Loading...
Note: File does not exist in v3.1.
1/* SPDX-License-Identifier: GPL-2.0 */
2
3/*
4 * This file contains definitions from Hyper-V Hypervisor Top-Level Functional
5 * Specification (TLFS):
6 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
7 */
8
9#ifndef _ASM_GENERIC_HYPERV_TLFS_H
10#define _ASM_GENERIC_HYPERV_TLFS_H
11
12#include <linux/types.h>
13#include <linux/bits.h>
14#include <linux/time64.h>
15
16/*
17 * While not explicitly listed in the TLFS, Hyper-V always runs with a page size
18 * of 4096. These definitions are used when communicating with Hyper-V using
19 * guest physical pages and guest physical page addresses, since the guest page
20 * size may not be 4096 on all architectures.
21 */
22#define HV_HYP_PAGE_SHIFT 12
23#define HV_HYP_PAGE_SIZE BIT(HV_HYP_PAGE_SHIFT)
24#define HV_HYP_PAGE_MASK (~(HV_HYP_PAGE_SIZE - 1))
25
26/*
27 * Hyper-V provides two categories of flags relevant to guest VMs. The
28 * "Features" category indicates specific functionality that is available
29 * to guests on this particular instance of Hyper-V. The "Features"
30 * are presented in four groups, each of which is 32 bits. The group A
31 * and B definitions are common across architectures and are listed here.
32 * However, not all flags are relevant on all architectures.
33 *
34 * Groups C and D vary across architectures and are listed in the
35 * architecture specific portion of hyperv-tlfs.h. Some of these flags exist
36 * on multiple architectures, but the bit positions are different so they
37 * cannot appear in the generic portion of hyperv-tlfs.h.
38 *
39 * The "Enlightenments" category provides recommendations on whether to use
40 * specific enlightenments that are available. The Enlighenments are a single
41 * group of 32 bits, but they vary across architectures and are listed in
42 * the architecture specific portion of hyperv-tlfs.h.
43 */
44
45/*
46 * Group A Features.
47 */
48
49/* VP Runtime register available */
50#define HV_MSR_VP_RUNTIME_AVAILABLE BIT(0)
51/* Partition Reference Counter available*/
52#define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1)
53/* Basic SynIC register available */
54#define HV_MSR_SYNIC_AVAILABLE BIT(2)
55/* Synthetic Timer registers available */
56#define HV_MSR_SYNTIMER_AVAILABLE BIT(3)
57/* Virtual APIC assist and VP assist page registers available */
58#define HV_MSR_APIC_ACCESS_AVAILABLE BIT(4)
59/* Hypercall and Guest OS ID registers available*/
60#define HV_MSR_HYPERCALL_AVAILABLE BIT(5)
61/* Access virtual processor index register available*/
62#define HV_MSR_VP_INDEX_AVAILABLE BIT(6)
63/* Virtual system reset register available*/
64#define HV_MSR_RESET_AVAILABLE BIT(7)
65/* Access statistics page registers available */
66#define HV_MSR_STAT_PAGES_AVAILABLE BIT(8)
67/* Partition reference TSC register is available */
68#define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9)
69/* Partition Guest IDLE register is available */
70#define HV_MSR_GUEST_IDLE_AVAILABLE BIT(10)
71/* Partition local APIC and TSC frequency registers available */
72#define HV_ACCESS_FREQUENCY_MSRS BIT(11)
73/* AccessReenlightenmentControls privilege */
74#define HV_ACCESS_REENLIGHTENMENT BIT(13)
75/* AccessTscInvariantControls privilege */
76#define HV_ACCESS_TSC_INVARIANT BIT(15)
77
78/*
79 * Group B features.
