Loading...
1/*
2 * Micro Crystal RV-3029C2 rtc class driver
3 *
4 * Author: Gregory Hermant <gregory.hermant@calao-systems.com>
5 *
6 * based on previously existing rtc class drivers
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * NOTE: Currently this driver only supports the bare minimum for read
13 * and write the RTC and alarms. The extra features provided by this chip
14 * (trickle charger, eeprom, T° compensation) are unavailable.
15 */
16
17#include <linux/module.h>
18#include <linux/i2c.h>
19#include <linux/bcd.h>
20#include <linux/rtc.h>
21
22/* Register map */
23/* control section */
24#define RV3029C2_ONOFF_CTRL 0x00
25#define RV3029C2_IRQ_CTRL 0x01
26#define RV3029C2_IRQ_CTRL_AIE (1 << 0)
27#define RV3029C2_IRQ_FLAGS 0x02
28#define RV3029C2_IRQ_FLAGS_AF (1 << 0)
29#define RV3029C2_STATUS 0x03
30#define RV3029C2_STATUS_VLOW1 (1 << 2)
31#define RV3029C2_STATUS_VLOW2 (1 << 3)
32#define RV3029C2_STATUS_SR (1 << 4)
33#define RV3029C2_STATUS_PON (1 << 5)
34#define RV3029C2_STATUS_EEBUSY (1 << 7)
35#define RV3029C2_RST_CTRL 0x04
36#define RV3029C2_CONTROL_SECTION_LEN 0x05
37
38/* watch section */
39#define RV3029C2_W_SEC 0x08
40#define RV3029C2_W_MINUTES 0x09
41#define RV3029C2_W_HOURS 0x0A
42#define RV3029C2_REG_HR_12_24 (1<<6) /* 24h/12h mode */
43#define RV3029C2_REG_HR_PM (1<<5) /* PM/AM bit in 12h mode */
44#define RV3029C2_W_DATE 0x0B
45#define RV3029C2_W_DAYS 0x0C
46#define RV3029C2_W_MONTHS 0x0D
47#define RV3029C2_W_YEARS 0x0E
48#define RV3029C2_WATCH_SECTION_LEN 0x07
49
50/* alarm section */
51#define RV3029C2_A_SC 0x10
52#define RV3029C2_A_MN 0x11
53#define RV3029C2_A_HR 0x12
54#define RV3029C2_A_DT 0x13
55#define RV3029C2_A_DW 0x14
56#define RV3029C2_A_MO 0x15
57#define RV3029C2_A_YR 0x16
58#define RV3029C2_ALARM_SECTION_LEN 0x07
59
60/* timer section */
61#define RV3029C2_TIMER_LOW 0x18
62#define RV3029C2_TIMER_HIGH 0x19
63
64/* temperature section */
65#define RV3029C2_TEMP_PAGE 0x20
66
67/* eeprom data section */
68#define RV3029C2_E2P_EEDATA1 0x28
69#define RV3029C2_E2P_EEDATA2 0x29
70
71/* eeprom control section */
72#define RV3029C2_CONTROL_E2P_EECTRL 0x30
73#define RV3029C2_TRICKLE_1K (1<<0) /* 1K resistance */
74#define RV3029C2_TRICKLE_5K (1<<1) /* 5K resistance */
75#define RV3029C2_TRICKLE_20K (1<<2) /* 20K resistance */
76#define RV3029C2_TRICKLE_80K (1<<3) /* 80K resistance */
77#define RV3029C2_CONTROL_E2P_XTALOFFSET 0x31
78#define RV3029C2_CONTROL_E2P_QCOEF 0x32
79#define RV3029C2_CONTROL_E2P_TURNOVER 0x33
80
81/* user ram section */
82#define RV3029C2_USR1_RAM_PAGE 0x38
83#define RV3029C2_USR1_SECTION_LEN 0x04
84#define RV3029C2_USR2_RAM_PAGE 0x3C
85#define RV3029C2_USR2_SECTION_LEN 0x04
86
87static int
88rv3029c2_i2c_read_regs(struct i2c_client *client, u8 reg, u8 *buf,
89 unsigned len)
90{
91 int ret;
92
93 if ((reg > RV3029C2_USR1_RAM_PAGE + 7) ||
94 (reg + len > RV3029C2_USR1_RAM_PAGE + 8))
95 return -EINVAL;
96
97 ret = i2c_smbus_read_i2c_block_data(client, reg, len, buf);
98 if (ret < 0)
99 return ret;
100 if (ret < len)
101 return -EIO;
102 return 0;
103}
104
105static int
106rv3029c2_i2c_write_regs(struct i2c_client *client, u8 reg, u8 const buf[],
107 unsigned len)
108{
109 if ((reg > RV3029C2_USR1_RAM_PAGE + 7) ||
110 (reg + len > RV3029C2_USR1_RAM_PAGE + 8))
111 return -EINVAL;
112
113 return i2c_smbus_write_i2c_block_data(client, reg, len, buf);
114}
115
116static int
117rv3029c2_i2c_get_sr(struct i2c_client *client, u8 *buf)
118{
119 int ret = rv3029c2_i2c_read_regs(client, RV3029C2_STATUS, buf, 1);
120
121 if (ret < 0)
122 return -EIO;
123 dev_dbg(&client->dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
124 return 0;
125}
126
127static int
128rv3029c2_i2c_set_sr(struct i2c_client *client, u8 val)
129{
130 u8 buf[1];
131 int sr;
132
133 buf[0] = val;
134 sr = rv3029c2_i2c_write_regs(client, RV3029C2_STATUS, buf, 1);
135 dev_dbg(&client->dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
136 if (sr < 0)
137 return -EIO;
138 return 0;
139}
140
141static int
142rv3029c2_i2c_read_time(struct i2c_client *client, struct rtc_time *tm)
143{
144 u8 buf[1];
145 int ret;
146 u8 regs[RV3029C2_WATCH_SECTION_LEN] = { 0, };
147
148 ret = rv3029c2_i2c_get_sr(client, buf);
149 if (ret < 0) {
150 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
151 return -EIO;
152 }
153
154 ret = rv3029c2_i2c_read_regs(client, RV3029C2_W_SEC , regs,
155 RV3029C2_WATCH_SECTION_LEN);
156 if (ret < 0) {
157 dev_err(&client->dev, "%s: reading RTC section failed\n",
158 __func__);
159 return ret;
160 }
161
162 tm->tm_sec = bcd2bin(regs[RV3029C2_W_SEC-RV3029C2_W_SEC]);
163 tm->tm_min = bcd2bin(regs[RV3029C2_W_MINUTES-RV3029C2_W_SEC]);
164
165 /* HR field has a more complex interpretation */
166 {
167 const u8 _hr = regs[RV3029C2_W_HOURS-RV3029C2_W_SEC];
168 if (_hr & RV3029C2_REG_HR_12_24) {
169 /* 12h format */
170 tm->tm_hour = bcd2bin(_hr & 0x1f);
171 if (_hr & RV3029C2_REG_HR_PM) /* PM flag set */
172 tm->tm_hour += 12;
