Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  arch/ia64/kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 * Copyright (C) Intel Corporation, 2005
  21 *
  22 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
  23 *              <anil.s.keshavamurthy@intel.com> adapted from i386
  24 */
  25
  26#include <linux/kprobes.h>
  27#include <linux/ptrace.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/preempt.h>
  31#include <linux/moduleloader.h>
  32#include <linux/kdebug.h>
  33
  34#include <asm/pgtable.h>
  35#include <asm/sections.h>
  36#include <asm/uaccess.h>
  37
  38extern void jprobe_inst_return(void);
  39
  40DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  41DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  42
  43struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  44
  45enum instruction_type {A, I, M, F, B, L, X, u};
  46static enum instruction_type bundle_encoding[32][3] = {
  47  { M, I, I },				/* 00 */
  48  { M, I, I },				/* 01 */
  49  { M, I, I },				/* 02 */
  50  { M, I, I },				/* 03 */
  51  { M, L, X },				/* 04 */
  52  { M, L, X },				/* 05 */
  53  { u, u, u },  			/* 06 */
  54  { u, u, u },  			/* 07 */
  55  { M, M, I },				/* 08 */
  56  { M, M, I },				/* 09 */
  57  { M, M, I },				/* 0A */
  58  { M, M, I },				/* 0B */
  59  { M, F, I },				/* 0C */
  60  { M, F, I },				/* 0D */
  61  { M, M, F },				/* 0E */
  62  { M, M, F },				/* 0F */
  63  { M, I, B },				/* 10 */
  64  { M, I, B },				/* 11 */
  65  { M, B, B },				/* 12 */
  66  { M, B, B },				/* 13 */
  67  { u, u, u },  			/* 14 */
  68  { u, u, u },  			/* 15 */
  69  { B, B, B },				/* 16 */
  70  { B, B, B },				/* 17 */
  71  { M, M, B },				/* 18 */
  72  { M, M, B },				/* 19 */
  73  { u, u, u },  			/* 1A */
  74  { u, u, u },  			/* 1B */
  75  { M, F, B },				/* 1C */
  76  { M, F, B },				/* 1D */
  77  { u, u, u },  			/* 1E */
  78  { u, u, u },  			/* 1F */
  79};
  80
  81/* Insert a long branch code */
  82static void __kprobes set_brl_inst(void *from, void *to)
  83{
  84	s64 rel = ((s64) to - (s64) from) >> 4;
  85	bundle_t *brl;
  86	brl = (bundle_t *) ((u64) from & ~0xf);
  87	brl->quad0.template = 0x05;	/* [MLX](stop) */
  88	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
  89	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
  90	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
  91	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
  92	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
  93}
  94
  95/*
  96 * In this function we check to see if the instruction
  97 * is IP relative instruction and update the kprobe
  98 * inst flag accordingly
  99 */
 100static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
 101					      uint major_opcode,
 102					      unsigned long kprobe_inst,
 103					      struct kprobe *p)
 104{
 105	p->ainsn.inst_flag = 0;
 106	p->ainsn.target_br_reg = 0;
 107	p->ainsn.slot = slot;
 108
 109	/* Check for Break instruction
 110	 * Bits 37:40 Major opcode to be zero
 111	 * Bits 27:32 X6 to be zero
 112	 * Bits 32:35 X3 to be zero
 113	 */
 114	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
 115		/* is a break instruction */
 116	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
 117		return;
 118	}
 119
 120	if (bundle_encoding[template][slot] == B) {
 121		switch (major_opcode) {
 122		  case INDIRECT_CALL_OPCODE:
 123	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 124			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 125			break;
 126		  case IP_RELATIVE_PREDICT_OPCODE:
 127		  case IP_RELATIVE_BRANCH_OPCODE:
 128			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 129			break;
 130		  case IP_RELATIVE_CALL_OPCODE:
 131			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 132			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 133			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 134			break;
 135		}
 136	} else if (bundle_encoding[template][slot] == X) {
 137		switch (major_opcode) {
 138		  case LONG_CALL_OPCODE:
 139			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 140			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 141		  break;
 142		}
 143	}
 144	return;
 145}
 146
 147/*
 148 * In this function we check to see if the instruction
 149 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 150 * on which we are inserting kprobe is cmp instruction
 151 * with ctype as unc.
