Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* binder_alloc.c
   3 *
   4 * Android IPC Subsystem
   5 *
   6 * Copyright (C) 2007-2017 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/list.h>
  12#include <linux/sched/mm.h>
  13#include <linux/module.h>
  14#include <linux/rtmutex.h>
  15#include <linux/rbtree.h>
  16#include <linux/seq_file.h>
  17#include <linux/vmalloc.h>
  18#include <linux/slab.h>
  19#include <linux/sched.h>
  20#include <linux/list_lru.h>
  21#include <linux/ratelimit.h>
  22#include <asm/cacheflush.h>
  23#include <linux/uaccess.h>
  24#include <linux/highmem.h>
  25#include <linux/sizes.h>
  26#include "binder_alloc.h"
  27#include "binder_trace.h"
  28
  29struct list_lru binder_freelist;
  30
  31static DEFINE_MUTEX(binder_alloc_mmap_lock);
  32
  33enum {
  34	BINDER_DEBUG_USER_ERROR             = 1U << 0,
  35	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
  36	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
  37	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
  38};
  39static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
  40
  41module_param_named(debug_mask, binder_alloc_debug_mask,
  42		   uint, 0644);
  43
  44#define binder_alloc_debug(mask, x...) \
  45	do { \
  46		if (binder_alloc_debug_mask & mask) \
  47			pr_info_ratelimited(x); \
  48	} while (0)
  49
  50static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
  51{
  52	return list_entry(buffer->entry.next, struct binder_buffer, entry);
  53}
  54
  55static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
  56{
  57	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
  58}
  59
  60static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
  61				       struct binder_buffer *buffer)
  62{
  63	if (list_is_last(&buffer->entry, &alloc->buffers))
  64		return alloc->buffer + alloc->buffer_size - buffer->user_data;
  65	return binder_buffer_next(buffer)->user_data - buffer->user_data;
  66}
  67
  68static void binder_insert_free_buffer(struct binder_alloc *alloc,
  69				      struct binder_buffer *new_buffer)
  70{
  71	struct rb_node **p = &alloc->free_buffers.rb_node;
  72	struct rb_node *parent = NULL;
  73	struct binder_buffer *buffer;
  74	size_t buffer_size;
  75	size_t new_buffer_size;
  76
  77	BUG_ON(!new_buffer->free);
  78
  79	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
  80
  81	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  82		     "%d: add free buffer, size %zd, at %pK\n",
  83		      alloc->pid, new_buffer_size, new_buffer);
  84
  85	while (*p) {
  86		parent = *p;
  87		buffer = rb_entry(parent, struct binder_buffer, rb_node);
  88		BUG_ON(!buffer->free);
  89
  90		buffer_size = binder_alloc_buffer_size(alloc, buffer);
  91
  92		if (new_buffer_size < buffer_size)
  93			p = &parent->rb_left;
  94		else
  95			p = &parent->rb_right;
  96	}
  97	rb_link_node(&new_buffer->rb_node, parent, p);
  98	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
  99}
 100
 101static void binder_insert_allocated_buffer_locked(
 102		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
 103{
 104	struct rb_node **p = &alloc->allocated_buffers.rb_node;
 105	struct rb_node *parent = NULL;
 106	struct binder_buffer *buffer;
 107
 108	BUG_ON(new_buffer->free);
 109
 110	while (*p) {
 111		parent = *p;
 112		buffer = rb_entry(parent, struct binder_buffer, rb_node);
 113		BUG_ON(buffer->free);
 114
 115		if (new_buffer->user_data < buffer->user_data)
 116			p = &parent->rb_left;
 117		else if (new_buffer->user_data > buffer->user_data)
 118			p = &parent->rb_right;
 119		else
 120			BUG();
 121	}
 122	rb_link_node(&new_buffer->rb_node, parent, p);
 123	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
 124}
 125
 126static struct binder_buffer *binder_alloc_prepare_to_free_locked(
 127		struct binder_alloc *alloc,
 128		unsigned long user_ptr)
 129{
 130	struct rb_node *n = alloc->allocated_buffers.rb_node;
 131	struct binder_buffer *buffer;
 132
 133	while (n) {
 134		buffer = rb_entry(n, struct binder_buffer, rb_node);
 135		BUG_ON(buffer->free);
 136
 137		if (user_ptr < buffer->user_data) {
 138			n = n->rb_left;
 139		} else if (user_ptr > buffer->user_data) {
 140			n = n->rb_right;
 141		} else {
 142			/*
 143			 * Guard against user threads attempting to
 144			 * free the buffer when in use by kernel or
 145			 * after it's already been freed.
 146			 */
 147			if (!buffer->allow_user_free)
 148				return ERR_PTR(-EPERM);
 149			buffer->allow_user_free = 0;
 150			return buffer;
 151		}
 152	}
 153	return NULL;
 154}
 155
 156/**
 157 * binder_alloc_prepare_to_free() - get buffer given user ptr
 158 * @alloc:	binder_alloc for this proc
 159 * @user_ptr:	User pointer to buffer data
 160 *
 161 * Validate userspace pointer to buffer data and return buffer corresponding to
 162 * that user pointer. Search the rb tree for buffer that matches user data
 163 * pointer.
