Linux Audio

Check our new training course

Loading...
v3.1
  1#include <linux/compiler.h>
  2#include <linux/mm.h>
  3#include <linux/signal.h>
  4#include <linux/smp.h>
  5
  6#include <asm/asm.h>
  7#include <asm/bootinfo.h>
  8#include <asm/byteorder.h>
  9#include <asm/cpu.h>
 10#include <asm/inst.h>
 11#include <asm/processor.h>
 12#include <asm/uaccess.h>
 13#include <asm/branch.h>
 14#include <asm/mipsregs.h>
 15#include <asm/system.h>
 16#include <asm/cacheflush.h>
 17
 18#include <asm/fpu_emulator.h>
 
 
 
 19
 20#include "ieee754.h"
 21
 22/* Strap kernel emulator for full MIPS IV emulation */
 23
 24#ifdef __mips
 25#undef __mips
 26#endif
 27#define __mips 4
 28
 29/*
 30 * Emulate the arbritrary instruction ir at xcp->cp0_epc.  Required when
 31 * we have to emulate the instruction in a COP1 branch delay slot.  Do
 32 * not change cp0_epc due to the instruction
 33 *
 34 * According to the spec:
 35 * 1) it shouldn't be a branch :-)
 36 * 2) it can be a COP instruction :-(
 37 * 3) if we are tring to run a protected memory space we must take
 38 *    special care on memory access instructions :-(
 39 */
 40
 41/*
 42 * "Trampoline" return routine to catch exception following
 43 *  execution of delay-slot instruction execution.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44 */
 45
 46struct emuframe {
 47	mips_instruction	emul;
 48	mips_instruction	badinst;
 49	mips_instruction	cookie;
 50	unsigned long		epc;
 51};
 52
 53int mips_dsemul(struct pt_regs *regs, mips_instruction ir, unsigned long cpc)
 
 
 54{
 55	extern asmlinkage void handle_dsemulret(void);
 56	struct emuframe __user *fr;
 57	int err;
 58
 59	if (ir == 0) {		/* a nop is easy */
 60		regs->cp0_epc = cpc;
 61		regs->cp0_cause &= ~CAUSEF_BD;
 62		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 63	}
 64#ifdef DSEMUL_TRACE
 65	printk("dsemul %lx %lx\n", regs->cp0_epc, cpc);
 66
 67#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68
 69	/*
 70	 * The strategy is to push the instruction onto the user stack
 71	 * and put a trap after it which we can catch and jump to
 72	 * the required address any alternative apart from full
 73	 * instruction emulation!!.
 74	 *
 75	 * Algorithmics used a system call instruction, and
 76	 * borrowed that vector.  MIPS/Linux version is a bit
 77	 * more heavyweight in the interests of portability and
 78	 * multiprocessor support.  For Linux we generate a
 79	 * an unaligned access and force an address error exception.
 80	 *
 81	 * For embedded systems (stand-alone) we prefer to use a
 82	 * non-existing CP1 instruction. This prevents us from emulating
 83	 * branches, but gives us a cleaner interface to the exception
 84	 * handler (single entry point).
 85	 */
 86
 87	/* Ensure that the two instructions are in the same cache line */
 88	fr = (struct emuframe __user *)
 89		((regs->regs[29] - sizeof(struct emuframe)) & ~0x7);
 
 
 
 90
 91	/* Verify that the stack pointer is not competely insane */
 92	if (unlikely(!access_ok(VERIFY_WRITE, fr, sizeof(struct emuframe))))
 93		return SIGBUS;
 94
 95	err = __put_user(ir, &fr->emul);
 96	err |= __put_user((mips_instruction)BREAK_MATH, &fr->badinst);
 97	err |= __put_user((mips_instruction)BD_COOKIE, &fr->cookie);
 98	err |= __put_user(cpc, &fr->epc);
 99
100	if (unlikely(err)) {
101		MIPS_FPU_EMU_INC_STATS(errors);
102		return SIGBUS;
103	}
 
104
105	regs->cp0_epc = (unsigned long) &fr->emul;
 
 
 
 
 
106
107	flush_cache_sigtramp((unsigned long)&fr->badinst);
 
 
 
108
109	return SIGILL;		/* force out of emulation loop */
110}
111
112int do_dsemulret(struct pt_regs *xcp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113{
114	struct emuframe __user *fr;
115	unsigned long epc;
116	u32 insn, cookie;
117	int err = 0;
118
119	fr = (struct emuframe __user *)
120		(xcp->cp0_epc - sizeof(mips_instruction));
 
