Loading...
1/*
2 * Cryptographic API for algorithms (i.e., low-level API).
3 *
4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12#ifndef _CRYPTO_ALGAPI_H
13#define _CRYPTO_ALGAPI_H
14
15#include <linux/crypto.h>
16#include <linux/list.h>
17#include <linux/kernel.h>
18
19struct module;
20struct rtattr;
21struct seq_file;
22
23struct crypto_type {
24 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
25 unsigned int (*extsize)(struct crypto_alg *alg);
26 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
27 int (*init_tfm)(struct crypto_tfm *tfm);
28 void (*show)(struct seq_file *m, struct crypto_alg *alg);
29 struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask);
30
31 unsigned int type;
32 unsigned int maskclear;
33 unsigned int maskset;
34 unsigned int tfmsize;
35};
36
37struct crypto_instance {
38 struct crypto_alg alg;
39
40 struct crypto_template *tmpl;
41 struct hlist_node list;
42
43 void *__ctx[] CRYPTO_MINALIGN_ATTR;
44};
45
46struct crypto_template {
47 struct list_head list;
48 struct hlist_head instances;
49 struct module *module;
50
51 struct crypto_instance *(*alloc)(struct rtattr **tb);
52 void (*free)(struct crypto_instance *inst);
53 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
54
55 char name[CRYPTO_MAX_ALG_NAME];
56};
57
58struct crypto_spawn {
59 struct list_head list;
60 struct crypto_alg *alg;
61 struct crypto_instance *inst;
62 const struct crypto_type *frontend;
63 u32 mask;
64};
65
66struct crypto_queue {
67 struct list_head list;
68 struct list_head *backlog;
69
70 unsigned int qlen;
71 unsigned int max_qlen;
72};
73
74struct scatter_walk {
75 struct scatterlist *sg;
76 unsigned int offset;
77};
78
79struct blkcipher_walk {
80 union {
81 struct {
82 struct page *page;
83 unsigned long offset;
84 } phys;
85
86 struct {
87 u8 *page;
88 u8 *addr;
89 } virt;
90 } src, dst;
91
92 struct scatter_walk in;
93 unsigned int nbytes;
94
95 struct scatter_walk out;
96 unsigned int total;
97
98 void *page;
99 u8 *buffer;
100 u8 *iv;
101
102 int flags;
103 unsigned int blocksize;
104};
105
106struct ablkcipher_walk {
107 struct {
108 struct page *page;
109 unsigned int offset;
110 } src, dst;
111
112 struct scatter_walk in;
113 unsigned int nbytes;
114 struct scatter_walk out;
115 unsigned int total;
116 struct list_head buffers;
117 u8 *iv_buffer;
118 u8 *iv;
119 int flags;
120 unsigned int blocksize;
121};
122
123extern const struct crypto_type crypto_ablkcipher_type;
124extern const struct crypto_type crypto_aead_type;
125extern const struct crypto_type crypto_blkcipher_type;
126
127void crypto_mod_put(struct crypto_alg *alg);
128
129int crypto_register_template(struct crypto_template *tmpl);
130void crypto_unregister_template(struct crypto_template *tmpl);
131struct crypto_template *crypto_lookup_template(const char *name);
132
133int crypto_register_instance(struct crypto_template *tmpl,
134 struct crypto_instance *inst);
135
136int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
137 struct crypto_instance *inst, u32 mask);
138int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
139 struct crypto_instance *inst,
140 const struct crypto_type *frontend);
141
142void crypto_drop_spawn(struct crypto_spawn *spawn);
143struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
144 u32 mask);
145void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
146
147static inline void crypto_set_spawn(struct crypto_spawn *spawn,
148 struct crypto_instance *inst)
149{
150 spawn->inst = inst;
151}
152
153struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
154int crypto_check_attr_type(struct rtattr **tb, u32 type);
155const char *crypto_attr_alg_name(struct rtattr *rta);
156struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
157 const struct crypto_type *frontend,
158 u32 type, u32 mask);
159
160static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
161 u32 type, u32 mask)
162{
163 return crypto_attr_alg2(rta, NULL, type, mask);
164}
165
166int crypto_attr_u32(struct rtattr *rta, u32 *num);
167void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg,
168 unsigned int head);
169struct crypto_instance *crypto_alloc_instance(const char *name,
170 struct crypto_alg *alg);
171
172void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
173int crypto_enqueue_request(struct crypto_queue *queue,
174 struct crypto_async_request *request);
175void *__crypto_dequeue_request(struct crypto_queue *queue, unsigned int offset);
176struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
177int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm);
178
179/* These functions require the input/output to be aligned as u32. */
180void crypto_inc(u8 *a, unsigned int size);
181void crypto_xor(u8 *dst, const u8 *src, unsigned int size);
182
183int blkcipher_walk_done(struct blkcipher_desc *desc,
184 struct blkcipher_walk *walk, int err);
185int blkcipher_walk_virt(struct blkcipher_desc *desc,
186 struct blkcipher_walk *walk);
187int blkcipher_walk_phys(struct blkcipher_desc *desc,
188 struct blkcipher_walk *walk);
189int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
