Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2014 Redpine Signals Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/etherdevice.h>
  18#include <linux/timer.h>
  19#include "rsi_mgmt.h"
  20#include "rsi_common.h"
  21#include "rsi_ps.h"
  22#include "rsi_hal.h"
  23
  24static struct bootup_params boot_params_20 = {
  25	.magic_number = cpu_to_le16(0x5aa5),
  26	.crystal_good_time = 0x0,
  27	.valid = cpu_to_le32(VALID_20),
  28	.reserved_for_valids = 0x0,
  29	.bootup_mode_info = 0x0,
  30	.digital_loop_back_params = 0x0,
  31	.rtls_timestamp_en = 0x0,
  32	.host_spi_intr_cfg = 0x0,
  33	.device_clk_info = {{
  34		.pll_config_g = {
  35			.tapll_info_g = {
  36				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  37					      (TA_PLL_M_VAL_20)),
  38				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  39			},
  40			.pll960_info_g = {
  41				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  42							 (PLL960_N_VAL_20)),
  43				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  44				.pll_reg_3 = 0x0,
  45			},
  46			.afepll_info_g = {
  47				.pll_reg = cpu_to_le16(0x9f0),
  48			}
  49		},
  50		.switch_clk_g = {
  51			.switch_clk_info = cpu_to_le16(0xb),
  52			.bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
  53			.umac_clock_reg_config = cpu_to_le16(0x48),
  54			.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
  55		}
  56	},
  57	{
  58		.pll_config_g = {
  59			.tapll_info_g = {
  60				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  61							 (TA_PLL_M_VAL_20)),
  62				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  63			},
  64			.pll960_info_g = {
  65				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  66							 (PLL960_N_VAL_20)),
  67				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  68				.pll_reg_3 = 0x0,
  69			},
  70			.afepll_info_g = {
  71				.pll_reg = cpu_to_le16(0x9f0),
  72			}
  73		},
  74		.switch_clk_g = {
  75			.switch_clk_info = 0x0,
  76			.bbp_lmac_clk_reg_val = 0x0,
  77			.umac_clock_reg_config = 0x0,
  78			.qspi_uart_clock_reg_config = 0x0
  79		}
  80	},
  81	{
  82		.pll_config_g = {
  83			.tapll_info_g = {
  84				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  85							 (TA_PLL_M_VAL_20)),
  86				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  87			},
  88			.pll960_info_g = {
  89				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  90							 (PLL960_N_VAL_20)),
  91				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  92				.pll_reg_3 = 0x0,
  93			},
  94			.afepll_info_g = {
  95				.pll_reg = cpu_to_le16(0x9f0),
  96			}
  97		},
  98		.switch_clk_g = {
  99			.switch_clk_info = 0x0,
 100			.bbp_lmac_clk_reg_val = 0x0,
 101			.umac_clock_reg_config = 0x0,
 102			.qspi_uart_clock_reg_config = 0x0
 103		}
 104	} },
 105	.buckboost_wakeup_cnt = 0x0,
 106	.pmu_wakeup_wait = 0x0,
 107	.shutdown_wait_time = 0x0,
 108	.pmu_slp_clkout_sel = 0x0,
 109	.wdt_prog_value = 0x0,
 110	.wdt_soc_rst_delay = 0x0,
 111	.dcdc_operation_mode = 0x0,
 112	.soc_reset_wait_cnt = 0x0,
 113	.waiting_time_at_fresh_sleep = 0x0,
 114	.max_threshold_to_avoid_sleep = 0x0,
 115	.beacon_resedue_alg_en = 0,
 116};
 117
 118static struct bootup_params boot_params_40 = {
 119	.magic_number = cpu_to_le16(0x5aa5),
 120	.crystal_good_time = 0x0,
 121	.valid = cpu_to_le32(VALID_40),
 122	.reserved_for_valids = 0x0,
 123	.bootup_mode_info = 0x0,
 124	.digital_loop_back_params = 0x0,
 125	.rtls_timestamp_en = 0x0,
 126	.host_spi_intr_cfg = 0x0,
 127	.device_clk_info = {{
 128		.pll_config_g = {
 129			.tapll_info_g = {
 130				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 131							 (TA_PLL_M_VAL_40)),
 132				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 133			},
 134			.pll960_info_g = {
 135				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 136							 (PLL960_N_VAL_40)),
 137				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 138				.pll_reg_3 = 0x0,
 139			},
 140			.afepll_info_g = {
 141				.pll_reg = cpu_to_le16(0x9f0),
 142			}
 143		},
 144		.switch_clk_g = {
 145			.switch_clk_info = cpu_to_le16(0x09),
 146			.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
 147			.umac_clock_reg_config = cpu_to_le16(0x48),
 148			.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
 149		}
 150	},
 151	{
 152		.pll_config_g = {
 153			.tapll_info_g = {
 154				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 155							 (TA_PLL_M_VAL_40)),
 156				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 157			},
 158			.pll960_info_g = {
 159				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 160							 (PLL960_N_VAL_40)),
 161				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 162				.pll_reg_3 = 0x0,
 163			},
 164			.afepll_info_g = {
 165				.pll_reg = cpu_to_le16(0x9f0),
 166			}
 167		},
 168		.switch_clk_g = {
 169			.switch_clk_info = 0x0,
 170			.bbp_lmac_clk_reg_val = 0x0,
 171			.umac_clock_reg_config = 0x0,
 172			.qspi_uart_clock_reg_config = 0x0
 173		}
 174	},
 175	{
 176		.pll_config_g = {
 177			.tapll_info_g = {
 178				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 179							 (TA_PLL_M_VAL_40)),
 180				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 181			},
 182			.pll960_info_g = {
 183				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 184							 (PLL960_N_VAL_40)),
 185				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 186				.pll_reg_3 = 0x0,
 187			},
 188			.afepll_info_g = {
 189				.pll_reg = cpu_to_le16(0x9f0),
 190			}
 191		},
 192		.switch_clk_g = {
 193			.switch_clk_info = 0x0,
 194			.bbp_lmac_clk_reg_val = 0x0,
 195			.umac_clock_reg_config = 0x0,
 196			.qspi_uart_clock_reg_config = 0x0
 197		}
 198	} },
 199	.buckboost_wakeup_cnt = 0x0,
 200	.pmu_wakeup_wait = 0x0,
 201	.shutdown_wait_time = 0x0,
 202	.pmu_slp_clkout_sel = 0x0,
 203	.wdt_prog_value = 0x0,
 204	.wdt_soc_rst_delay = 0x0,
 205	.dcdc_operation_mode = 0x0,
 206	.soc_reset_wait_cnt = 0x0,