173 } else /* 24h format */
174 tm->tm_hour = bcd2bin(_hr & 0x3f);
175 }
176
177 tm->tm_mday = bcd2bin(regs[RV3029C2_W_DATE-RV3029C2_W_SEC]);
178 tm->tm_mon = bcd2bin(regs[RV3029C2_W_MONTHS-RV3029C2_W_SEC]) - 1;
179 tm->tm_year = bcd2bin(regs[RV3029C2_W_YEARS-RV3029C2_W_SEC]) + 100;
180 tm->tm_wday = bcd2bin(regs[RV3029C2_W_DAYS-RV3029C2_W_SEC]) - 1;
181
182 return 0;
183}
184
185static int rv3029c2_rtc_read_time(struct device *dev, struct rtc_time *tm)
186{
187 return rv3029c2_i2c_read_time(to_i2c_client(dev), tm);
188}
189
190static int
191rv3029c2_i2c_read_alarm(struct i2c_client *client, struct rtc_wkalrm *alarm)
192{
193 struct rtc_time *const tm = &alarm->time;
194 int ret;
195 u8 regs[8];
196
197 ret = rv3029c2_i2c_get_sr(client, regs);
198 if (ret < 0) {
199 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
200 return -EIO;
201 }
202
203 ret = rv3029c2_i2c_read_regs(client, RV3029C2_A_SC, regs,
204 RV3029C2_ALARM_SECTION_LEN);
205
206 if (ret < 0) {
207 dev_err(&client->dev, "%s: reading alarm section failed\n",
208 __func__);
209 return ret;
210 }
211
212 tm->tm_sec = bcd2bin(regs[RV3029C2_A_SC-RV3029C2_A_SC] & 0x7f);
213 tm->tm_min = bcd2bin(regs[RV3029C2_A_MN-RV3029C2_A_SC] & 0x7f);
214 tm->tm_hour = bcd2bin(regs[RV3029C2_A_HR-RV3029C2_A_SC] & 0x3f);
215 tm->tm_mday = bcd2bin(regs[RV3029C2_A_DT-RV3029C2_A_SC] & 0x3f);
216 tm->tm_mon = bcd2bin(regs[RV3029C2_A_MO-RV3029C2_A_SC] & 0x1f) - 1;
217 tm->tm_year = bcd2bin(regs[RV3029C2_A_YR-RV3029C2_A_SC] & 0x7f) + 100;
218 tm->tm_wday = bcd2bin(regs[RV3029C2_A_DW-RV3029C2_A_SC] & 0x07) - 1;
219
220 return 0;
221}
222
223static int
224rv3029c2_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
225{
226 return rv3029c2_i2c_read_alarm(to_i2c_client(dev), alarm);
227}
228
229static int rv3029c2_rtc_i2c_alarm_set_irq(struct i2c_client *client,
230 int enable)
231{
232 int ret;
233 u8 buf[1];
234
235 /* enable AIE irq */
236 ret = rv3029c2_i2c_read_regs(client, RV3029C2_IRQ_CTRL, buf, 1);
237 if (ret < 0) {
238 dev_err(&client->dev, "can't read INT reg\n");
239 return ret;
240 }
241 if (enable)
242 buf[0] |= RV3029C2_IRQ_CTRL_AIE;
243 else
244 buf[0] &= ~RV3029C2_IRQ_CTRL_AIE;
245
246 ret = rv3029c2_i2c_write_regs(client, RV3029C2_IRQ_CTRL, buf, 1);
247 if (ret < 0) {
248 dev_err(&client->dev, "can't set INT reg\n");
249 return ret;
250 }
251
252 return 0;
253}
254
255static int rv3029c2_rtc_i2c_set_alarm(struct i2c_client *client,
256 struct rtc_wkalrm *alarm)
257{
258 struct rtc_time *const tm = &alarm->time;
259 int ret;
260 u8 regs[8];
261
262 /*
263 * The clock has an 8 bit wide bcd-coded register (they never learn)
264 * for the year. tm_year is an offset from 1900 and we are interested
265 * in the 2000-2099 range, so any value less than 100 is invalid.
266 */
267 if (tm->tm_year < 100)
268 return -EINVAL;
269
270 ret = rv3029c2_i2c_get_sr(client, regs);
271 if (ret < 0) {
272 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
273 return -EIO;
274 }
275 regs[RV3029C2_A_SC-RV3029C2_A_SC] = bin2bcd(tm->tm_sec & 0x7f);
276 regs[RV3029C2_A_MN-RV3029C2_A_SC] = bin2bcd(tm->tm_min & 0x7f);
277 regs[RV3029C2_A_HR-RV3029C2_A_SC] = bin2bcd(tm->tm_hour & 0x3f);
278 regs[RV3029C2_A_DT-RV3029C2_A_SC] = bin2bcd(tm->tm_mday & 0x3f);
279 regs[RV3029C2_A_MO-RV3029C2_A_SC] = bin2bcd((tm->tm_mon & 0x1f) - 1);
280 regs[RV3029C2_A_DW-RV3029C2_A_SC] = bin2bcd((tm->tm_wday & 7) - 1);
281 regs[RV3029C2_A_YR-RV3029C2_A_SC] = bin2bcd((tm->tm_year & 0x7f) - 100);
282
283 ret = rv3029c2_i2c_write_regs(client, RV3029C2_A_SC, regs,
284 RV3029C2_ALARM_SECTION_LEN);
285 if (ret < 0)
286 return ret;
287
288 if (alarm->enabled) {
289 u8 buf[1];
290
291 /* clear AF flag */
292 ret = rv3029c2_i2c_read_regs(client, RV3029C2_IRQ_FLAGS,
293 buf, 1);
294 if (ret < 0) {
295 dev_err(&client->dev, "can't read alarm flag\n");
296 return ret;
297 }
298 buf[0] &= ~RV3029C2_IRQ_FLAGS_AF;
299 ret = rv3029c2_i2c_write_regs(client, RV3029C2_IRQ_FLAGS,
300 buf, 1);
301 if (ret < 0) {
302 dev_err(&client->dev, "can't set alarm flag\n");
303 return ret;
304 }
305 /* enable AIE irq */
306 ret = rv3029c2_rtc_i2c_alarm_set_irq(client, 1);
307 if (ret)
308 return ret;
309
310 dev_dbg(&client->dev, "alarm IRQ armed\n");
311 } else {
312 /* disable AIE irq */
313 ret = rv3029c2_rtc_i2c_alarm_set_irq(client, 1);
314 if (ret)
315 return ret;
316
317 dev_dbg(&client->dev, "alarm IRQ disabled\n");
318 }
319
320 return 0;
321}
322
323static int rv3029c2_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
324{
325 return rv3029c2_rtc_i2c_set_alarm(to_i2c_client(dev), alarm);
326}
327
328static int
329rv3029c2_i2c_set_time(struct i2c_client *client, struct rtc_time const *tm)
330{
331 u8 regs[8];
332 int ret;
333
334 /*
335 * The clock has an 8 bit wide bcd-coded register (they never learn)
336 * for the year. tm_year is an offset from 1900 and we are interested
337 * in the 2000-2099 range, so any value less than 100 is invalid.
