Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * RTC driver for the Armada 38x Marvell SoCs
  4 *
  5 * Copyright (C) 2015 Marvell
  6 *
  7 * Gregory Clement <gregory.clement@free-electrons.com>
  8 */
  9
 10#include <linux/delay.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 14#include <linux/of_device.h>
 15#include <linux/platform_device.h>
 16#include <linux/rtc.h>
 17
 18#define RTC_STATUS	    0x0
 19#define RTC_STATUS_ALARM1	    BIT(0)
 20#define RTC_STATUS_ALARM2	    BIT(1)
 21#define RTC_IRQ1_CONF	    0x4
 22#define RTC_IRQ2_CONF	    0x8
 23#define RTC_IRQ_AL_EN		    BIT(0)
 24#define RTC_IRQ_FREQ_EN		    BIT(1)
 25#define RTC_IRQ_FREQ_1HZ	    BIT(2)
 26#define RTC_CCR		    0x18
 27#define RTC_CCR_MODE		    BIT(15)
 28#define RTC_CONF_TEST	    0x1C
 29#define RTC_NOMINAL_TIMING	    BIT(13)
 30
 31#define RTC_TIME	    0xC
 32#define RTC_ALARM1	    0x10
 33#define RTC_ALARM2	    0x14
 34
 35/* Armada38x SoC registers  */
 36#define RTC_38X_BRIDGE_TIMING_CTL   0x0
 37#define RTC_38X_PERIOD_OFFS		0
 38#define RTC_38X_PERIOD_MASK		(0x3FF << RTC_38X_PERIOD_OFFS)
 39#define RTC_38X_READ_DELAY_OFFS		26
 40#define RTC_38X_READ_DELAY_MASK		(0x1F << RTC_38X_READ_DELAY_OFFS)
 41
 42/* Armada 7K/8K registers  */
 43#define RTC_8K_BRIDGE_TIMING_CTL0    0x0
 44#define RTC_8K_WRCLK_PERIOD_OFFS	0
 45#define RTC_8K_WRCLK_PERIOD_MASK	(0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
 46#define RTC_8K_WRCLK_SETUP_OFFS		16
 47#define RTC_8K_WRCLK_SETUP_MASK		(0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
 48#define RTC_8K_BRIDGE_TIMING_CTL1   0x4
 49#define RTC_8K_READ_DELAY_OFFS		0
 50#define RTC_8K_READ_DELAY_MASK		(0xFFFF << RTC_8K_READ_DELAY_OFFS)
 51
 52#define RTC_8K_ISR		    0x10
 53#define RTC_8K_IMR		    0x14
 54#define RTC_8K_ALARM2			BIT(0)
 55
 56#define SOC_RTC_INTERRUPT	    0x8
 57#define SOC_RTC_ALARM1			BIT(0)
 58#define SOC_RTC_ALARM2			BIT(1)
 59#define SOC_RTC_ALARM1_MASK		BIT(2)
 60#define SOC_RTC_ALARM2_MASK		BIT(3)
 61
 62#define SAMPLE_NR 100
 63
 64struct value_to_freq {
 65	u32 value;
 66	u8 freq;
 67};
 68
 69struct armada38x_rtc {
 70	struct rtc_device   *rtc_dev;
 71	void __iomem	    *regs;
 72	void __iomem	    *regs_soc;
 73	spinlock_t	    lock;
 74	int		    irq;
 75	bool		    initialized;
 76	struct value_to_freq *val_to_freq;
 77	const struct armada38x_rtc_data *data;
 78};
 79
 80#define ALARM1	0
 81#define ALARM2	1
 82
 83#define ALARM_REG(base, alarm)	 ((base) + (alarm) * sizeof(u32))
 84
 85struct armada38x_rtc_data {
 86	/* Initialize the RTC-MBUS bridge timing */
 87	void (*update_mbus_timing)(struct armada38x_rtc *rtc);
 88	u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
 89	void (*clear_isr)(struct armada38x_rtc *rtc);
 90	void (*unmask_interrupt)(struct armada38x_rtc *rtc);
 91	u32 alarm;
 92};
 93
 94/*
 95 * According to the datasheet, the OS should wait 5us after every
 96 * register write to the RTC hard macro so that the required update
 97 * can occur without holding off the system bus
 98 * According to errata RES-3124064, Write to any RTC register
 99 * may fail. As a workaround, before writing to RTC
100 * register, issue a dummy write of 0x0 twice to RTC Status
101 * register.