 207	.waiting_time_at_fresh_sleep = 0x0,
 208	.max_threshold_to_avoid_sleep = 0x0,
 209	.beacon_resedue_alg_en = 0,
 210};
 211
 212static struct bootup_params_9116 boot_params_9116_20 = {
 213	.magic_number = cpu_to_le16(LOADED_TOKEN),
 214	.valid = cpu_to_le32(VALID_20),
 215	.device_clk_info_9116 = {{
 216		.pll_config_9116_g = {
 217			.pll_ctrl_set_reg = cpu_to_le16(0xd518),
 218			.pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
 219			.pll_modem_conig_reg = cpu_to_le16(0x2000),
 220			.soc_clk_config_reg = cpu_to_le16(0x0c18),
 221			.adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
 222			.adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
 223		},
 224		.switch_clk_9116_g = {
 225			.switch_clk_info =
 226				cpu_to_le32((RSI_SWITCH_TASS_CLK |
 227					    RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
 228					    RSI_SWITCH_BBP_LMAC_CLK_REG)),
 229			.tass_clock_reg = cpu_to_le32(0x083C0503),
 230			.wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
 231			.zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
 232			.bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
 233		}
 234	},
 235	},
 236};
 237
 238static struct bootup_params_9116 boot_params_9116_40 = {
 239	.magic_number = cpu_to_le16(LOADED_TOKEN),
 240	.valid = cpu_to_le32(VALID_40),
 241	.device_clk_info_9116 = {{
 242		.pll_config_9116_g = {
 243			.pll_ctrl_set_reg = cpu_to_le16(0xd518),
 244			.pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
 245			.pll_modem_conig_reg = cpu_to_le16(0x3000),
 246			.soc_clk_config_reg = cpu_to_le16(0x0c18),
 247			.adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
 248			.adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
 249		},
 250		.switch_clk_9116_g = {
 251			.switch_clk_info =
 252				cpu_to_le32((RSI_SWITCH_TASS_CLK |
 253					    RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
 254					    RSI_SWITCH_BBP_LMAC_CLK_REG |
 255					    RSI_MODEM_CLK_160MHZ)),
 256			.tass_clock_reg = cpu_to_le32(0x083C0503),
 257			.wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
 258			.zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
 259			.bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
 260		}
 261	},
 262	},
 263};
 264
 265static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
 266
 267/**
 268 * rsi_set_default_parameters() - This function sets default parameters.
 269 * @common: Pointer to the driver private structure.
 270 *
 271 * Return: none
 272 */
 273static void rsi_set_default_parameters(struct rsi_common *common)
 274{
 275	common->band = NL80211_BAND_2GHZ;
 276	common->channel_width = BW_20MHZ;
 277	common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
 278	common->channel = 1;
 279	memset(&common->rate_config, 0, sizeof(common->rate_config));
 280	common->fsm_state = FSM_CARD_NOT_READY;
 281	common->iface_down = true;
 282	common->endpoint = EP_2GHZ_20MHZ;
 283	common->driver_mode = 1; /* End to end mode */
 284	common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
 285	common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
 286	common->rf_power_val = 0; /* Default 1.9V */
 287	common->wlan_rf_power_mode = 0;
 288	common->obm_ant_sel_val = 2;
 289	common->beacon_interval = RSI_BEACON_INTERVAL;
 290	common->dtim_cnt = RSI_DTIM_COUNT;
 291	common->w9116_features.pll_mode = 0x0;
 292	common->w9116_features.rf_type = 1;
 293	common->w9116_features.wireless_mode = 0;
 294	common->w9116_features.enable_ppe = 0;
 295	common->w9116_features.afe_type = 1;
 296	common->w9116_features.dpd = 0;
 297	common->w9116_features.sifs_tx_enable = 0;
 298	common->w9116_features.ps_options = 0;
 299}
 300
 301void init_bgscan_params(struct rsi_common *common)
 302{
 303	memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
 304	common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
 305	common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
 306	common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
 307	common->bgscan.num_bgscan_channels = 0;
 308	common->bgscan.two_probe = 1;
 309	common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
 310	common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
 311}
 312
 313/**
 314 * rsi_set_contention_vals() - This function sets the contention values for the
 315 *			       backoff procedure.
 316 * @common: Pointer to the driver private structure.
 317 *
 318 * Return: None.
 319 */
 320static void rsi_set_contention_vals(struct rsi_common *common)
 321{
 322	u8 ii = 0;
 323
 324	for (; ii < NUM_EDCA_QUEUES; ii++) {
 325		common->tx_qinfo[ii].wme_params =
 326			(((common->edca_params[ii].cw_min / 2) +
 327			  (common->edca_params[ii].aifs)) *
 328			  WMM_SHORT_SLOT_TIME + SIFS_DURATION);
 329		common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
 330		common->tx_qinfo[ii].pkt_contended = 0;
 331	}
 332}
 333
 334/**
 335 * rsi_send_internal_mgmt_frame() - This function sends management frames to
 336 *				    firmware.Also schedules packet to queue
 337 *				    for transmission.
 338 * @common: Pointer to the driver private structure.
 339 * @skb: Pointer to the socket buffer structure.
 340 *
 341 * Return: 0 on success, -1 on failure.
 342 */
 343static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
 344					struct sk_buff *skb)
 345{
 346	struct skb_info *tx_params;
 347	struct rsi_cmd_desc *desc;
 348
 349	if (skb == NULL) {
 350		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
 351		return -ENOMEM;
 352	}
 353	desc = (struct rsi_cmd_desc *)skb->data;
 354	desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
 355	skb->priority = MGMT_SOFT_Q;
 356	tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
 357	tx_params->flags |= INTERNAL_MGMT_PKT;
 358	skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
 359	rsi_set_event(&common->tx_thread.event);
 360	return 0;
 361}
 362
 363/**
 364 * rsi_load_radio_caps() - This function is used to send radio capabilities
 365 *			   values to firmware.