190 struct blkcipher_walk *walk,
191 unsigned int blocksize);
192
193int ablkcipher_walk_done(struct ablkcipher_request *req,
194 struct ablkcipher_walk *walk, int err);
195int ablkcipher_walk_phys(struct ablkcipher_request *req,
196 struct ablkcipher_walk *walk);
197void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
198
199static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
200{
201 return PTR_ALIGN(crypto_tfm_ctx(tfm),
202 crypto_tfm_alg_alignmask(tfm) + 1);
203}
204
205static inline struct crypto_instance *crypto_tfm_alg_instance(
206 struct crypto_tfm *tfm)
207{
208 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
209}
210
211static inline void *crypto_instance_ctx(struct crypto_instance *inst)
212{
213 return inst->__ctx;
214}
215
216static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
217 struct crypto_ablkcipher *tfm)
218{
219 return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
220}
221
222static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
223{
224 return crypto_tfm_ctx(&tfm->base);
225}
226
227static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
228{
229 return crypto_tfm_ctx_aligned(&tfm->base);
230}
231
232static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
233{
234 return &crypto_aead_tfm(tfm)->__crt_alg->cra_aead;
235}
236
237static inline void *crypto_aead_ctx(struct crypto_aead *tfm)
238{
239 return crypto_tfm_ctx(&tfm->base);
240}
241
242static inline struct crypto_instance *crypto_aead_alg_instance(
243 struct crypto_aead *aead)
244{
245 return crypto_tfm_alg_instance(&aead->base);
246}
247
248static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
249 struct crypto_spawn *spawn)
250{
251 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
252 u32 mask = CRYPTO_ALG_TYPE_MASK;
253
254 return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
255}
256
257static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
258{
259 return crypto_tfm_ctx(&tfm->base);
260}
261
262static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
263{
264 return crypto_tfm_ctx_aligned(&tfm->base);
265}
266
267static inline struct crypto_cipher *crypto_spawn_cipher(
268 struct crypto_spawn *spawn)
269{
270 u32 type = CRYPTO_ALG_TYPE_CIPHER;
271 u32 mask = CRYPTO_ALG_TYPE_MASK;
272
273 return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
274}
275
276static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
277{
278 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
279}
280
281static inline struct crypto_hash *crypto_spawn_hash(struct crypto_spawn *spawn)
282{
283 u32 type = CRYPTO_ALG_TYPE_HASH;
284 u32 mask = CRYPTO_ALG_TYPE_HASH_MASK;
285
286 return __crypto_hash_cast(crypto_spawn_tfm(spawn, type, mask));
287}
288
289static inline void *crypto_hash_ctx(struct crypto_hash *tfm)
290{
291 return crypto_tfm_ctx(&tfm->base);
292}
293
294static inline void *crypto_hash_ctx_aligned(struct crypto_hash *tfm)
295{
296 return crypto_tfm_ctx_aligned(&tfm->base);
297}
298
299static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
300 struct scatterlist *dst,
301 struct scatterlist *src,
302 unsigned int nbytes)
303{
304 walk->in.sg = src;
305 walk->out.sg = dst;
306 walk->total = nbytes;
307}
308
309static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
310 struct scatterlist *dst,
311 struct scatterlist *src,
312 unsigned int nbytes)
313{
314 walk->in.sg = src;
315 walk->out.sg = dst;
316 walk->total = nbytes;
317 INIT_LIST_HEAD(&walk->buffers);
318}
319
320static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
321{
322 if (unlikely(!list_empty(&walk->buffers)))
323 __ablkcipher_walk_complete(walk);
324}
325
326static inline struct crypto_async_request *crypto_get_backlog(
327 struct crypto_queue *queue)
328{
329 return queue->backlog == &queue->list ? NULL :
330 container_of(queue->backlog, struct crypto_async_request, list);
331}
332
333static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
334 struct ablkcipher_request *request)
335{
336 return crypto_enqueue_request(queue, &request->base);
337}
338
339static inline struct ablkcipher_request *ablkcipher_dequeue_request(
340 struct crypto_queue *queue)
341{
342 return ablkcipher_request_cast(crypto_dequeue_request(queue));
343}
344
345static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
346{
347 return req->__ctx;
348}
349
350static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
351 struct crypto_ablkcipher *tfm)
352{
353 return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
354}
355
356static inline void *aead_request_ctx(struct aead_request *req)
357{
358 return req->__ctx;
359}
360
361static inline void aead_request_complete(struct aead_request *req, int err)
362{
363 req->base.complete(&req->base, err);
364}
365
366static inline u32 aead_request_flags(struct aead_request *req)
367{
368 return req->base.flags;
369}
370
371static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
372 u32 type, u32 mask)
373{
374 return crypto_attr_alg(tb[1], type, mask);
375}
376
377/*
378 * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
379 * Otherwise returns zero.