80 */
81#define HV_CREATE_PARTITIONS BIT(0)
82#define HV_ACCESS_PARTITION_ID BIT(1)
83#define HV_ACCESS_MEMORY_POOL BIT(2)
84#define HV_ADJUST_MESSAGE_BUFFERS BIT(3)
85#define HV_POST_MESSAGES BIT(4)
86#define HV_SIGNAL_EVENTS BIT(5)
87#define HV_CREATE_PORT BIT(6)
88#define HV_CONNECT_PORT BIT(7)
89#define HV_ACCESS_STATS BIT(8)
90#define HV_DEBUGGING BIT(11)
91#define HV_CPU_MANAGEMENT BIT(12)
92#define HV_ENABLE_EXTENDED_HYPERCALLS BIT(20)
93#define HV_ISOLATION BIT(22)
94
95/*
96 * TSC page layout.
97 */
98struct ms_hyperv_tsc_page {
99 volatile u32 tsc_sequence;
100 u32 reserved1;
101 volatile u64 tsc_scale;
102 volatile s64 tsc_offset;
103} __packed;
104
105union hv_reference_tsc_msr {
106 u64 as_uint64;
107 struct {
108 u64 enable:1;
109 u64 reserved:11;
110 u64 pfn:52;
111 } __packed;
112};
113
114/*
115 * The guest OS needs to register the guest ID with the hypervisor.
116 * The guest ID is a 64 bit entity and the structure of this ID is
117 * specified in the Hyper-V specification:
118 *
119 * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx
120 *
121 * While the current guideline does not specify how Linux guest ID(s)
122 * need to be generated, our plan is to publish the guidelines for
123 * Linux and other guest operating systems that currently are hosted
124 * on Hyper-V. The implementation here conforms to this yet
125 * unpublished guidelines.
126 *
127 *
128 * Bit(s)
129 * 63 - Indicates if the OS is Open Source or not; 1 is Open Source
130 * 62:56 - Os Type; Linux is 0x100
131 * 55:48 - Distro specific identification
132 * 47:16 - Linux kernel version number
133 * 15:0 - Distro specific identification
134 *
135 *
136 */
137
138#define HV_LINUX_VENDOR_ID 0x8100
139
140/*
141 * Crash notification flags.
142 */
143#define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62)
144#define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63)
145
146/* Declare the various hypercall operations. */
147#define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE 0x0002
148#define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST 0x0003
149#define HVCALL_NOTIFY_LONG_SPIN_WAIT 0x0008
150#define HVCALL_SEND_IPI 0x000b
151#define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX 0x0013
152#define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX 0x0014
153#define HVCALL_SEND_IPI_EX 0x0015
154#define HVCALL_GET_PARTITION_ID 0x0046
155#define HVCALL_DEPOSIT_MEMORY 0x0048
156#define HVCALL_CREATE_VP 0x004e
157#define HVCALL_GET_VP_REGISTERS 0x0050
158#define HVCALL_SET_VP_REGISTERS 0x0051
159#define HVCALL_POST_MESSAGE 0x005c
160#define HVCALL_SIGNAL_EVENT 0x005d
161#define HVCALL_POST_DEBUG_DATA 0x0069
162#define HVCALL_RETRIEVE_DEBUG_DATA 0x006a
163#define HVCALL_RESET_DEBUG_SESSION 0x006b
164#define HVCALL_ADD_LOGICAL_PROCESSOR 0x0076
165#define HVCALL_MAP_DEVICE_INTERRUPT 0x007c
166#define HVCALL_UNMAP_DEVICE_INTERRUPT 0x007d
167#define HVCALL_RETARGET_INTERRUPT 0x007e
168#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af
169#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0
170#define HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY 0x00db
171
172/* Extended hypercalls */