102 */
103
104static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
105{
106	writel(0, rtc->regs + RTC_STATUS);
107	writel(0, rtc->regs + RTC_STATUS);
108	writel(val, rtc->regs + offset);
109	udelay(5);
110}
111
112/* Update RTC-MBUS bridge timing parameters */
113static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
114{
115	u32 reg;
116
117	reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
118	reg &= ~RTC_38X_PERIOD_MASK;
119	reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
120	reg &= ~RTC_38X_READ_DELAY_MASK;
121	reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
122	writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
123}
124
125static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
126{
127	u32 reg;
128
129	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
130	reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
131	reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
132	reg &= ~RTC_8K_WRCLK_SETUP_MASK;
133	reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
134	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
135
136	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
137	reg &= ~RTC_8K_READ_DELAY_MASK;
138	reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
139	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
140}
141
142static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
143{
144	return readl(rtc->regs + rtc_reg);
145}
146
147static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
148{
149	int i, index_max = 0, max = 0;
150
151	for (i = 0; i < SAMPLE_NR; i++) {
152		rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
153		rtc->val_to_freq[i].freq = 0;
154	}
155
156	for (i = 0; i < SAMPLE_NR; i++) {
157		int j = 0;
158		u32 value = rtc->val_to_freq[i].value;
159
160		while (rtc->val_to_freq[j].freq) {
161			if (rtc->val_to_freq[j].value == value) {
162				rtc->val_to_freq[j].freq++;
163				break;
164			}
165			j++;
166		}
167
168		if (!rtc->val_to_freq[j].freq) {
169			rtc->val_to_freq[j].value = value;
170			rtc->val_to_freq[j].freq = 1;
171		}
172
173		if (rtc->val_to_freq[j].freq > max) {
174			index_max = j;
175			max = rtc->val_to_freq[j].freq;
176		}
177
178		/*
179		 * If a value already has half of the sample this is the most
180		 * frequent one and we can stop the research right now
181		 */
182		if (max > SAMPLE_NR / 2)
183			break;
184	}
185
186	return rtc->val_to_freq[index_max].value;
187}
188
189static void armada38x_clear_isr(struct armada38x_rtc *rtc)
190{
191	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
192
193	writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
194}
195
196static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
197{
198	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
199
200	writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
201}
202
203static void armada8k_clear_isr(struct armada38x_rtc *rtc)
204{
205	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
206}
207
208static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
209{
210	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
211}
212
213static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
214{
215	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
216	unsigned long time, flags;
217
218	spin_lock_irqsave(&rtc->lock, flags);
219	time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
220	spin_unlock_irqrestore(&rtc->lock, flags);
221
222	rtc_time64_to_tm(time, tm);
223
224	return 0;
225}
226
227static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
228{
229	u32 reg;
230
231	reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
232	/* If bits [7:0] are non-zero, assume RTC was uninitialized */
233	if (reg & 0xff) {
234		rtc_delayed_write(0, rtc, RTC_CONF_TEST);
235		msleep(500); /* Oscillator startup time */
236		rtc_delayed_write(0, rtc, RTC_TIME);
237		rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
238				  RTC_STATUS);
239		rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
240	}
241	rtc->initialized = true;
242}
243
244static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
245{
246	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
247	unsigned long time, flags;
248
249	time = rtc_tm_to_time64(tm);
250
251	if (!rtc->initialized)
252		armada38x_rtc_reset(rtc);
253
254	spin_lock_irqsave(&rtc->lock, flags);
255	rtc_delayed_write(time, rtc, RTC_TIME);
256	spin_unlock_irqrestore(&rtc->lock, flags);
257
258	return 0;
259}
260
261static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
262{
263	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
264	unsigned long time, flags;
265	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
266	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
267	u32 val;
268
269	spin_lock_irqsave(&rtc->lock, flags);
270