380 */
381static inline int crypto_requires_sync(u32 type, u32 mask)
382{
383 return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC;
384}
385
386#endif /* _CRYPTO_ALGAPI_H */
387
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Cryptographic API for algorithms (i.e., low-level API).
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7#ifndef _CRYPTO_ALGAPI_H
8#define _CRYPTO_ALGAPI_H
9
10#include <linux/align.h>
11#include <linux/cache.h>
12#include <linux/crypto.h>
13#include <linux/kconfig.h>
14#include <linux/list.h>
15#include <linux/types.h>
16
17#include <asm/unaligned.h>
18
19/*
20 * Maximum values for blocksize and alignmask, used to allocate
21 * static buffers that are big enough for any combination of
22 * algs and architectures. Ciphers have a lower maximum size.
23 */
24#define MAX_ALGAPI_BLOCKSIZE 160
25#define MAX_ALGAPI_ALIGNMASK 127
26#define MAX_CIPHER_BLOCKSIZE 16
27#define MAX_CIPHER_ALIGNMASK 15
28
29#ifdef ARCH_DMA_MINALIGN
30#define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN
31#else
32#define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN
33#endif
34
35#define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
36
37struct crypto_aead;
38struct crypto_instance;
39struct module;
40struct notifier_block;
41struct rtattr;
42struct seq_file;
43struct sk_buff;
44
45struct crypto_type {
46 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
47 unsigned int (*extsize)(struct crypto_alg *alg);
48 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
49 int (*init_tfm)(struct crypto_tfm *tfm);
50 void (*show)(struct seq_file *m, struct crypto_alg *alg);
51 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
52 void (*free)(struct crypto_instance *inst);
53
54 unsigned int type;
55 unsigned int maskclear;
56 unsigned int maskset;
57 unsigned int tfmsize;
58};
59
60struct crypto_instance {
61 struct crypto_alg alg;
62
63 struct crypto_template *tmpl;
64
65 union {
66 /* Node in list of instances after registration. */
67 struct hlist_node list;
68 /* List of attached spawns before registration. */
69 struct crypto_spawn *spawns;
70 };
71
72 void *__ctx[] CRYPTO_MINALIGN_ATTR;
73};
74
75struct crypto_template {
76 struct list_head list;
77 struct hlist_head instances;
78 struct module *module;
79
80 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
81
82 char name[CRYPTO_MAX_ALG_NAME];
83};
84
85struct crypto_spawn {
86 struct list_head list;
87 struct crypto_alg *alg;
88 union {
89 /* Back pointer to instance after registration.*/
90 struct crypto_instance *inst;
91 /* Spawn list pointer prior to registration. */
92 struct crypto_spawn *next;
93 };
94 const struct crypto_type *frontend;
95 u32 mask;
96 bool dead;
97 bool registered;
98};
99
100struct crypto_queue {
101 struct list_head list;
102 struct list_head *backlog;
103
104 unsigned int qlen;
105 unsigned int max_qlen;
106};
107
108struct scatter_walk {
109 struct scatterlist *sg;
110 unsigned int offset;
111};
112
113struct crypto_attr_alg {
114 char name[CRYPTO_MAX_ALG_NAME];
115};
116
117struct crypto_attr_type {
118 u32 type;
119 u32 mask;
120};
121
122void crypto_mod_put(struct crypto_alg *alg);
123
124int crypto_register_template(struct crypto_template *tmpl);
125int crypto_register_templates(struct crypto_template *tmpls, int count);
126void crypto_unregister_template(struct crypto_template *tmpl);
127void crypto_unregister_templates(struct crypto_template *tmpls, int count);
128struct crypto_template *crypto_lookup_template(const char *name);
129
130int crypto_register_instance(struct crypto_template *tmpl,
131 struct crypto_instance *inst);
132void crypto_unregister_instance(struct crypto_instance *inst);
133
134int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
135 const char *name, u32 type, u32 mask);
136void crypto_drop_spawn(struct crypto_spawn *spawn);
137struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
138 u32 mask);
139void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
140
141struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
142int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
143const char *crypto_attr_alg_name(struct rtattr *rta);
144int crypto_inst_setname(struct crypto_instance *inst, const char *name,
145 struct crypto_alg *alg);
146
147void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
148int crypto_enqueue_request(struct crypto_queue *queue,
149 struct crypto_async_request *request);
150void crypto_enqueue_request_head(struct crypto_queue *queue,