173#define HV_EXT_CALL_QUERY_CAPABILITIES 0x8001
174#define HV_EXT_CALL_MEMORY_HEAT_HINT 0x8003
175
176#define HV_FLUSH_ALL_PROCESSORS BIT(0)
177#define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1)
178#define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2)
179#define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3)
180
181/* Extended capability bits */
182#define HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT BIT(8)
183
184enum HV_GENERIC_SET_FORMAT {
185 HV_GENERIC_SET_SPARSE_4K,
186 HV_GENERIC_SET_ALL,
187};
188
189#define HV_PARTITION_ID_SELF ((u64)-1)
190#define HV_VP_INDEX_SELF ((u32)-2)
191
192#define HV_HYPERCALL_RESULT_MASK GENMASK_ULL(15, 0)
193#define HV_HYPERCALL_FAST_BIT BIT(16)
194#define HV_HYPERCALL_VARHEAD_OFFSET 17
195#define HV_HYPERCALL_VARHEAD_MASK GENMASK_ULL(26, 17)
196#define HV_HYPERCALL_RSVD0_MASK GENMASK_ULL(31, 27)
197#define HV_HYPERCALL_REP_COMP_OFFSET 32
198#define HV_HYPERCALL_REP_COMP_1 BIT_ULL(32)
199#define HV_HYPERCALL_REP_COMP_MASK GENMASK_ULL(43, 32)
200#define HV_HYPERCALL_RSVD1_MASK GENMASK_ULL(47, 44)
201#define HV_HYPERCALL_REP_START_OFFSET 48
202#define HV_HYPERCALL_REP_START_MASK GENMASK_ULL(59, 48)
203#define HV_HYPERCALL_RSVD2_MASK GENMASK_ULL(63, 60)
204#define HV_HYPERCALL_RSVD_MASK (HV_HYPERCALL_RSVD0_MASK | \
205 HV_HYPERCALL_RSVD1_MASK | \
206 HV_HYPERCALL_RSVD2_MASK)
207
208/* hypercall status code */
209#define HV_STATUS_SUCCESS 0
210#define HV_STATUS_INVALID_HYPERCALL_CODE 2
211#define HV_STATUS_INVALID_HYPERCALL_INPUT 3
212#define HV_STATUS_INVALID_ALIGNMENT 4
213#define HV_STATUS_INVALID_PARAMETER 5
214#define HV_STATUS_ACCESS_DENIED 6
215#define HV_STATUS_OPERATION_DENIED 8
216#define HV_STATUS_INSUFFICIENT_MEMORY 11
217#define HV_STATUS_INVALID_PORT_ID 17
218#define HV_STATUS_INVALID_CONNECTION_ID 18
219#define HV_STATUS_INSUFFICIENT_BUFFERS 19
220
221/*
222 * The Hyper-V TimeRefCount register and the TSC
223 * page provide a guest VM clock with 100ns tick rate
224 */
225#define HV_CLOCK_HZ (NSEC_PER_SEC/100)
226
227/* Define the number of synthetic interrupt sources. */
228#define HV_SYNIC_SINT_COUNT (16)
229/* Define the expected SynIC version. */
230#define HV_SYNIC_VERSION_1 (0x1)
231/* Valid SynIC vectors are 16-255. */
232#define HV_SYNIC_FIRST_VALID_VECTOR (16)
233
234#define HV_SYNIC_CONTROL_ENABLE (1ULL << 0)
235#define HV_SYNIC_SIMP_ENABLE (1ULL << 0)
236#define HV_SYNIC_SIEFP_ENABLE (1ULL << 0)
237#define HV_SYNIC_SINT_MASKED (1ULL << 16)
238#define HV_SYNIC_SINT_AUTO_EOI (1ULL << 17)
239#define HV_SYNIC_SINT_VECTOR_MASK (0xFF)
240
241#define HV_SYNIC_STIMER_COUNT (4)
242
243/* Define synthetic interrupt controller message constants. */
244#define HV_MESSAGE_SIZE (256)
245#define HV_MESSAGE_PAYLOAD_BYTE_COUNT (240)
246#define HV_MESSAGE_PAYLOAD_QWORD_COUNT (30)
247
248/*
249 * Define hypervisor message types. Some of the message types
250 * are x86/x64 specific, but there's no good way to separate
251 * them out into the arch-specific version of hyperv-tlfs.h
252 * because C doesn't provide a way to extend enum types.
253 * Keeping them all in the arch neutral hyperv-tlfs.h seems
254 * the least messy compromise.
