Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Hardware Feedback Interface Driver
4 *
5 * Copyright (c) 2021, Intel Corporation.
6 *
7 * Authors: Aubrey Li <aubrey.li@linux.intel.com>
8 * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
9 *
10 *
11 * The Hardware Feedback Interface provides a performance and energy efficiency
12 * capability information for each CPU in the system. Depending on the processor
13 * model, hardware may periodically update these capabilities as a result of
14 * changes in the operating conditions (e.g., power limits or thermal
15 * constraints). On other processor models, there is a single HFI update
16 * at boot.
17 *
18 * This file provides functionality to process HFI updates and relay these
19 * updates to userspace.
20 */
21
22#define pr_fmt(fmt) "intel-hfi: " fmt
23
24#include <linux/bitops.h>
25#include <linux/cpufeature.h>
26#include <linux/cpumask.h>
27#include <linux/gfp.h>
28#include <linux/io.h>
29#include <linux/kernel.h>
30#include <linux/math.h>
31#include <linux/mutex.h>
32#include <linux/percpu-defs.h>
33#include <linux/printk.h>
34#include <linux/processor.h>
35#include <linux/slab.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/topology.h>
39#include <linux/workqueue.h>
40
41#include <asm/msr.h>
42
43#include "../thermal_core.h"
44#include "intel_hfi.h"
45#include "thermal_interrupt.h"
46
47/* Hardware Feedback Interface MSR configuration bits */
48#define HW_FEEDBACK_PTR_VALID_BIT BIT(0)
49#define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT BIT(0)
50
51/* CPUID detection and enumeration definitions for HFI */
52
53#define CPUID_HFI_LEAF 6
54
55union hfi_capabilities {
56 struct {
57 u8 performance:1;
58 u8 energy_efficiency:1;
59 u8 __reserved:6;
60 } split;
61 u8 bits;
62};
63
64union cpuid6_edx {
65 struct {
66 union hfi_capabilities capabilities;
67 u32 table_pages:4;
68 u32 __reserved:4;
69 s32 index:16;
70 } split;
71 u32 full;
72};
73
74/**
75 * struct hfi_cpu_data - HFI capabilities per CPU
76 * @perf_cap: Performance capability
77 * @ee_cap: Energy efficiency capability
78 *
79 * Capabilities of a logical processor in the HFI table. These capabilities are
80 * unitless.
81 */
82struct hfi_cpu_data {
83 u8 perf_cap;
84 u8 ee_cap;
85} __packed;
86
87/**
88 * struct hfi_hdr - Header of the HFI table
89 * @perf_updated: Hardware updated performance capabilities
90 * @ee_updated: Hardware updated energy efficiency capabilities
91 *
92 * Properties of the data in an HFI table.
93 */
94struct hfi_hdr {
95 u8 perf_updated;
96 u8 ee_updated;
97} __packed;
98
99/**
100 * struct hfi_instance - Representation of an HFI instance (i.e., a table)
101 * @local_table: Base of the local copy of the HFI table
102 * @timestamp: Timestamp of the last update of the local table.
103 * Located at the base of the local table.
104 * @hdr: Base address of the header of the local table
105 * @data: Base address of the data of the local table
106 * @cpus: CPUs represented in this HFI table instance
107 * @hw_table: Pointer to the HFI table of this instance
108 * @update_work: Delayed work to process HFI updates
109 * @table_lock: Lock to protect acceses to the table of this instance
110 * @event_lock: Lock to process HFI interrupts
111 *
112 * A set of parameters to parse and navigate a specific HFI table.
113 */
114struct hfi_instance {
115 union {
116 void *local_table;
117 u64 *timestamp;
118 };
119 void *hdr;
120 void *data;
121 cpumask_var_t cpus;
122 void *hw_table;
123 struct delayed_work update_work;
124 raw_spinlock_t table_lock;
125 raw_spinlock_t event_lock;
126};
127
128/**
129 * struct hfi_features - Supported HFI features
130 * @nr_table_pages: Size of the HFI table in 4KB pages
131 * @cpu_stride: Stride size to locate the capability data of a logical
132 * processor within the table (i.e., row stride)
133 * @hdr_size: Size of the table header
134 *
135 * Parameters and supported features that are common to all HFI instances
136 */
137struct hfi_features {
138 size_t nr_table_pages;
139 unsigned int cpu_stride;
140 unsigned int hdr_size;
141};
142
143/**
144 * struct hfi_cpu_info - Per-CPU attributes to consume HFI data
145 * @index: Row of this CPU in its HFI table
146 * @hfi_instance: Attributes of the HFI table to which this CPU belongs
147 *
148 * Parameters to link a logical processor to an HFI table and a row within it.