 366 * @common: Pointer to the driver private structure.
 367 *
 368 * Return: 0 on success, corresponding negative error code on failure.
 369 */
 370static int rsi_load_radio_caps(struct rsi_common *common)
 371{
 372	struct rsi_radio_caps *radio_caps;
 373	struct rsi_hw *adapter = common->priv;
 374	u16 inx = 0;
 375	u8 ii;
 376	u8 radio_id = 0;
 377	u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
 378		      0xf0, 0xf0, 0xf0, 0xf0,
 379		      0xf0, 0xf0, 0xf0, 0xf0,
 380		      0xf0, 0xf0, 0xf0, 0xf0,
 381		      0xf0, 0xf0, 0xf0, 0xf0};
 382	struct sk_buff *skb;
 383	u16 frame_len = sizeof(struct rsi_radio_caps);
 384
 385	rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
 386
 387	skb = dev_alloc_skb(frame_len);
 388
 389	if (!skb) {
 390		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 391			__func__);
 392		return -ENOMEM;
 393	}
 394
 395	memset(skb->data, 0, frame_len);
 396	radio_caps = (struct rsi_radio_caps *)skb->data;
 397
 398	radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
 399	radio_caps->channel_num = common->channel;
 400	radio_caps->rf_model = RSI_RF_TYPE;
 401
 402	radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
 403	if (common->channel_width == BW_40MHZ) {
 404		radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
 405
 406		if (common->fsm_state == FSM_MAC_INIT_DONE) {
 407			struct ieee80211_hw *hw = adapter->hw;
 408			struct ieee80211_conf *conf = &hw->conf;
 409
 410			if (conf_is_ht40_plus(conf)) {
 411				radio_caps->ppe_ack_rate =
 412					cpu_to_le16(LOWER_20_ENABLE |
 413						    (LOWER_20_ENABLE >> 12));
 414			} else if (conf_is_ht40_minus(conf)) {
 415				radio_caps->ppe_ack_rate =
 416					cpu_to_le16(UPPER_20_ENABLE |
 417						    (UPPER_20_ENABLE >> 12));
 418			} else {
 419				radio_caps->ppe_ack_rate =
 420					cpu_to_le16((BW_40MHZ << 12) |
 421						    FULL40M_ENABLE);
 422			}
 423		}
 424	}
 425	radio_caps->radio_info |= radio_id;
 426
 427	if (adapter->device_model == RSI_DEV_9116 &&
 428	    common->channel_width == BW_20MHZ)
 429		radio_caps->radio_cfg_info &= ~0x3;
 430
 431	radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
 432	radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
 433	radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
 434	radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
 435	radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
 436	radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
 437
 438	for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
 439		radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
 440		radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
 441		radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
 442		radio_caps->qos_params[ii].txop_q = 0;
 443	}
 444
 445	for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
 446		if (common->edca_params[ii].cw_max > 0) {
 447			radio_caps->qos_params[ii].cont_win_min_q =
 448				cpu_to_le16(common->edca_params[ii].cw_min);
 449			radio_caps->qos_params[ii].cont_win_max_q =
 450				cpu_to_le16(common->edca_params[ii].cw_max);
 451			radio_caps->qos_params[ii].aifsn_val_q =
 452				cpu_to_le16(common->edca_params[ii].aifs << 8);
 453			radio_caps->qos_params[ii].txop_q =
 454				cpu_to_le16(common->edca_params[ii].txop);
 455		}
 456	}
 457
 458	radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
 459	radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
 460	radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
 461
 462	memcpy(&common->rate_pwr[0], &gc[0], 40);
 463	for (ii = 0; ii < 20; ii++)
 464		radio_caps->gcpd_per_rate[inx++] =
 465			cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
 466
 467	rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
 468			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 469
 470	skb_put(skb, frame_len);
 471
 472	return rsi_send_internal_mgmt_frame(common, skb);
 473}
 474
 475/**
 476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
 477 * @common: Pointer to the driver private structure.
 478 * @msg: Pointer to received packet.
 479 * @msg_len: Length of the received packet.
 480 *
 481 * Return: 0 on success, -1 on failure.
 482 */
 483static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
 484				u8 *msg,
 485				s32 msg_len)
 486{
 487	struct rsi_hw *adapter = common->priv;
 488	struct ieee80211_tx_info *info;
 489	struct skb_info *rx_params;
 490	u8 pad_bytes = msg[4];
 491	struct sk_buff *skb;
 492
 493	if (!adapter->sc_nvifs)
 494		return -ENOLINK;
 495
 496	msg_len -= pad_bytes;
 497	if (msg_len <= 0) {
 498		rsi_dbg(MGMT_RX_ZONE,
 499			"%s: Invalid rx msg of len = %d\n",
 500			__func__, msg_len);
 501		return -EINVAL;
 502	}
 503
 504	skb = dev_alloc_skb(msg_len);
 505	if (!skb)
 506		return -ENOMEM;
 507
 508	skb_put_data(skb,
 509		     (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
 510		     msg_len);
 511
 512	info = IEEE80211_SKB_CB(skb);
 513	rx_params = (struct skb_info *)info->driver_data;
 514	rx_params->rssi = rsi_get_rssi(msg);
 515	rx_params->channel = rsi_get_channel(msg);
 516	rsi_indicate_pkt_to_os(common, skb);
 517
 518	return 0;
 519}
 520
 521/**
 522 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
 523 *				     frame to firmware.
 524 * @common: Pointer to the driver private structure.
 525 * @opmode: Operating mode of device.
 526 * @notify_event: Notification about station connection.
 527 * @bssid: bssid.
 528 * @qos_enable: Qos is enabled.
 529 * @aid: Aid (unique for all STA).
 530 * @sta_id: station id.
 531 * @vif: Pointer to the ieee80211_vif structure.