 164 *
 165 * Return:	Pointer to buffer or NULL
 166 */
 167struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
 168						   unsigned long user_ptr)
 169{
 170	struct binder_buffer *buffer;
 171
 172	spin_lock(&alloc->lock);
 173	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
 174	spin_unlock(&alloc->lock);
 175	return buffer;
 176}
 177
 178static inline void
 179binder_set_installed_page(struct binder_lru_page *lru_page,
 180			  struct page *page)
 181{
 182	/* Pairs with acquire in binder_get_installed_page() */
 183	smp_store_release(&lru_page->page_ptr, page);
 184}
 185
 186static inline struct page *
 187binder_get_installed_page(struct binder_lru_page *lru_page)
 188{
 189	/* Pairs with release in binder_set_installed_page() */
 190	return smp_load_acquire(&lru_page->page_ptr);
 191}
 192
 193static void binder_lru_freelist_add(struct binder_alloc *alloc,
 194				    unsigned long start, unsigned long end)
 195{
 196	struct binder_lru_page *page;
 197	unsigned long page_addr;
 198
 199	trace_binder_update_page_range(alloc, false, start, end);
 200
 201	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 202		size_t index;
 203		int ret;
 204
 205		index = (page_addr - alloc->buffer) / PAGE_SIZE;
 206		page = &alloc->pages[index];
 207
 208		if (!binder_get_installed_page(page))
 209			continue;
 210
 211		trace_binder_free_lru_start(alloc, index);
 212
 213		ret = list_lru_add_obj(&binder_freelist, &page->lru);
 214		WARN_ON(!ret);
 215
 216		trace_binder_free_lru_end(alloc, index);
 217	}
 218}
 219
 220static int binder_install_single_page(struct binder_alloc *alloc,
 221				      struct binder_lru_page *lru_page,
 222				      unsigned long addr)
 223{
 224	struct page *page;
 225	int ret = 0;
 226
 227	if (!mmget_not_zero(alloc->mm))
 228		return -ESRCH;
 229
 230	/*
 231	 * Protected with mmap_sem in write mode as multiple tasks
 232	 * might race to install the same page.
 233	 */
 234	mmap_write_lock(alloc->mm);
 235	if (binder_get_installed_page(lru_page))
 236		goto out;
 237
 238	if (!alloc->vma) {
 239		pr_err("%d: %s failed, no vma\n", alloc->pid, __func__);
 240		ret = -ESRCH;
 241		goto out;
 242	}
 243
 244	page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
 245	if (!page) {
 246		pr_err("%d: failed to allocate page\n", alloc->pid);
 247		ret = -ENOMEM;
 248		goto out;
 249	}
 250
 251	ret = vm_insert_page(alloc->vma, addr, page);
 252	if (ret) {
 253		pr_err("%d: %s failed to insert page at offset %lx with %d\n",
 254		       alloc->pid, __func__, addr - alloc->buffer, ret);
 255		__free_page(page);
 256		ret = -ENOMEM;
 257		goto out;
 258	}
 259
 260	/* Mark page installation complete and safe to use */
 261	binder_set_installed_page(lru_page, page);
 262out:
 263	mmap_write_unlock(alloc->mm);
 264	mmput_async(alloc->mm);
 265	return ret;
 266}
 267
 268static int binder_install_buffer_pages(struct binder_alloc *alloc,
 269				       struct binder_buffer *buffer,
 270				       size_t size)
 271{
 272	struct binder_lru_page *page;
 273	unsigned long start, final;
 274	unsigned long page_addr;
 275
 276	start = buffer->user_data & PAGE_MASK;
 277	final = PAGE_ALIGN(buffer->user_data + size);
 278
 279	for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) {
 280		unsigned long index;
 281		int ret;
 282
 283		index = (page_addr - alloc->buffer) / PAGE_SIZE;
 284		page = &alloc->pages[index];
 285
 286		if (binder_get_installed_page(page))
 287			continue;
 288
 289		trace_binder_alloc_page_start(alloc, index);
 290
 291		ret = binder_install_single_page(alloc, page, page_addr);
 292		if (ret)
 293			return ret;
 294
 295		trace_binder_alloc_page_end(alloc, index);
 296	}
 297
 298	return 0;
 299}
 300
 301/* The range of pages should exclude those shared with other buffers */
 302static void binder_lru_freelist_del(struct binder_alloc *alloc,
 303				    unsigned long start, unsigned long end)
 304{
 305	struct binder_lru_page *page;
 306	unsigned long page_addr;
 307
 308	trace_binder_update_page_range(alloc, true, start, end);
 309
 310	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 311		unsigned long index;
 312		bool on_lru;
 313
 314		index = (page_addr - alloc->buffer) / PAGE_SIZE;
 315		page = &alloc->pages[index];
 316
 317		if (page->page_ptr) {
 318			trace_binder_alloc_lru_start(alloc, index);
 319
 320			on_lru = list_lru_del_obj(&binder_freelist, &page->lru);
 321			WARN_ON(!on_lru);
 322
 323			trace_binder_alloc_lru_end(alloc, index);
 324			continue;
 325		}
 326
 327		if (index + 1 > alloc->pages_high)
 328			alloc->pages_high = index + 1;
 329	}
 330}
 331
 332static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
 333		struct vm_area_struct *vma)
 334{
 335	/* pairs with smp_load_acquire in binder_alloc_get_vma() */
 336	smp_store_release(&alloc->vma, vma);
 337}
 338
 339static inline struct vm_area_struct *binder_alloc_get_vma(
 340		struct binder_alloc *alloc)
 341{
 342	/* pairs with smp_store_release in binder_alloc_set_vma() */
 343	return smp_load_acquire(&alloc->vma);
 344}
 345
 346static void debug_no_space_locked(struct binder_alloc *alloc)
 347{
 348	size_t largest_alloc_size = 0;
 349	struct binder_buffer *buffer;
 350	size_t allocated_buffers = 0;
 351	size_t largest_free_size = 0;
 352	size_t total_alloc_size = 0;
 353	size_t total_free_size = 0;
 354	size_t free_buffers = 0;
 355	size_t buffer_size;
 356	struct rb_node *n;
 357
 358	for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
 359		buffer = rb_entry(n, struct binder_buffer, rb_node);
 360		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 361		allocated_buffers++;
 362		total_alloc_size += buffer_size;
 363		if (buffer_size > largest_alloc_size)
 364			largest_alloc_size = buffer_size;
 365	}
 366
 367	for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) {
 368		buffer = rb_entry(n, struct binder_buffer, rb_node);
 369		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 370		free_buffers++;
 371		total_free_size += buffer_size;
 372		if (buffer_size > largest_free_size)
 373			largest_free_size = buffer_size;
 374	}
 375
 376	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 377			   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
 378			   total_alloc_size, allocated_buffers,
 379			   largest_alloc_size, total_free_size,
 380			   free_buffers, largest_free_size);
 381}
 382
 383static bool debug_low_async_space_locked(struct binder_alloc *alloc)
 384{
 385	/*
 386	 * Find the amount and size of buffers allocated by the current caller;
 387	 * The idea is that once we cross the threshold, whoever is responsible
 388	 * for the low async space is likely to try to send another async txn,
 389	 * and at some point we'll catch them in the act. This is more efficient
 390	 * than keeping a map per pid.