271	time = rtc->data->read_rtc_reg(rtc, reg);
272	val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
273
274	spin_unlock_irqrestore(&rtc->lock, flags);
275
276	alrm->enabled = val ? 1 : 0;
277	rtc_time64_to_tm(time,  &alrm->time);
278
279	return 0;
280}
281
282static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
283{
284	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
285	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
286	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
287	unsigned long time, flags;
288
289	time = rtc_tm_to_time64(&alrm->time);
290
291	spin_lock_irqsave(&rtc->lock, flags);
292
293	rtc_delayed_write(time, rtc, reg);
294
295	if (alrm->enabled) {
296		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
297		rtc->data->unmask_interrupt(rtc);
298	}
299
300	spin_unlock_irqrestore(&rtc->lock, flags);
301
302	return 0;
303}
304
305static int armada38x_rtc_alarm_irq_enable(struct device *dev,
306					 unsigned int enabled)
307{
308	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
309	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
310	unsigned long flags;
311
312	spin_lock_irqsave(&rtc->lock, flags);
313
314	if (enabled)
315		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
316	else
317		rtc_delayed_write(0, rtc, reg_irq);
318
319	spin_unlock_irqrestore(&rtc->lock, flags);
320
321	return 0;
322}
323
324static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
325{
326	struct armada38x_rtc *rtc = data;
327	u32 val;
328	int event = RTC_IRQF | RTC_AF;
329	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
330
331	dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
332
333	spin_lock(&rtc->lock);
334
335	rtc->data->clear_isr(rtc);
336	val = rtc->data->read_rtc_reg(rtc, reg_irq);
337	/* disable all the interrupts for alarm*/
338	rtc_delayed_write(0, rtc, reg_irq);
339	/* Ack the event */
340	rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
341
342	spin_unlock(&rtc->lock);
343
344	if (val & RTC_IRQ_FREQ_EN) {
345		if (val & RTC_IRQ_FREQ_1HZ)
346			event |= RTC_UF;
347		else
348			event |= RTC_PF;
349	}
350
351	rtc_update_irq(rtc->rtc_dev, 1, event);
352
353	return IRQ_HANDLED;
354}
355
356/*
357 * The information given in the Armada 388 functional spec is complex.
358 * They give two different formulas for calculating the offset value,
359 * but when considering "Offset" as an 8-bit signed integer, they both
360 * reduce down to (we shall rename "Offset" as "val" here):
361 *
362 *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
363 *
364 * Converting to time, f = 1/t:
365 *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
366 *
367 *   =>  t_measured / t_ideal = val * resolution + 1
368 *
369 * "offset" in the RTC interface is defined as:
370 *   t = t0 * (1 + offset * 1e-9)
371 * where t is the desired period, t0 is the measured period with a zero
372 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
373 *   offset = (t_ideal / t_measured - 1) / 1e-9
374 *
375 *   => t_ideal / t_measured = offset * 1e-9 + 1
376 *
377 * so:
378 *
379 *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
380 *
381 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
382 *   offset = 1e18 / (val * R + 1e9) - 1e9
383 *   val = (1e18 / (offset + 1e9) - 1e9) / R
384 * with a common transformation:
385 *   f(x) = 1e18 / (x + 1e9) - 1e9
386 *   offset = f(val * R)
387 *   val = f(offset) / R
388 *
389 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
390 */
391static long armada38x_ppb_convert(long ppb)
392{
393	long div = ppb + 1000000000L;
394
395	return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
396}
397
398static int armada38x_rtc_read_offset(struct device *dev, long *offset)
399{
400	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
401	unsigned long ccr, flags;
402	long ppb_cor;
403
404	spin_lock_irqsave(&rtc->lock, flags);
405	ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
406	spin_unlock_irqrestore(&rtc->lock, flags);
407
408	ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
409	/* ppb_cor + 1000000000L can never be zero */
410	*offset = armada38x_ppb_convert(ppb_cor);
411
412	return 0;
413}
414
415static int armada38x_rtc_set_offset(struct device *dev, long offset)
416{
417	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
418	unsigned long ccr = 0;
419	long ppb_cor, off;
420
421	/*
422	 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
423	 * need to clamp the input.  This equates to -484270 .. 488558.
424	 * Not only is this to stop out of range "off" but also to
425	 * avoid the division by zero in armada38x_ppb_convert().
426	 */
427	offset = clamp(offset, -484270L, 488558L);
428
429	ppb_cor = armada38x_ppb_convert(offset);
430
431	/*
432	 * Use low update mode where possible, which gives a better
433	 * resolution of correction.
