl));
 780		if (tbl) {
 781			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 782			early_memunmap(tbl, sizeof(*tbl));
 783		}
 784	}
 785
 786	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 787	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 788		struct linux_efi_initrd *tbl;
 789
 790		tbl = early_memremap(initrd, sizeof(*tbl));
 791		if (tbl) {
 792			phys_initrd_start = tbl->base;
 793			phys_initrd_size = tbl->size;
 794			early_memunmap(tbl, sizeof(*tbl));
 795		}
 796	}
 797
 798	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
 799	    efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
 800		struct efi_unaccepted_memory *unaccepted;
 801
 802		unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
 803		if (unaccepted) {
 804
 805			if (unaccepted->version == 1) {
 806				reserve_unaccepted(unaccepted);
 807			} else {
 808				efi.unaccepted = EFI_INVALID_TABLE_ADDR;
 809			}
 810
 811			early_memunmap(unaccepted, sizeof(*unaccepted));
 812		}
 813	}
 814
 815	return 0;
 816}
 817
 818int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
 819{
 820	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 821		pr_err("System table signature incorrect!\n");
 822		return -EINVAL;
 823	}
 824
 825	return 0;
 826}
 827
 828static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 829						size_t size)
 830{
 831	const efi_char16_t *ret;
 832
 833	ret = early_memremap_ro(fw_vendor, size);
 834	if (!ret)
 835		pr_err("Could not map the firmware vendor!\n");
 836	return ret;
 837}
 838
 839static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 840{
 841	early_memunmap((void *)fw_vendor, size);
 842}
 843
 844void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 845				     unsigned long fw_vendor)
 846{
 847	char vendor[100] = "unknown";
 848	const efi_char16_t *c16;
 849	size_t i;
 850	u16 rev;
 851
 852	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 853	if (c16) {
 854		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 855			vendor[i] = c16[i];
 856		vendor[i] = '\0';
 857
 858		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 859	}
 860
 861	rev = (u16)systab_hdr->revision;
 862	pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
 863
 864	rev %= 10;
 865	if (rev)
 866		pr_cont(".%u", rev);
 867
 868	pr_cont(" by %s\n", vendor);
 869
 870	if (IS_ENABLED(CONFIG_X86_64) &&
 871	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 872	    !strcmp(vendor, "Apple")) {
 873		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 874		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 875	}
 876}
 877
 878static __initdata char memory_type_name[][13] = {
 879	"Reserved",
 880	"Loader Code",
 881	"Loader Data",
 882	"Boot Code",
 883	"Boot Data",
 884	"Runtime Code",
 885	"Runtime Data",
 886	"Conventional",
 887	"Unusable",
 888	"ACPI Reclaim",
 889	"ACPI Mem NVS",
 890	"MMIO",
 891	"MMIO Port",
 892	"PAL Code",
 893	"Persistent",
 894	"Unaccepted",
 895};
 896
 897char * __init efi_md_typeattr_format(char *buf, size_t size,
 898				     const efi_memory_desc_t *md)
 899{
 900	char *pos;
 901	int type_len;
 902	u64 attr;
 903
 904	pos = buf;
 905	if (md->type >= ARRAY_SIZE(memory_type_name))
 906		type_len = snprintf(pos, size, "[type=%u", md->type);
 907	else
 908		type_len = snprintf(pos, size, "[%-*s",
 909				    (int)(sizeof(memory_type_name[0]) - 1),
 910				    memory_type_name[md->type]);
 911	if (type_len >= size)
 912		return buf;
 913
 914	pos += type_len;
 915	size -= type_len;
 916
 917	attr = md->attribute;
 918	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 919		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 920		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 921		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 922		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 923		snprintf(pos, size, "|attr=0x%016llx]",
 924			 (unsigned long long)attr);
 925	else
 926		snprintf(pos, size,
 927			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 928			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 929			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 930			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 931			 attr & EFI_MEMORY_SP			? "SP"  : "",
 932			 attr & EFI_MEMORY_NV			? "NV"  : "",
 933			 attr & EFI_MEMORY_XP			? "XP"  : "",
 934			 attr & EFI_MEMORY_RP			? "RP"  : "",
 935			 attr & EFI_MEMORY_WP			? "WP"  : "",
 936			 attr & EFI_MEMORY_RO			? "RO"  : "",
 937			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 938			 attr & EFI_MEMORY_WB			? "WB"  : "",
 939			 attr & EFI_MEMORY_WT			? "WT"  : "",
 940			 attr & EFI_MEMORY_WC			? "WC"  : "",
 941			 attr & EFI_MEMORY_UC			? "UC"  : "");
 942	return buf;
 943}
 944
 945/*
 946 * efi_mem_attributes - lookup memmap attributes for physical address
 947 * @phys_addr: the physical address to lookup
 948 *
 949 * Search in the EFI memory map for the region covering
 950 * @phys_addr. Returns the EFI memory attributes if the region
 951 * was found in the memory map, 0 otherwise.