255 */
256enum hv_message_type {
257 HVMSG_NONE = 0x00000000,
258
259 /* Memory access messages. */
260 HVMSG_UNMAPPED_GPA = 0x80000000,
261 HVMSG_GPA_INTERCEPT = 0x80000001,
262
263 /* Timer notification messages. */
264 HVMSG_TIMER_EXPIRED = 0x80000010,
265
266 /* Error messages. */
267 HVMSG_INVALID_VP_REGISTER_VALUE = 0x80000020,
268 HVMSG_UNRECOVERABLE_EXCEPTION = 0x80000021,
269 HVMSG_UNSUPPORTED_FEATURE = 0x80000022,
270
271 /* Trace buffer complete messages. */
272 HVMSG_EVENTLOG_BUFFERCOMPLETE = 0x80000040,
273
274 /* Platform-specific processor intercept messages. */
275 HVMSG_X64_IOPORT_INTERCEPT = 0x80010000,
276 HVMSG_X64_MSR_INTERCEPT = 0x80010001,
277 HVMSG_X64_CPUID_INTERCEPT = 0x80010002,
278 HVMSG_X64_EXCEPTION_INTERCEPT = 0x80010003,
279 HVMSG_X64_APIC_EOI = 0x80010004,
280 HVMSG_X64_LEGACY_FP_ERROR = 0x80010005
281};
282
283/* Define synthetic interrupt controller message flags. */
284union hv_message_flags {
285 __u8 asu8;
286 struct {
287 __u8 msg_pending:1;
288 __u8 reserved:7;
289 } __packed;
290};
291
292/* Define port identifier type. */
293union hv_port_id {
294 __u32 asu32;
295 struct {
296 __u32 id:24;
297 __u32 reserved:8;
298 } __packed u;
299};
300
301/* Define synthetic interrupt controller message header. */
302struct hv_message_header {
303 __u32 message_type;
304 __u8 payload_size;
305 union hv_message_flags message_flags;
306 __u8 reserved[2];
307 union {
308 __u64 sender;
309 union hv_port_id port;
310 };
311} __packed;
312
313/* Define synthetic interrupt controller message format. */
314struct hv_message {
315 struct hv_message_header header;
316 union {
317 __u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT];
318 } u;
319} __packed;
320
321/* Define the synthetic interrupt message page layout. */
322struct hv_message_page {
323 struct hv_message sint_message[HV_SYNIC_SINT_COUNT];
324} __packed;
325
326/* Define timer message payload structure. */
327struct hv_timer_message_payload {
328 __u32 timer_index;
329 __u32 reserved;
330 __u64 expiration_time; /* When the timer expired */
331 __u64 delivery_time; /* When the message was delivered */
332} __packed;
333
334
335/* Define synthetic interrupt controller flag constants. */
336#define HV_EVENT_FLAGS_COUNT (256 * 8)
337#define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long))
338
339/*
340 * Synthetic timer configuration.
