Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * linux/arch/m32r/kernel/ptrace.c
  3 *
  4 * Copyright (C) 2002  Hirokazu Takata, Takeo Takahashi
  5 * Copyright (C) 2004  Hirokazu Takata, Kei Sakamoto
  6 *
  7 * Original x86 implementation:
  8 *	By Ross Biro 1/23/92
  9 *	edited by Linus Torvalds
 10 *
 11 * Some code taken from sh version:
 12 *   Copyright (C) 1999, 2000  Kaz Kojima & Niibe Yutaka
 13 * Some code taken from arm version:
 14 *   Copyright (C) 2000 Russell King
 15 */
 16
 17#include <linux/kernel.h>
 18#include <linux/sched.h>
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/smp.h>
 22#include <linux/errno.h>
 23#include <linux/ptrace.h>
 24#include <linux/user.h>
 25#include <linux/string.h>
 26#include <linux/signal.h>
 27
 28#include <asm/cacheflush.h>
 29#include <asm/io.h>
 30#include <asm/uaccess.h>
 31#include <asm/pgtable.h>
 32#include <asm/system.h>
 33#include <asm/processor.h>
 34#include <asm/mmu_context.h>
 35
 36/*
 37 * This routine will get a word off of the process kernel stack.
 38 */
 39static inline unsigned long int
 40get_stack_long(struct task_struct *task, int offset)
 41{
 42	unsigned long *stack;
 43
 44	stack = (unsigned long *)task_pt_regs(task);
 45
 46	return stack[offset];
 47}
 48
 49/*
 50 * This routine will put a word on the process kernel stack.
 51 */
 52static inline int
 53put_stack_long(struct task_struct *task, int offset, unsigned long data)
 54{
 55	unsigned long *stack;
 56
 57	stack = (unsigned long *)task_pt_regs(task);
 58	stack[offset] = data;
 59
 60	return 0;
 61}
 62
 63static int reg_offset[] = {
 64	PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
 65	PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU,
 66};
 67
 68/*
 69 * Read the word at offset "off" into the "struct user".  We
 70 * actually access the pt_regs stored on the kernel stack.
 71 */
 72static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
 73			    unsigned long __user *data)
 74{
 75	unsigned long tmp;
 76#ifndef NO_FPU
 77	struct user * dummy = NULL;
 78#endif
 79
 80	if ((off & 3) || off > sizeof(struct user) - 3)
 81		return -EIO;
 82
 83	off >>= 2;
 84	switch (off) {
 85	case PT_EVB:
 86		__asm__ __volatile__ (
 87			"mvfc	%0, cr5 \n\t"
 88	 		: "=r" (tmp)
 89		);
 90		break;
 91	case PT_CBR: {
 92			unsigned long psw;
 93			psw = get_stack_long(tsk, PT_PSW);
 94			tmp = ((psw >> 8) & 1);
 95		}
 96		break;
 97	case PT_PSW: {
 98			unsigned long psw, bbpsw;
 99			psw = get_stack_long(tsk, PT_PSW);
100			bbpsw = get_stack_long(tsk, PT_BBPSW);
101			tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8);
102		}
103		break;
104	case PT_PC:
105		tmp = get_stack_long(tsk, PT_BPC);
106		break;
107	case PT_BPC:
108		off = PT_BBPC;
109		/* fall through */
110	default:
111		if (off < (sizeof(struct pt_regs) >> 2))
112			tmp = get_stack_long(tsk, off);
113#ifndef NO_FPU
114		else if (off >= (long)(&dummy->fpu >> 2) &&
115			 off < (long)(&dummy->u_fpvalid >> 2)) {
116			if (!tsk_used_math(tsk)) {
117				if (off == (long)(&dummy->fpu.fpscr >> 2))
118					tmp = FPSCR_INIT;
119				else
120					tmp = 0;
121			} else
122				tmp = ((long *)(&tsk->thread.fpu >> 2))
123					[off - (long)&dummy->fpu];
124		} else if (off == (long)(&dummy->u_fpvalid >> 2))
125			tmp = !!tsk_used_math(tsk);
126#endif /* not NO_FPU */
127		else
128			tmp = 0;
129	}
130
