Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Hardware Feedback Interface Driver
  4 *
  5 * Copyright (c) 2021, Intel Corporation.
  6 *
  7 * Authors: Aubrey Li <aubrey.li@linux.intel.com>
  8 *          Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
  9 *
 10 *
 11 * The Hardware Feedback Interface provides a performance and energy efficiency
 12 * capability information for each CPU in the system. Depending on the processor
 13 * model, hardware may periodically update these capabilities as a result of
 14 * changes in the operating conditions (e.g., power limits or thermal
 15 * constraints). On other processor models, there is a single HFI update
 16 * at boot.
 17 *
 18 * This file provides functionality to process HFI updates and relay these
 19 * updates to userspace.
 20 */
 21
 22#define pr_fmt(fmt)  "intel-hfi: " fmt
 23
 24#include <linux/bitops.h>
 25#include <linux/cpufeature.h>
 26#include <linux/cpumask.h>
 27#include <linux/gfp.h>
 28#include <linux/io.h>
 29#include <linux/kernel.h>
 30#include <linux/math.h>
 31#include <linux/mutex.h>
 32#include <linux/percpu-defs.h>
 33#include <linux/printk.h>
 34#include <linux/processor.h>
 35#include <linux/slab.h>
 36#include <linux/spinlock.h>
 37#include <linux/string.h>
 38#include <linux/topology.h>
 39#include <linux/workqueue.h>
 40
 41#include <asm/msr.h>
 42
 43#include "../thermal_core.h"
 44#include "intel_hfi.h"
 45#include "thermal_interrupt.h"
 46
 47/* Hardware Feedback Interface MSR configuration bits */
 48#define HW_FEEDBACK_PTR_VALID_BIT		BIT(0)
 49#define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT	BIT(0)
 50
 51/* CPUID detection and enumeration definitions for HFI */
 52
 53#define CPUID_HFI_LEAF 6
 54
 55union hfi_capabilities {
 56	struct {
 57		u8	performance:1;
 58		u8	energy_efficiency:1;
 59		u8	__reserved:6;
 60	} split;
 61	u8 bits;
 62};
 63
 64union cpuid6_edx {
 65	struct {
 66		union hfi_capabilities	capabilities;
 67		u32			table_pages:4;
 68		u32			__reserved:4;
 69		s32			index:16;
 70	} split;
 71	u32 full;
 72};
 73
 74/**
 75 * struct hfi_cpu_data - HFI capabilities per CPU
 76 * @perf_cap:		Performance capability
 77 * @ee_cap:		Energy efficiency capability
 78 *
 79 * Capabilities of a logical processor in the HFI table. These capabilities are
 80 * unitless.
 81 */
 82struct hfi_cpu_data {
 83	u8	perf_cap;
 84	u8	ee_cap;
 85} __packed;
 86
 87/**
 88 * struct hfi_hdr - Header of the HFI table
 89 * @perf_updated:	Hardware updated performance capabilities
 90 * @ee_updated:		Hardware updated energy efficiency capabilities
 91 *
 92 * Properties of the data in an HFI table.
 93 */
 94struct hfi_hdr {
 95	u8	perf_updated;
 96	u8	ee_updated;
 97} __packed;
 98
 99/**
100 * struct hfi_instance - Representation of an HFI instance (i.e., a table)
101 * @local_table:	Base of the local copy of the HFI table
102 * @timestamp:		Timestamp of the last update of the local table.
103 *			Located at the base of the local table.
104 * @hdr:		Base address of the header of the local table
105 * @data:		Base address of the data of the local table
106 * @cpus:		CPUs represented in this HFI table instance
107 * @hw_table:		Pointer to the HFI table of this instance
108 * @update_work:	Delayed work to process HFI updates
109 * @table_lock:		Lock to protect acceses to the table of this instance
110 * @event_lock:		Lock to process HFI interrupts
111 *
112 * A set of parameters to parse and navigate a specific HFI table.
113 */
114struct hfi_instance {
115	union {
116		void			*local_table;
117		u64			*timestamp;
118	};
119	void			*hdr;
120	void			*data;
121	cpumask_var_t		cpus;
122	void			*hw_table;
123	struct delayed_work	update_work;
124	raw_spinlock_t		table_lock;
125	raw_spinlock_t		event_lock;
126};
127
128/**
129 * struct hfi_features - Supported HFI features
130 * @nr_table_pages:	Size of the HFI table in 4KB pages
131 * @cpu_stride:		Stride size to locate the capability data of a logical
132 *			processor within the table (i.e., row stride)
133 * @hdr_size:		Size of the table header
134 *
135 * Parameters and supported features that are common to all HFI instances
136 */
137struct hfi_features {
138	size_t		nr_table_pages;
139	unsigned int	cpu_stride;
140	unsigned int	hdr_size;
141};
142
143/**
144 * struct hfi_cpu_info - Per-CPU attributes to consume HFI data
145 * @index:		Row of this CPU in its HFI table
146 * @hfi_instance:	Attributes of the HFI table to which this CPU belongs
147 *
148 * Parameters to link a logical processor to an HFI table and a row within it.