 
 
 
 
 
 
121
122	/*
123	 * If we can't even access the area, something is very wrong, but we'll
124	 * leave that to the default handling
 
 
 
125	 */
126	if (!access_ok(VERIFY_READ, fr, sizeof(struct emuframe)))
127		return 0;
 
 
 
 
 
 
 
128
129	/*
130	 * Do some sanity checking on the stackframe:
131	 *
132	 *  - Is the instruction pointed to by the EPC an BREAK_MATH?
133	 *  - Is the following memory word the BD_COOKIE?
134	 */
135	err = __get_user(insn, &fr->badinst);
136	err |= __get_user(cookie, &fr->cookie);
137
138	if (unlikely(err || (insn != BREAK_MATH) || (cookie != BD_COOKIE))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139		MIPS_FPU_EMU_INC_STATS(errors);
140		return 0;
 
141	}
142
143	/*
144	 * At this point, we are satisfied that it's a BD emulation trap.  Yes,
145	 * a user might have deliberately put two malformed and useless
146	 * instructions in a row in his program, in which case he's in for a
147	 * nasty surprise - the next instruction will be treated as a
148	 * continuation address!  Alas, this seems to be the only way that we
149	 * can handle signals, recursion, and longjmps() in the context of
150	 * emulating the branch delay instruction.
151	 */
152
153#ifdef DSEMUL_TRACE
154	printk("dsemulret\n");
155#endif
156	if (__get_user(epc, &fr->epc)) {		/* Saved EPC */
157		/* This is not a good situation to be in */
158		force_sig(SIGBUS, current);
159
160		return 0;
 
 
 
 
 
161	}
162
163	/* Set EPC to return to post-branch instruction */
164	xcp->cp0_epc = epc;
165
166	return 1;
 
167}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/err.h>
  3#include <linux/slab.h>
  4#include <linux/mm_types.h>
  5#include <linux/sched/task.h>
  6
 
 
 
 
 
 
  7#include <asm/branch.h>
 
 
  8#include <asm/cacheflush.h>
 
  9#include <asm/fpu_emulator.h>
 10#include <asm/inst.h>
 11#include <asm/mipsregs.h>
 12#include <linux/uaccess.h>
 13
 14/**
 15 * struct emuframe - The 'emulation' frame structure
 16 * @emul:	The instruction to 'emulate'.
 17 * @badinst:	A break instruction to cause a return to the kernel.
 18 *
 19 * This structure defines the frames placed within the delay slot emulation
 20 * page in response to a call to mips_dsemul(). Each thread may be allocated
 21 * only one frame at any given time. The kernel stores within it the
 22 * instruction to be 'emulated' followed by a break instruction, then
 23 * executes the frame in user mode. The break causes a trap to the kernel
 24 * which leads to do_dsemulret() being called unless the instruction in
 25 * @emul causes a trap itself, is a branch, or a signal is delivered to
 26 * the thread. In these cases the allocated frame will either be reused by
 27 * a subsequent delay slot 'emulation', or be freed during signal delivery or
 28 * upon thread exit.
 29 *
 30 * This approach is used because:
 31 *
 32 * - Actually emulating all instructions isn't feasible. We would need to
 33 *   be able to handle instructions from all revisions of the MIPS ISA,
 34 *   all ASEs & all vendor instruction set extensions. This would be a
 35 *   whole lot of work & continual maintenance burden as new instructions
 36 *   are introduced, and in the case of some vendor extensions may not
 37 *   even be possible. Thus we need to take the approach of actually
 38 *   executing the instruction.
 39 *
 40 * - We must execute the instruction within user context. If we were to
 41 *   execute the instruction in kernel mode then it would have access to
 42 *   kernel resources without very careful checks, leaving us with a
 43 *   high potential for security or stability issues to arise.
 44 *
 45 * - We used to place the frame on the users stack, but this requires
 46 *   that the stack be executable. This is bad for security so the
 47 *   per-process page is now used instead.
 48 *
 49 * - The instruction in @emul may be something entirely invalid for a
 50 *   delay slot. The user may (intentionally or otherwise) place a branch
 51 *   in a delay slot, or a kernel mode instruction, or something else
 52 *   which generates an exception. Thus we can't rely upon the break in
 53 *   @badinst always being hit. For this reason we track the index of the
 54 *   frame allocated to each thread, allowing us to clean it up at later
 55 *   points such as signal delivery or thread exit.
 56 *
 57 * - The user may generate a fake struct emuframe if they wish, invoking
 58 *   the BRK_MEMU break instruction themselves. We must therefore not
 59 *   trust that BRK_MEMU means there's actually a valid frame allocated
 60 *   to the thread, and must not allow the user to do anything they
 61 *   couldn't already.
 62 */
 