 532 *
 533 * Return: status: 0 on success, corresponding negative error code on failure.
 534 */
 535int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
 536				  u8 notify_event, const unsigned char *bssid,
 537				  u8 qos_enable, u16 aid, u16 sta_id,
 538				  struct ieee80211_vif *vif)
 539{
 540	struct sk_buff *skb = NULL;
 541	struct rsi_peer_notify *peer_notify;
 542	u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
 543	int status;
 544	u16 frame_len = sizeof(struct rsi_peer_notify);
 545
 546	rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
 547
 548	skb = dev_alloc_skb(frame_len);
 549
 550	if (!skb) {
 551		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 552			__func__);
 553		return -ENOMEM;
 554	}
 555
 556	memset(skb->data, 0, frame_len);
 557	peer_notify = (struct rsi_peer_notify *)skb->data;
 558
 559	if (opmode == RSI_OPMODE_STA)
 560		peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
 561	else if (opmode == RSI_OPMODE_AP)
 562		peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
 563
 564	switch (notify_event) {
 565	case STA_CONNECTED:
 566		peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
 567		break;
 568	case STA_DISCONNECTED:
 569		peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
 570		break;
 571	default:
 572		break;
 573	}
 574
 575	peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
 576	ether_addr_copy(peer_notify->mac_addr, bssid);
 577	peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
 578	peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
 579
 580	rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
 581			(frame_len - FRAME_DESC_SZ),
 582			RSI_WIFI_MGMT_Q);
 583	peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
 584	peer_notify->desc.desc_dword3.qid_tid = sta_id;
 585	peer_notify->desc.desc_dword3.sta_id = vap_id;
 586
 587	skb_put(skb, frame_len);
 588
 589	status = rsi_send_internal_mgmt_frame(common, skb);
 590
 591	if ((vif->type == NL80211_IFTYPE_STATION) &&
 592	    (!status && qos_enable)) {
 593		rsi_set_contention_vals(common);
 594		status = rsi_load_radio_caps(common);
 595	}
 596	return status;
 597}
 598
 599/**
 600 * rsi_send_aggregation_params_frame() - This function sends the ampdu
 601 *					 indication frame to firmware.
 602 * @common: Pointer to the driver private structure.
 603 * @tid: traffic identifier.
 604 * @ssn: ssn.
 605 * @buf_size: buffer size.
 606 * @event: notification about station connection.
 607 * @sta_id: station id.
 608 *
 609 * Return: 0 on success, corresponding negative error code on failure.
 610 */
 611int rsi_send_aggregation_params_frame(struct rsi_common *common,
 612				      u16 tid,
 613				      u16 ssn,
 614				      u8 buf_size,
 615				      u8 event,
 616				      u8 sta_id)
 617{
 618	struct sk_buff *skb = NULL;
 619	struct rsi_aggr_params *aggr_params;
 620	u16 frame_len = sizeof(struct rsi_aggr_params);
 621
 622	skb = dev_alloc_skb(frame_len);
 623
 624	if (!skb) {
 625		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 626			__func__);
 627		return -ENOMEM;
 628	}
 629
 630	memset(skb->data, 0, frame_len);
 631	aggr_params = (struct rsi_aggr_params *)skb->data;
 632
 633	rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
 634
 635	rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
 636	aggr_params->desc_dword0.frame_type = AMPDU_IND;
 637
 638	aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
 639	aggr_params->peer_id = sta_id;
 640	if (event == STA_TX_ADDBA_DONE) {
 641		aggr_params->seq_start = cpu_to_le16(ssn);
 642		aggr_params->baw_size = cpu_to_le16(buf_size);
 643		aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
 644	} else if (event == STA_RX_ADDBA_DONE) {
 645		aggr_params->seq_start = cpu_to_le16(ssn);
 646		aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
 647					     RSI_AGGR_PARAMS_RX_AGGR);
 648	} else if (event == STA_RX_DELBA) {
 649		aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
 650	}
 651
 652	skb_put(skb, frame_len);
 653
 654	return rsi_send_internal_mgmt_frame(common, skb);
 655}
 656
 657/**
 658 * rsi_program_bb_rf() - This function starts base band and RF programming.
 659 *			 This is called after initial configurations are done.
 660 * @common: Pointer to the driver private structure.
 661 *
 662 * Return: 0 on success, corresponding negative error code on failure.
 663 */
 664static int rsi_program_bb_rf(struct rsi_common *common)
 665{
 666	struct sk_buff *skb;
 667	struct rsi_bb_rf_prog *bb_rf_prog;
 668	u16 frame_len = sizeof(struct rsi_bb_rf_prog);
 669
 670	rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
 671
 672	skb = dev_alloc_skb(frame_len);
 673	if (!skb) {
 674		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 675			__func__);
 676		return -ENOMEM;
 677	}
 678
 679	memset(skb->data, 0, frame_len);
 680	bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
 681
 682	rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
 683	bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
 684	bb_rf_prog->endpoint = common->endpoint;
 685	bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
 686
 687	if (common->rf_reset) {
 688		bb_rf_prog->flags =  cpu_to_le16(RF_RESET_ENABLE);
 689		rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
 690			__func__);
 691		common->rf_reset = 0;
 692	}
 693	common->bb_rf_prog_count = 1;
 694	bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
 695					 (RSI_RF_TYPE << 4));
 696	skb_put(skb, frame_len);
 697
 698	return rsi_send_internal_mgmt_frame(common, skb);
 699}
 700
 701/**
 702 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
 703 * @common: Pointer to the driver private structure.
 704 * @mode: Operating mode of device.
 705 * @mac_addr: MAC address
 706 * @vap_id: Rate information - offset and mask
 707 * @vap_status: VAP status - ADD, DELETE or UPDATE
 708 *
 709 * Return: 0 on success, corresponding negative error code on failure.