 391	 */
 392	struct binder_buffer *buffer;
 393	size_t total_alloc_size = 0;
 394	int pid = current->tgid;
 395	size_t num_buffers = 0;
 396	struct rb_node *n;
 397
 398	/*
 399	 * Only start detecting spammers once we have less than 20% of async
 400	 * space left (which is less than 10% of total buffer size).
 401	 */
 402	if (alloc->free_async_space >= alloc->buffer_size / 10) {
 403		alloc->oneway_spam_detected = false;
 404		return false;
 405	}
 406
 407	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
 408		 n = rb_next(n)) {
 409		buffer = rb_entry(n, struct binder_buffer, rb_node);
 410		if (buffer->pid != pid)
 411			continue;
 412		if (!buffer->async_transaction)
 413			continue;
 414		total_alloc_size += binder_alloc_buffer_size(alloc, buffer);
 415		num_buffers++;
 416	}
 417
 418	/*
 419	 * Warn if this pid has more than 50 transactions, or more than 50% of
 420	 * async space (which is 25% of total buffer size). Oneway spam is only
 421	 * detected when the threshold is exceeded.
 422	 */
 423	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
 424		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 425			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
 426			      alloc->pid, pid, num_buffers, total_alloc_size);
 427		if (!alloc->oneway_spam_detected) {
 428			alloc->oneway_spam_detected = true;
 429			return true;
 430		}
 431	}
 432	return false;
 433}
 434
 435/* Callers preallocate @new_buffer, it is freed by this function if unused */
 436static struct binder_buffer *binder_alloc_new_buf_locked(
 437				struct binder_alloc *alloc,
 438				struct binder_buffer *new_buffer,
 439				size_t size,
 440				int is_async)
 441{
 442	struct rb_node *n = alloc->free_buffers.rb_node;
 443	struct rb_node *best_fit = NULL;
 444	struct binder_buffer *buffer;
 445	unsigned long next_used_page;
 446	unsigned long curr_last_page;
 447	size_t buffer_size;
 448
 449	if (is_async && alloc->free_async_space < size) {
 450		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 451			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
 452			      alloc->pid, size);
 453		buffer = ERR_PTR(-ENOSPC);
 454		goto out;
 455	}
 456
 457	while (n) {
 458		buffer = rb_entry(n, struct binder_buffer, rb_node);
 459		BUG_ON(!buffer->free);
 460		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 461
 462		if (size < buffer_size) {
 463			best_fit = n;
 464			n = n->rb_left;
 465		} else if (size > buffer_size) {
 466			n = n->rb_right;
 467		} else {
 468			best_fit = n;
 469			break;
 470		}
 471	}
 472
 473	if (unlikely(!best_fit)) {
 474		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 475				   "%d: binder_alloc_buf size %zd failed, no address space\n",
 476				   alloc->pid, size);
 477		debug_no_space_locked(alloc);
 478		buffer = ERR_PTR(-ENOSPC);
 479		goto out;
 480	}
 481
 482	if (buffer_size != size) {
 483		/* Found an oversized buffer and needs to be split */
 484		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
 485		buffer_size = binder_alloc_buffer_size(alloc, buffer);
 486
 487		WARN_ON(n || buffer_size == size);
 488		new_buffer->user_data = buffer->user_data + size;
 489		list_add(&new_buffer->entry, &buffer->entry);
 490		new_buffer->free = 1;
 491		binder_insert_free_buffer(alloc, new_buffer);
 492		new_buffer = NULL;
 493	}
 494
 495	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 496		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
 497		      alloc->pid, size, buffer, buffer_size);
 498
 499	/*
 500	 * Now we remove the pages from the freelist. A clever calculation
 501	 * with buffer_size determines if the last page is shared with an
 502	 * adjacent in-use buffer. In such case, the page has been already
 503	 * removed from the freelist so we trim our range short.