149 */
150struct hfi_cpu_info {
151	s16			index;
152	struct hfi_instance	*hfi_instance;
153};
154
155static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 };
156
157static int max_hfi_instances;
158static struct hfi_instance *hfi_instances;
159
160static struct hfi_features hfi_features;
161static DEFINE_MUTEX(hfi_instance_lock);
162
163static struct workqueue_struct *hfi_updates_wq;
164#define HFI_UPDATE_INTERVAL		HZ
165#define HFI_MAX_THERM_NOTIFY_COUNT	16
166
167static void get_hfi_caps(struct hfi_instance *hfi_instance,
168			 struct thermal_genl_cpu_caps *cpu_caps)
169{
170	int cpu, i = 0;
171
172	raw_spin_lock_irq(&hfi_instance->table_lock);
173	for_each_cpu(cpu, hfi_instance->cpus) {
174		struct hfi_cpu_data *caps;
175		s16 index;
176
177		index = per_cpu(hfi_cpu_info, cpu).index;
178		caps = hfi_instance->data + index * hfi_features.cpu_stride;
179		cpu_caps[i].cpu = cpu;
180
181		/*
182		 * Scale performance and energy efficiency to
183		 * the [0, 1023] interval that thermal netlink uses.
184		 */
185		cpu_caps[i].performance = caps->perf_cap << 2;
186		cpu_caps[i].efficiency = caps->ee_cap << 2;
187
188		++i;
189	}
190	raw_spin_unlock_irq(&hfi_instance->table_lock);
191}
192
193/*
194 * Call update_capabilities() when there are changes in the HFI table.
195 */
196static void update_capabilities(struct hfi_instance *hfi_instance)
197{
198	struct thermal_genl_cpu_caps *cpu_caps;
199	int i = 0, cpu_count;
200
201	/* CPUs may come online/offline while processing an HFI update. */
202	mutex_lock(&hfi_instance_lock);
203
204	cpu_count = cpumask_weight(hfi_instance->cpus);
205
206	/* No CPUs to report in this hfi_instance. */
207	if (!cpu_count)
208		goto out;
209
210	cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL);
211	if (!cpu_caps)
212		goto out;
213
214	get_hfi_caps(hfi_instance, cpu_caps);
215
216	if (cpu_count < HFI_MAX_THERM_NOTIFY_COUNT)
217		goto last_cmd;
218
219	/* Process complete chunks of HFI_MAX_THERM_NOTIFY_COUNT capabilities. */
220	for (i = 0;
221	     (i + HFI_MAX_THERM_NOTIFY_COUNT) <= cpu_count;
222	     i += HFI_MAX_THERM_NOTIFY_COUNT)
223		thermal_genl_cpu_capability_event(HFI_MAX_THERM_NOTIFY_COUNT,
224						  &cpu_caps[i]);
225
226	cpu_count = cpu_count - i;
227
228last_cmd:
229	/* Process the remaining capabilities if any. */
230	if (cpu_count)
231		thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]);
232
233	kfree(cpu_caps);
234out:
235	mutex_unlock(&hfi_instance_lock);
236}
237
238static void hfi_update_work_fn(struct work_struct *work)
239{
240	struct hfi_instance *hfi_instance;
241
242	hfi_instance = container_of(to_delayed_work(work), struct hfi_instance,
243				    update_work);
244
245	update_capabilities(hfi_instance);
246}
247
248void intel_hfi_process_event(__u64 pkg_therm_status_msr_val)
249{
250	struct hfi_instance *hfi_instance;
251	int cpu = smp_processor_id();
252	struct hfi_cpu_info *info;
253	u64 new_timestamp, msr, hfi;
254
255	if (!pkg_therm_status_msr_val)
256		return;
257
258	info = &per_cpu(hfi_cpu_info, cpu);
259	if (!info)
260		return;
261
262	/*
263	 * A CPU is linked to its HFI instance before the thermal vector in the
264	 * local APIC is unmasked. Hence, info->hfi_instance cannot be NULL
265	 * when receiving an HFI event.
266	 */
267	hfi_instance = info->hfi_instance;
268	if (unlikely(!hfi_instance)) {
269		pr_debug("Received event on CPU %d but instance was null", cpu);
270		return;
271	}
272
273	/*
274	 * On most systems, all CPUs in the package receive a package-level
275	 * thermal interrupt when there is an HFI update. It is sufficient to
276	 * let a single CPU to acknowledge the update and queue work to
277	 * process it. The remaining CPUs can resume their work.