338 */
339 if (tm->tm_year < 100)
340 return -EINVAL;
341
342 regs[RV3029C2_W_SEC-RV3029C2_W_SEC] = bin2bcd(tm->tm_sec);
343 regs[RV3029C2_W_MINUTES-RV3029C2_W_SEC] = bin2bcd(tm->tm_min);
344 regs[RV3029C2_W_HOURS-RV3029C2_W_SEC] = bin2bcd(tm->tm_hour);
345 regs[RV3029C2_W_DATE-RV3029C2_W_SEC] = bin2bcd(tm->tm_mday);
346 regs[RV3029C2_W_MONTHS-RV3029C2_W_SEC] = bin2bcd(tm->tm_mon+1);
347 regs[RV3029C2_W_DAYS-RV3029C2_W_SEC] = bin2bcd((tm->tm_wday & 7)+1);
348 regs[RV3029C2_W_YEARS-RV3029C2_W_SEC] = bin2bcd(tm->tm_year - 100);
349
350 ret = rv3029c2_i2c_write_regs(client, RV3029C2_W_SEC, regs,
351 RV3029C2_WATCH_SECTION_LEN);
352 if (ret < 0)
353 return ret;
354
355 ret = rv3029c2_i2c_get_sr(client, regs);
356 if (ret < 0) {
357 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
358 return ret;
359 }
360 /* clear PON bit */
361 ret = rv3029c2_i2c_set_sr(client, (regs[0] & ~RV3029C2_STATUS_PON));
362 if (ret < 0) {
363 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
364 return ret;
365 }
366
367 return 0;
368}
369
370static int rv3029c2_rtc_set_time(struct device *dev, struct rtc_time *tm)
371{
372 return rv3029c2_i2c_set_time(to_i2c_client(dev), tm);
373}
374
375static const struct rtc_class_ops rv3029c2_rtc_ops = {
376 .read_time = rv3029c2_rtc_read_time,
377 .set_time = rv3029c2_rtc_set_time,
378 .read_alarm = rv3029c2_rtc_read_alarm,
379 .set_alarm = rv3029c2_rtc_set_alarm,
380};
381
382static struct i2c_device_id rv3029c2_id[] = {
383 { "rv3029c2", 0 },
384 { }
385};
386MODULE_DEVICE_TABLE(i2c, rv3029c2_id);
387
388static int __devinit
389rv3029c2_probe(struct i2c_client *client, const struct i2c_device_id *id)
390{
391 struct rtc_device *rtc;
392 int rc = 0;
393 u8 buf[1];
394
395 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_EMUL))
396 return -ENODEV;
397
398 rtc = rtc_device_register(client->name,
399 &client->dev, &rv3029c2_rtc_ops,
400 THIS_MODULE);
401
402 if (IS_ERR(rtc))
403 return PTR_ERR(rtc);
404
405 i2c_set_clientdata(client, rtc);
406
407 rc = rv3029c2_i2c_get_sr(client, buf);
408 if (rc < 0) {
409 dev_err(&client->dev, "reading status failed\n");
410 goto exit_unregister;
411 }
412
413 return 0;
414
415exit_unregister:
416 rtc_device_unregister(rtc);
417
418 return rc;
419}
420
421static int __devexit rv3029c2_remove(struct i2c_client *client)
422{
423 struct rtc_device *rtc = i2c_get_clientdata(client);
424
425 rtc_device_unregister(rtc);
426
427 return 0;
428}
429
430static struct i2c_driver rv3029c2_driver = {
431 .driver = {
432 .name = "rtc-rv3029c2",
433 },
434 .probe = rv3029c2_probe,
435 .remove = __devexit_p(rv3029c2_remove),
436 .id_table = rv3029c2_id,
437};
438
439static int __init rv3029c2_init(void)
440{
441 return i2c_add_driver(&rv3029c2_driver);
442}
443
444static void __exit rv3029c2_exit(void)
445{
446 i2c_del_driver(&rv3029c2_driver);
447}
448
449module_init(rv3029c2_init);
450module_exit(rv3029c2_exit);
451
452MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>");
453MODULE_DESCRIPTION("Micro Crystal RV3029C2 RTC driver");
454MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Micro Crystal RV-3029 / RV-3049 rtc class driver
4 *
5 * Author: Gregory Hermant <gregory.hermant@calao-systems.com>
6 * Michael Buesch <m@bues.ch>
7 *
8 * based on previously existing rtc class drivers
9 */
10
11#include <linux/module.h>
12#include <linux/i2c.h>
13#include <linux/spi/spi.h>
14#include <linux/bcd.h>
15#include <linux/rtc.h>
16#include <linux/delay.h>
17#include <linux/of.h>
18#include <linux/hwmon.h>
19#include <linux/hwmon-sysfs.h>
20#include <linux/kstrtox.h>
21#include <linux/regmap.h>
22
23/* Register map */
24/* control section */
25#define RV3029_ONOFF_CTRL 0x00
26#define RV3029_ONOFF_CTRL_WE BIT(0)
27#define RV3029_ONOFF_CTRL_TE BIT(1)
28#define RV3029_ONOFF_CTRL_TAR BIT(2)
29#define RV3029_ONOFF_CTRL_EERE BIT(3)
30#define RV3029_ONOFF_CTRL_SRON BIT(4)
31#define RV3029_ONOFF_CTRL_TD0 BIT(5)
32#define RV3029_ONOFF_CTRL_TD1 BIT(6)
33#define RV3029_ONOFF_CTRL_CLKINT BIT(7)
34#define RV3029_IRQ_CTRL 0x01
35#define RV3029_IRQ_CTRL_AIE BIT(0)