 152 */
 153static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
 154					    uint major_opcode,
 155					    unsigned long kprobe_inst)
 156{
 157	cmp_inst_t cmp_inst;
 158	uint ctype_unc = 0;
 159
 160	if (!((bundle_encoding[template][slot] == I) ||
 161		(bundle_encoding[template][slot] == M)))
 162		goto out;
 163
 164	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
 165		(major_opcode == 0xE)))
 166		goto out;
 167
 168	cmp_inst.l = kprobe_inst;
 169	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
 170		/* Integer compare - Register Register (A6 type)*/
 171		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
 172				&&(cmp_inst.f.c == 1))
 173			ctype_unc = 1;
 174	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
 175		/* Integer compare - Immediate Register (A8 type)*/
 176		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
 177			ctype_unc = 1;
 178	}
 179out:
 180	return ctype_unc;
 181}
 182
 183/*
 184 * In this function we check to see if the instruction
 185 * on which we are inserting kprobe is supported.
 186 * Returns qp value if supported
 187 * Returns -EINVAL if unsupported
 188 */
 189static int __kprobes unsupported_inst(uint template, uint  slot,
 190				      uint major_opcode,
 191				      unsigned long kprobe_inst,
 192				      unsigned long addr)
 193{
 194	int qp;
 195
 196	qp = kprobe_inst & 0x3f;
 197	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
 198		if (slot == 1 && qp)  {
 199			printk(KERN_WARNING "Kprobes on cmp unc "
 200					"instruction on slot 1 at <0x%lx> "
 201					"is not supported\n", addr);
 202			return -EINVAL;
 203
 204		}
 205		qp = 0;
 206	}
 207	else if (bundle_encoding[template][slot] == I) {
 208		if (major_opcode == 0) {
 209			/*
 210			 * Check for Integer speculation instruction
 211			 * - Bit 33-35 to be equal to 0x1
 212			 */
 213			if (((kprobe_inst >> 33) & 0x7) == 1) {
 214				printk(KERN_WARNING
 215					"Kprobes on speculation inst at <0x%lx> not supported\n",
 216						addr);
 217				return -EINVAL;
 218			}
 219			/*
 220			 * IP relative mov instruction
 221			 *  - Bit 27-35 to be equal to 0x30
 222			 */
 223			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
 224				printk(KERN_WARNING
 225					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
 226						addr);
 227				return -EINVAL;
 228
 229			}
 230		}
 231		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
 232				(kprobe_inst & (0x1UL << 12))) {
 233			/* test bit instructions, tbit,tnat,tf
 234			 * bit 33-36 to be equal to 0
 235			 * bit 12 to be equal to 1
 236			 */
 237			if (slot == 1 && qp) {
 238				printk(KERN_WARNING "Kprobes on test bit "
 239						"instruction on slot at <0x%lx> "
 240						"is not supported\n", addr);
 241				return -EINVAL;
 242			}
 243			qp = 0;
 244		}
 245	}
 246	else if (bundle_encoding[template][slot] == B) {
 247		if (major_opcode == 7) {
 248			/* IP-Relative Predict major code is 7 */
 249			printk(KERN_WARNING "Kprobes on IP-Relative"
 250					"Predict is not supported\n");
 251			return -EINVAL;
 252		}
 253		else if (major_opcode == 2) {
 254			/* Indirect Predict, major code is 2
 255			 * bit 27-32 to be equal to 10 or 11
 256			 */
 257			int x6=(kprobe_inst >> 27) & 0x3F;
 258			if ((x6 == 0x10) || (x6 == 0x11)) {
 259				printk(KERN_WARNING "Kprobes on "
 260					"Indirect Predict is not supported\n");
 261				return -EINVAL;
 262			}
 263		}
 264	}
 265	/* kernel does not use float instruction, here for safety kprobe
 266	 * will judge whether it is fcmp/flass/float approximation instruction
 267	 */
 268	else if (unlikely(bundle_encoding[template][slot] == F)) {
 269		if ((major_opcode == 4 || major_opcode == 5) &&
 270				(kprobe_inst  & (0x1 << 12))) {
 271			/* fcmp/fclass unc instruction */
 272			if (slot == 1 && qp) {
 273				printk(KERN_WARNING "Kprobes on fcmp/fclass "
 274					"instruction on slot at <0x%lx> "
 275					"is not supported\n", addr);
 276				return -EINVAL;
 277
 278			}
 279			qp = 0;
 280		}
 281		if ((major_opcode == 0 || major_opcode == 1) &&
 282			(kprobe_inst & (0x1UL << 33))) {
 283			/* float Approximation instruction */
 284			if (slot == 1 && qp) {
 285				printk(KERN_WARNING "Kprobes on float Approx "
 286					"instr at <0x%lx> is not supported\n",
 287						addr);
 288				return -EINVAL;
 289			}
 290			qp = 0;
 291		}
 292	}
 293	return qp;
 294}
 295
 296/*
 297 * In this function we override the bundle with
 298 * the break instruction at the given slot.