278	 */
279	if (!raw_spin_trylock(&hfi_instance->event_lock))
280		return;
281
282	rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr);
283	hfi = msr & PACKAGE_THERM_STATUS_HFI_UPDATED;
284	if (!hfi) {
285		raw_spin_unlock(&hfi_instance->event_lock);
286		return;
287	}
288
289	/*
290	 * Ack duplicate update. Since there is an active HFI
291	 * status from HW, it must be a new event, not a case
292	 * where a lagging CPU entered the locked region.
293	 */
294	new_timestamp = *(u64 *)hfi_instance->hw_table;
295	if (*hfi_instance->timestamp == new_timestamp) {
296		thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
297		raw_spin_unlock(&hfi_instance->event_lock);
298		return;
299	}
300
301	raw_spin_lock(&hfi_instance->table_lock);
302
303	/*
304	 * Copy the updated table into our local copy. This includes the new
305	 * timestamp.
306	 */
307	memcpy(hfi_instance->local_table, hfi_instance->hw_table,
308	       hfi_features.nr_table_pages << PAGE_SHIFT);
309
310	/*
311	 * Let hardware know that we are done reading the HFI table and it is
312	 * free to update it again.
313	 */
314	thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
315
316	raw_spin_unlock(&hfi_instance->table_lock);
317	raw_spin_unlock(&hfi_instance->event_lock);
318
319	queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work,
320			   HFI_UPDATE_INTERVAL);
321}
322
323static void init_hfi_cpu_index(struct hfi_cpu_info *info)
324{
325	union cpuid6_edx edx;
326
327	/* Do not re-read @cpu's index if it has already been initialized. */
328	if (info->index > -1)
329		return;
330
331	edx.full = cpuid_edx(CPUID_HFI_LEAF);
332	info->index = edx.split.index;
333}
334
335/*
336 * The format of the HFI table depends on the number of capabilities that the
337 * hardware supports. Keep a data structure to navigate the table.
338 */
339static void init_hfi_instance(struct hfi_instance *hfi_instance)
340{
341	/* The HFI header is below the time-stamp. */
342	hfi_instance->hdr = hfi_instance->local_table +
343			    sizeof(*hfi_instance->timestamp);
344
345	/* The HFI data starts below the header. */
346	hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size;
347}
348
349/**
350 * intel_hfi_online() - Enable HFI on @cpu
351 * @cpu:	CPU in which the HFI will be enabled
352 *
353 * Enable the HFI to be used in @cpu. The HFI is enabled at the die/package
354 * level. The first CPU in the die/package to come online does the full HFI
355 * initialization. Subsequent CPUs will just link themselves to the HFI
356 * instance of their die/package.
357 *
358 * This function is called before enabling the thermal vector in the local APIC
359 * in order to ensure that @cpu has an associated HFI instance when it receives
360 * an HFI event.
361 */
362void intel_hfi_online(unsigned int cpu)
363{
364	struct hfi_instance *hfi_instance;
365	struct hfi_cpu_info *info;
366	phys_addr_t hw_table_pa;
367	u64 msr_val;
368	u16 die_id;
369
370	/* Nothing to do if hfi_instances are missing. */
371	if (!hfi_instances)
372		return;
373
374	/*
375	 * Link @cpu to the HFI instance of its package/die. It does not
376	 * matter whether the instance has been initialized.
377	 */
378	info = &per_cpu(hfi_cpu_info, cpu);
379	die_id = topology_logical_die_id(cpu);
380	hfi_instance = info->hfi_instance;
381	if (!hfi_instance) {
382		if (die_id >= max_hfi_instances)
383			return;
384
385		hfi_instance = &hfi_instances[die_id];
386		info->hfi_instance = hfi_instance;
387	}
388
389	init_hfi_cpu_index(info);
390
391	/*
392	 * Now check if the HFI instance of the package/die of @cpu has been
393	 * initialized (by checking its header). In such case, all we have to
394	 * do is to add @cpu to this instance's cpumask.
395	 */
396	mutex_lock(&hfi_instance_lock);
397	if (hfi_instance->hdr) {
398		cpumask_set_cpu(cpu, hfi_instance->cpus);
399		goto unlock;
400	}
401
402	/*
403	 * Hardware is programmed with the physical address of the first page
404	 * frame of the table. Hence, the allocated memory must be page-aligned.
405	 */
406	hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages,
407						   GFP_KERNEL | __GFP_ZERO);
408	if (!hfi_instance->hw_table)
409		goto unlock;
410
411	hw_table_pa = virt_to_phys(hfi_instance->hw_table);
412
413	/*
414	 * Allocate memory to keep a local copy of the table that
415	 * hardware generates.