36#define RV3029_IRQ_CTRL_TIE BIT(1)
37#define RV3029_IRQ_CTRL_V1IE BIT(2)
38#define RV3029_IRQ_CTRL_V2IE BIT(3)
39#define RV3029_IRQ_CTRL_SRIE BIT(4)
40#define RV3029_IRQ_FLAGS 0x02
41#define RV3029_IRQ_FLAGS_AF BIT(0)
42#define RV3029_IRQ_FLAGS_TF BIT(1)
43#define RV3029_IRQ_FLAGS_V1IF BIT(2)
44#define RV3029_IRQ_FLAGS_V2IF BIT(3)
45#define RV3029_IRQ_FLAGS_SRF BIT(4)
46#define RV3029_STATUS 0x03
47#define RV3029_STATUS_VLOW1 BIT(2)
48#define RV3029_STATUS_VLOW2 BIT(3)
49#define RV3029_STATUS_SR BIT(4)
50#define RV3029_STATUS_PON BIT(5)
51#define RV3029_STATUS_EEBUSY BIT(7)
52#define RV3029_RST_CTRL 0x04
53#define RV3029_RST_CTRL_SYSR BIT(4)
54#define RV3029_CONTROL_SECTION_LEN 0x05
55
56/* watch section */
57#define RV3029_W_SEC 0x08
58#define RV3029_W_MINUTES 0x09
59#define RV3029_W_HOURS 0x0A
60#define RV3029_REG_HR_12_24 BIT(6) /* 24h/12h mode */
61#define RV3029_REG_HR_PM BIT(5) /* PM/AM bit in 12h mode */
62#define RV3029_W_DATE 0x0B
63#define RV3029_W_DAYS 0x0C
64#define RV3029_W_MONTHS 0x0D
65#define RV3029_W_YEARS 0x0E
66#define RV3029_WATCH_SECTION_LEN 0x07
67
68/* alarm section */
69#define RV3029_A_SC 0x10
70#define RV3029_A_MN 0x11
71#define RV3029_A_HR 0x12
72#define RV3029_A_DT 0x13
73#define RV3029_A_DW 0x14
74#define RV3029_A_MO 0x15
75#define RV3029_A_YR 0x16
76#define RV3029_A_AE_X BIT(7)
77#define RV3029_ALARM_SECTION_LEN 0x07
78
79/* timer section */
80#define RV3029_TIMER_LOW 0x18
81#define RV3029_TIMER_HIGH 0x19
82
83/* temperature section */
84#define RV3029_TEMP_PAGE 0x20
85
86/* eeprom data section */
87#define RV3029_E2P_EEDATA1 0x28
88#define RV3029_E2P_EEDATA2 0x29
89#define RV3029_E2PDATA_SECTION_LEN 0x02
90
91/* eeprom control section */
92#define RV3029_CONTROL_E2P_EECTRL 0x30
93#define RV3029_EECTRL_THP BIT(0) /* temp scan interval */
94#define RV3029_EECTRL_THE BIT(1) /* thermometer enable */
95#define RV3029_EECTRL_FD0 BIT(2) /* CLKOUT */
96#define RV3029_EECTRL_FD1 BIT(3) /* CLKOUT */
97#define RV3029_TRICKLE_1K BIT(4) /* 1.5K resistance */
98#define RV3029_TRICKLE_5K BIT(5) /* 5K resistance */
99#define RV3029_TRICKLE_20K BIT(6) /* 20K resistance */
100#define RV3029_TRICKLE_80K BIT(7) /* 80K resistance */
101#define RV3029_TRICKLE_MASK (RV3029_TRICKLE_1K |\
102 RV3029_TRICKLE_5K |\
103 RV3029_TRICKLE_20K |\
104 RV3029_TRICKLE_80K)
105#define RV3029_TRICKLE_SHIFT 4
106#define RV3029_CONTROL_E2P_XOFFS 0x31 /* XTAL offset */
107#define RV3029_CONTROL_E2P_XOFFS_SIGN BIT(7) /* Sign: 1->pos, 0->neg */
108#define RV3029_CONTROL_E2P_QCOEF 0x32 /* XTAL temp drift coef */
109#define RV3029_CONTROL_E2P_TURNOVER 0x33 /* XTAL turnover temp (in *C) */
110#define RV3029_CONTROL_E2P_TOV_MASK 0x3F /* XTAL turnover temp mask */
111
112/* user ram section */
113#define RV3029_RAM_PAGE 0x38
114#define RV3029_RAM_SECTION_LEN 8
115
116struct rv3029_data {
117 struct device *dev;
118 struct rtc_device *rtc;
119 struct regmap *regmap;
120 int irq;
121};
122
123static int rv3029_eeprom_busywait(struct rv3029_data *rv3029)
124{
125 unsigned int sr;
126 int i, ret;
127
128 for (i = 100; i > 0; i--) {
129 ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
130 if (ret < 0)
131 break;
132 if (!(sr & RV3029_STATUS_EEBUSY))
133 break;
134 usleep_range(1000, 10000);
135 }
136 if (i <= 0) {
137 dev_err(rv3029->dev, "EEPROM busy wait timeout.\n");
138 return -ETIMEDOUT;
139 }
140
141 return ret;
142}
143
144static int rv3029_eeprom_exit(struct rv3029_data *rv3029)
145{
146 /* Re-enable eeprom refresh */
147 return regmap_update_bits(rv3029->regmap, RV3029_ONOFF_CTRL,
148 RV3029_ONOFF_CTRL_EERE,
149 RV3029_ONOFF_CTRL_EERE);
150}
151
152static int rv3029_eeprom_enter(struct rv3029_data *rv3029)
153{
154 unsigned int sr;
155 int ret;
156
157 /* Check whether we are in the allowed voltage range. */
158 ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
159 if (ret < 0)
160 return ret;
161 if (sr & RV3029_STATUS_VLOW2)
162 return -ENODEV;
163 if (sr & RV3029_STATUS_VLOW1) {
164 /* We clear the bits and retry once just in case
165 * we had a brown out in early startup.