 504	 */
 505	next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK;
 506	curr_last_page = PAGE_ALIGN(buffer->user_data + size);
 507	binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data),
 508				min(next_used_page, curr_last_page));
 509
 510	rb_erase(&buffer->rb_node, &alloc->free_buffers);
 511	buffer->free = 0;
 512	buffer->allow_user_free = 0;
 513	binder_insert_allocated_buffer_locked(alloc, buffer);
 514	buffer->async_transaction = is_async;
 515	buffer->oneway_spam_suspect = false;
 516	if (is_async) {
 517		alloc->free_async_space -= size;
 518		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 519			     "%d: binder_alloc_buf size %zd async free %zd\n",
 520			      alloc->pid, size, alloc->free_async_space);
 521		if (debug_low_async_space_locked(alloc))
 522			buffer->oneway_spam_suspect = true;
 523	}
 524
 525out:
 526	/* Discard possibly unused new_buffer */
 527	kfree(new_buffer);
 528	return buffer;
 529}
 530
 531/* Calculate the sanitized total size, returns 0 for invalid request */
 532static inline size_t sanitized_size(size_t data_size,
 533				    size_t offsets_size,
 534				    size_t extra_buffers_size)
 535{
 536	size_t total, tmp;
 537
 538	/* Align to pointer size and check for overflows */
 539	tmp = ALIGN(data_size, sizeof(void *)) +
 540		ALIGN(offsets_size, sizeof(void *));
 541	if (tmp < data_size || tmp < offsets_size)
 542		return 0;
 543	total = tmp + ALIGN(extra_buffers_size, sizeof(void *));
 544	if (total < tmp || total < extra_buffers_size)
 545		return 0;
 546
 547	/* Pad 0-sized buffers so they get a unique address */
 548	total = max(total, sizeof(void *));
 549
 550	return total;
 551}
 552
 553/**
 554 * binder_alloc_new_buf() - Allocate a new binder buffer
 555 * @alloc:              binder_alloc for this proc
 556 * @data_size:          size of user data buffer
 557 * @offsets_size:       user specified buffer offset
 558 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
 559 * @is_async:           buffer for async transaction
 560 *
 561 * Allocate a new buffer given the requested sizes. Returns
 562 * the kernel version of the buffer pointer. The size allocated
 563 * is the sum of the three given sizes (each rounded up to
 564 * pointer-sized boundary)
 565 *
 566 * Return:	The allocated buffer or %ERR_PTR(-errno) if error
 567 */
 568struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
 569					   size_t data_size,
 570					   size_t offsets_size,
 571					   size_t extra_buffers_size,
 572					   int is_async)
 573{
 574	struct binder_buffer *buffer, *next;
 575	size_t size;
 576	int ret;
 577
 578	/* Check binder_alloc is fully initialized */
 579	if (!binder_alloc_get_vma(alloc)) {
 580		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 581				   "%d: binder_alloc_buf, no vma\n",
 582				   alloc->pid);
 583		return ERR_PTR(-ESRCH);
 584	}
 585
 586	size = sanitized_size(data_size, offsets_size, extra_buffers_size);
 587	if (unlikely(!size)) {
 588		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 589				   "%d: got transaction with invalid size %zd-%zd-%zd\n",
 590				   alloc->pid, data_size, offsets_size,
 591				   extra_buffers_size);
 592		return ERR_PTR(-EINVAL);
 593	}
 594
 595	/* Preallocate the next buffer */
 596	next = kzalloc(sizeof(*next), GFP_KERNEL);
 597	if (!next)
 598		return ERR_PTR(-ENOMEM);
 599
 600	spin_lock(&alloc->lock);
 601	buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async);
 602	if (IS_ERR(buffer)) {
 603		spin_unlock(&alloc->lock);
 604		goto out;
 605	}
 606
 607	buffer->data_size = data_size;
 608	buffer->offsets_size = offsets_size;
 609	buffer->extra_buffers_size = extra_buffers_size;
 610	buffer->pid = current->tgid;
 611	spin_unlock(&alloc->lock);
 612
 613	ret = binder_install_buffer_pages(alloc, buffer, size);
 614	if (ret) {
 615		binder_alloc_free_buf(alloc, buffer);
 616		buffer = ERR_PTR(ret);
 617	}
 618out:
 619	return buffer;
 620}
 621
 622static unsigned long buffer_start_page(struct binder_buffer *buffer)
 623{
 624	return buffer->user_data & PAGE_MASK;
 625}
 626
 627static unsigned long prev_buffer_end_page(struct binder_buffer *buffer)
 628{
 629	return (buffer->user_data - 1) & PAGE_MASK;
 630}
 631
 632static void binder_delete_free_buffer(struct binder_alloc *alloc,
 633				      struct binder_buffer *buffer)
 634{
 635	struct binder_buffer *prev, *next;
 636
 637	if (PAGE_ALIGNED(buffer->user_data))
 638		goto skip_freelist;
 639
 640	BUG_ON(alloc->buffers.next == &buffer->entry);
 641	prev = binder_buffer_prev(buffer);
 642	BUG_ON(!prev->free);
 643	if (prev_buffer_end_page(prev) == buffer_start_page(buffer))
 644		goto skip_freelist;
 645
 646	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 647		next = binder_buffer_next(buffer);
 648		if (buffer_start_page(next) == buffer_start_page(buffer))
 649			goto skip_freelist;