 952 */
 953u64 efi_mem_attributes(unsigned long phys_addr)
 954{
 955	efi_memory_desc_t *md;
 956
 957	if (!efi_enabled(EFI_MEMMAP))
 958		return 0;
 959
 960	for_each_efi_memory_desc(md) {
 961		if ((md->phys_addr <= phys_addr) &&
 962		    (phys_addr < (md->phys_addr +
 963		    (md->num_pages << EFI_PAGE_SHIFT))))
 964			return md->attribute;
 965	}
 966	return 0;
 967}
 968
 969/*
 970 * efi_mem_type - lookup memmap type for physical address
 971 * @phys_addr: the physical address to lookup
 972 *
 973 * Search in the EFI memory map for the region covering @phys_addr.
 974 * Returns the EFI memory type if the region was found in the memory
 975 * map, -EINVAL otherwise.
 976 */
 977int efi_mem_type(unsigned long phys_addr)
 978{
 979	const efi_memory_desc_t *md;
 980
 981	if (!efi_enabled(EFI_MEMMAP))
 982		return -ENOTSUPP;
 983
 984	for_each_efi_memory_desc(md) {
 985		if ((md->phys_addr <= phys_addr) &&
 986		    (phys_addr < (md->phys_addr +
 987				  (md->num_pages << EFI_PAGE_SHIFT))))
 988			return md->type;
 989	}
 990	return -EINVAL;
 991}
 992
 993int efi_status_to_err(efi_status_t status)
 994{
 995	int err;
 996
 997	switch (status) {
 998	case EFI_SUCCESS:
 999		err = 0;
1000		break;
1001	case EFI_INVALID_PARAMETER:
1002		err = -EINVAL;
1003		break;
1004	case EFI_OUT_OF_RESOURCES:
1005		err = -ENOSPC;
1006		break;
1007	case EFI_DEVICE_ERROR:
1008		err = -EIO;
1009		break;
1010	case EFI_WRITE_PROTECTED:
1011		err = -EROFS;
1012		break;
1013	case EFI_SECURITY_VIOLATION:
1014		err = -EACCES;
1015		break;
1016	case EFI_NOT_FOUND:
1017		err = -ENOENT;
1018		break;
1019	case EFI_ABORTED:
1020		err = -EINTR;
1021		break;
1022	default:
1023		err = -EINVAL;
1024	}
1025
1026	return err;
1027}
1028EXPORT_SYMBOL_GPL(efi_status_to_err);
1029
1030static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
1031static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
1032
1033static int __init efi_memreserve_map_root(void)
1034{
1035	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
1036		return -ENODEV;
1037
1038	efi_memreserve_root = memremap(mem_reserve,
1039				       sizeof(*efi_memreserve_root),
1040				       MEMREMAP_WB);
1041	if (WARN_ON_ONCE(!efi_memreserve_root))
1042		return -ENOMEM;
1043	return 0;
1044}
1045
1046static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1047{
1048	struct resource *res, *parent;
1049	int ret;
1050
1051	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1052	if (!res)
1053		return -ENOMEM;
1054
1055	res->name	= "reserved";
1056	res->flags	= IORESOURCE_MEM;
1057	res->start	= addr;
1058	res->end	= addr + size - 1;
1059
1060	/* we expect a conflict with a 'System RAM' region */
1061	parent = request_resource_conflict(&iomem_resource, res);
1062	ret = parent ? request_resource(parent, res) : 0;
1063
1064	/*
1065	 * Given that efi_mem_reserve_iomem() can be called at any
1066	 * time, only call memblock_reserve() if the architecture
1067	 * keeps the infrastructure around.