166 */
167 ret = regmap_update_bits(rv3029->regmap, RV3029_STATUS,
168 RV3029_STATUS_VLOW1, 0);
169 if (ret < 0)
170 return ret;
171 usleep_range(1000, 10000);
172 ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
173 if (ret < 0)
174 return ret;
175 if (sr & RV3029_STATUS_VLOW1) {
176 dev_err(rv3029->dev,
177 "Supply voltage is too low to safely access the EEPROM.\n");
178 return -ENODEV;
179 }
180 }
181
182 /* Disable eeprom refresh. */
183 ret = regmap_update_bits(rv3029->regmap, RV3029_ONOFF_CTRL,
184 RV3029_ONOFF_CTRL_EERE, 0);
185 if (ret < 0)
186 return ret;
187
188 /* Wait for any previous eeprom accesses to finish. */
189 ret = rv3029_eeprom_busywait(rv3029);
190 if (ret < 0)
191 rv3029_eeprom_exit(rv3029);
192
193 return ret;
194}
195
196static int rv3029_eeprom_read(struct rv3029_data *rv3029, u8 reg,
197 u8 buf[], size_t len)
198{
199 int ret, err;
200
201 err = rv3029_eeprom_enter(rv3029);
202 if (err < 0)
203 return err;
204
205 ret = regmap_bulk_read(rv3029->regmap, reg, buf, len);
206
207 err = rv3029_eeprom_exit(rv3029);
208 if (err < 0)
209 return err;
210
211 return ret;
212}
213
214static int rv3029_eeprom_write(struct rv3029_data *rv3029, u8 reg,
215 u8 const buf[], size_t len)
216{
217 unsigned int tmp;
218 int ret, err;
219 size_t i;
220
221 err = rv3029_eeprom_enter(rv3029);
222 if (err < 0)
223 return err;
224
225 for (i = 0; i < len; i++, reg++) {
226 ret = regmap_read(rv3029->regmap, reg, &tmp);
227 if (ret < 0)
228 break;
229 if (tmp != buf[i]) {
230 tmp = buf[i];
231 ret = regmap_write(rv3029->regmap, reg, tmp);
232 if (ret < 0)
233 break;
234 }
235 ret = rv3029_eeprom_busywait(rv3029);
236 if (ret < 0)
237 break;
238 }
239
240 err = rv3029_eeprom_exit(rv3029);
241 if (err < 0)
242 return err;
243
244 return ret;
245}
246
247static int rv3029_eeprom_update_bits(struct rv3029_data *rv3029,
248 u8 reg, u8 mask, u8 set)
249{
250 u8 buf;
251 int ret;
252
253 ret = rv3029_eeprom_read(rv3029, reg, &buf, 1);
254 if (ret < 0)
255 return ret;
256 buf &= ~mask;
257 buf |= set & mask;
258 ret = rv3029_eeprom_write(rv3029, reg, &buf, 1);
259 if (ret < 0)
260 return ret;
261
262 return 0;
263}
264
265static irqreturn_t rv3029_handle_irq(int irq, void *dev_id)
266{
267 struct device *dev = dev_id;
268 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
269 unsigned int flags, controls;
270 unsigned long events = 0;
271 int ret;
272
273 rtc_lock(rv3029->rtc);
274
275 ret = regmap_read(rv3029->regmap, RV3029_IRQ_CTRL, &controls);
276 if (ret) {
277 dev_warn(dev, "Read IRQ Control Register error %d\n", ret);
278 rtc_unlock(rv3029->rtc);
279 return IRQ_NONE;
280 }
281
282 ret = regmap_read(rv3029->regmap, RV3029_IRQ_FLAGS, &flags);
283 if (ret) {
284 dev_warn(dev, "Read IRQ Flags Register error %d\n", ret);
285 rtc_unlock(rv3029->rtc);
286 return IRQ_NONE;
287 }
288
289 if (flags & RV3029_IRQ_FLAGS_AF) {
290 flags &= ~RV3029_IRQ_FLAGS_AF;
291 controls &= ~RV3029_IRQ_CTRL_AIE;
292 events |= RTC_AF;
293 }
294
295 if (events) {
296 rtc_update_irq(rv3029->rtc, 1, events);
297 regmap_write(rv3029->regmap, RV3029_IRQ_FLAGS, flags);
298 regmap_write(rv3029->regmap, RV3029_IRQ_CTRL, controls);
299 }
300 rtc_unlock(rv3029->rtc);
301
302 return IRQ_HANDLED;
303}
304
305static int rv3029_read_time(struct device *dev, struct rtc_time *tm)
306{
307 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
308 unsigned int sr;
309 int ret;
310 u8 regs[RV3029_WATCH_SECTION_LEN] = { 0, };
311
312 ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
313 if (ret < 0)
314 return ret;
315
316 if (sr & (RV3029_STATUS_VLOW2 | RV3029_STATUS_PON))
317 return -EINVAL;
318
319 ret = regmap_bulk_read(rv3029->regmap, RV3029_W_SEC, regs,
320 RV3029_WATCH_SECTION_LEN);
321 if (ret < 0)
322 return ret;
323
324 tm->tm_sec = bcd2bin(regs[RV3029_W_SEC - RV3029_W_SEC]);
325 tm->tm_min = bcd2bin(regs[RV3029_W_MINUTES - RV3029_W_SEC]);
326
327 /* HR field has a more complex interpretation */
328 {
329 const u8 _hr = regs[RV3029_W_HOURS - RV3029_W_SEC];
330
331 if (_hr & RV3029_REG_HR_12_24) {
332 /* 12h format */
333 tm->tm_hour = bcd2bin(_hr & 0x1f);
334 if (_hr & RV3029_REG_HR_PM) /* PM flag set */
335 tm->tm_hour += 12;
336 } else /* 24h format */
337 tm->tm_hour = bcd2bin(_hr & 0x3f);
338 }
339
340 tm->tm_mday = bcd2bin(regs[RV3029_W_DATE - RV3029_W_SEC]);
341 tm->tm_mon = bcd2bin(regs[RV3029_W_MONTHS - RV3029_W_SEC]) - 1;
342 tm->tm_year = bcd2bin(regs[RV3029_W_YEARS - RV3029_W_SEC]) + 100;
343 tm->tm_wday = bcd2bin(regs[RV3029_W_DAYS - RV3029_W_SEC]) - 1;
344
345 return 0;
346}
347
348static int rv3029_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
349{
350 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
351 struct rtc_time *const tm = &alarm->time;
352 unsigned int controls, flags;
353 int ret;
354 u8 regs[8];
355
356 ret = regmap_bulk_read(rv3029->regmap, RV3029_A_SC, regs,
357 RV3029_ALARM_SECTION_LEN);
358 if (ret < 0)
359 return ret;
360
361 ret = regmap_read(rv3029->regmap, RV3029_IRQ_CTRL, &controls);