151 struct crypto_async_request *request);
152struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
153static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
154{
155 return queue->qlen;
156}
157
158void crypto_inc(u8 *a, unsigned int size);
159void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
160
161static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
162{
163 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
164 __builtin_constant_p(size) &&
165 (size % sizeof(unsigned long)) == 0) {
166 unsigned long *d = (unsigned long *)dst;
167 unsigned long *s = (unsigned long *)src;
168 unsigned long l;
169
170 while (size > 0) {
171 l = get_unaligned(d) ^ get_unaligned(s++);
172 put_unaligned(l, d++);
173 size -= sizeof(unsigned long);
174 }
175 } else {
176 __crypto_xor(dst, dst, src, size);
177 }
178}
179
180static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
181 unsigned int size)
182{
183 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
184 __builtin_constant_p(size) &&
185 (size % sizeof(unsigned long)) == 0) {
186 unsigned long *d = (unsigned long *)dst;
187 unsigned long *s1 = (unsigned long *)src1;
188 unsigned long *s2 = (unsigned long *)src2;
189 unsigned long l;
190
191 while (size > 0) {
192 l = get_unaligned(s1++) ^ get_unaligned(s2++);
193 put_unaligned(l, d++);
194 size -= sizeof(unsigned long);
195 }
196 } else {
197 __crypto_xor(dst, src1, src2, size);
198 }
199}
200
201static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
202{
203 return tfm->__crt_ctx;
204}
205
206static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm,
207 unsigned int align)
208{
209 if (align <= crypto_tfm_ctx_alignment())
210 align = 1;
211
212 return PTR_ALIGN(crypto_tfm_ctx(tfm), align);
213}
214
215static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
216{
217 return crypto_tfm_ctx_align(tfm, crypto_tfm_alg_alignmask(tfm) + 1);
218}
219
220static inline unsigned int crypto_dma_align(void)
221{
222 return CRYPTO_DMA_ALIGN;
223}
224
225static inline unsigned int crypto_dma_padding(void)
226{
227 return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
228}
229
230static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm)
231{
232 return crypto_tfm_ctx_align(tfm, crypto_dma_align());
233}
234
235static inline struct crypto_instance *crypto_tfm_alg_instance(
236 struct crypto_tfm *tfm)
237{
238 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
239}
240
241static inline void *crypto_instance_ctx(struct crypto_instance *inst)
242{
243 return inst->__ctx;
244}
245
246static inline struct crypto_async_request *crypto_get_backlog(
247 struct crypto_queue *queue)
248{
249 return queue->backlog == &queue->list ? NULL :
250 container_of(queue->backlog, struct crypto_async_request, list);
251}
252
253static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
254{
255 return (algt->type ^ off) & algt->mask & off;
256}
257
258/*
259 * When an algorithm uses another algorithm (e.g., if it's an instance of a
260 * template), these are the flags that should always be set on the "outer"
261 * algorithm if any "inner" algorithm has them set.
262 */
263#define CRYPTO_ALG_INHERITED_FLAGS \
264 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \
265 CRYPTO_ALG_ALLOCATES_MEMORY)
266
267/*
268 * Given the type and mask that specify the flags restrictions on a template
269 * instance being created, return the mask that should be passed to
270 * crypto_grab_*() (along with type=0) to honor any request the user made to
271 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
272 */
273static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
274{
275 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
276}
277
278noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
279
280/**
281 * crypto_memneq - Compare two areas of memory without leaking
282 * timing information.
283 *
284 * @a: One area of memory
285 * @b: Another area of memory
286 * @size: The size of the area.
287 *
288 * Returns 0 when data is equal, 1 otherwise.
289 */
290static inline int crypto_memneq(const void *a, const void *b, size_t size)
291{
292 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
293}
294
295int crypto_register_notifier(struct notifier_block *nb);
296int crypto_unregister_notifier(struct notifier_block *nb);
297
298/* Crypto notification events. */
299enum {
300 CRYPTO_MSG_ALG_REQUEST,
301 CRYPTO_MSG_ALG_REGISTER,
302 CRYPTO_MSG_ALG_LOADED,
303};
304
305#endif /* _CRYPTO_ALGAPI_H */