131	return put_user(tmp, data);
132}
133
134static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
135			     unsigned long data)
136{
137	int ret = -EIO;
138#ifndef NO_FPU
139	struct user * dummy = NULL;
140#endif
141
142	if ((off & 3) || off > sizeof(struct user) - 3)
143		return -EIO;
144
145	off >>= 2;
146	switch (off) {
147	case PT_EVB:
148	case PT_BPC:
149	case PT_SPI:
150		/* We don't allow to modify evb. */
151		ret = 0;
152		break;
153	case PT_PSW:
154	case PT_CBR: {
155			/* We allow to modify only cbr in psw */
156			unsigned long psw;
157			psw = get_stack_long(tsk, PT_PSW);
158			psw = (psw & ~0x100) | ((data & 1) << 8);
159			ret = put_stack_long(tsk, PT_PSW, psw);
160		}
161		break;
162	case PT_PC:
163		off = PT_BPC;
164		data &= ~1;
165		/* fall through */
166	default:
167		if (off < (sizeof(struct pt_regs) >> 2))
168			ret = put_stack_long(tsk, off, data);
169#ifndef NO_FPU
170		else if (off >= (long)(&dummy->fpu >> 2) &&
171			 off < (long)(&dummy->u_fpvalid >> 2)) {
172			set_stopped_child_used_math(tsk);
173			((long *)&tsk->thread.fpu)
174				[off - (long)&dummy->fpu] = data;
175			ret = 0;
176		} else if (off == (long)(&dummy->u_fpvalid >> 2)) {
177			conditional_stopped_child_used_math(data, tsk);
178			ret = 0;
179		}
180#endif /* not NO_FPU */
181		break;
182	}
183
184	return ret;
185}
186
187/*
188 * Get all user integer registers.
189 */
190static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
191{
192	struct pt_regs *regs = task_pt_regs(tsk);
193
194	return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
195}
196
197/*
198 * Set all user integer registers.
199 */
200static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
201{
202	struct pt_regs newregs;
203	int ret;
204
205	ret = -EFAULT;
206	if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
207		struct pt_regs *regs = task_pt_regs(tsk);
208		*regs = newregs;
209		ret = 0;
210	}
211
212	return ret;
213}
214
215
216static inline int
217check_condition_bit(struct task_struct *child)
218{
219	return (int)((get_stack_long(child, PT_PSW) >> 8) & 1);
220}
221
222static int
223check_condition_src(unsigned long op, unsigned long regno1,
224		    unsigned long regno2, struct task_struct *child)
225{
226	unsigned long reg1, reg2;
227
228	reg2 = get_stack_long(child, reg_offset[regno2]);
229
230	switch (op) {
231	case 0x0: /* BEQ */
232		reg1 = get_stack_long(child, reg_offset[regno1]);
233		return reg1 == reg2;
234	case 0x1: /* BNE */
235		reg1 = get_stack_long(child, reg_offset[regno1]);
236		return reg1 != reg2;
237	case 0x8: /* BEQZ */
238		return reg2 == 0;
239	case 0x9: /* BNEZ */
240		return reg2 != 0;
241	case 0xa: /* BLTZ */
242		return (int)reg2 < 0;
243	case 0xb: /* BGEZ */
244		return (int)reg2 >= 0;
245	case 0xc: /* BLEZ */
246		return (int)reg2 <= 0;
247	case 0xd: /* BGTZ */
248		return (int)reg2 > 0;
249	default:
250		/* never reached */
251		return 0;
252	}
253}
254
255static void
256compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc,
257			       unsigned long *next_pc,
258			       struct task_struct *child)
259{
260	unsigned long op, op2, op3;
261	unsigned long disp;
262	unsigned long regno;
263	int parallel = 0;
264
265	if (insn & 0x00008000)
266		parallel = 1;
267	if (pc & 3)
268		insn &= 0x7fff;	/* right slot */
269	else
270		insn >>= 16;	/* left slot */
271
272	op = (insn >> 12) & 0xf;