1068	 */
1069	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1070		memblock_reserve(addr, size);
1071
1072	return ret;
1073}
1074
1075int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1076{
1077	struct linux_efi_memreserve *rsv;
1078	unsigned long prsv;
1079	int rc, index;
1080
1081	if (efi_memreserve_root == (void *)ULONG_MAX)
1082		return -ENODEV;
1083
1084	if (!efi_memreserve_root) {
1085		rc = efi_memreserve_map_root();
1086		if (rc)
1087			return rc;
1088	}
1089
1090	/* first try to find a slot in an existing linked list entry */
1091	for (prsv = efi_memreserve_root->next; prsv; ) {
1092		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1093		if (!rsv)
1094			return -ENOMEM;
1095		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1096		if (index < rsv->size) {
1097			rsv->entry[index].base = addr;
1098			rsv->entry[index].size = size;
1099
1100			memunmap(rsv);
1101			return efi_mem_reserve_iomem(addr, size);
1102		}
1103		prsv = rsv->next;
1104		memunmap(rsv);
1105	}
1106
1107	/* no slot found - allocate a new linked list entry */
1108	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1109	if (!rsv)
1110		return -ENOMEM;
1111
1112	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1113	if (rc) {
1114		free_page((unsigned long)rsv);
1115		return rc;
1116	}
1117
1118	/*
1119	 * The memremap() call above assumes that a linux_efi_memreserve entry
1120	 * never crosses a page boundary, so let's ensure that this remains true
1121	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1122	 * using SZ_4K explicitly in the size calculation below.
1123	 */
1124	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1125	atomic_set(&rsv->count, 1);
1126	rsv->entry[0].base = addr;
1127	rsv->entry[0].size = size;
1128
1129	spin_lock(&efi_mem_reserve_persistent_lock);
1130	rsv->next = efi_memreserve_root->next;
1131	efi_memreserve_root->next = __pa(rsv);
1132	spin_unlock(&efi_mem_reserve_persistent_lock);
1133
1134	return efi_mem_reserve_iomem(addr, size);
1135}
1136
1137static int __init efi_memreserve_root_init(void)
1138{
1139	if (efi_memreserve_root)
1140		return 0;
1141	if (efi_memreserve_map_root())
1142		efi_memreserve_root = (void *)ULONG_MAX;
1143	return 0;
1144}
1145early_initcall(efi_memreserve_root_init);
1146
1147#ifdef CONFIG_KEXEC
1148static int update_efi_random_seed(struct notifier_block *nb,
1149				  unsigned long code, void *unused)
1150{
1151	struct linux_efi_random_seed *seed;
1152	u32 size = 0;
1153
1154	if (!kexec_in_progress)
1155		return NOTIFY_DONE;
1156
1157	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1158	if (seed != NULL) {
1159		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1160		memunmap(seed);
1161	} else {
1162		pr_err("Could not map UEFI random seed!\n");
1163	}
1164	if (size > 0) {
1165		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1166				MEMREMAP_WB);
1167		if (seed != NULL) {
1168			seed->size = size;
1169			get_random_bytes(seed->bits, seed->size);
1170			memunmap(seed);
1171		} else {
1172			pr_err("Could not map UEFI random seed!\n");
1173		}
1174	}
1175	return NOTIFY_DONE;
1176}
1177
1178static struct notifier_block efi_random_seed_nb = {
1179	.notifier_call = update_efi_random_seed,
1180};
1181
1182static int __init register_update_efi_random_seed(void)
1183{
1184	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1185		return 0;
1186	return register_reboot_notifier(&efi_random_seed_nb);
1187}
1188late_initcall(register_update_efi_random_seed);
1189#endif