434	 */
435	off = DIV_ROUND_CLOSEST(ppb_cor, 954);
436	if (off > 127 || off < -128) {
437		ccr = RTC_CCR_MODE;
438		off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
439	}
440
441	/*
442	 * Armada 388 requires a bit pattern in bits 14..8 depending on
443	 * the sign bit: { 0, ~S, S, S, S, S, S }
444	 */
445	ccr |= (off & 0x3fff) ^ 0x2000;
446	rtc_delayed_write(ccr, rtc, RTC_CCR);
447
448	return 0;
449}
450
451static const struct rtc_class_ops armada38x_rtc_ops = {
452	.read_time = armada38x_rtc_read_time,
453	.set_time = armada38x_rtc_set_time,
454	.read_alarm = armada38x_rtc_read_alarm,
455	.set_alarm = armada38x_rtc_set_alarm,
456	.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
457	.read_offset = armada38x_rtc_read_offset,
458	.set_offset = armada38x_rtc_set_offset,
459};
460
461static const struct armada38x_rtc_data armada38x_data = {
462	.update_mbus_timing = rtc_update_38x_mbus_timing_params,
463	.read_rtc_reg = read_rtc_register_38x_wa,
464	.clear_isr = armada38x_clear_isr,
465	.unmask_interrupt = armada38x_unmask_interrupt,
466	.alarm = ALARM1,
467};
468
469static const struct armada38x_rtc_data armada8k_data = {
470	.update_mbus_timing = rtc_update_8k_mbus_timing_params,
471	.read_rtc_reg = read_rtc_register,
472	.clear_isr = armada8k_clear_isr,
473	.unmask_interrupt = armada8k_unmask_interrupt,
474	.alarm = ALARM2,
475};
476
477#ifdef CONFIG_OF
478static const struct of_device_id armada38x_rtc_of_match_table[] = {
479	{
480		.compatible = "marvell,armada-380-rtc",
481		.data = &armada38x_data,
482	},
483	{
484		.compatible = "marvell,armada-8k-rtc",
485		.data = &armada8k_data,
486	},
487	{}
488};
489MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
490#endif
491
492static __init int armada38x_rtc_probe(struct platform_device *pdev)
493{
494	struct resource *res;
495	struct armada38x_rtc *rtc;
496
497	rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
498			    GFP_KERNEL);
499	if (!rtc)
500		return -ENOMEM;
501
502	rtc->data = of_device_get_match_data(&pdev->dev);
503
504	rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
505				sizeof(struct value_to_freq), GFP_KERNEL);
506	if (!rtc->val_to_freq)
507		return -ENOMEM;
508
509	spin_lock_init(&rtc->lock);
510
511	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
512	rtc->regs = devm_ioremap_resource(&pdev->dev, res);
513	if (IS_ERR(rtc->regs))
514		return PTR_ERR(rtc->regs);
515	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
516	rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
517	if (IS_ERR(rtc->regs_soc))
518		return PTR_ERR(rtc->regs_soc);
519
520	rtc->irq = platform_get_irq(pdev, 0);
521	if (rtc->irq < 0)
522		return rtc->irq;
523
524	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
525	if (IS_ERR(rtc->rtc_dev))
526		return PTR_ERR(rtc->rtc_dev);
527
528	if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
529				0, pdev->name, rtc) < 0) {
530		dev_warn(&pdev->dev, "Interrupt not available.\n");
531		rtc->irq = -1;
532	}
533	platform_set_drvdata(pdev, rtc);
534
535	if (rtc->irq != -1)
536		device_init_wakeup(&pdev->dev, 1);
537	else
538		clear_bit(RTC_FEATURE_ALARM, rtc->rtc_dev->features);
539
540	/* Update RTC-MBUS bridge timing parameters */
541	rtc->data->update_mbus_timing(rtc);
542
543	rtc->rtc_dev->ops = &armada38x_rtc_ops;
544	rtc->rtc_dev->range_max = U32_MAX;
545
546	return devm_rtc_register_device(rtc->rtc_dev);
547}
548
549#ifdef CONFIG_PM_SLEEP
550static int armada38x_rtc_suspend(struct device *dev)
551{
552	if (device_may_wakeup(dev)) {
553		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
554
555		return enable_irq_wake(rtc->irq);
556	}
557
558	return 0;
559}
560
561static int armada38x_rtc_resume(struct device *dev)
562{
563	if (device_may_wakeup(dev)) {
564		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
565
566		/* Update RTC-MBUS bridge timing parameters */
567		rtc->data->update_mbus_timing(rtc);
568
569		return disable_irq_wake(rtc->irq);
570	}
571
572	return 0;
573}
574#endif
575
576static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
577			 armada38x_rtc_suspend, armada38x_rtc_resume);
578
579static struct platform_driver armada38x_rtc_driver = {
580	.driver		= {
581		.name	= "armada38x-rtc",
582		.pm	= &armada38x_rtc_pm_ops,
583		.of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
584	},
585};
586
587module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
588
589MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
590MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
591MODULE_LICENSE("GPL");