362 if (ret)
363 return ret;
364
365 ret = regmap_read(rv3029->regmap, RV3029_IRQ_FLAGS, &flags);
366 if (ret < 0)
367 return ret;
368
369 tm->tm_sec = bcd2bin(regs[RV3029_A_SC - RV3029_A_SC] & 0x7f);
370 tm->tm_min = bcd2bin(regs[RV3029_A_MN - RV3029_A_SC] & 0x7f);
371 tm->tm_hour = bcd2bin(regs[RV3029_A_HR - RV3029_A_SC] & 0x3f);
372 tm->tm_mday = bcd2bin(regs[RV3029_A_DT - RV3029_A_SC] & 0x3f);
373 tm->tm_mon = bcd2bin(regs[RV3029_A_MO - RV3029_A_SC] & 0x1f) - 1;
374 tm->tm_year = bcd2bin(regs[RV3029_A_YR - RV3029_A_SC] & 0x7f) + 100;
375 tm->tm_wday = bcd2bin(regs[RV3029_A_DW - RV3029_A_SC] & 0x07) - 1;
376
377 alarm->enabled = !!(controls & RV3029_IRQ_CTRL_AIE);
378 alarm->pending = (flags & RV3029_IRQ_FLAGS_AF) && alarm->enabled;
379
380 return 0;
381}
382
383static int rv3029_alarm_irq_enable(struct device *dev, unsigned int enable)
384{
385 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
386
387 return regmap_update_bits(rv3029->regmap, RV3029_IRQ_CTRL,
388 RV3029_IRQ_CTRL_AIE,
389 enable ? RV3029_IRQ_CTRL_AIE : 0);
390}
391
392static int rv3029_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
393{
394 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
395 struct rtc_time *const tm = &alarm->time;
396 int ret;
397 u8 regs[8];
398
399 /* Activate all the alarms with AE_x bit */
400 regs[RV3029_A_SC - RV3029_A_SC] = bin2bcd(tm->tm_sec) | RV3029_A_AE_X;
401 regs[RV3029_A_MN - RV3029_A_SC] = bin2bcd(tm->tm_min) | RV3029_A_AE_X;
402 regs[RV3029_A_HR - RV3029_A_SC] = (bin2bcd(tm->tm_hour) & 0x3f)
403 | RV3029_A_AE_X;
404 regs[RV3029_A_DT - RV3029_A_SC] = (bin2bcd(tm->tm_mday) & 0x3f)
405 | RV3029_A_AE_X;
406 regs[RV3029_A_MO - RV3029_A_SC] = (bin2bcd(tm->tm_mon + 1) & 0x1f)
407 | RV3029_A_AE_X;
408 regs[RV3029_A_DW - RV3029_A_SC] = (bin2bcd(tm->tm_wday + 1) & 0x7)
409 | RV3029_A_AE_X;
410 regs[RV3029_A_YR - RV3029_A_SC] = (bin2bcd(tm->tm_year - 100))
411 | RV3029_A_AE_X;
412
413 /* Write the alarm */
414 ret = regmap_bulk_write(rv3029->regmap, RV3029_A_SC, regs,
415 RV3029_ALARM_SECTION_LEN);
416 if (ret < 0)
417 return ret;
418
419 return rv3029_alarm_irq_enable(dev, alarm->enabled);
420}
421
422static int rv3029_set_time(struct device *dev, struct rtc_time *tm)
423{
424 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
425 u8 regs[8];
426 int ret;
427
428 regs[RV3029_W_SEC - RV3029_W_SEC] = bin2bcd(tm->tm_sec);
429 regs[RV3029_W_MINUTES - RV3029_W_SEC] = bin2bcd(tm->tm_min);
430 regs[RV3029_W_HOURS - RV3029_W_SEC] = bin2bcd(tm->tm_hour);
431 regs[RV3029_W_DATE - RV3029_W_SEC] = bin2bcd(tm->tm_mday);
432 regs[RV3029_W_MONTHS - RV3029_W_SEC] = bin2bcd(tm->tm_mon + 1);
433 regs[RV3029_W_DAYS - RV3029_W_SEC] = bin2bcd(tm->tm_wday + 1) & 0x7;
434 regs[RV3029_W_YEARS - RV3029_W_SEC] = bin2bcd(tm->tm_year - 100);
435
436 ret = regmap_bulk_write(rv3029->regmap, RV3029_W_SEC, regs,
437 RV3029_WATCH_SECTION_LEN);
438 if (ret < 0)
439 return ret;
440
441 /* clear PON and VLOW2 bits */
442 return regmap_update_bits(rv3029->regmap, RV3029_STATUS,
443 RV3029_STATUS_PON | RV3029_STATUS_VLOW2, 0);
444}
445
446static int rv3029_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
447{
448 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
449 unsigned long vl = 0;
450 int sr, ret = 0;
451
452 switch (cmd) {
453 case RTC_VL_READ:
454 ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
455 if (ret < 0)
456 return ret;
457
458 if (sr & RV3029_STATUS_VLOW1)
459 vl = RTC_VL_ACCURACY_LOW;
460
461 if (sr & (RV3029_STATUS_VLOW2 | RV3029_STATUS_PON))
462 vl |= RTC_VL_DATA_INVALID;
463
464 return put_user(vl, (unsigned int __user *)arg);
465
466 case RTC_VL_CLR:
467 return regmap_update_bits(rv3029->regmap, RV3029_STATUS,
468 RV3029_STATUS_VLOW1, 0);
469
470 default:
471 return -ENOIOCTLCMD;
472 }
473}
474
475static int rv3029_nvram_write(void *priv, unsigned int offset, void *val,
476 size_t bytes)
477{
478 return regmap_bulk_write(priv, RV3029_RAM_PAGE + offset, val, bytes);
479}
480
481static int rv3029_nvram_read(void *priv, unsigned int offset, void *val,
482 size_t bytes)
483{
484 return regmap_bulk_read(priv, RV3029_RAM_PAGE + offset, val, bytes);
485}
486
487static const struct rv3029_trickle_tab_elem {
488 u32 r; /* resistance in ohms */
489 u8 conf; /* trickle config bits */
490} rv3029_trickle_tab[] = {
491 {
492 .r = 1076,
493 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
494 RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
495 }, {
496 .r = 1091,
497 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
498 RV3029_TRICKLE_20K,
499 }, {
500 .r = 1137,
501 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
502 RV3029_TRICKLE_80K,
503 }, {
504 .r = 1154,
505 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K,
506 }, {
507 .r = 1371,
508 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K |
509 RV3029_TRICKLE_80K,
510 }, {
511 .r = 1395,
512 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K,
513 }, {
514 .r = 1472,
515 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_80K,