 710 */
 711int rsi_set_vap_capabilities(struct rsi_common *common,
 712			     enum opmode mode,
 713			     u8 *mac_addr,
 714			     u8 vap_id,
 715			     u8 vap_status)
 716{
 717	struct sk_buff *skb = NULL;
 718	struct rsi_vap_caps *vap_caps;
 719	struct rsi_hw *adapter = common->priv;
 720	struct ieee80211_hw *hw = adapter->hw;
 721	struct ieee80211_conf *conf = &hw->conf;
 722	u16 frame_len = sizeof(struct rsi_vap_caps);
 723
 724	rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
 725
 726	skb = dev_alloc_skb(frame_len);
 727	if (!skb) {
 728		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 729			__func__);
 730		return -ENOMEM;
 731	}
 732
 733	memset(skb->data, 0, frame_len);
 734	vap_caps = (struct rsi_vap_caps *)skb->data;
 735
 736	rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
 737			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 738	vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
 739	vap_caps->status = vap_status;
 740	vap_caps->vif_type = mode;
 741	vap_caps->channel_bw = common->channel_width;
 742	vap_caps->vap_id = vap_id;
 743	vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
 744				   (common->radio_id & 0xf);
 745
 746	memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
 747	vap_caps->keep_alive_period = cpu_to_le16(90);
 748	vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
 749
 750	vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
 751
 752	if (common->band == NL80211_BAND_5GHZ) {
 753		vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
 754		vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
 755	} else {
 756		vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
 757		vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
 758	}
 759	if (conf_is_ht40(conf)) {
 760		if (conf_is_ht40_minus(conf))
 761			vap_caps->ctrl_rate_flags =
 762				cpu_to_le16(UPPER_20_ENABLE);
 763		else if (conf_is_ht40_plus(conf))
 764			vap_caps->ctrl_rate_flags =
 765				cpu_to_le16(LOWER_20_ENABLE);
 766		else
 767			vap_caps->ctrl_rate_flags =
 768				cpu_to_le16(FULL40M_ENABLE);
 769	}
 770
 771	vap_caps->default_data_rate = 0;
 772	vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
 773	vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
 774
 775	skb_put(skb, frame_len);
 776
 777	return rsi_send_internal_mgmt_frame(common, skb);
 778}
 779
 780/**
 781 * rsi_hal_load_key() - This function is used to load keys within the firmware.
 782 * @common: Pointer to the driver private structure.
 783 * @data: Pointer to the key data.
 784 * @key_len: Key length to be loaded.
 785 * @key_type: Type of key: GROUP/PAIRWISE.
 786 * @key_id: Key index.
 787 * @cipher: Type of cipher used.
 788 * @sta_id: Station id.
 789 * @vif: Pointer to the ieee80211_vif structure.
 790 *
 791 * Return: 0 on success, -1 on failure.
 792 */
 793int rsi_hal_load_key(struct rsi_common *common,
 794		     u8 *data,
 795		     u16 key_len,
 796		     u8 key_type,
 797		     u8 key_id,
 798		     u32 cipher,
 799		     s16 sta_id,
 800		     struct ieee80211_vif *vif)
 801{
 802	struct sk_buff *skb = NULL;
 803	struct rsi_set_key *set_key;
 804	u16 key_descriptor = 0;
 805	u16 frame_len = sizeof(struct rsi_set_key);
 806
 807	rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
 808
 809	skb = dev_alloc_skb(frame_len);
 810	if (!skb) {
 811		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 812			__func__);
 813		return -ENOMEM;
 814	}
 815
 816	memset(skb->data, 0, frame_len);
 817	set_key = (struct rsi_set_key *)skb->data;
 818
 819	if (key_type == RSI_GROUP_KEY) {
 820		key_descriptor = RSI_KEY_TYPE_BROADCAST;
 821		if (vif->type == NL80211_IFTYPE_AP)
 822			key_descriptor |= RSI_KEY_MODE_AP;
 823	}
 824	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
 825	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
 826		key_id = 0;
 827		key_descriptor |= RSI_WEP_KEY;
 828		if (key_len >= 13)
 829			key_descriptor |= RSI_WEP_KEY_104;
 830	} else if (cipher != KEY_TYPE_CLEAR) {
 831		key_descriptor |= RSI_CIPHER_WPA;
 832		if (cipher == WLAN_CIPHER_SUITE_TKIP)
 833			key_descriptor |= RSI_CIPHER_TKIP;
 834	}
 835	key_descriptor |= RSI_PROTECT_DATA_FRAMES;
 836	key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
 837
 838	rsi_set_len_qno(&set_key->desc_dword0.len_qno,
 839			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 840	set_key->desc_dword0.frame_type = SET_KEY_REQ;
 841	set_key->key_desc = cpu_to_le16(key_descriptor);
 842	set_key->sta_id = sta_id;
 843
 844	if (data) {
 845		if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
 846		    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
 847			memcpy(&set_key->key[key_id][1], data, key_len * 2);
 848		} else {
 849			memcpy(&set_key->key[0][0], data, key_len);
 850		}
 851		memcpy(set_key->tx_mic_key, &data[16], 8);
 852		memcpy(set_key->rx_mic_key, &data[24], 8);
 853	} else {
 854		memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
 855	}
 856
 857	skb_put(skb, frame_len);
 858
 859	return rsi_send_internal_mgmt_frame(common, skb);
 860}
 861
 862/*
 863 * This function sends the common device configuration parameters to device.
 864 * This frame includes the useful information to make device works on
 865 * specific operating mode.
 866 */
 867static int rsi_send_common_dev_params(struct rsi_common *common)
 868{
 869	struct sk_buff *skb;
 870	u16 frame_len;
 871	struct rsi_config_vals *dev_cfgs;
 872
 873	frame_len = sizeof(struct rsi_config_vals);
 874
 875	rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
 876	skb = dev_alloc_skb(frame_len);
 877	if (!skb) {
 878		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
 879		return -ENOMEM;
 880	}
 881
 882	memset(skb->data, 0, frame_len);
 883
 884	dev_cfgs = (struct rsi_config_vals *)skb->data;
 885	memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
 886
 887	rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
 888			RSI_COEX_Q);
 889	dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
 890
 891	dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
 892	dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
 893
 894	dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
 895	dev_cfgs->unused_soc_gpio_bitmap =
 896				cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
 897
 898	dev_cfgs->opermode = common->oper_mode;
 899	dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
 900	dev_cfgs->driver_mode = common->driver_mode;
 901	dev_cfgs->region_code = NL80211_DFS_FCC;
 902	dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
 903
 904	skb_put(skb, frame_len);
 905
 906	return rsi_send_internal_mgmt_frame(common, skb);
 907}
 908
 909/*
 910 * rsi_load_bootup_params() - This function send bootup params to the firmware.