149 */
150struct hfi_cpu_info {
151 s16 index;
152 struct hfi_instance *hfi_instance;
153};
154
155static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 };
156
157static int max_hfi_instances;
158static struct hfi_instance *hfi_instances;
159
160static struct hfi_features hfi_features;
161static DEFINE_MUTEX(hfi_instance_lock);
162
163static struct workqueue_struct *hfi_updates_wq;
164#define HFI_UPDATE_INTERVAL HZ
165#define HFI_MAX_THERM_NOTIFY_COUNT 16
166
167static void get_hfi_caps(struct hfi_instance *hfi_instance,
168 struct thermal_genl_cpu_caps *cpu_caps)
169{
170 int cpu, i = 0;
171
172 raw_spin_lock_irq(&hfi_instance->table_lock);
173 for_each_cpu(cpu, hfi_instance->cpus) {
174 struct hfi_cpu_data *caps;
175 s16 index;
176
177 index = per_cpu(hfi_cpu_info, cpu).index;
178 caps = hfi_instance->data + index * hfi_features.cpu_stride;
179 cpu_caps[i].cpu = cpu;
180
181 /*
182 * Scale performance and energy efficiency to
183 * the [0, 1023] interval that thermal netlink uses.
184 */
185 cpu_caps[i].performance = caps->perf_cap << 2;
186 cpu_caps[i].efficiency = caps->ee_cap << 2;
187
188 ++i;
189 }
190 raw_spin_unlock_irq(&hfi_instance->table_lock);
191}
192
193/*
194 * Call update_capabilities() when there are changes in the HFI table.
195 */
196static void update_capabilities(struct hfi_instance *hfi_instance)
197{
198 struct thermal_genl_cpu_caps *cpu_caps;
199 int i = 0, cpu_count;
200
201 /* CPUs may come online/offline while processing an HFI update. */
202 mutex_lock(&hfi_instance_lock);
203
204 cpu_count = cpumask_weight(hfi_instance->cpus);
205
206 /* No CPUs to report in this hfi_instance. */
207 if (!cpu_count)
208 goto out;
209
210 cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL);
211 if (!cpu_caps)
212 goto out;
213
214 get_hfi_caps(hfi_instance, cpu_caps);
215
216 if (cpu_count < HFI_MAX_THERM_NOTIFY_COUNT)
217 goto last_cmd;
218
219 /* Process complete chunks of HFI_MAX_THERM_NOTIFY_COUNT capabilities. */
220 for (i = 0;
221 (i + HFI_MAX_THERM_NOTIFY_COUNT) <= cpu_count;
222 i += HFI_MAX_THERM_NOTIFY_COUNT)
223 thermal_genl_cpu_capability_event(HFI_MAX_THERM_NOTIFY_COUNT,
224 &cpu_caps[i]);
225
226 cpu_count = cpu_count - i;
227
228last_cmd:
229 /* Process the remaining capabilities if any. */
230 if (cpu_count)
231 thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]);
232
233 kfree(cpu_caps);
234out:
235 mutex_unlock(&hfi_instance_lock);
236}
237
238static void hfi_update_work_fn(struct work_struct *work)
239{
240 struct hfi_instance *hfi_instance;
241
242 hfi_instance = container_of(to_delayed_work(work), struct hfi_instance,
243 update_work);
244
245 update_capabilities(hfi_instance);
246}
247
248void intel_hfi_process_event(__u64 pkg_therm_status_msr_val)
249{
250 struct hfi_instance *hfi_instance;
251 int cpu = smp_processor_id();
252 struct hfi_cpu_info *info;
253 u64 new_timestamp, msr, hfi;
254
255 if (!pkg_therm_status_msr_val)
256 return;
257
258 info = &per_cpu(hfi_cpu_info, cpu);
259 if (!info)
260 return;
261
262 /*
263 * A CPU is linked to its HFI instance before the thermal vector in the
264 * local APIC is unmasked. Hence, info->hfi_instance cannot be NULL
265 * when receiving an HFI event.
266 */
267 hfi_instance = info->hfi_instance;
268 if (unlikely(!hfi_instance)) {
269 pr_debug("Received event on CPU %d but instance was null", cpu);
270 return;
271 }
272
273 /*
274 * On most systems, all CPUs in the package receive a package-level
275 * thermal interrupt when there is an HFI update. It is sufficient to
276 * let a single CPU to acknowledge the update and queue work to
277 * process it. The remaining CPUs can resume their work.
