Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2020 Intel
  4 *
  5 * Based on drivers/base/devres.c
  6 */
  7
  8#include <drm/drm_managed.h>
  9
 10#include <linux/list.h>
 11#include <linux/mutex.h>
 12#include <linux/slab.h>
 13#include <linux/spinlock.h>
 14
 15#include <drm/drm_device.h>
 16#include <drm/drm_print.h>
 17
 18#include "drm_internal.h"
 19
 20/**
 21 * DOC: managed resources
 22 *
 23 * Inspired by struct &device managed resources, but tied to the lifetime of
 24 * struct &drm_device, which can outlive the underlying physical device, usually
 25 * when userspace has some open files and other handles to resources still open.
 26 *
 27 * Release actions can be added with drmm_add_action(), memory allocations can
 28 * be done directly with drmm_kmalloc() and the related functions. Everything
 29 * will be released on the final drm_dev_put() in reverse order of how the
 30 * release actions have been added and memory has been allocated since driver
 31 * loading started with devm_drm_dev_alloc().
 32 *
 33 * Note that release actions and managed memory can also be added and removed
 34 * during the lifetime of the driver, all the functions are fully concurrent
 35 * safe. But it is recommended to use managed resources only for resources that
 36 * change rarely, if ever, during the lifetime of the &drm_device instance.
 37 */
 38
 39struct drmres_node {
 40	struct list_head	entry;
 41	drmres_release_t	release;
 42	const char		*name;
 43	size_t			size;
 44};
 45
 46struct drmres {
 47	struct drmres_node		node;
 48	/*
 49	 * Some archs want to perform DMA into kmalloc caches
 50	 * and need a guaranteed alignment larger than
 51	 * the alignment of a 64-bit integer.
 52	 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same
 53	 * alignment for struct drmres when allocated by kmalloc().
 54	 */
 55	u8 __aligned(ARCH_DMA_MINALIGN) data[];
 56};
 57
 58static void free_dr(struct drmres *dr)
 59{
 60	kfree_const(dr->node.name);
 61	kfree(dr);
 62}
 63
 64void drm_managed_release(struct drm_device *dev)
 65{
 66	struct drmres *dr, *tmp;
 67
 68	drm_dbg_drmres(dev, "drmres release begin\n");
 69	list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
 70		drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
 71			       dr, dr->node.name, dr->node.size);
 72
 73		if (dr->node.release)
 74			dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
 75
 76		list_del(&dr->node.entry);
 77		free_dr(dr);
 78	}
 79	drm_dbg_drmres(dev, "drmres release end\n");
 80}
 81
 82/*
 83 * Always inline so that kmalloc_track_caller tracks the actual interesting
 84 * caller outside of drm_managed.c.
 85 */
 86static __always_inline struct drmres * alloc_dr(drmres_release_t release,
 87						size_t size, gfp_t gfp, int nid)
 88{
 89	size_t tot_size;
 90	struct drmres *dr;
 91
 92	/* We must catch any near-SIZE_MAX cases that could overflow. */
 93	if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
 94		return NULL;
 95
 96	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
 97	if (unlikely(!dr))
 98		return NULL;
 99
100	memset(dr, 0, offsetof(struct drmres, data));
101
102	INIT_LIST_HEAD(&dr->node.entry);
103	dr->node.release = release;
104	dr->node.size = size;
105
106	return dr;
107}
108
109static void del_dr(struct drm_device *dev, struct drmres *dr)
110{
111	list_del_init(&dr->node.entry);
112
113	drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
114		       dr, dr->node.name, (unsigned long) dr->node.size);
115}
116
117static void add_dr(struct drm_device *dev, struct drmres *dr)
118{
119	unsigned long flags;
120
121	spin_lock_irqsave(&dev->managed.lock, flags);
122	list_add(&dr->node.entry, &dev->managed.resources);
123	spin_unlock_irqrestore(&dev->managed.lock, flags);
124
125	drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
126		       dr, dr->node.name, (unsigned long) dr->node.size);