 911 * @common: Pointer to the driver private structure.
 912 *
 913 * Return: 0 on success, corresponding error code on failure.
 914 */
 915static int rsi_load_bootup_params(struct rsi_common *common)
 916{
 917	struct sk_buff *skb;
 918	struct rsi_boot_params *boot_params;
 919
 920	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
 921	skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
 922	if (!skb) {
 923		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 924			__func__);
 925		return -ENOMEM;
 926	}
 927
 928	memset(skb->data, 0, sizeof(struct rsi_boot_params));
 929	boot_params = (struct rsi_boot_params *)skb->data;
 930
 931	rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
 932
 933	if (common->channel_width == BW_40MHZ) {
 934		memcpy(&boot_params->bootup_params,
 935		       &boot_params_40,
 936		       sizeof(struct bootup_params));
 937		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
 938			UMAC_CLK_40BW);
 939		boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
 940	} else {
 941		memcpy(&boot_params->bootup_params,
 942		       &boot_params_20,
 943		       sizeof(struct bootup_params));
 944		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
 945			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
 946			rsi_dbg(MGMT_TX_ZONE,
 947				"%s: Packet 20MHZ <=== %d\n", __func__,
 948				UMAC_CLK_20BW);
 949		} else {
 950			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
 951			rsi_dbg(MGMT_TX_ZONE,
 952				"%s: Packet 20MHZ <=== %d\n", __func__,
 953				UMAC_CLK_40MHZ);
 954		}
 955	}
 956
 957	/**
 958	 * Bit{0:11} indicates length of the Packet
 959	 * Bit{12:15} indicates host queue number
 960	 */
 961	boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
 962				    (RSI_WIFI_MGMT_Q << 12));
 963	boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
 964
 965	skb_put(skb, sizeof(struct rsi_boot_params));
 966
 967	return rsi_send_internal_mgmt_frame(common, skb);
 968}
 969
 970static int rsi_load_9116_bootup_params(struct rsi_common *common)
 971{
 972	struct sk_buff *skb;
 973	struct rsi_boot_params_9116 *boot_params;
 974
 975	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
 976
 977	skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
 978	if (!skb)
 979		return -ENOMEM;
 980	memset(skb->data, 0, sizeof(struct rsi_boot_params));
 981	boot_params = (struct rsi_boot_params_9116 *)skb->data;
 982
 983	if (common->channel_width == BW_40MHZ) {
 984		memcpy(&boot_params->bootup_params,
 985		       &boot_params_9116_40,
 986		       sizeof(struct bootup_params_9116));
 987		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
 988			UMAC_CLK_40BW);
 989		boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
 990	} else {
 991		memcpy(&boot_params->bootup_params,
 992		       &boot_params_9116_20,
 993		       sizeof(struct bootup_params_9116));
 994		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
 995			boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
 996			rsi_dbg(MGMT_TX_ZONE,
 997				"%s: Packet 20MHZ <=== %d\n", __func__,
 998				UMAC_CLK_20BW);
 999		} else {
1000			boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
1001			rsi_dbg(MGMT_TX_ZONE,
1002				"%s: Packet 20MHZ <=== %d\n", __func__,
1003				UMAC_CLK_40MHZ);
1004		}
1005	}
1006	rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1007			sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1008	boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1009	skb_put(skb, sizeof(struct rsi_boot_params_9116));
1010
1011	return rsi_send_internal_mgmt_frame(common, skb);
1012}
1013
1014/**
1015 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1016 *			  internal management frame to indicate it to firmware.
1017 * @common: Pointer to the driver private structure.
1018 *
1019 * Return: 0 on success, corresponding error code on failure.
1020 */
1021static int rsi_send_reset_mac(struct rsi_common *common)
1022{
1023	struct sk_buff *skb;
1024	struct rsi_mac_frame *mgmt_frame;
1025
1026	rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1027
1028	skb = dev_alloc_skb(FRAME_DESC_SZ);
1029	if (!skb) {
1030		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1031			__func__);
1032		return -ENOMEM;
1033	}
1034
1035	memset(skb->data, 0, FRAME_DESC_SZ);
1036	mgmt_frame = (struct rsi_mac_frame *)skb->data;
1037
1038	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1039	mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1040	mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1041
1042#define RSI_9116_DEF_TA_AGGR	3
1043	if (common->priv->device_model == RSI_DEV_9116)
1044		mgmt_frame->desc_word[3] |=
1045			cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1046
1047	skb_put(skb, FRAME_DESC_SZ);
1048
1049	return rsi_send_internal_mgmt_frame(common, skb);
1050}
1051
1052/**
1053 * rsi_band_check() - This function programs the band
1054 * @common: Pointer to the driver private structure.
1055 * @curchan: Pointer to the current channel structure.
1056 *
1057 * Return: 0 on success, corresponding error code on failure.
1058 */
1059int rsi_band_check(struct rsi_common *common,
1060		   struct ieee80211_channel *curchan)
1061{
1062	struct rsi_hw *adapter = common->priv;
1063	struct ieee80211_hw *hw = adapter->hw;
1064	u8 prev_bw = common->channel_width;
1065	u8 prev_ep = common->endpoint;
1066	int status = 0;
1067
1068	if (common->band != curchan->band) {
1069		common->rf_reset = 1;
1070		common->band = curchan->band;
1071	}
1072
1073	if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1074	    (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1075		common->channel_width = BW_20MHZ;
1076	else
1077		common->channel_width = BW_40MHZ;
1078
1079	if (common->band == NL80211_BAND_2GHZ) {
1080		if (common->channel_width)
1081			common->endpoint = EP_2GHZ_40MHZ;
1082		else
1083			common->endpoint = EP_2GHZ_20MHZ;
1084	} else {
1085		if (common->channel_width)
1086			common->endpoint = EP_5GHZ_40MHZ;
1087		else
1088			common->endpoint = EP_5GHZ_20MHZ;
1089	}
1090
1091	if (common->endpoint != prev_ep) {
1092		status = rsi_program_bb_rf(common);
1093		if (status)
1094			return status;
1095	}
1096
1097	if (common->channel_width != prev_bw) {
1098		if (adapter->device_model == RSI_DEV_9116)
1099			status = rsi_load_9116_bootup_params(common);
1100		else
1101			status = rsi_load_bootup_params(common);
1102		if (status)
1103			return status;
1104
1105		status = rsi_load_radio_caps(common);
1106		if (status)
1107			return status;
1108	}
1109
1110	return status;
1111}
1112
1113/**
1114 * rsi_set_channel() - This function programs the channel.