 299 */
 300static void __kprobes prepare_break_inst(uint template, uint  slot,
 301					 uint major_opcode,
 302					 unsigned long kprobe_inst,
 303					 struct kprobe *p,
 304					 int qp)
 305{
 306	unsigned long break_inst = BREAK_INST;
 307	bundle_t *bundle = &p->opcode.bundle;
 308
 309	/*
 310	 * Copy the original kprobe_inst qualifying predicate(qp)
 311	 * to the break instruction
 312	 */
 313	break_inst |= qp;
 314
 315	switch (slot) {
 316	  case 0:
 317		bundle->quad0.slot0 = break_inst;
 318		break;
 319	  case 1:
 320		bundle->quad0.slot1_p0 = break_inst;
 321		bundle->quad1.slot1_p1 = break_inst >> (64-46);
 322		break;
 323	  case 2:
 324		bundle->quad1.slot2 = break_inst;
 325		break;
 326	}
 327
 328	/*
 329	 * Update the instruction flag, so that we can
 330	 * emulate the instruction properly after we
 331	 * single step on original instruction
 332	 */
 333	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
 334}
 335
 336static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
 337	       	unsigned long *kprobe_inst, uint *major_opcode)
 338{
 339	unsigned long kprobe_inst_p0, kprobe_inst_p1;
 340	unsigned int template;
 341
 342	template = bundle->quad0.template;
 343
 344	switch (slot) {
 345	  case 0:
 346		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 347		*kprobe_inst = bundle->quad0.slot0;
 348		  break;
 349	  case 1:
 350		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
 351		kprobe_inst_p0 = bundle->quad0.slot1_p0;
 352		kprobe_inst_p1 = bundle->quad1.slot1_p1;
 353		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
 354		break;
 355	  case 2:
 356		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 357		*kprobe_inst = bundle->quad1.slot2;
 358		break;
 359	}
 360}
 361
 362/* Returns non-zero if the addr is in the Interrupt Vector Table */
 363static int __kprobes in_ivt_functions(unsigned long addr)
 364{
 365	return (addr >= (unsigned long)__start_ivt_text
 366		&& addr < (unsigned long)__end_ivt_text);
 367}
 368
 369static int __kprobes valid_kprobe_addr(int template, int slot,
 370				       unsigned long addr)
 371{
 372	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
 373		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
 374				"at 0x%lx\n", addr);
 375		return -EINVAL;
 376	}
 377
 378	if (in_ivt_functions(addr)) {
 379		printk(KERN_WARNING "Kprobes can't be inserted inside "
 380				"IVT functions at 0x%lx\n", addr);
 381		return -EINVAL;
 382	}
 383
 384	return 0;
 385}
 386
 387static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 388{
 389	unsigned int i;
 390	i = atomic_add_return(1, &kcb->prev_kprobe_index);
 391	kcb->prev_kprobe[i-1].kp = kprobe_running();
 392	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
 393}
 394
 395static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 396{
 397	unsigned int i;
 398	i = atomic_read(&kcb->prev_kprobe_index);
 399	__get_cpu_var(current_kprobe) = kcb->prev_kprobe[i-1].kp;
 400	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
 401	atomic_sub(1, &kcb->prev_kprobe_index);
 402}
 403
 404static void __kprobes set_current_kprobe(struct kprobe *p,
 405			struct kprobe_ctlblk *kcb)
 406{
 407	__get_cpu_var(current_kprobe) = p;
 408}
 409
 410static void kretprobe_trampoline(void)
 411{
 412}
 413
 414/*
 415 * At this point the target function has been tricked into
 416 * returning into our trampoline.  Lookup the associated instance
 417 * and then:
 418 *    - call the handler function
 419 *    - cleanup by marking the instance as unused
 420 *    - long jump back to the original return address
 421 */
 422int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 423{
 424	struct kretprobe_instance *ri = NULL;
 425	struct hlist_head *head, empty_rp;
 426	struct hlist_node *node, *tmp;
 427	unsigned long flags, orig_ret_address = 0;
 428	unsigned long trampoline_address =
 429		((struct fnptr *)kretprobe_trampoline)->ip;
 430
 431	INIT_HLIST_HEAD(&empty_rp);
 432	kretprobe_hash_lock(current, &head, &flags);
 433
 434	/*
 435	 * It is possible to have multiple instances associated with a given
 436	 * task either because an multiple functions in the call path
 437	 * have a return probe installed on them, and/or more than one return
 438	 * return probe was registered for a target function.
