Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * The Netronix embedded controller is a microcontroller found in some
  4 * e-book readers designed by the original design manufacturer Netronix, Inc.
  5 * It contains RTC, battery monitoring, system power management, and PWM
  6 * functionality.
  7 *
  8 * This driver implements PWM output.
  9 *
 10 * Copyright 2020 Jonathan Neuschäfer <j.neuschaefer@gmx.net>
 11 *
 12 * Limitations:
 13 * - The get_state callback is not implemented, because the current state of
 14 *   the PWM output can't be read back from the hardware.
 15 * - The hardware can only generate normal polarity output.
 16 * - The period and duty cycle can't be changed together in one atomic action.
 17 */
 18
 19#include <linux/mfd/ntxec.h>
 20#include <linux/module.h>
 21#include <linux/platform_device.h>
 22#include <linux/pwm.h>
 23#include <linux/regmap.h>
 24#include <linux/types.h>
 25
 26struct ntxec_pwm {
 27	struct ntxec *ec;
 28	struct pwm_chip chip;
 29};
 30
 31static struct ntxec_pwm *ntxec_pwm_from_chip(struct pwm_chip *chip)
 32{
 33	return container_of(chip, struct ntxec_pwm, chip);
 34}
 35
 36#define NTXEC_REG_AUTO_OFF_HI	0xa1
 37#define NTXEC_REG_AUTO_OFF_LO	0xa2
 38#define NTXEC_REG_ENABLE	0xa3
 39#define NTXEC_REG_PERIOD_LOW	0xa4
 40#define NTXEC_REG_PERIOD_HIGH	0xa5
 41#define NTXEC_REG_DUTY_LOW	0xa6
 42#define NTXEC_REG_DUTY_HIGH	0xa7
 43
 44/*
 45 * The time base used in the EC is 8MHz, or 125ns. Period and duty cycle are
 46 * measured in this unit.
 47 */
 48#define TIME_BASE_NS 125
 49
 50/*
 51 * The maximum input value (in nanoseconds) is determined by the time base and
 52 * the range of the hardware registers that hold the converted value.
 53 * It fits into 32 bits, so we can do our calculations in 32 bits as well.
 54 */
 55#define MAX_PERIOD_NS (TIME_BASE_NS * 0xffff)
 56
 57static int ntxec_pwm_set_raw_period_and_duty_cycle(struct pwm_chip *chip,
 58						   int period, int duty)
 59{
 60	struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
 61
 62	/*
 63	 * Changes to the period and duty cycle take effect as soon as the
 64	 * corresponding low byte is written, so the hardware may be configured
 65	 * to an inconsistent state after the period is written and before the
 66	 * duty cycle is fully written. If, in such a case, the old duty cycle
 67	 * is longer than the new period, the EC may output 100% for a moment.
 68	 *
 69	 * To minimize the time between the changes to period and duty cycle
 70	 * taking effect, the writes are interleaved.
 71	 */
 72
 73	struct reg_sequence regs[] = {
 74		{ NTXEC_REG_PERIOD_HIGH, ntxec_reg8(period >> 8) },
 75		{ NTXEC_REG_DUTY_HIGH, ntxec_reg8(duty >> 8) },
 76		{ NTXEC_REG_PERIOD_LOW, ntxec_reg8(period) },
 77		{ NTXEC_REG_DUTY_LOW, ntxec_reg8(duty) },
 78	};
 79
 80	return regmap_multi_reg_write(priv->ec->regmap, regs, ARRAY_SIZE(regs));
 81}
 82
 83static int ntxec_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm_dev,
 84			   const struct pwm_state *state)
 85{
 86	struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
 87	unsigned int period, duty;
 88	int res;
 89
 90	if (state->polarity != PWM_POLARITY_NORMAL)
 91		return -EINVAL;
 92
 93	period = min_t(u64, state->period, MAX_PERIOD_NS);
 94	duty   = min_t(u64, state->duty_cycle, period);
 95
 96	period /= TIME_BASE_NS;
 97	duty   /= TIME_BASE_NS;
 98
 99	/*
100	 * Writing a duty cycle of zero puts the device into a state where
101	 * writing a higher duty cycle doesn't result in the brightness that it
102	 * usually results in. This can be fixed by cycling the ENABLE register.
103	 *
104	 * As a workaround, write ENABLE=0 when the duty cycle is zero.
105	 * The case that something has previously set the duty cycle to zero
106	 * but ENABLE=1, is not handled.
107	 */
108	if (state->enabled && duty != 0) {
109		res = ntxec_pwm_set_raw_period_and_duty_cycle(chip, period, duty);
110		if (res)
111			return res;
112
113		res = regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(1));
114		if (res)
115			return res;
116
117		/* Disable the auto-off timer */
118		res = regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_HI, ntxec_reg8(0xff));
119		if (res)
120			return res;
121
122		return regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_LO, ntxec_reg8(0xff));
123	} else {
124		return regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(0));
125	}
126}
127
128static const struct pwm_ops ntxec_pwm_ops = {
129	.apply = ntxec_pwm_apply,
130	/*
131	 * No .get_state callback, because the current state cannot be read
132	 * back from the hardware.
133	 */
134};
135
136static int ntxec_pwm_probe(struct platform_device *pdev)
137{
138	struct ntxec *ec = dev_get_drvdata(pdev->dev.parent);
139	struct ntxec_pwm *priv;
140	struct pwm_chip *chip;
141
142	device_set_of_node_from_dev(&pdev->dev, pdev->dev.parent);
143
144	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
145	if (!priv)
146		return -ENOMEM;
147
148	priv->ec = ec;
149
150	chip = &priv->chip;
151	chip->dev = &pdev->dev;
152	chip->ops = &ntxec_pwm_ops;
153	chip->npwm = 1;
154
155	return devm_pwmchip_add(&pdev->dev, chip);
156}
157
158static struct platform_driver ntxec_pwm_driver = {
159	.driver = {
160		.name = "ntxec-pwm",
161	},
162	.probe = ntxec_pwm_probe,
163};
164module_platform_driver(ntxec_pwm_driver);
165
166MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
167MODULE_DESCRIPTION("PWM driver for Netronix EC");
168MODULE_LICENSE("GPL");
169MODULE_ALIAS("platform:ntxec-pwm");