273	op2 = (insn >> 8) & 0xf;
274	op3 = (insn >> 4) & 0xf;
275
276	if (op == 0x7) {
277		switch (op2) {
278		case 0xd: /* BNC */
279		case 0x9: /* BNCL */
280			if (!check_condition_bit(child)) {
281				disp = (long)(insn << 24) >> 22;
282				*next_pc = (pc & ~0x3) + disp;
283				return;
284			}
285			break;
286		case 0x8: /* BCL */
287		case 0xc: /* BC */
288			if (check_condition_bit(child)) {
289				disp = (long)(insn << 24) >> 22;
290				*next_pc = (pc & ~0x3) + disp;
291				return;
292			}
293			break;
294		case 0xe: /* BL */
295		case 0xf: /* BRA */
296			disp = (long)(insn << 24) >> 22;
297			*next_pc = (pc & ~0x3) + disp;
298			return;
299			break;
300		}
301	} else if (op == 0x1) {
302		switch (op2) {
303		case 0x0:
304			if (op3 == 0xf) { /* TRAP */
305#if 1
306				/* pass through */
307#else
308 				/* kernel space is not allowed as next_pc */
309				unsigned long evb;
310				unsigned long trapno;
311				trapno = insn & 0xf;
312				__asm__ __volatile__ (
313					"mvfc %0, cr5\n"
314		 			:"=r"(evb)
315		 			:
316				);
317				*next_pc = evb + (trapno << 2);
318				return;
319#endif
320			} else if (op3 == 0xd) { /* RTE */
321				*next_pc = get_stack_long(child, PT_BPC);
322				return;
323			}
324			break;
325		case 0xc: /* JC */
326			if (op3 == 0xc && check_condition_bit(child)) {
327				regno = insn & 0xf;
328				*next_pc = get_stack_long(child,
329							  reg_offset[regno]);
330				return;
331			}
332			break;
333		case 0xd: /* JNC */
334			if (op3 == 0xc && !check_condition_bit(child)) {
335				regno = insn & 0xf;
336				*next_pc = get_stack_long(child,
337							  reg_offset[regno]);
338				return;
339			}
340			break;
341		case 0xe: /* JL */
342		case 0xf: /* JMP */
343			if (op3 == 0xc) { /* JMP */
344				regno = insn & 0xf;
345				*next_pc = get_stack_long(child,
346							  reg_offset[regno]);
347				return;
348			}
349			break;
350		}
351	}
352	if (parallel)
353		*next_pc = pc + 4;
354	else
355		*next_pc = pc + 2;
356}
357
358static void
359compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc,
360			       unsigned long *next_pc,
361			       struct task_struct *child)
362{
363	unsigned long op;
364	unsigned long op2;
365	unsigned long disp;
366	unsigned long regno1, regno2;
367
368	op = (insn >> 28) & 0xf;
369	if (op == 0xf) { 	/* branch 24-bit relative */
370		op2 = (insn >> 24) & 0xf;
371		switch (op2) {
372		case 0xd:	/* BNC */
373		case 0x9:	/* BNCL */
374			if (!check_condition_bit(child)) {
375				disp = (long)(insn << 8) >> 6;
376				*next_pc = (pc & ~0x3) + disp;
377				return;
378			}
379			break;
380		case 0x8:	/* BCL */
381		case 0xc:	/* BC */
382			if (check_condition_bit(child)) {
383				disp = (long)(insn << 8) >> 6;
384				*next_pc = (pc & ~0x3) + disp;
385				return;
386			}
387			break;
388		case 0xe:	/* BL */
389		case 0xf:	/* BRA */
390			disp = (long)(insn << 8) >> 6;
391			*next_pc = (pc & ~0x3) + disp;
392			return;
393		}
394	} else if (op == 0xb) { /* branch 16-bit relative */
395		op2 = (insn >> 20) & 0xf;
396		switch (op2) {
397		case 0x0: /* BEQ */
398		case 0x1: /* BNE */
399		case 0x8: /* BEQZ */
400		case 0x9: /* BNEZ */
401		case 0xa: /* BLTZ */
402		case 0xb: /* BGEZ */
403		case 0xc: /* BLEZ */
404		case 0xd: /* BGTZ */
405			regno1 = ((insn >> 24) & 0xf);
406			regno2 = ((insn >> 16) & 0xf);
407			if (check_condition_src(op2, regno1, regno2, child)) {