 439	 *
 440	 * We can handle this because:
 441	 *     - instances are always inserted at the head of the list
 442	 *     - when multiple return probes are registered for the same
 443	 *       function, the first instance's ret_addr will point to the
 444	 *       real return address, and all the rest will point to
 445	 *       kretprobe_trampoline
 446	 */
 447	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 448		if (ri->task != current)
 449			/* another task is sharing our hash bucket */
 450			continue;
 451
 452		orig_ret_address = (unsigned long)ri->ret_addr;
 453		if (orig_ret_address != trampoline_address)
 454			/*
 455			 * This is the real return address. Any other
 456			 * instances associated with this task are for
 457			 * other calls deeper on the call stack
 458			 */
 459			break;
 460	}
 461
 462	regs->cr_iip = orig_ret_address;
 463
 464	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 465		if (ri->task != current)
 466			/* another task is sharing our hash bucket */
 467			continue;
 468
 469		if (ri->rp && ri->rp->handler)
 470			ri->rp->handler(ri, regs);
 471
 472		orig_ret_address = (unsigned long)ri->ret_addr;
 473		recycle_rp_inst(ri, &empty_rp);
 474
 475		if (orig_ret_address != trampoline_address)
 476			/*
 477			 * This is the real return address. Any other
 478			 * instances associated with this task are for
 479			 * other calls deeper on the call stack
 480			 */
 481			break;
 482	}
 483
 484	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 485
 486	reset_current_kprobe();
 487	kretprobe_hash_unlock(current, &flags);
 488	preempt_enable_no_resched();
 489
 490	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 491		hlist_del(&ri->hlist);
 492		kfree(ri);
 493	}
 494	/*
 495	 * By returning a non-zero value, we are telling
 496	 * kprobe_handler() that we don't want the post_handler
 497	 * to run (and have re-enabled preemption)
 498	 */
 499	return 1;
 500}
 501
 502void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 503				      struct pt_regs *regs)
 504{
 505	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
 506
 507	/* Replace the return addr with trampoline addr */
 508	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
 509}
 510
 511/* Check the instruction in the slot is break */
 512static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
 513{
 514	unsigned int major_opcode;
 515	unsigned int template = bundle->quad0.template;
 516	unsigned long kprobe_inst;
 517
 518	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 519	if (slot == 1 && bundle_encoding[template][1] == L)
 520		slot++;
 521
 522	/* Get Kprobe probe instruction at given slot*/
 523	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 524
 525	/* For break instruction,
 526	 * Bits 37:40 Major opcode to be zero
 527	 * Bits 27:32 X6 to be zero
 528	 * Bits 32:35 X3 to be zero
 529	 */
 530	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
 531		/* Not a break instruction */
 532		return 0;
 533	}
 534
 535	/* Is a break instruction */
 536	return 1;
 537}
 538
 539/*
 540 * In this function, we check whether the target bundle modifies IP or
 541 * it triggers an exception. If so, it cannot be boostable.