 63struct emuframe {
 64	mips_instruction	emul;
 65	mips_instruction	badinst;
 
 
 66};
 67
 68static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe);
 69
 70static inline __user struct emuframe *dsemul_page(void)
 71{
 72	return (__user struct emuframe *)STACK_TOP;
 73}
 
 74
 75static int alloc_emuframe(void)
 76{
 77	mm_context_t *mm_ctx = &current->mm->context;
 78	int idx;
 79
 80retry:
 81	spin_lock(&mm_ctx->bd_emupage_lock);
 82
 83	/* Ensure we have an allocation bitmap */
 84	if (!mm_ctx->bd_emupage_allocmap) {
 85		mm_ctx->bd_emupage_allocmap = bitmap_zalloc(emupage_frame_count,
 86							    GFP_ATOMIC);
 87		if (!mm_ctx->bd_emupage_allocmap) {
 88			idx = BD_EMUFRAME_NONE;
 89			goto out_unlock;
 90		}
 91	}
 
 
 92
 93	/* Attempt to allocate a single bit/frame */
 94	idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap,
 95				      emupage_frame_count, 0);
 96	if (idx < 0) {
 97		/*
 98		 * Failed to allocate a frame. We'll wait until one becomes
 99		 * available. We unlock the page so that other threads actually
100		 * get the opportunity to free their frames, which means
101		 * technically the result of bitmap_full may be incorrect.
102		 * However the worst case is that we repeat all this and end up
103		 * back here again.
104		 */
105		spin_unlock(&mm_ctx->bd_emupage_lock);
106		if (!wait_event_killable(mm_ctx->bd_emupage_queue,
107			!bitmap_full(mm_ctx->bd_emupage_allocmap,
108				     emupage_frame_count)))
109			goto retry;
110
111		/* Received a fatal signal - just give in */
112		return BD_EMUFRAME_NONE;
113	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
115	/* Success! */
116	pr_debug("allocate emuframe %d to %d\n", idx, current->pid);
117out_unlock:
118	spin_unlock(&mm_ctx->bd_emupage_lock);
119	return idx;
120}
121
122static void free_emuframe(int idx, struct mm_struct *mm)
123{
124	mm_context_t *mm_ctx = &mm->context;
125
126	spin_lock(&mm_ctx->bd_emupage_lock);
 
 
 
127
128	pr_debug("free emuframe %d from %d\n", idx, current->pid);
129	bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1);
130
131	/* If some thread is waiting for a frame, now's its chance */
132	wake_up(&mm_ctx->bd_emupage_queue);
133
134	spin_unlock(&mm_ctx->bd_emupage_lock);
135}
136
137static bool within_emuframe(struct pt_regs *regs)
138{
139	unsigned long base = (unsigned long)dsemul_page();
140
141	if (regs->cp0_epc < base)
142		return false;
143	if (regs->cp0_epc >= (base + PAGE_SIZE))
144		return false;
145
146	return true;
147}
148
149bool dsemul_thread_cleanup(struct task_struct *tsk)
150{
151	int fr_idx;
152
153	/* Clear any allocated frame, retrieving its index */
154	fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE);
155
156	/* If no frame was allocated, we're done */
157	if (fr_idx == BD_EMUFRAME_NONE)
158		return false;
159
160	task_lock(tsk);
161
162	/* Free the frame that this thread had allocated */
163	if (tsk->mm)
164		free_emuframe(fr_idx, tsk->mm);
165
166	task_unlock(tsk);
167	return true;
168}
169
170bool dsemul_thread_rollback(struct pt_regs *regs)
171{
172	struct emuframe __user *fr;
173	int fr_idx;
 