 650	}
 651
 652	binder_lru_freelist_add(alloc, buffer_start_page(buffer),
 653				buffer_start_page(buffer) + PAGE_SIZE);
 654skip_freelist:
 655	list_del(&buffer->entry);
 656	kfree(buffer);
 657}
 658
 659static void binder_free_buf_locked(struct binder_alloc *alloc,
 660				   struct binder_buffer *buffer)
 661{
 662	size_t size, buffer_size;
 663
 664	buffer_size = binder_alloc_buffer_size(alloc, buffer);
 665
 666	size = ALIGN(buffer->data_size, sizeof(void *)) +
 667		ALIGN(buffer->offsets_size, sizeof(void *)) +
 668		ALIGN(buffer->extra_buffers_size, sizeof(void *));
 669
 670	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 671		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
 672		      alloc->pid, buffer, size, buffer_size);
 673
 674	BUG_ON(buffer->free);
 675	BUG_ON(size > buffer_size);
 676	BUG_ON(buffer->transaction != NULL);
 677	BUG_ON(buffer->user_data < alloc->buffer);
 678	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
 679
 680	if (buffer->async_transaction) {
 681		alloc->free_async_space += buffer_size;
 682		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 683			     "%d: binder_free_buf size %zd async free %zd\n",
 684			      alloc->pid, size, alloc->free_async_space);
 685	}
 686
 687	binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data),
 688				(buffer->user_data + buffer_size) & PAGE_MASK);
 689
 690	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
 691	buffer->free = 1;
 692	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 693		struct binder_buffer *next = binder_buffer_next(buffer);
 694
 695		if (next->free) {
 696			rb_erase(&next->rb_node, &alloc->free_buffers);
 697			binder_delete_free_buffer(alloc, next);
 698		}
 699	}
 700	if (alloc->buffers.next != &buffer->entry) {
 701		struct binder_buffer *prev = binder_buffer_prev(buffer);
 702
 703		if (prev->free) {
 704			binder_delete_free_buffer(alloc, buffer);
 705			rb_erase(&prev->rb_node, &alloc->free_buffers);
 706			buffer = prev;
 707		}
 708	}
 709	binder_insert_free_buffer(alloc, buffer);
 710}
 711
 712/**
 713 * binder_alloc_get_page() - get kernel pointer for given buffer offset
 714 * @alloc: binder_alloc for this proc
 715 * @buffer: binder buffer to be accessed
 716 * @buffer_offset: offset into @buffer data
 717 * @pgoffp: address to copy final page offset to
 718 *
 719 * Lookup the struct page corresponding to the address
 720 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
 721 * NULL, the byte-offset into the page is written there.
 722 *
 723 * The caller is responsible to ensure that the offset points
 724 * to a valid address within the @buffer and that @buffer is
 725 * not freeable by the user. Since it can't be freed, we are
 726 * guaranteed that the corresponding elements of @alloc->pages[]
 727 * cannot change.
 728 *
 729 * Return: struct page
 730 */
 731static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
 732					  struct binder_buffer *buffer,
 733					  binder_size_t buffer_offset,
 734					  pgoff_t *pgoffp)
 735{
 736	binder_size_t buffer_space_offset = buffer_offset +
 737		(buffer->user_data - alloc->buffer);
 738	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
 739	size_t index = buffer_space_offset >> PAGE_SHIFT;
 740	struct binder_lru_page *lru_page;
 741
 742	lru_page = &alloc->pages[index];
 743	*pgoffp = pgoff;
 744	return lru_page->page_ptr;
 745}
 746
 747/**
 748 * binder_alloc_clear_buf() - zero out buffer
 749 * @alloc: binder_alloc for this proc
 750 * @buffer: binder buffer to be cleared
 751 *
 752 * memset the given buffer to 0
 753 */
 754static void binder_alloc_clear_buf(struct binder_alloc *alloc,
 755				   struct binder_buffer *buffer)
 756{
 757	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
 758	binder_size_t buffer_offset = 0;
 759
 760	while (bytes) {
 761		unsigned long size;
 762		struct page *page;
 763		pgoff_t pgoff;
 764
 765		page = binder_alloc_get_page(alloc, buffer,
 766					     buffer_offset, &pgoff);
 767		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
 768		memset_page(page, pgoff, 0, size);
 769		bytes -= size;
 770		buffer_offset += size;
 771	}
 772}
 773
 774/**
 775 * binder_alloc_free_buf() - free a binder buffer
 776 * @alloc:	binder_alloc for this proc
 777 * @buffer:	kernel pointer to buffer
 778 *
 779 * Free the buffer allocated via binder_alloc_new_buf()
 780 */
 781void binder_alloc_free_buf(struct binder_alloc *alloc,
 782			    struct binder_buffer *buffer)
 783{
 784	/*
 785	 * We could eliminate the call to binder_alloc_clear_buf()
 786	 * from binder_alloc_deferred_release() by moving this to
 787	 * binder_free_buf_locked(). However, that could
 788	 * increase contention for the alloc->lock if clear_on_free
 789	 * is used frequently for large buffers. This lock is not
 790	 * needed for correctness here.