 542 */
 543static int __kprobes can_boost(bundle_t *bundle, uint slot,
 544			       unsigned long bundle_addr)
 545{
 546	unsigned int template = bundle->quad0.template;
 547
 548	do {
 549		if (search_exception_tables(bundle_addr + slot) ||
 550		    __is_ia64_break_inst(bundle, slot))
 551			return 0;	/* exception may occur in this bundle*/
 552	} while ((++slot) < 3);
 553	template &= 0x1e;
 554	if (template >= 0x10 /* including B unit */ ||
 555	    template == 0x04 /* including X unit */ ||
 556	    template == 0x06) /* undefined */
 557		return 0;
 558
 559	return 1;
 560}
 561
 562/* Prepare long jump bundle and disables other boosters if need */
 563static void __kprobes prepare_booster(struct kprobe *p)
 564{
 565	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
 566	unsigned int slot = (unsigned long)p->addr & 0xf;
 567	struct kprobe *other_kp;
 568
 569	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
 570		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
 571		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
 572	}
 573
 574	/* disables boosters in previous slots */
 575	for (; addr < (unsigned long)p->addr; addr++) {
 576		other_kp = get_kprobe((void *)addr);
 577		if (other_kp)
 578			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
 579	}
 580}
 581
 582int __kprobes arch_prepare_kprobe(struct kprobe *p)
 583{
 584	unsigned long addr = (unsigned long) p->addr;
 585	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
 586	unsigned long kprobe_inst=0;
 587	unsigned int slot = addr & 0xf, template, major_opcode = 0;
 588	bundle_t *bundle;
 589	int qp;
 590
 591	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
 592	template = bundle->quad0.template;
 593
 594	if(valid_kprobe_addr(template, slot, addr))
 595		return -EINVAL;
 596
 597	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 598	if (slot == 1 && bundle_encoding[template][1] == L)
 599		slot++;
 600
 601	/* Get kprobe_inst and major_opcode from the bundle */
 602	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 603
 604	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
 605	if (qp < 0)
 606		return -EINVAL;
 607
 608	p->ainsn.insn = get_insn_slot();
 609	if (!p->ainsn.insn)
 610		return -ENOMEM;
 611	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
 612	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
 613
 614	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
 615
 616	prepare_booster(p);
 617
 618	return 0;
 619}
 620
 621void __kprobes arch_arm_kprobe(struct kprobe *p)
 622{
 623	unsigned long arm_addr;
 624	bundle_t *src, *dest;
 625
 626	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 627	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 628	src = &p->opcode.bundle;
 629
 630	flush_icache_range((unsigned long)p->ainsn.insn,
 631			   (unsigned long)p->ainsn.insn +
 632			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
 633
 634	switch (p->ainsn.slot) {
 635		case 0:
 636			dest->quad0.slot0 = src->quad0.slot0;
 637			break;
 638		case 1:
 639			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 640			break;
 641		case 2:
 642			dest->quad1.slot2 = src->quad1.slot2;
 643			break;
 644	}
 645	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 646}
 647
 648void __kprobes arch_disarm_kprobe(struct kprobe *p)
 649{
 650	unsigned long arm_addr;
 651	bundle_t *src, *dest;
 652
 653	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 654	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 655	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
 656	src = &p->ainsn.insn->bundle;
 657	switch (p->ainsn.slot) {
 658		case 0:
 659			dest->quad0.slot0 = src->quad0.slot0;
 660			break;
 661		case 1:
 662			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 663			break;
 664		case 2:
 665			dest->quad1.slot2 = src->quad1.slot2;
 666			break;
 667	}
 668	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 669}
 670
 671void __kprobes arch_remove_kprobe(struct kprobe *p)
 672{
 673	if (p->ainsn.insn) {
 674		free_insn_slot(p->ainsn.insn,
 675			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
 676		p->ainsn.insn = NULL;
 677	}
 678}
 679/*
 680 * We are resuming execution after a single step fault, so the pt_regs
 681 * structure reflects the register state after we executed the instruction
 682 * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
 683 * the ip to point back to the original stack address. To set the IP address
 684 * to original stack address, handle the case where we need to fixup the
 685 * relative IP address and/or fixup branch register.