278 */
279 if (!raw_spin_trylock(&hfi_instance->event_lock))
280 return;
281
282 rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr);
283 hfi = msr & PACKAGE_THERM_STATUS_HFI_UPDATED;
284 if (!hfi) {
285 raw_spin_unlock(&hfi_instance->event_lock);
286 return;
287 }
288
289 /*
290 * Ack duplicate update. Since there is an active HFI
291 * status from HW, it must be a new event, not a case
292 * where a lagging CPU entered the locked region.
293 */
294 new_timestamp = *(u64 *)hfi_instance->hw_table;
295 if (*hfi_instance->timestamp == new_timestamp) {
296 thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
297 raw_spin_unlock(&hfi_instance->event_lock);
298 return;
299 }
300
301 raw_spin_lock(&hfi_instance->table_lock);
302
303 /*
304 * Copy the updated table into our local copy. This includes the new
305 * timestamp.
306 */
307 memcpy(hfi_instance->local_table, hfi_instance->hw_table,
308 hfi_features.nr_table_pages << PAGE_SHIFT);
309
310 /*
311 * Let hardware know that we are done reading the HFI table and it is
312 * free to update it again.
313 */
314 thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
315
316 raw_spin_unlock(&hfi_instance->table_lock);
317 raw_spin_unlock(&hfi_instance->event_lock);
318
319 queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work,
320 HFI_UPDATE_INTERVAL);
321}
322
323static void init_hfi_cpu_index(struct hfi_cpu_info *info)
324{
325 union cpuid6_edx edx;
326
327 /* Do not re-read @cpu's index if it has already been initialized. */
328 if (info->index > -1)
329 return;
330
331 edx.full = cpuid_edx(CPUID_HFI_LEAF);
332 info->index = edx.split.index;
333}
334
335/*
336 * The format of the HFI table depends on the number of capabilities that the
337 * hardware supports. Keep a data structure to navigate the table.
338 */
339static void init_hfi_instance(struct hfi_instance *hfi_instance)
340{
341 /* The HFI header is below the time-stamp. */
342 hfi_instance->hdr = hfi_instance->local_table +
343 sizeof(*hfi_instance->timestamp);
344
345 /* The HFI data starts below the header. */
346 hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size;
347}
348
349/**
350 * intel_hfi_online() - Enable HFI on @cpu
351 * @cpu: CPU in which the HFI will be enabled
352 *
353 * Enable the HFI to be used in @cpu. The HFI is enabled at the die/package
354 * level. The first CPU in the die/package to come online does the full HFI
355 * initialization. Subsequent CPUs will just link themselves to the HFI
356 * instance of their die/package.
357 *
358 * This function is called before enabling the thermal vector in the local APIC
359 * in order to ensure that @cpu has an associated HFI instance when it receives
360 * an HFI event.
361 */
362void intel_hfi_online(unsigned int cpu)
363{
364 struct hfi_instance *hfi_instance;
365 struct hfi_cpu_info *info;
366 phys_addr_t hw_table_pa;
367 u64 msr_val;
368 u16 die_id;
369
370 /* Nothing to do if hfi_instances are missing. */
371 if (!hfi_instances)
372 return;
373
374 /*
375 * Link @cpu to the HFI instance of its package/die. It does not
376 * matter whether the instance has been initialized.
377 */
378 info = &per_cpu(hfi_cpu_info, cpu);
379 die_id = topology_logical_die_id(cpu);
380 hfi_instance = info->hfi_instance;
381 if (!hfi_instance) {
382 if (die_id >= max_hfi_instances)
383 return;
384
385 hfi_instance = &hfi_instances[die_id];
386 info->hfi_instance = hfi_instance;
387 }
388
389 init_hfi_cpu_index(info);
390
391 /*
392 * Now check if the HFI instance of the package/die of @cpu has been
393 * initialized (by checking its header). In such case, all we have to
394 * do is to add @cpu to this instance's cpumask.
395 */
396 mutex_lock(&hfi_instance_lock);
397 if (hfi_instance->hdr) {
398 cpumask_set_cpu(cpu, hfi_instance->cpus);
399 goto unlock;
400 }
401
402 /*
403 * Hardware is programmed with the physical address of the first page
404 * frame of the table. Hence, the allocated memory must be page-aligned.
405 */
406 hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages,
407 GFP_KERNEL | __GFP_ZERO);
408 if (!hfi_instance->hw_table)
409 goto unlock;
410
411 hw_table_pa = virt_to_phys(hfi_instance->hw_table);
412
413 /*
414 * Allocate memory to keep a local copy of the table that
415 * hardware generates.