408				disp = (long)(insn << 16) >> 14;
409				*next_pc = (pc & ~0x3) + disp;
410				return;
411			}
412			break;
413		}
414	}
415	*next_pc = pc + 4;
416}
417
418static inline void
419compute_next_pc(unsigned long insn, unsigned long pc,
420		unsigned long *next_pc, struct task_struct *child)
421{
422	if (insn & 0x80000000)
423		compute_next_pc_for_32bit_insn(insn, pc, next_pc, child);
424	else
425		compute_next_pc_for_16bit_insn(insn, pc, next_pc, child);
426}
427
428static int
429register_debug_trap(struct task_struct *child, unsigned long next_pc,
430	unsigned long next_insn, unsigned long *code)
431{
432	struct debug_trap *p = &child->thread.debug_trap;
433	unsigned long addr = next_pc & ~3;
434
435	if (p->nr_trap == MAX_TRAPS) {
436		printk("kernel BUG at %s %d: p->nr_trap = %d\n",
437					__FILE__, __LINE__, p->nr_trap);
438		return -1;
439	}
440	p->addr[p->nr_trap] = addr;
441	p->insn[p->nr_trap] = next_insn;
442	p->nr_trap++;
443	if (next_pc & 3) {
444		*code = (next_insn & 0xffff0000) | 0x10f1;
445		/* xxx --> TRAP1 */
446	} else {
447		if ((next_insn & 0x80000000) || (next_insn & 0x8000)) {
448			*code = 0x10f17000;
449			/* TRAP1 --> NOP */
450		} else {
451			*code = (next_insn & 0xffff) | 0x10f10000;
452			/* TRAP1 --> xxx */
453		}
454	}
455	return 0;
456}
457
458static int
459unregister_debug_trap(struct task_struct *child, unsigned long addr,
460		      unsigned long *code)
461{
462	struct debug_trap *p = &child->thread.debug_trap;
463        int i;
464
465	/* Search debug trap entry. */
466	for (i = 0; i < p->nr_trap; i++) {
467		if (p->addr[i] == addr)
468			break;
469	}
470	if (i >= p->nr_trap) {
471		/* The trap may be requested from debugger.
472		 * ptrace should do nothing in this case.
473		 */
474		return 0;
475	}
476
477	/* Recover original instruction code. */
478	*code = p->insn[i];
479
480	/* Shift debug trap entries. */
481	while (i < p->nr_trap - 1) {
482		p->insn[i] = p->insn[i + 1];
483		p->addr[i] = p->addr[i + 1];
484		i++;
485	}
486	p->nr_trap--;
487	return 1;
488}
489
490static void
491unregister_all_debug_traps(struct task_struct *child)
492{
493	struct debug_trap *p = &child->thread.debug_trap;
494	int i;
495
496	for (i = 0; i < p->nr_trap; i++)
497		access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]), 1);
498	p->nr_trap = 0;
499}
500
501static inline void
502invalidate_cache(void)
503{
504#if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP)
505
506	_flush_cache_copyback_all();
507
508#else	/* ! CONFIG_CHIP_M32700 */
509
510	/* Invalidate cache */
511	__asm__ __volatile__ (
512                "ldi    r0, #-1					\n\t"
513                "ldi    r1, #0					\n\t"
514                "stb    r1, @r0		; cache off		\n\t"
515                ";						\n\t"
516                "ldi    r0, #-2					\n\t"
517                "ldi    r1, #1					\n\t"
518                "stb    r1, @r0		; cache invalidate	\n\t"
519                ".fillinsn					\n"
520                "0:						\n\t"
521                "ldb    r1, @r0		; invalidate check	\n\t"
522                "bnez   r1, 0b					\n\t"
523                ";						\n\t"
524                "ldi    r0, #-1					\n\t"
525                "ldi    r1, #1					\n\t"
526                "stb    r1, @r0		; cache on		\n\t"
527		: : : "r0", "r1", "memory"
528	);
529	/* FIXME: copying-back d-cache and invalidating i-cache are needed.