 686 */
 687static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 688{
 689	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
 690	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 691	unsigned long template;
 692	int slot = ((unsigned long)p->addr & 0xf);
 693
 694	template = p->ainsn.insn->bundle.quad0.template;
 695
 696	if (slot == 1 && bundle_encoding[template][1] == L)
 697		slot = 2;
 698
 699	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
 700
 701		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
 702			/* Fix relative IP address */
 703			regs->cr_iip = (regs->cr_iip - bundle_addr) +
 704					resume_addr;
 705		}
 706
 707		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
 708		/*
 709		 * Fix target branch register, software convention is
 710		 * to use either b0 or b6 or b7, so just checking
 711		 * only those registers
 712		 */
 713			switch (p->ainsn.target_br_reg) {
 714			case 0:
 715				if ((regs->b0 == bundle_addr) ||
 716					(regs->b0 == bundle_addr + 0x10)) {
 717					regs->b0 = (regs->b0 - bundle_addr) +
 718						resume_addr;
 719				}
 720				break;
 721			case 6:
 722				if ((regs->b6 == bundle_addr) ||
 723					(regs->b6 == bundle_addr + 0x10)) {
 724					regs->b6 = (regs->b6 - bundle_addr) +
 725						resume_addr;
 726				}
 727				break;
 728			case 7:
 729				if ((regs->b7 == bundle_addr) ||
 730					(regs->b7 == bundle_addr + 0x10)) {
 731					regs->b7 = (regs->b7 - bundle_addr) +
 732						resume_addr;
 733				}
 734				break;
 735			} /* end switch */
 736		}
 737		goto turn_ss_off;
 738	}
 739
 740	if (slot == 2) {
 741		if (regs->cr_iip == bundle_addr + 0x10) {
 742			regs->cr_iip = resume_addr + 0x10;
 743		}
 744	} else {
 745		if (regs->cr_iip == bundle_addr) {
 746			regs->cr_iip = resume_addr;
 747		}
 748	}
 749
 750turn_ss_off:
 751	/* Turn off Single Step bit */
 752	ia64_psr(regs)->ss = 0;
 753}
 754
 755static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
 756{
 757	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
 758	unsigned long slot = (unsigned long)p->addr & 0xf;
 759
 760	/* single step inline if break instruction */
 761	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
 762		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
 763	else
 764		regs->cr_iip = bundle_addr & ~0xFULL;
 765
 766	if (slot > 2)
 767		slot = 0;
 768
 769	ia64_psr(regs)->ri = slot;
 770
 771	/* turn on single stepping */
 772	ia64_psr(regs)->ss = 1;
 773}
 774
 775static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
 776{
 777	unsigned int slot = ia64_psr(regs)->ri;
 778	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
 779	bundle_t bundle;
 780
 781	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
 782
 783	return __is_ia64_break_inst(&bundle, slot);
 784}
 785
 786static int __kprobes pre_kprobes_handler(struct die_args *args)
 787{
 788	struct kprobe *p;
 789	int ret = 0;
 790	struct pt_regs *regs = args->regs;
 791	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
 792	struct kprobe_ctlblk *kcb;
 793
 794	/*
 795	 * We don't want to be preempted for the entire
 796	 * duration of kprobe processing
 797	 */
 798	preempt_disable();
 799	kcb = get_kprobe_ctlblk();
 800
 801	/* Handle recursion cases */
 802	if (kprobe_running()) {
 803		p = get_kprobe(addr);
 804		if (p) {
 805			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
 806	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
 807				ia64_psr(regs)->ss = 0;
 808				goto no_kprobe;
 809			}
 810			/* We have reentered the pre_kprobe_handler(), since
 811			 * another probe was hit while within the handler.
 812			 * We here save the original kprobes variables and
 813			 * just single step on the instruction of the new probe
 814			 * without calling any user handlers.
 815			 */
 816			save_previous_kprobe(kcb);
 817			set_current_kprobe(p, kcb);
 818			kprobes_inc_nmissed_count(p);
 819			prepare_ss(p, regs);
 820			kcb->kprobe_status = KPROBE_REENTER;
 821			return 1;
 822		} else if (args->err == __IA64_BREAK_JPROBE) {
 823			/*
 824			 * jprobe instrumented function just completed
 825			 */
 826			p = __get_cpu_var(current_kprobe);
 827			if (p->break_handler && p->break_handler(p, regs)) {
 828				goto ss_probe;
 829			}
 830		} else if (!is_ia64_break_inst(regs)) {
 831			/* The breakpoint instruction was removed by
 832			 * another cpu right after we hit, no further
 833			 * handling of this interrupt is appropriate
 834			 */
 835			ret = 1;
 836			goto no_kprobe;
 837		} else {
 838			/* Not our break */
 839			goto no_kprobe;
 840		}
 841	}
 842
 843	p = get_kprobe(addr);
 844	if (!p) {
 845		if (!is_ia64_break_inst(regs)) {
 846			/*
 847			 * The breakpoint instruction was removed right
 848			 * after we hit it.  Another cpu has removed
 849			 * either a probepoint or a debugger breakpoint
 850			 * at this address.  In either case, no further
 851			 * handling of this interrupt is appropriate.