416 */
417 hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT,
418 GFP_KERNEL);
419 if (!hfi_instance->local_table)
420 goto free_hw_table;
421
422 /*
423 * Program the address of the feedback table of this die/package. On
424 * some processors, hardware remembers the old address of the HFI table
425 * even after having been reprogrammed and re-enabled. Thus, do not free
426 * the pages allocated for the table or reprogram the hardware with a
427 * new base address. Namely, program the hardware only once.
428 */
429 msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT;
430 wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val);
431
432 init_hfi_instance(hfi_instance);
433
434 INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn);
435 raw_spin_lock_init(&hfi_instance->table_lock);
436 raw_spin_lock_init(&hfi_instance->event_lock);
437
438 cpumask_set_cpu(cpu, hfi_instance->cpus);
439
440 /*
441 * Enable the hardware feedback interface and never disable it. See
442 * comment on programming the address of the table.
443 */
444 rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
445 msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
446 wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
447
448unlock:
449 mutex_unlock(&hfi_instance_lock);
450 return;
451
452free_hw_table:
453 free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages);
454 goto unlock;
455}
456
457/**
458 * intel_hfi_offline() - Disable HFI on @cpu
459 * @cpu: CPU in which the HFI will be disabled
460 *
461 * Remove @cpu from those covered by its HFI instance.
462 *
463 * On some processors, hardware remembers previous programming settings even
464 * after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the
465 * die/package of @cpu are offline. See note in intel_hfi_online().
466 */
467void intel_hfi_offline(unsigned int cpu)
468{
469 struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu);
470 struct hfi_instance *hfi_instance;
471
472 /*
473 * Check if @cpu as an associated, initialized (i.e., with a non-NULL
474 * header). Also, HFI instances are only initialized if X86_FEATURE_HFI
475 * is present.
476 */
477 hfi_instance = info->hfi_instance;
478 if (!hfi_instance)
479 return;
480
481 if (!hfi_instance->hdr)
482 return;
483
484 mutex_lock(&hfi_instance_lock);
485 cpumask_clear_cpu(cpu, hfi_instance->cpus);
486 mutex_unlock(&hfi_instance_lock);
487}
488
489static __init int hfi_parse_features(void)
490{
491 unsigned int nr_capabilities;
492 union cpuid6_edx edx;
493
494 if (!boot_cpu_has(X86_FEATURE_HFI))
495 return -ENODEV;
496
497 /*
498 * If we are here we know that CPUID_HFI_LEAF exists. Parse the
499 * supported capabilities and the size of the HFI table.
500 */
501 edx.full = cpuid_edx(CPUID_HFI_LEAF);
502
503 if (!edx.split.capabilities.split.performance) {
504 pr_debug("Performance reporting not supported! Not using HFI\n");
505 return -ENODEV;
506 }
507
508 /*
509 * The number of supported capabilities determines the number of
510 * columns in the HFI table. Exclude the reserved bits.
511 */
512 edx.split.capabilities.split.__reserved = 0;
513 nr_capabilities = hweight8(edx.split.capabilities.bits);
514
515 /* The number of 4KB pages required by the table */
516 hfi_features.nr_table_pages = edx.split.table_pages + 1;
517
518 /*
519 * The header contains change indications for each supported feature.
520 * The size of the table header is rounded up to be a multiple of 8
521 * bytes.
522 */
523 hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8;
524
525 /*
526 * Data of each logical processor is also rounded up to be a multiple
527 * of 8 bytes.
528 */
529 hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8;
530
531 return 0;
532}
533
534void __init intel_hfi_init(void)
535{
536 struct hfi_instance *hfi_instance;
537 int i, j;
538
539 if (hfi_parse_features())
540 return;
541
542 /* There is one HFI instance per die/package. */
543 max_hfi_instances = topology_max_packages() *
544 topology_max_die_per_package();
545
546 /*
547 * This allocation may fail. CPU hotplug callbacks must check
548 * for a null pointer.
549 */
550 hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances),
551 GFP_KERNEL);
552 if (!hfi_instances)
553 return;
554
555 for (i = 0; i < max_hfi_instances; i++) {
556 hfi_instance = &hfi_instances[i];
557 if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL))
558 goto err_nomem;
559 }
560
561 hfi_updates_wq = create_singlethread_workqueue("hfi-updates");
562 if (!hfi_updates_wq)
563 goto err_nomem;
564
565 return;
566
567err_nomem:
568 for (j = 0; j < i; ++j) {
569 hfi_instance = &hfi_instances[j];
570 free_cpumask_var(hfi_instance->cpus);
571 }
572
573 kfree(hfi_instances);
574 hfi_instances = NULL;
575}