416	 */
417	hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT,
418					    GFP_KERNEL);
419	if (!hfi_instance->local_table)
420		goto free_hw_table;
421
422	/*
423	 * Program the address of the feedback table of this die/package. On
424	 * some processors, hardware remembers the old address of the HFI table
425	 * even after having been reprogrammed and re-enabled. Thus, do not free
426	 * the pages allocated for the table or reprogram the hardware with a
427	 * new base address. Namely, program the hardware only once.
428	 */
429	msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT;
430	wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val);
431
432	init_hfi_instance(hfi_instance);
433
434	INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn);
435	raw_spin_lock_init(&hfi_instance->table_lock);
436	raw_spin_lock_init(&hfi_instance->event_lock);
437
438	cpumask_set_cpu(cpu, hfi_instance->cpus);
439
440	/*
441	 * Enable the hardware feedback interface and never disable it. See
442	 * comment on programming the address of the table.
443	 */
444	rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
445	msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
446	wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
447
448unlock:
449	mutex_unlock(&hfi_instance_lock);
450	return;
451
452free_hw_table:
453	free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages);
454	goto unlock;
455}
456
457/**
458 * intel_hfi_offline() - Disable HFI on @cpu
459 * @cpu:	CPU in which the HFI will be disabled
460 *
461 * Remove @cpu from those covered by its HFI instance.
462 *
463 * On some processors, hardware remembers previous programming settings even
464 * after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the
465 * die/package of @cpu are offline. See note in intel_hfi_online().
466 */
467void intel_hfi_offline(unsigned int cpu)
468{
469	struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu);
470	struct hfi_instance *hfi_instance;
471
472	/*
473	 * Check if @cpu as an associated, initialized (i.e., with a non-NULL
474	 * header). Also, HFI instances are only initialized if X86_FEATURE_HFI
475	 * is present.
476	 */
477	hfi_instance = info->hfi_instance;
478	if (!hfi_instance)
479		return;
480
481	if (!hfi_instance->hdr)
482		return;
483
484	mutex_lock(&hfi_instance_lock);
485	cpumask_clear_cpu(cpu, hfi_instance->cpus);
486	mutex_unlock(&hfi_instance_lock);
487}
488
489static __init int hfi_parse_features(void)
490{
491	unsigned int nr_capabilities;
492	union cpuid6_edx edx;
493
494	if (!boot_cpu_has(X86_FEATURE_HFI))
495		return -ENODEV;
496
497	/*
498	 * If we are here we know that CPUID_HFI_LEAF exists. Parse the
499	 * supported capabilities and the size of the HFI table.
500	 */
501	edx.full = cpuid_edx(CPUID_HFI_LEAF);
502
503	if (!edx.split.capabilities.split.performance) {
504		pr_debug("Performance reporting not supported! Not using HFI\n");
505		return -ENODEV;
506	}
507
508	/*
509	 * The number of supported capabilities determines the number of
510	 * columns in the HFI table. Exclude the reserved bits.
511	 */
512	edx.split.capabilities.split.__reserved = 0;
513	nr_capabilities = hweight8(edx.split.capabilities.bits);
514
515	/* The number of 4KB pages required by the table */
516	hfi_features.nr_table_pages = edx.split.table_pages + 1;
517
518	/*
519	 * The header contains change indications for each supported feature.
520	 * The size of the table header is rounded up to be a multiple of 8
521	 * bytes.
522	 */
523	hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8;
524
525	/*
526	 * Data of each logical processor is also rounded up to be a multiple
527	 * of 8 bytes.
528	 */
529	hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8;
530
531	return 0;
532}
533
534void __init intel_hfi_init(void)
535{
536	struct hfi_instance *hfi_instance;
537	int i, j;
538
539	if (hfi_parse_features())
540		return;
541
542	/* There is one HFI instance per die/package. */
543	max_hfi_instances = topology_max_packages() *
544			    topology_max_die_per_package();
545
546	/*
547	 * This allocation may fail. CPU hotplug callbacks must check
548	 * for a null pointer.
549	 */
550	hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances),
551				GFP_KERNEL);
552	if (!hfi_instances)
553		return;
554
555	for (i = 0; i < max_hfi_instances; i++) {
556		hfi_instance = &hfi_instances[i];
557		if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL))
558			goto err_nomem;
559	}
560
561	hfi_updates_wq = create_singlethread_workqueue("hfi-updates");
562	if (!hfi_updates_wq)
563		goto err_nomem;
564
565	return;
566
567err_nomem:
568	for (j = 0; j < i; ++j) {
569		hfi_instance = &hfi_instances[j];
570		free_cpumask_var(hfi_instance->cpus);
571	}
572
573	kfree(hfi_instances);
574	hfi_instances = NULL;
575}