 852			 */
 853			ret = 1;
 854
 855		}
 856
 857		/* Not one of our break, let kernel handle it */
 858		goto no_kprobe;
 859	}
 860
 861	set_current_kprobe(p, kcb);
 862	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 863
 864	if (p->pre_handler && p->pre_handler(p, regs))
 865		/*
 866		 * Our pre-handler is specifically requesting that we just
 867		 * do a return.  This is used for both the jprobe pre-handler
 868		 * and the kretprobe trampoline
 869		 */
 870		return 1;
 871
 872ss_probe:
 873#if !defined(CONFIG_PREEMPT)
 874	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
 875		/* Boost up -- we can execute copied instructions directly */
 876		ia64_psr(regs)->ri = p->ainsn.slot;
 877		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
 878		/* turn single stepping off */
 879		ia64_psr(regs)->ss = 0;
 880
 881		reset_current_kprobe();
 882		preempt_enable_no_resched();
 883		return 1;
 884	}
 885#endif
 886	prepare_ss(p, regs);
 887	kcb->kprobe_status = KPROBE_HIT_SS;
 888	return 1;
 889
 890no_kprobe:
 891	preempt_enable_no_resched();
 892	return ret;
 893}
 894
 895static int __kprobes post_kprobes_handler(struct pt_regs *regs)
 896{
 897	struct kprobe *cur = kprobe_running();
 898	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 899
 900	if (!cur)
 901		return 0;
 902
 903	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 904		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 905		cur->post_handler(cur, regs, 0);
 906	}
 907
 908	resume_execution(cur, regs);
 909
 910	/*Restore back the original saved kprobes variables and continue. */
 911	if (kcb->kprobe_status == KPROBE_REENTER) {
 912		restore_previous_kprobe(kcb);
 913		goto out;
 914	}
 915	reset_current_kprobe();
 916
 917out:
 918	preempt_enable_no_resched();
 919	return 1;
 920}
 921
 922int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 923{
 924	struct kprobe *cur = kprobe_running();
 925	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 926
 927
 928	switch(kcb->kprobe_status) {
 929	case KPROBE_HIT_SS:
 930	case KPROBE_REENTER:
 931		/*
 932		 * We are here because the instruction being single
 933		 * stepped caused a page fault. We reset the current
 934		 * kprobe and the instruction pointer points back to
 935		 * the probe address and allow the page fault handler
 936		 * to continue as a normal page fault.
 937		 */
 938		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
 939		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
 940		if (kcb->kprobe_status == KPROBE_REENTER)
 941			restore_previous_kprobe(kcb);
 942		else
 943			reset_current_kprobe();
 944		preempt_enable_no_resched();
 945		break;
 946	case KPROBE_HIT_ACTIVE:
 947	case KPROBE_HIT_SSDONE:
 948		/*
 949		 * We increment the nmissed count for accounting,
 950		 * we can also use npre/npostfault count for accouting
 951		 * these specific fault cases.
 952		 */
 953		kprobes_inc_nmissed_count(cur);
 954
 955		/*
 956		 * We come here because instructions in the pre/post
 957		 * handler caused the page_fault, this could happen
 958		 * if handler tries to access user space by
 959		 * copy_from_user(), get_user() etc. Let the
 960		 * user-specified handler try to fix it first.
 961		 */
 962		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 963			return 1;
 964		/*
 965		 * In case the user-specified fault handler returned
 966		 * zero, try to fix up.
 967		 */
 968		if (ia64_done_with_exception(regs))
 969			return 1;
 970
 971		/*
 972		 * Let ia64_do_page_fault() fix it.