341 */
342union hv_stimer_config {
343 u64 as_uint64;
344 struct {
345 u64 enable:1;
346 u64 periodic:1;
347 u64 lazy:1;
348 u64 auto_enable:1;
349 u64 apic_vector:8;
350 u64 direct_mode:1;
351 u64 reserved_z0:3;
352 u64 sintx:4;
353 u64 reserved_z1:44;
354 } __packed;
355};
356
357
358/* Define the synthetic interrupt controller event flags format. */
359union hv_synic_event_flags {
360 unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT];
361};
362
363/* Define SynIC control register. */
364union hv_synic_scontrol {
365 u64 as_uint64;
366 struct {
367 u64 enable:1;
368 u64 reserved:63;
369 } __packed;
370};
371
372/* Define synthetic interrupt source. */
373union hv_synic_sint {
374 u64 as_uint64;
375 struct {
376 u64 vector:8;
377 u64 reserved1:8;
378 u64 masked:1;
379 u64 auto_eoi:1;
380 u64 polling:1;
381 u64 reserved2:45;
382 } __packed;
383};
384
385/* Define the format of the SIMP register */
386union hv_synic_simp {
387 u64 as_uint64;
388 struct {
389 u64 simp_enabled:1;
390 u64 preserved:11;
391 u64 base_simp_gpa:52;
392 } __packed;
393};
394
395/* Define the format of the SIEFP register */
396union hv_synic_siefp {
397 u64 as_uint64;
398 struct {
399 u64 siefp_enabled:1;
400 u64 preserved:11;
401 u64 base_siefp_gpa:52;
402 } __packed;
403};
404
405struct hv_vpset {
406 u64 format;
407 u64 valid_bank_mask;
408 u64 bank_contents[];
409} __packed;
410
411/* The maximum number of sparse vCPU banks which can be encoded by 'struct hv_vpset' */
412#define HV_MAX_SPARSE_VCPU_BANKS (64)
413/* The number of vCPUs in one sparse bank */
414#define HV_VCPUS_PER_SPARSE_BANK (64)
415
416/* HvCallSendSyntheticClusterIpi hypercall */
417struct hv_send_ipi {
418 u32 vector;
419 u32 reserved;
420 u64 cpu_mask;
421} __packed;
422
423/* HvCallSendSyntheticClusterIpiEx hypercall */
424struct hv_send_ipi_ex {
425 u32 vector;
426 u32 reserved;
427 struct hv_vpset vp_set;
428} __packed;
429
430/* HvFlushGuestPhysicalAddressSpace hypercalls */
431struct hv_guest_mapping_flush {
432 u64 address_space;
433 u64 flags;
434} __packed;
435
436/*
437 * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited
438 * by the bitwidth of "additional_pages" in union hv_gpa_page_range.
439 */
440#define HV_MAX_FLUSH_PAGES (2048)
441#define HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB 0
442#define HV_GPA_PAGE_RANGE_PAGE_SIZE_1GB 1
443
444/* HvFlushGuestPhysicalAddressList, HvExtCallMemoryHeatHint hypercall */
445union hv_gpa_page_range {
446 u64 address_space;
447 struct {
448 u64 additional_pages:11;
449 u64 largepage:1;
450 u64 basepfn:52;
451 } page;
452 struct {
453 u64 reserved:12;
454 u64 page_size:1;
455 u64 reserved1:8;
456 u64 base_large_pfn:43;
457 };
458};
459
460/*
461 * All input flush parameters should be in single page. The max flush
462 * count is equal with how many entries of union hv_gpa_page_range can
463 * be populated into the input parameter page.
464 */
465#define HV_MAX_FLUSH_REP_COUNT ((HV_HYP_PAGE_SIZE - 2 * sizeof(u64)) / \
466 sizeof(union hv_gpa_page_range))
467
468struct hv_guest_mapping_flush_list {
469 u64 address_space;
470 u64 flags;
471 union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT];
472};
473
474/* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
475struct hv_tlb_flush {
476 u64 address_space;
477 u64 flags;
478 u64 processor_mask;
479 u64 gva_list[];
480} __packed;
481