1115 * @common: Pointer to the driver private structure.
1116 * @channel: Channel value to be set.
1117 *
1118 * Return: 0 on success, corresponding error code on failure.
1119 */
1120int rsi_set_channel(struct rsi_common *common,
1121		    struct ieee80211_channel *channel)
1122{
1123	struct sk_buff *skb = NULL;
1124	struct rsi_chan_config *chan_cfg;
1125	u16 frame_len = sizeof(struct rsi_chan_config);
1126
1127	rsi_dbg(MGMT_TX_ZONE,
1128		"%s: Sending scan req frame\n", __func__);
1129
1130	skb = dev_alloc_skb(frame_len);
1131	if (!skb) {
1132		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1133			__func__);
1134		return -ENOMEM;
1135	}
1136
1137	if (!channel) {
1138		dev_kfree_skb(skb);
1139		return 0;
1140	}
1141	memset(skb->data, 0, frame_len);
1142	chan_cfg = (struct rsi_chan_config *)skb->data;
1143
1144	rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1145	chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1146	chan_cfg->channel_number = channel->hw_value;
1147	chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1148	chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1149	chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1150
1151	if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1152	    (channel->flags & IEEE80211_CHAN_RADAR)) {
1153		chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1154	} else {
1155		if (common->tx_power < channel->max_power)
1156			chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1157		else
1158			chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1159	}
1160	chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1161
1162	if (common->channel_width == BW_40MHZ)
1163		chan_cfg->channel_width = 0x1;
1164
1165	common->channel = channel->hw_value;
1166
1167	skb_put(skb, frame_len);
1168
1169	return rsi_send_internal_mgmt_frame(common, skb);
1170}
1171
1172/**
1173 * rsi_send_radio_params_update() - This function sends the radio
1174 *				parameters update to device
1175 * @common: Pointer to the driver private structure.
1176 *
1177 * Return: 0 on success, corresponding error code on failure.
1178 */
1179int rsi_send_radio_params_update(struct rsi_common *common)
1180{
1181	struct rsi_mac_frame *cmd_frame;
1182	struct sk_buff *skb = NULL;
1183
1184	rsi_dbg(MGMT_TX_ZONE,
1185		"%s: Sending Radio Params update frame\n", __func__);
1186
1187	skb = dev_alloc_skb(FRAME_DESC_SZ);
1188	if (!skb) {
1189		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1190			__func__);
1191		return -ENOMEM;
1192	}
1193
1194	memset(skb->data, 0, FRAME_DESC_SZ);
1195	cmd_frame = (struct rsi_mac_frame *)skb->data;
1196
1197	cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1198	cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1199	cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1200
1201	cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1202
1203	skb_put(skb, FRAME_DESC_SZ);
1204
1205	return rsi_send_internal_mgmt_frame(common, skb);
1206}
1207
1208/* This function programs the threshold. */
1209int rsi_send_vap_dynamic_update(struct rsi_common *common)
1210{
1211	struct sk_buff *skb;
1212	struct rsi_dynamic_s *dynamic_frame;
1213
1214	rsi_dbg(MGMT_TX_ZONE,
1215		"%s: Sending vap update indication frame\n", __func__);
1216
1217	skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1218	if (!skb)
1219		return -ENOMEM;
1220
1221	memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1222	dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1223	rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1224			sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1225
1226	dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1227	dynamic_frame->desc_dword2.pkt_info =
1228					cpu_to_le32(common->rts_threshold);
1229
1230	if (common->wow_flags & RSI_WOW_ENABLED) {
1231		/* Beacon miss threshold */
1232		dynamic_frame->desc_dword3.token =
1233					cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1234		dynamic_frame->frame_body.keep_alive_period =
1235					cpu_to_le16(RSI_WOW_KEEPALIVE);
1236	} else {
1237		dynamic_frame->frame_body.keep_alive_period =
1238					cpu_to_le16(RSI_DEF_KEEPALIVE);
1239	}
1240
1241	dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1242
1243	skb_put(skb, sizeof(struct rsi_dynamic_s));
1244
1245	return rsi_send_internal_mgmt_frame(common, skb);
1246}
1247
1248/**
1249 * rsi_compare() - This function is used to compare two integers
1250 * @a: pointer to the first integer
1251 * @b: pointer to the second integer
1252 *
1253 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1254 */
1255static int rsi_compare(const void *a, const void *b)
1256{
1257	u16 _a = *(const u16 *)(a);
1258	u16 _b = *(const u16 *)(b);
1259
1260	if (_a > _b)
1261		return -1;
1262
1263	if (_a < _b)
1264		return 1;
1265
1266	return 0;
1267}
1268
1269/**
1270 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1271 * @rate: The standard rate to be mapped.
1272 * @offset: Offset that will be returned.
1273 *
1274 * Return: 0 if it is a mcs rate, else 1
1275 */
1276static bool rsi_map_rates(u16 rate, int *offset)
1277{
1278	int kk;
1279	for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1280		if (rate == mcs[kk]) {
1281			*offset = kk;
1282			return false;
1283		}
1284	}
1285
1286	for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1287		if (rate == rsi_rates[kk].bitrate / 5) {
1288			*offset = kk;
1289			break;
1290		}
1291	}
1292	return true;
1293}
1294
1295/**
1296 * rsi_send_auto_rate_request() - This function is to set rates for connection
1297 *				  and send autorate request to firmware.