530	 */
531#endif	/* CONFIG_CHIP_M32700 */
532}
533
534/* Embed a debug trap (TRAP1) code */
535static int
536embed_debug_trap(struct task_struct *child, unsigned long next_pc)
537{
538	unsigned long next_insn, code;
539	unsigned long addr = next_pc & ~3;
540
541	if (access_process_vm(child, addr, &next_insn, sizeof(next_insn), 0)
542	    != sizeof(next_insn)) {
543		return -1; /* error */
544	}
545
546	/* Set a trap code. */
547	if (register_debug_trap(child, next_pc, next_insn, &code)) {
548		return -1; /* error */
549	}
550	if (access_process_vm(child, addr, &code, sizeof(code), 1)
551	    != sizeof(code)) {
552		return -1; /* error */
553	}
554	return 0; /* success */
555}
556
557void
558withdraw_debug_trap(struct pt_regs *regs)
559{
560	unsigned long addr;
561	unsigned long code;
562
563 	addr = (regs->bpc - 2) & ~3;
564	regs->bpc -= 2;
565	if (unregister_debug_trap(current, addr, &code)) {
566	    access_process_vm(current, addr, &code, sizeof(code), 1);
567	    invalidate_cache();
568	}
569}
570
571void
572init_debug_traps(struct task_struct *child)
573{
574	struct debug_trap *p = &child->thread.debug_trap;
575	int i;
576	p->nr_trap = 0;
577	for (i = 0; i < MAX_TRAPS; i++) {
578		p->addr[i] = 0;
579		p->insn[i] = 0;
580	}
581}
582
583void user_enable_single_step(struct task_struct *child)
584{
585	unsigned long next_pc;
586	unsigned long pc, insn;
587
588	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
589
590	/* Compute next pc.  */
591	pc = get_stack_long(child, PT_BPC);
592
593	if (access_process_vm(child, pc&~3, &insn, sizeof(insn), 0)
594	    != sizeof(insn))
595		return -EIO;
596
597	compute_next_pc(insn, pc, &next_pc, child);
598	if (next_pc & 0x80000000)
599		return -EIO;
600
601	if (embed_debug_trap(child, next_pc))
602		return -EIO;
603
604	invalidate_cache();
605	return 0;
606}
607
608void user_disable_single_step(struct task_struct *child)
609{
610	unregister_all_debug_traps(child);
611	invalidate_cache();
612}
613
614/*
615 * Called by kernel/ptrace.c when detaching..
616 *
617 * Make sure single step bits etc are not set.
618 */
619void ptrace_disable(struct task_struct *child)
620{
621	/* nothing to do.. */
622}
623
624long
625arch_ptrace(struct task_struct *child, long request,
626	    unsigned long addr, unsigned long data)
627{
628	int ret;
629	unsigned long __user *datap = (unsigned long __user *) data;
630
631	switch (request) {
632	/*
633	 * read word at location "addr" in the child process.
634	 */
635	case PTRACE_PEEKTEXT:
636	case PTRACE_PEEKDATA:
637		ret = generic_ptrace_peekdata(child, addr, data);
638		break;
639
640	/*
641	 * read the word at location addr in the USER area.
642	 */
643	case PTRACE_PEEKUSR:
644		ret = ptrace_read_user(child, addr, datap);
645		break;
646
647	/*
648	 * write the word at location addr.
649	 */
650	case PTRACE_POKETEXT:
651	case PTRACE_POKEDATA:
652		ret = generic_ptrace_pokedata(child, addr, data);
653		if (ret == 0 && request == PTRACE_POKETEXT)
654			invalidate_cache();
655		break;
656
657	/*
658	 * write the word at location addr in the USER area.
659	 */
660	case PTRACE_POKEUSR:
661		ret = ptrace_write_user(child, addr, data);
662		break;
663
664	case PTRACE_GETREGS:
665		ret = ptrace_getregs(child, datap);
666		break;
667
668	case PTRACE_SETREGS:
669		ret = ptrace_setregs(child, datap);
670		break;
671
672	default:
673		ret = ptrace_request(child, request, addr, data);
674		break;
675	}
676
677	return ret;
678}
679
680/* notification of system call entry/exit
681 * - triggered by current->work.syscall_trace
682 */
683void do_syscall_trace(void)
684{
685	if (!test_thread_flag(TIF_SYSCALL_TRACE))
686		return;
687	if (!(current->ptrace & PT_PTRACED))
688		return;
689	/* the 0x80 provides a way for the tracing parent to distinguish
690	   between a syscall stop and SIGTRAP delivery */
691	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
692				 ? 0x80 : 0));
693
694	/*
695	 * this isn't the same as continuing with a signal, but it will do
696	 * for normal use.  strace only continues with a signal if the
697	 * stopping signal is not SIGTRAP.  -brl
698	 */
699	if (current->exit_code) {
700		send_sig(current->exit_code, current, 1);
701		current->exit_code = 0;
702	}
703}