 791	 */
 792	if (buffer->clear_on_free) {
 793		binder_alloc_clear_buf(alloc, buffer);
 794		buffer->clear_on_free = false;
 795	}
 796	spin_lock(&alloc->lock);
 797	binder_free_buf_locked(alloc, buffer);
 798	spin_unlock(&alloc->lock);
 799}
 800
 801/**
 802 * binder_alloc_mmap_handler() - map virtual address space for proc
 803 * @alloc:	alloc structure for this proc
 804 * @vma:	vma passed to mmap()
 805 *
 806 * Called by binder_mmap() to initialize the space specified in
 807 * vma for allocating binder buffers
 808 *
 809 * Return:
 810 *      0 = success
 811 *      -EBUSY = address space already mapped
 812 *      -ENOMEM = failed to map memory to given address space
 813 */
 814int binder_alloc_mmap_handler(struct binder_alloc *alloc,
 815			      struct vm_area_struct *vma)
 816{
 817	struct binder_buffer *buffer;
 818	const char *failure_string;
 819	int ret, i;
 820
 821	if (unlikely(vma->vm_mm != alloc->mm)) {
 822		ret = -EINVAL;
 823		failure_string = "invalid vma->vm_mm";
 824		goto err_invalid_mm;
 825	}
 826
 827	mutex_lock(&binder_alloc_mmap_lock);
 828	if (alloc->buffer_size) {
 829		ret = -EBUSY;
 830		failure_string = "already mapped";
 831		goto err_already_mapped;
 832	}
 833	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
 834				   SZ_4M);
 835	mutex_unlock(&binder_alloc_mmap_lock);
 836
 837	alloc->buffer = vma->vm_start;
 838
 839	alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
 840			       sizeof(alloc->pages[0]),
 841			       GFP_KERNEL);
 842	if (alloc->pages == NULL) {
 843		ret = -ENOMEM;
 844		failure_string = "alloc page array";
 845		goto err_alloc_pages_failed;
 846	}
 847
 848	for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 849		alloc->pages[i].alloc = alloc;
 850		INIT_LIST_HEAD(&alloc->pages[i].lru);
 851	}
 852
 853	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
 854	if (!buffer) {
 855		ret = -ENOMEM;
 856		failure_string = "alloc buffer struct";
 857		goto err_alloc_buf_struct_failed;
 858	}
 859
 860	buffer->user_data = alloc->buffer;
 861	list_add(&buffer->entry, &alloc->buffers);
 862	buffer->free = 1;
 863	binder_insert_free_buffer(alloc, buffer);
 864	alloc->free_async_space = alloc->buffer_size / 2;
 865
 866	/* Signal binder_alloc is fully initialized */
 867	binder_alloc_set_vma(alloc, vma);
 868
 869	return 0;
 870
 871err_alloc_buf_struct_failed:
 872	kfree(alloc->pages);
 873	alloc->pages = NULL;
 874err_alloc_pages_failed:
 875	alloc->buffer = 0;
 876	mutex_lock(&binder_alloc_mmap_lock);
 877	alloc->buffer_size = 0;
 878err_already_mapped:
 879	mutex_unlock(&binder_alloc_mmap_lock);
 880err_invalid_mm:
 881	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 882			   "%s: %d %lx-%lx %s failed %d\n", __func__,
 883			   alloc->pid, vma->vm_start, vma->vm_end,
 884			   failure_string, ret);
 885	return ret;
 886}
 887
 888
 889void binder_alloc_deferred_release(struct binder_alloc *alloc)
 890{
 891	struct rb_node *n;
 892	int buffers, page_count;
 893	struct binder_buffer *buffer;
 894
 895	buffers = 0;
 896	spin_lock(&alloc->lock);
 897	BUG_ON(alloc->vma);
 898
 899	while ((n = rb_first(&alloc->allocated_buffers))) {
 900		buffer = rb_entry(n, struct binder_buffer, rb_node);
 901
 902		/* Transaction should already have been freed */
 903		BUG_ON(buffer->transaction);
 904
 905		if (buffer->clear_on_free) {
 906			binder_alloc_clear_buf(alloc, buffer);
 907			buffer->clear_on_free = false;
 908		}
 909		binder_free_buf_locked(alloc, buffer);
 910		buffers++;
 911	}
 912
 913	while (!list_empty(&alloc->buffers)) {
 914		buffer = list_first_entry(&alloc->buffers,
 915					  struct binder_buffer, entry);
 916		WARN_ON(!buffer->free);
 917
 918		list_del(&buffer->entry);
 919		WARN_ON_ONCE(!list_empty(&alloc->buffers));
 920		kfree(buffer);
 921	}
 922
 923	page_count = 0;
 924	if (alloc->pages) {
 925		int i;
 926
 927		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 928			unsigned long page_addr;
 929			bool on_lru;
 930
 931			if (!alloc->pages[i].page_ptr)
 932				continue;
 933
 934			on_lru = list_lru_del_obj(&binder_freelist,
 935						  &alloc->pages[i].lru);
 936			page_addr = alloc->buffer + i * PAGE_SIZE;
 937			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 938				     "%s: %d: page %d %s\n",
 939				     __func__, alloc->pid, i,
 940				     on_lru ? "on lru" : "active");
 941			__free_page(alloc->pages[i].page_ptr);
 942			page_count++;
 943		}
 944		kfree(alloc->pages);
 945	}
 946	spin_unlock(&alloc->lock);
 947	if (alloc->mm)
 948		mmdrop(alloc->mm);
 949
 950	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
 951		     "%s: %d buffers %d, pages %d\n",
 952		     __func__, alloc->pid, buffers, page_count);
 953}
 954
 955/**
 956 * binder_alloc_print_allocated() - print buffer info
 957 * @m:     seq_file for output via seq_printf()
 958 * @alloc: binder_alloc for this proc
 959 *
 960 * Prints information about every buffer associated with
 961 * the binder_alloc state to the given seq_file
 962 */
 963void binder_alloc_print_allocated(struct seq_file *m,
 964				  struct binder_alloc *alloc)
 965{
 966	struct binder_buffer *buffer;
 967	struct rb_node *n;
 968
 969	spin_lock(&alloc->lock);
 970	for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
 971		buffer = rb_entry(n, struct binder_buffer, rb_node);
 972		seq_printf(m, "  buffer %d: %lx size %zd:%zd:%zd %s\n",
 973			   buffer->debug_id,
 974			   buffer->user_data - alloc->buffer,
 975			   buffer->data_size, buffer->offsets_size,
 976			   buffer->extra_buffers_size,
 977			   buffer->transaction ? "active" : "delivered");
 978	}
 979	spin_unlock(&alloc->lock);
 980}
 981
 982/**
 983 * binder_alloc_print_pages() - print page usage
 984 * @m:     seq_file for output via seq_printf()
 985 * @alloc: binder_alloc for this proc
 986 */
 987void binder_alloc_print_pages(struct seq_file *m,
 988			      struct binder_alloc *alloc)
 989{
 990	struct binder_lru_page *page;
 991	int i;
 992	int active = 0;
 993	int lru = 0;
 994	int free = 0;
 995
 996	spin_lock(&alloc->lock);
 997	/*
 998	 * Make sure the binder_alloc is fully initialized, otherwise we might
 999	 * read inconsistent state.