482/* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
483struct hv_tlb_flush_ex {
484 u64 address_space;
485 u64 flags;
486 struct hv_vpset hv_vp_set;
487 u64 gva_list[];
488} __packed;
489
490/* HvGetPartitionId hypercall (output only) */
491struct hv_get_partition_id {
492 u64 partition_id;
493} __packed;
494
495/* HvDepositMemory hypercall */
496struct hv_deposit_memory {
497 u64 partition_id;
498 u64 gpa_page_list[];
499} __packed;
500
501struct hv_proximity_domain_flags {
502 u32 proximity_preferred : 1;
503 u32 reserved : 30;
504 u32 proximity_info_valid : 1;
505} __packed;
506
507/* Not a union in windows but useful for zeroing */
508union hv_proximity_domain_info {
509 struct {
510 u32 domain_id;
511 struct hv_proximity_domain_flags flags;
512 };
513 u64 as_uint64;
514} __packed;
515
516struct hv_lp_startup_status {
517 u64 hv_status;
518 u64 substatus1;
519 u64 substatus2;
520 u64 substatus3;
521 u64 substatus4;
522 u64 substatus5;
523 u64 substatus6;
524} __packed;
525
526/* HvAddLogicalProcessor hypercall */
527struct hv_add_logical_processor_in {
528 u32 lp_index;
529 u32 apic_id;
530 union hv_proximity_domain_info proximity_domain_info;
531 u64 flags;
532} __packed;
533
534struct hv_add_logical_processor_out {
535 struct hv_lp_startup_status startup_status;
536} __packed;
537
538enum HV_SUBNODE_TYPE
539{
540 HvSubnodeAny = 0,
541 HvSubnodeSocket = 1,
542 HvSubnodeAmdNode = 2,
543 HvSubnodeL3 = 3,
544 HvSubnodeCount = 4,
545 HvSubnodeInvalid = -1
546};
547
548/* HvCreateVp hypercall */
549struct hv_create_vp {
550 u64 partition_id;
551 u32 vp_index;
552 u8 padding[3];
553 u8 subnode_type;
554 u64 subnode_id;
555 union hv_proximity_domain_info proximity_domain_info;
556 u64 flags;
557} __packed;
558
559enum hv_interrupt_source {
560 HV_INTERRUPT_SOURCE_MSI = 1, /* MSI and MSI-X */
561 HV_INTERRUPT_SOURCE_IOAPIC,
562};
563
564union hv_ioapic_rte {
565 u64 as_uint64;
566
567 struct {
568 u32 vector:8;
569 u32 delivery_mode:3;
570 u32 destination_mode:1;
571 u32 delivery_status:1;
572 u32 interrupt_polarity:1;
573 u32 remote_irr:1;
574 u32 trigger_mode:1;
575 u32 interrupt_mask:1;
576 u32 reserved1:15;
577
578 u32 reserved2:24;
579 u32 destination_id:8;
580 };
581
582 struct {
583 u32 low_uint32;
584 u32 high_uint32;
585 };
586} __packed;
587
588struct hv_interrupt_entry {
589 u32 source;
590 u32 reserved1;
591 union {
592 union hv_msi_entry msi_entry;
593 union hv_ioapic_rte ioapic_rte;
594 };
595} __packed;
596
597/*
598 * flags for hv_device_interrupt_target.flags
599 */
600#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
601#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
602
603struct hv_device_interrupt_target {
604 u32 vector;
605 u32 flags;
606 union {
607 u64 vp_mask;
608 struct hv_vpset vp_set;
609 };
610} __packed;
611
612struct hv_retarget_device_interrupt {
613 u64 partition_id; /* use "self" */
614 u64 device_id;
615 struct hv_interrupt_entry int_entry;
616 u64 reserved2;
617 struct hv_device_interrupt_target int_target;
618} __packed __aligned(8);
619
620
621/* HvGetVpRegisters hypercall input with variable size reg name list*/
622struct hv_get_vp_registers_input {
623 struct {
624 u64 partitionid;
625 u32 vpindex;
626 u8 inputvtl;
627 u8 padding[3];
628 } header;
629 struct input {
630 u32 name0;
631 u32 name1;
632 } element[];
633} __packed;
634
635
636/* HvGetVpRegisters returns an array of these output elements */