516 }, {
517 .r = 1500,
518 .conf = RV3029_TRICKLE_1K,
519 }, {
520 .r = 3810,
521 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K |
522 RV3029_TRICKLE_80K,
523 }, {
524 .r = 4000,
525 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K,
526 }, {
527 .r = 4706,
528 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_80K,
529 }, {
530 .r = 5000,
531 .conf = RV3029_TRICKLE_5K,
532 }, {
533 .r = 16000,
534 .conf = RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
535 }, {
536 .r = 20000,
537 .conf = RV3029_TRICKLE_20K,
538 }, {
539 .r = 80000,
540 .conf = RV3029_TRICKLE_80K,
541 },
542};
543
544static void rv3029_trickle_config(struct device *dev)
545{
546 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
547 struct device_node *of_node = dev->of_node;
548 const struct rv3029_trickle_tab_elem *elem;
549 int i, err;
550 u32 ohms;
551 u8 trickle_set_bits;
552
553 if (!of_node)
554 return;
555
556 /* Configure the trickle charger. */
557 err = of_property_read_u32(of_node, "trickle-resistor-ohms", &ohms);
558 if (err) {
559 /* Disable trickle charger. */
560 trickle_set_bits = 0;
561 } else {
562 /* Enable trickle charger. */
563 for (i = 0; i < ARRAY_SIZE(rv3029_trickle_tab); i++) {
564 elem = &rv3029_trickle_tab[i];
565 if (elem->r >= ohms)
566 break;
567 }
568 trickle_set_bits = elem->conf;
569 dev_info(dev,
570 "Trickle charger enabled at %d ohms resistance.\n",
571 elem->r);
572 }
573 err = rv3029_eeprom_update_bits(rv3029, RV3029_CONTROL_E2P_EECTRL,
574 RV3029_TRICKLE_MASK,
575 trickle_set_bits);
576 if (err < 0)
577 dev_err(dev, "Failed to update trickle charger config\n");
578}
579
580#ifdef CONFIG_RTC_DRV_RV3029_HWMON
581
582static int rv3029_read_temp(struct rv3029_data *rv3029, int *temp_mC)
583{
584 unsigned int temp;
585 int ret;
586
587 ret = regmap_read(rv3029->regmap, RV3029_TEMP_PAGE, &temp);
588 if (ret < 0)
589 return ret;
590
591 *temp_mC = ((int)temp - 60) * 1000;
592
593 return 0;
594}
595
596static ssize_t rv3029_hwmon_show_temp(struct device *dev,
597 struct device_attribute *attr,
598 char *buf)
599{
600 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
601 int ret, temp_mC;
602
603 ret = rv3029_read_temp(rv3029, &temp_mC);
604 if (ret < 0)
605 return ret;
606
607 return sprintf(buf, "%d\n", temp_mC);
608}
609
610static ssize_t rv3029_hwmon_set_update_interval(struct device *dev,
611 struct device_attribute *attr,
612 const char *buf,
613 size_t count)
614{
615 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
616 unsigned int th_set_bits = 0;
617 unsigned long interval_ms;
618 int ret;
619
620 ret = kstrtoul(buf, 10, &interval_ms);
621 if (ret < 0)
622 return ret;
623
624 if (interval_ms != 0) {
625 th_set_bits |= RV3029_EECTRL_THE;
626 if (interval_ms >= 16000)
627 th_set_bits |= RV3029_EECTRL_THP;
628 }
629 ret = rv3029_eeprom_update_bits(rv3029, RV3029_CONTROL_E2P_EECTRL,
630 RV3029_EECTRL_THE | RV3029_EECTRL_THP,
631 th_set_bits);
632 if (ret < 0)
633 return ret;
634
635 return count;
636}
637
638static ssize_t rv3029_hwmon_show_update_interval(struct device *dev,
639 struct device_attribute *attr,
640 char *buf)
641{
642 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
643 int ret, interval_ms;
644 u8 eectrl;
645
646 ret = rv3029_eeprom_read(rv3029, RV3029_CONTROL_E2P_EECTRL,
647 &eectrl, 1);
648 if (ret < 0)
649 return ret;
650
651 if (eectrl & RV3029_EECTRL_THE) {
652 if (eectrl & RV3029_EECTRL_THP)
653 interval_ms = 16000;
654 else
655 interval_ms = 1000;
656 } else {
657 interval_ms = 0;
658 }
659
660 return sprintf(buf, "%d\n", interval_ms);
661}
662
663static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, rv3029_hwmon_show_temp,
664 NULL, 0);
665static SENSOR_DEVICE_ATTR(update_interval, S_IWUSR | S_IRUGO,
666 rv3029_hwmon_show_update_interval,
667 rv3029_hwmon_set_update_interval, 0);
668
669static struct attribute *rv3029_hwmon_attrs[] = {
670 &sensor_dev_attr_temp1_input.dev_attr.attr,
671 &sensor_dev_attr_update_interval.dev_attr.attr,
672 NULL,
673};
674ATTRIBUTE_GROUPS(rv3029_hwmon);
675
676static void rv3029_hwmon_register(struct device *dev, const char *name)
677{
678 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
679 struct device *hwmon_dev;
680
681 hwmon_dev = devm_hwmon_device_register_with_groups(dev, name, rv3029,
682 rv3029_hwmon_groups);
683 if (IS_ERR(hwmon_dev)) {
684 dev_warn(dev, "unable to register hwmon device %ld\n",
685 PTR_ERR(hwmon_dev));
686 }
687}
688
689#else /* CONFIG_RTC_DRV_RV3029_HWMON */
690
691static void rv3029_hwmon_register(struct device *dev, const char *name)
692{
693}
694
695#endif /* CONFIG_RTC_DRV_RV3029_HWMON */
696
697static const struct rtc_class_ops rv3029_rtc_ops = {
698 .read_time = rv3029_read_time,
699 .set_time = rv3029_set_time,
700 .ioctl = rv3029_ioctl,
701 .read_alarm = rv3029_read_alarm,
702 .set_alarm = rv3029_set_alarm,
703 .alarm_irq_enable = rv3029_alarm_irq_enable,
704};
705
706static int rv3029_probe(struct device *dev, struct regmap *regmap, int irq,
707 const char *name)