1000	 */
1001	if (binder_alloc_get_vma(alloc) != NULL) {
1002		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
1003			page = &alloc->pages[i];
1004			if (!page->page_ptr)
1005				free++;
1006			else if (list_empty(&page->lru))
1007				active++;
1008			else
1009				lru++;
1010		}
1011	}
1012	spin_unlock(&alloc->lock);
1013	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
1014	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
1015}
1016
1017/**
1018 * binder_alloc_get_allocated_count() - return count of buffers
1019 * @alloc: binder_alloc for this proc
1020 *
1021 * Return: count of allocated buffers
1022 */
1023int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
1024{
1025	struct rb_node *n;
1026	int count = 0;
1027
1028	spin_lock(&alloc->lock);
1029	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
1030		count++;
1031	spin_unlock(&alloc->lock);
1032	return count;
1033}
1034
1035
1036/**
1037 * binder_alloc_vma_close() - invalidate address space
1038 * @alloc: binder_alloc for this proc
1039 *
1040 * Called from binder_vma_close() when releasing address space.
1041 * Clears alloc->vma to prevent new incoming transactions from
1042 * allocating more buffers.
1043 */
1044void binder_alloc_vma_close(struct binder_alloc *alloc)
1045{
1046	binder_alloc_set_vma(alloc, NULL);
1047}
1048
1049/**
1050 * binder_alloc_free_page() - shrinker callback to free pages
1051 * @item:   item to free
1052 * @lock:   lock protecting the item
1053 * @cb_arg: callback argument
1054 *
1055 * Called from list_lru_walk() in binder_shrink_scan() to free
1056 * up pages when the system is under memory pressure.
1057 */
1058enum lru_status binder_alloc_free_page(struct list_head *item,
1059				       struct list_lru_one *lru,
1060				       spinlock_t *lock,
1061				       void *cb_arg)
1062	__must_hold(lock)
1063{
1064	struct binder_lru_page *page = container_of(item, typeof(*page), lru);
1065	struct binder_alloc *alloc = page->alloc;
1066	struct mm_struct *mm = alloc->mm;
1067	struct vm_area_struct *vma;
1068	struct page *page_to_free;
1069	unsigned long page_addr;
1070	size_t index;
1071
1072	if (!mmget_not_zero(mm))
1073		goto err_mmget;
1074	if (!mmap_read_trylock(mm))
1075		goto err_mmap_read_lock_failed;
1076	if (!spin_trylock(&alloc->lock))
1077		goto err_get_alloc_lock_failed;
1078	if (!page->page_ptr)
1079		goto err_page_already_freed;
1080
1081	index = page - alloc->pages;
1082	page_addr = alloc->buffer + index * PAGE_SIZE;
1083
1084	vma = vma_lookup(mm, page_addr);
1085	if (vma && vma != binder_alloc_get_vma(alloc))
1086		goto err_invalid_vma;
1087
1088	trace_binder_unmap_kernel_start(alloc, index);
1089
1090	page_to_free = page->page_ptr;
1091	page->page_ptr = NULL;
1092
1093	trace_binder_unmap_kernel_end(alloc, index);
1094
1095	list_lru_isolate(lru, item);
1096	spin_unlock(&alloc->lock);
1097	spin_unlock(lock);
1098
1099	if (vma) {
1100		trace_binder_unmap_user_start(alloc, index);
1101
1102		zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL);
1103
1104		trace_binder_unmap_user_end(alloc, index);
1105	}
1106
1107	mmap_read_unlock(mm);
1108	mmput_async(mm);
1109	__free_page(page_to_free);
1110
1111	spin_lock(lock);
1112	return LRU_REMOVED_RETRY;
1113
1114err_invalid_vma:
1115err_page_already_freed:
1116	spin_unlock(&alloc->lock);
1117err_get_alloc_lock_failed:
1118	mmap_read_unlock(mm);
1119err_mmap_read_lock_failed:
1120	mmput_async(mm);
1121err_mmget:
1122	return LRU_SKIP;
1123}
1124
1125static unsigned long
1126binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1127{
1128	return list_lru_count(&binder_freelist);
1129}
1130
1131static unsigned long
1132binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1133{
1134	return list_lru_walk(&binder_freelist, binder_alloc_free_page,
1135			    NULL, sc->nr_to_scan);
1136}
1137
1138static struct shrinker *binder_shrinker;
1139
1140/**
1141 * binder_alloc_init() - called by binder_open() for per-proc initialization
1142 * @alloc: binder_alloc for this proc
1143 *
1144 * Called from binder_open() to initialize binder_alloc fields for
1145 * new binder proc
1146 */
1147void binder_alloc_init(struct binder_alloc *alloc)
1148{
1149	alloc->pid = current->group_leader->pid;
1150	alloc->mm = current->mm;
1151	mmgrab(alloc->mm);
1152	spin_lock_init(&alloc->lock);
1153	INIT_LIST_HEAD(&alloc->buffers);
1154}
1155
1156int binder_alloc_shrinker_init(void)
1157{
1158	int ret;
1159
1160	ret = list_lru_init(&binder_freelist);