637struct hv_get_vp_registers_output {
638 union {
639 struct {
640 u32 a;
641 u32 b;
642 u32 c;
643 u32 d;
644 } as32 __packed;
645 struct {
646 u64 low;
647 u64 high;
648 } as64 __packed;
649 };
650};
651
652/* HvSetVpRegisters hypercall with variable size reg name/value list*/
653struct hv_set_vp_registers_input {
654 struct {
655 u64 partitionid;
656 u32 vpindex;
657 u8 inputvtl;
658 u8 padding[3];
659 } header;
660 struct {
661 u32 name;
662 u32 padding1;
663 u64 padding2;
664 u64 valuelow;
665 u64 valuehigh;
666 } element[];
667} __packed;
668
669enum hv_device_type {
670 HV_DEVICE_TYPE_LOGICAL = 0,
671 HV_DEVICE_TYPE_PCI = 1,
672 HV_DEVICE_TYPE_IOAPIC = 2,
673 HV_DEVICE_TYPE_ACPI = 3,
674};
675
676typedef u16 hv_pci_rid;
677typedef u16 hv_pci_segment;
678typedef u64 hv_logical_device_id;
679union hv_pci_bdf {
680 u16 as_uint16;
681
682 struct {
683 u8 function:3;
684 u8 device:5;
685 u8 bus;
686 };
687} __packed;
688
689union hv_pci_bus_range {
690 u16 as_uint16;
691
692 struct {
693 u8 subordinate_bus;
694 u8 secondary_bus;
695 };
696} __packed;
697
698union hv_device_id {
699 u64 as_uint64;
700
701 struct {
702 u64 reserved0:62;
703 u64 device_type:2;
704 };
705
706 /* HV_DEVICE_TYPE_LOGICAL */
707 struct {
708 u64 id:62;
709 u64 device_type:2;
710 } logical;
711
712 /* HV_DEVICE_TYPE_PCI */
713 struct {
714 union {
715 hv_pci_rid rid;
716 union hv_pci_bdf bdf;
717 };
718
719 hv_pci_segment segment;
720 union hv_pci_bus_range shadow_bus_range;
721
722 u16 phantom_function_bits:2;
723 u16 source_shadow:1;
724
725 u16 rsvdz0:11;
726 u16 device_type:2;
727 } pci;
728
729 /* HV_DEVICE_TYPE_IOAPIC */
730 struct {
731 u8 ioapic_id;
732 u8 rsvdz0;
733 u16 rsvdz1;
734 u16 rsvdz2;
735
736 u16 rsvdz3:14;
737 u16 device_type:2;
738 } ioapic;
739
740 /* HV_DEVICE_TYPE_ACPI */
741 struct {
742 u32 input_mapping_base;
743 u32 input_mapping_count:30;
744 u32 device_type:2;
745 } acpi;
746} __packed;
747
748enum hv_interrupt_trigger_mode {
749 HV_INTERRUPT_TRIGGER_MODE_EDGE = 0,
750 HV_INTERRUPT_TRIGGER_MODE_LEVEL = 1,
751};
752
753struct hv_device_interrupt_descriptor {
754 u32 interrupt_type;
755 u32 trigger_mode;
756 u32 vector_count;
757 u32 reserved;
758 struct hv_device_interrupt_target target;
759} __packed;
760
761struct hv_input_map_device_interrupt {
762 u64 partition_id;
763 u64 device_id;
764 u64 flags;
765 struct hv_interrupt_entry logical_interrupt_entry;
766 struct hv_device_interrupt_descriptor interrupt_descriptor;
767} __packed;
768
769struct hv_output_map_device_interrupt {
770 struct hv_interrupt_entry interrupt_entry;
771} __packed;
772
773struct hv_input_unmap_device_interrupt {
774 u64 partition_id;
775 u64 device_id;
776 struct hv_interrupt_entry interrupt_entry;
777} __packed;
778
779#define HV_SOURCE_SHADOW_NONE 0x0
780#define HV_SOURCE_SHADOW_BRIDGE_BUS_RANGE 0x1
781
782/*
783 * The whole argument should fit in a page to be able to pass to the hypervisor
784 * in one hypercall.
785 */
786#define HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES \
787 ((HV_HYP_PAGE_SIZE - sizeof(struct hv_memory_hint)) / \
788 sizeof(union hv_gpa_page_range))
789
790/* HvExtCallMemoryHeatHint hypercall */
791#define HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD 2
792struct hv_memory_hint {
793 u64 type:2;
794 u64 reserved:62;
795 union hv_gpa_page_range ranges[];
796} __packed;
797
798#endif