708{
709 struct rv3029_data *rv3029;
710 struct nvmem_config nvmem_cfg = {
711 .name = "rv3029_nvram",
712 .word_size = 1,
713 .stride = 1,
714 .size = RV3029_RAM_SECTION_LEN,
715 .type = NVMEM_TYPE_BATTERY_BACKED,
716 .reg_read = rv3029_nvram_read,
717 .reg_write = rv3029_nvram_write,
718 };
719 int rc = 0;
720
721 rv3029 = devm_kzalloc(dev, sizeof(*rv3029), GFP_KERNEL);
722 if (!rv3029)
723 return -ENOMEM;
724
725 rv3029->regmap = regmap;
726 rv3029->irq = irq;
727 rv3029->dev = dev;
728 dev_set_drvdata(dev, rv3029);
729
730 rv3029_trickle_config(dev);
731 rv3029_hwmon_register(dev, name);
732
733 rv3029->rtc = devm_rtc_allocate_device(dev);
734 if (IS_ERR(rv3029->rtc))
735 return PTR_ERR(rv3029->rtc);
736
737 if (rv3029->irq > 0) {
738 rc = devm_request_threaded_irq(dev, rv3029->irq,
739 NULL, rv3029_handle_irq,
740 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
741 "rv3029", dev);
742 if (rc) {
743 dev_warn(dev, "unable to request IRQ, alarms disabled\n");
744 rv3029->irq = 0;
745 }
746 }
747 if (!rv3029->irq)
748 clear_bit(RTC_FEATURE_ALARM, rv3029->rtc->features);
749
750 rv3029->rtc->ops = &rv3029_rtc_ops;
751 rv3029->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
752 rv3029->rtc->range_max = RTC_TIMESTAMP_END_2079;
753
754 rc = devm_rtc_register_device(rv3029->rtc);
755 if (rc)
756 return rc;
757
758 nvmem_cfg.priv = rv3029->regmap;
759 devm_rtc_nvmem_register(rv3029->rtc, &nvmem_cfg);
760
761 return 0;
762}
763
764static const struct regmap_range rv3029_holes_range[] = {
765 regmap_reg_range(0x05, 0x07),
766 regmap_reg_range(0x0f, 0x0f),
767 regmap_reg_range(0x17, 0x17),
768 regmap_reg_range(0x1a, 0x1f),
769 regmap_reg_range(0x21, 0x27),
770 regmap_reg_range(0x34, 0x37),
771};
772
773static const struct regmap_access_table rv3029_regs = {
774 .no_ranges = rv3029_holes_range,
775 .n_no_ranges = ARRAY_SIZE(rv3029_holes_range),
776};
777
778static const struct regmap_config config = {
779 .reg_bits = 8,
780 .val_bits = 8,
781 .rd_table = &rv3029_regs,
782 .wr_table = &rv3029_regs,
783 .max_register = 0x3f,
784};
785
786#if IS_ENABLED(CONFIG_I2C)
787
788static int rv3029_i2c_probe(struct i2c_client *client)
789{
790 struct regmap *regmap;
791 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK |
792 I2C_FUNC_SMBUS_BYTE)) {
793 dev_err(&client->dev, "Adapter does not support SMBUS_I2C_BLOCK or SMBUS_I2C_BYTE\n");
794 return -ENODEV;
795 }
796
797 regmap = devm_regmap_init_i2c(client, &config);
798 if (IS_ERR(regmap))
799 return PTR_ERR(regmap);
800
801 return rv3029_probe(&client->dev, regmap, client->irq, client->name);
802}
803
804static const struct i2c_device_id rv3029_id[] = {
805 { "rv3029", 0 },
806 { "rv3029c2", 0 },
807 { }
808};
809MODULE_DEVICE_TABLE(i2c, rv3029_id);
810
811static const __maybe_unused struct of_device_id rv3029_of_match[] = {
812 { .compatible = "microcrystal,rv3029" },
813 { }
814};
815MODULE_DEVICE_TABLE(of, rv3029_of_match);
816
817static struct i2c_driver rv3029_driver = {
818 .driver = {
819 .name = "rv3029",
820 .of_match_table = of_match_ptr(rv3029_of_match),
821 },
822 .probe_new = rv3029_i2c_probe,
823 .id_table = rv3029_id,
824};
825
826static int __init rv3029_register_driver(void)
827{
828 return i2c_add_driver(&rv3029_driver);
829}
830
831static void rv3029_unregister_driver(void)
832{
833 i2c_del_driver(&rv3029_driver);
834}
835
836#else
837
838static int __init rv3029_register_driver(void)
839{
840 return 0;
841}
842
843static void rv3029_unregister_driver(void)
844{
845}
846
847#endif
848
849#if IS_ENABLED(CONFIG_SPI_MASTER)
850
851static int rv3049_probe(struct spi_device *spi)
852{
853 struct regmap *regmap;
854
855 regmap = devm_regmap_init_spi(spi, &config);
856 if (IS_ERR(regmap))
857 return PTR_ERR(regmap);
858
859 return rv3029_probe(&spi->dev, regmap, spi->irq, "rv3049");
860}
861
862static struct spi_driver rv3049_driver = {
863 .driver = {
864 .name = "rv3049",
865 },
866 .probe = rv3049_probe,
867};
868
869static int __init rv3049_register_driver(void)
870{
871 return spi_register_driver(&rv3049_driver);
872}
873
874static void __exit rv3049_unregister_driver(void)
875{
876 spi_unregister_driver(&rv3049_driver);
877}
878
879#else
880
881static int __init rv3049_register_driver(void)
882{
883 return 0;
884}
885
886static void __exit rv3049_unregister_driver(void)
887{
888}
889
890#endif
891
892static int __init rv30x9_init(void)
893{
894 int ret;
895
896 ret = rv3029_register_driver();
897 if (ret)
898 return ret;
899
900 ret = rv3049_register_driver();
901 if (ret)
902 rv3029_unregister_driver();
903
904 return ret;
905}
906module_init(rv30x9_init)
907
908static void __exit rv30x9_exit(void)
909{
910 rv3049_unregister_driver();
911 rv3029_unregister_driver();
912}
913module_exit(rv30x9_exit)
914
915MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>");
916MODULE_AUTHOR("Michael Buesch <m@bues.ch>");
917MODULE_DESCRIPTION("Micro Crystal RV3029/RV3049 RTC driver");
918MODULE_LICENSE("GPL");
919MODULE_ALIAS("spi:rv3049");