 973		 */
 974		break;
 975	default:
 976		break;
 977	}
 978
 979	return 0;
 980}
 981
 982int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 983				       unsigned long val, void *data)
 984{
 985	struct die_args *args = (struct die_args *)data;
 986	int ret = NOTIFY_DONE;
 987
 988	if (args->regs && user_mode(args->regs))
 989		return ret;
 990
 991	switch(val) {
 992	case DIE_BREAK:
 993		/* err is break number from ia64_bad_break() */
 994		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
 995			|| args->err == __IA64_BREAK_JPROBE
 996			|| args->err == 0)
 997			if (pre_kprobes_handler(args))
 998				ret = NOTIFY_STOP;
 999		break;
1000	case DIE_FAULT:
1001		/* err is vector number from ia64_fault() */
1002		if (args->err == 36)
1003			if (post_kprobes_handler(args->regs))
1004				ret = NOTIFY_STOP;
1005		break;
1006	default:
1007		break;
1008	}
1009	return ret;
1010}
1011
1012struct param_bsp_cfm {
1013	unsigned long ip;
1014	unsigned long *bsp;
1015	unsigned long cfm;
1016};
1017
1018static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
1019{
1020	unsigned long ip;
1021	struct param_bsp_cfm *lp = arg;
1022
1023	do {
1024		unw_get_ip(info, &ip);
1025		if (ip == 0)
1026			break;
1027		if (ip == lp->ip) {
1028			unw_get_bsp(info, (unsigned long*)&lp->bsp);
1029			unw_get_cfm(info, (unsigned long*)&lp->cfm);
1030			return;
1031		}
1032	} while (unw_unwind(info) >= 0);
1033	lp->bsp = NULL;
1034	lp->cfm = 0;
1035	return;
1036}
1037
1038unsigned long arch_deref_entry_point(void *entry)
1039{
1040	return ((struct fnptr *)entry)->ip;
1041}
1042
1043int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1044{
1045	struct jprobe *jp = container_of(p, struct jprobe, kp);
1046	unsigned long addr = arch_deref_entry_point(jp->entry);
1047	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1048	struct param_bsp_cfm pa;
1049	int bytes;
1050
1051	/*
1052	 * Callee owns the argument space and could overwrite it, eg
1053	 * tail call optimization. So to be absolutely safe
1054	 * we save the argument space before transferring the control
1055	 * to instrumented jprobe function which runs in
1056	 * the process context
1057	 */
1058	pa.ip = regs->cr_iip;
1059	unw_init_running(ia64_get_bsp_cfm, &pa);
1060	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
1061				- (char *)pa.bsp;
1062	memcpy( kcb->jprobes_saved_stacked_regs,
1063		pa.bsp,
1064		bytes );
1065	kcb->bsp = pa.bsp;
1066	kcb->cfm = pa.cfm;
1067
1068	/* save architectural state */
1069	kcb->jprobe_saved_regs = *regs;
1070
1071	/* after rfi, execute the jprobe instrumented function */
1072	regs->cr_iip = addr & ~0xFULL;
1073	ia64_psr(regs)->ri = addr & 0xf;
1074	regs->r1 = ((struct fnptr *)(jp->entry))->gp;
1075
1076	/*
1077	 * fix the return address to our jprobe_inst_return() function
1078	 * in the jprobes.S file
1079	 */
1080	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
1081
1082	return 1;
1083}
1084
1085/* ia64 does not need this */
1086void __kprobes jprobe_return(void)
1087{
1088}
1089
1090int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1091{
1092	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1093	int bytes;
1094
1095	/* restoring architectural state */
1096	*regs = kcb->jprobe_saved_regs;
1097
1098	/* restoring the original argument space */
1099	flush_register_stack();
1100	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
1101				- (char *)kcb->bsp;
1102	memcpy( kcb->bsp,
1103		kcb->jprobes_saved_stacked_regs,
1104		bytes );
1105	invalidate_stacked_regs();
1106
1107	preempt_enable_no_resched();
1108	return 1;
1109}
1110
1111static struct kprobe trampoline_p = {
1112	.pre_handler = trampoline_probe_handler
1113};
1114
1115int __init arch_init_kprobes(void)
1116{
1117	trampoline_p.addr =
1118		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1119	return register_kprobe(&trampoline_p);
1120}
1121
1122int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1123{
1124	if (p->addr ==
1125		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1126		return 1;
1127
1128	return 0;
1129}