 
174
175	/* Do nothing if we're not executing from a frame */
176	if (!within_emuframe(regs))
177		return false;
178
179	/* Find the frame being executed */
180	fr_idx = atomic_read(&current->thread.bd_emu_frame);
181	if (fr_idx == BD_EMUFRAME_NONE)
182		return false;
183	fr = &dsemul_page()[fr_idx];
184
185	/*
186	 * If the PC is at the emul instruction, roll back to the branch. If
187	 * PC is at the badinst (break) instruction, we've already emulated the
188	 * instruction so progress to the continue PC. If it's anything else
189	 * then something is amiss & the user has branched into some other area
190	 * of the emupage - we'll free the allocated frame anyway.
191	 */
192	if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul)
193		regs->cp0_epc = current->thread.bd_emu_branch_pc;
194	else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst)
195		regs->cp0_epc = current->thread.bd_emu_cont_pc;
196
197	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
198	free_emuframe(fr_idx, current->mm);
199	return true;
200}
201
202void dsemul_mm_cleanup(struct mm_struct *mm)
203{
204	mm_context_t *mm_ctx = &mm->context;
205
206	bitmap_free(mm_ctx->bd_emupage_allocmap);
207}
 
 
208
209int mips_dsemul(struct pt_regs *regs, mips_instruction ir,
210		unsigned long branch_pc, unsigned long cont_pc)
211{
212	int isa16 = get_isa16_mode(regs->cp0_epc);
213	mips_instruction break_math;
214	unsigned long fr_uaddr;
215	struct emuframe fr;
216	int fr_idx, ret;
217
218	/* NOP is easy */
219	if (ir == 0)
220		return -1;
221
222	/* microMIPS instructions */
223	if (isa16) {
224		union mips_instruction insn = { .word = ir };
225
226		/* NOP16 aka MOVE16 $0, $0 */
227		if ((ir >> 16) == MM_NOP16)
228			return -1;
229
230		/* ADDIUPC */
231		if (insn.mm_a_format.opcode == mm_addiupc_op) {
232			unsigned int rs;
233			s32 v;
234
235			rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2);
236			v = regs->cp0_epc & ~3;
237			v += insn.mm_a_format.simmediate << 2;
238			regs->regs[rs] = (long)v;
239			return -1;
240		}
241	}
242
243	pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc);
244
245	/* Allocate a frame if we don't already have one */
246	fr_idx = atomic_read(&current->thread.bd_emu_frame);
247	if (fr_idx == BD_EMUFRAME_NONE)
248		fr_idx = alloc_emuframe();
249	if (fr_idx == BD_EMUFRAME_NONE)
250		return SIGBUS;
251
252	/* Retrieve the appropriately encoded break instruction */
253	break_math = BREAK_MATH(isa16);
254
255	/* Write the instructions to the frame */
256	if (isa16) {
257		union mips_instruction _emul = {
258			.halfword = { ir >> 16, ir }
259		};
260		union mips_instruction _badinst = {
261			.halfword = { break_math >> 16, break_math }
262		};
263
264		fr.emul = _emul.word;
265		fr.badinst = _badinst.word;
266	} else {
267		fr.emul = ir;
268		fr.badinst = break_math;
269	}
270
271	/* Write the frame to user memory */
272	fr_uaddr = (unsigned long)&dsemul_page()[fr_idx];
273	ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr),
274				FOLL_FORCE | FOLL_WRITE);
275	if (unlikely(ret != sizeof(fr))) {
276		MIPS_FPU_EMU_INC_STATS(errors);
277		free_emuframe(fr_idx, current->mm);
278		return SIGBUS;
279	}
280
281	/* Record the PC of the branch, PC to continue from & frame index */
282	current->thread.bd_emu_branch_pc = branch_pc;
283	current->thread.bd_emu_cont_pc = cont_pc;
284	atomic_set(&current->thread.bd_emu_frame, fr_idx);
285
286	/* Change user register context to execute the frame */
287	regs->cp0_epc = fr_uaddr | isa16;
 
 
288
289	return 0;
290}
 
 
 
 
291
292bool do_dsemulret(struct pt_regs *xcp)
293{
294	/* Cleanup the allocated frame, returning if there wasn't one */
295	if (!dsemul_thread_cleanup(current)) {
296		MIPS_FPU_EMU_INC_STATS(errors);
297		return false;
298	}
299
300	/* Set EPC to return to post-branch instruction */
301	xcp->cp0_epc = current->thread.bd_emu_cont_pc;
302	pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc);
303	MIPS_FPU_EMU_INC_STATS(ds_emul);
304	return true;
305}