1161	if (ret)
1162		return ret;
1163
1164	binder_shrinker = shrinker_alloc(0, "android-binder");
1165	if (!binder_shrinker) {
1166		list_lru_destroy(&binder_freelist);
1167		return -ENOMEM;
1168	}
1169
1170	binder_shrinker->count_objects = binder_shrink_count;
1171	binder_shrinker->scan_objects = binder_shrink_scan;
1172
1173	shrinker_register(binder_shrinker);
1174
1175	return 0;
1176}
1177
1178void binder_alloc_shrinker_exit(void)
1179{
1180	shrinker_free(binder_shrinker);
1181	list_lru_destroy(&binder_freelist);
1182}
1183
1184/**
1185 * check_buffer() - verify that buffer/offset is safe to access
1186 * @alloc: binder_alloc for this proc
1187 * @buffer: binder buffer to be accessed
1188 * @offset: offset into @buffer data
1189 * @bytes: bytes to access from offset
1190 *
1191 * Check that the @offset/@bytes are within the size of the given
1192 * @buffer and that the buffer is currently active and not freeable.
1193 * Offsets must also be multiples of sizeof(u32). The kernel is
1194 * allowed to touch the buffer in two cases:
1195 *
1196 * 1) when the buffer is being created:
1197 *     (buffer->free == 0 && buffer->allow_user_free == 0)
1198 * 2) when the buffer is being torn down:
1199 *     (buffer->free == 0 && buffer->transaction == NULL).
1200 *
1201 * Return: true if the buffer is safe to access
1202 */
1203static inline bool check_buffer(struct binder_alloc *alloc,
1204				struct binder_buffer *buffer,
1205				binder_size_t offset, size_t bytes)
1206{
1207	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1208
1209	return buffer_size >= bytes &&
1210		offset <= buffer_size - bytes &&
1211		IS_ALIGNED(offset, sizeof(u32)) &&
1212		!buffer->free &&
1213		(!buffer->allow_user_free || !buffer->transaction);
1214}
1215
1216/**
1217 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1218 * @alloc: binder_alloc for this proc
1219 * @buffer: binder buffer to be accessed
1220 * @buffer_offset: offset into @buffer data
1221 * @from: userspace pointer to source buffer
1222 * @bytes: bytes to copy
1223 *
1224 * Copy bytes from source userspace to target buffer.
1225 *
1226 * Return: bytes remaining to be copied
1227 */
1228unsigned long
1229binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1230				 struct binder_buffer *buffer,
1231				 binder_size_t buffer_offset,
1232				 const void __user *from,
1233				 size_t bytes)
1234{
1235	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1236		return bytes;
1237
1238	while (bytes) {
1239		unsigned long size;
1240		unsigned long ret;
1241		struct page *page;
1242		pgoff_t pgoff;
1243		void *kptr;
1244
1245		page = binder_alloc_get_page(alloc, buffer,
1246					     buffer_offset, &pgoff);
1247		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1248		kptr = kmap_local_page(page) + pgoff;
1249		ret = copy_from_user(kptr, from, size);
1250		kunmap_local(kptr);
1251		if (ret)
1252			return bytes - size + ret;
1253		bytes -= size;
1254		from += size;
1255		buffer_offset += size;
1256	}
1257	return 0;
1258}
1259
1260static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1261				       bool to_buffer,
1262				       struct binder_buffer *buffer,
1263				       binder_size_t buffer_offset,
1264				       void *ptr,
1265				       size_t bytes)
1266{
1267	/* All copies must be 32-bit aligned and 32-bit size */
1268	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1269		return -EINVAL;
1270
1271	while (bytes) {
1272		unsigned long size;
1273		struct page *page;
1274		pgoff_t pgoff;
1275
1276		page = binder_alloc_get_page(alloc, buffer,
1277					     buffer_offset, &pgoff);
1278		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1279		if (to_buffer)
1280			memcpy_to_page(page, pgoff, ptr, size);
1281		else
1282			memcpy_from_page(ptr, page, pgoff, size);
1283		bytes -= size;
1284		pgoff = 0;
1285		ptr = ptr + size;
1286		buffer_offset += size;
1287	}
1288	return 0;
1289}
1290
1291int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1292				struct binder_buffer *buffer,
1293				binder_size_t buffer_offset,
1294				void *src,
1295				size_t bytes)
1296{
1297	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1298					   src, bytes);
1299}
1300
1301int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1302				  void *dest,
1303				  struct binder_buffer *buffer,
1304				  binder_size_t buffer_offset,
1305				  size_t bytes)
1306{
1307	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1308					   dest, bytes);
1309}