127}
128
129void drmm_add_final_kfree(struct drm_device *dev, void *container)
130{
131	WARN_ON(dev->managed.final_kfree);
132	WARN_ON(dev < (struct drm_device *) container);
133	WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
134	dev->managed.final_kfree = container;
135}
136
137int __drmm_add_action(struct drm_device *dev,
138		      drmres_release_t action,
139		      void *data, const char *name)
140{
141	struct drmres *dr;
142	void **void_ptr;
143
144	dr = alloc_dr(action, data ? sizeof(void*) : 0,
145		      GFP_KERNEL | __GFP_ZERO,
146		      dev_to_node(dev->dev));
147	if (!dr) {
148		drm_dbg_drmres(dev, "failed to add action %s for %p\n",
149			       name, data);
150		return -ENOMEM;
151	}
152
153	dr->node.name = kstrdup_const(name, GFP_KERNEL);
154	if (data) {
155		void_ptr = (void **)&dr->data;
156		*void_ptr = data;
157	}
158
159	add_dr(dev, dr);
160
161	return 0;
162}
163EXPORT_SYMBOL(__drmm_add_action);
164
165int __drmm_add_action_or_reset(struct drm_device *dev,
166			       drmres_release_t action,
167			       void *data, const char *name)
168{
169	int ret;
170
171	ret = __drmm_add_action(dev, action, data, name);
172	if (ret)
173		action(dev, data);
174
175	return ret;
176}
177EXPORT_SYMBOL(__drmm_add_action_or_reset);
178
179/**
180 * drmm_kmalloc - &drm_device managed kmalloc()
181 * @dev: DRM device
182 * @size: size of the memory allocation
183 * @gfp: GFP allocation flags
184 *
185 * This is a &drm_device managed version of kmalloc(). The allocated memory is
186 * automatically freed on the final drm_dev_put(). Memory can also be freed
187 * before the final drm_dev_put() by calling drmm_kfree().
188 */
189void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
190{
191	struct drmres *dr;
192
193	dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
194	if (!dr) {
195		drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
196			       size, gfp);
197		return NULL;
198	}
199	dr->node.name = kstrdup_const("kmalloc", gfp);
200
201	add_dr(dev, dr);
202
203	return dr->data;
204}
205EXPORT_SYMBOL(drmm_kmalloc);
206
207/**
208 * drmm_kstrdup - &drm_device managed kstrdup()
209 * @dev: DRM device
210 * @s: 0-terminated string to be duplicated
211 * @gfp: GFP allocation flags
212 *
213 * This is a &drm_device managed version of kstrdup(). The allocated memory is
214 * automatically freed on the final drm_dev_put() and works exactly like a
215 * memory allocation obtained by drmm_kmalloc().
216 */
217char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
218{
219	size_t size;
220	char *buf;
221
222	if (!s)
223		return NULL;
224
225	size = strlen(s) + 1;
226	buf = drmm_kmalloc(dev, size, gfp);
227	if (buf)
228		memcpy(buf, s, size);
229	return buf;
230}
231EXPORT_SYMBOL_GPL(drmm_kstrdup);
232
233/**
234 * drmm_kfree - &drm_device managed kfree()
235 * @dev: DRM device
236 * @data: memory allocation to be freed
237 *
238 * This is a &drm_device managed version of kfree() which can be used to
239 * release memory allocated through drmm_kmalloc() or any of its related
240 * functions before the final drm_dev_put() of @dev.
241 */
242void drmm_kfree(struct drm_device *dev, void *data)
243{
244	struct drmres *dr_match = NULL, *dr;
245	unsigned long flags;
246
247	if (!data)
248		return;
249
250	spin_lock_irqsave(&dev->managed.lock, flags);
251	list_for_each_entry(dr, &dev->managed.resources, node.entry) {
252		if (dr->data == data) {
253			dr_match = dr;
254			del_dr(dev, dr_match);
255			break;
256		}
257	}
258	spin_unlock_irqrestore(&dev->managed.lock, flags);
259
260	if (WARN_ON(!dr_match))
261		return;
262
263	free_dr(dr_match);
264}
265EXPORT_SYMBOL(drmm_kfree);
266
267void __drmm_mutex_release(struct drm_device *dev, void *res)
268{
269	struct mutex *lock = res;
270
271	mutex_destroy(lock);
272}
273EXPORT_SYMBOL(__drmm_mutex_release);