1298 * @common: Pointer to the driver private structure.
1299 * @sta: mac80211 station.
1300 * @sta_id: station id.
1301 * @vif: Pointer to the ieee80211_vif structure.
1302 *
1303 * Return: 0 on success, corresponding error code on failure.
1304 */
1305static int rsi_send_auto_rate_request(struct rsi_common *common,
1306				      struct ieee80211_sta *sta,
1307				      u16 sta_id,
1308				      struct ieee80211_vif *vif)
1309{
1310	struct sk_buff *skb;
1311	struct rsi_auto_rate *auto_rate;
1312	int ii = 0, jj = 0, kk = 0;
1313	struct ieee80211_hw *hw = common->priv->hw;
1314	u8 band = hw->conf.chandef.chan->band;
1315	u8 num_supported_rates = 0;
1316	u8 rate_table_offset, rate_offset = 0;
1317	u32 rate_bitmap, configured_rates;
1318	u16 *selected_rates, min_rate;
1319	bool is_ht = false, is_sgi = false;
1320	u16 frame_len = sizeof(struct rsi_auto_rate);
1321
1322	rsi_dbg(MGMT_TX_ZONE,
1323		"%s: Sending auto rate request frame\n", __func__);
1324
1325	skb = dev_alloc_skb(frame_len);
1326	if (!skb) {
1327		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1328			__func__);
1329		return -ENOMEM;
1330	}
1331
1332	memset(skb->data, 0, frame_len);
1333	selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1334	if (!selected_rates) {
1335		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1336			__func__);
1337		dev_kfree_skb(skb);
1338		return -ENOMEM;
1339	}
1340
1341	auto_rate = (struct rsi_auto_rate *)skb->data;
1342
1343	auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1344	auto_rate->collision_tolerance = cpu_to_le16(3);
1345	auto_rate->failure_limit = cpu_to_le16(3);
1346	auto_rate->initial_boundary = cpu_to_le16(3);
1347	auto_rate->max_threshold_limt = cpu_to_le16(27);
1348
1349	auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1350
1351	if (common->channel_width == BW_40MHZ)
1352		auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1353	auto_rate->desc.desc_dword3.sta_id = sta_id;
1354
1355	if (vif->type == NL80211_IFTYPE_STATION) {
1356		rate_bitmap = common->bitrate_mask[band];
1357		is_ht = common->vif_info[0].is_ht;
1358		is_sgi = common->vif_info[0].sgi;
1359	} else {
1360		rate_bitmap = sta->deflink.supp_rates[band];
1361		is_ht = sta->deflink.ht_cap.ht_supported;
1362		if ((sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1363		    (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1364			is_sgi = true;
1365	}
1366
1367	/* Limit to any rates administratively configured by cfg80211 */
1368	configured_rates = common->rate_config[band].configured_mask ?: 0xffffffff;
1369	rate_bitmap &= configured_rates;
1370
1371	if (band == NL80211_BAND_2GHZ) {
1372		if ((rate_bitmap == 0) && (is_ht))
1373			min_rate = RSI_RATE_MCS0;
1374		else
1375			min_rate = RSI_RATE_1;
1376		rate_table_offset = 0;
1377	} else {
1378		if ((rate_bitmap == 0) && (is_ht))
1379			min_rate = RSI_RATE_MCS0;
1380		else
1381			min_rate = RSI_RATE_6;
1382		rate_table_offset = 4;
1383	}
1384
1385	for (ii = 0, jj = 0;
1386	     ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1387		if (rate_bitmap & BIT(ii)) {
1388			selected_rates[jj++] =
1389			(rsi_rates[ii + rate_table_offset].bitrate / 5);
1390			rate_offset++;
1391		}
1392	}
1393	num_supported_rates = jj;
1394
1395	if (is_ht) {
1396		for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) {
1397			if (configured_rates & BIT(ii + ARRAY_SIZE(rsi_rates))) {
1398				selected_rates[jj++] = mcs[ii];
1399				num_supported_rates++;
1400				rate_offset++;
1401			}
1402		}
1403	}
1404
1405	sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1406
1407	/* mapping the rates to RSI rates */
1408	for (ii = 0; ii < jj; ii++) {
1409		if (rsi_map_rates(selected_rates[ii], &kk)) {
1410			auto_rate->supported_rates[ii] =
1411				cpu_to_le16(rsi_rates[kk].hw_value);
1412		} else {
1413			auto_rate->supported_rates[ii] =
1414				cpu_to_le16(rsi_mcsrates[kk]);
1415		}
1416	}
1417
1418	/* loading HT rates in the bottom half of the auto rate table */
1419	if (is_ht) {
1420		for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1421		     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1422			if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1423				auto_rate->supported_rates[ii++] =
1424					cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1425			else
1426				auto_rate->supported_rates[ii++] =
1427					cpu_to_le16(rsi_mcsrates[kk]);
1428			auto_rate->supported_rates[ii] =
1429				cpu_to_le16(rsi_mcsrates[kk--]);
1430		}
1431
1432		for (; ii < (RSI_TBL_SZ - 1); ii++) {
1433			auto_rate->supported_rates[ii] =
1434				cpu_to_le16(rsi_mcsrates[0]);
1435		}
1436	}
1437
1438	for (; ii < RSI_TBL_SZ; ii++)
1439		auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1440
1441	auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1442	auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1443	num_supported_rates *= 2;
1444
1445	rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1446			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1447
1448	skb_put(skb, frame_len);
1449	kfree(selected_rates);
1450
1451	return rsi_send_internal_mgmt_frame(common, skb);
1452}
1453
1454/**
1455 * rsi_inform_bss_status() - This function informs about bss status with the
1456 *			     help of sta notify params by sending an internal
1457 *			     management frame to firmware.
1458 * @common: Pointer to the driver private structure.
1459 * @opmode: Operating mode of device.
1460 * @status: Bss status type.
1461 * @addr: Address of the register.
1462 * @qos_enable: Qos is enabled.
1463 * @aid: Aid (unique for all STAs).
1464 * @sta: mac80211 station.
1465 * @sta_id: station id.
1466 * @assoc_cap: capabilities.
1467 * @vif: Pointer to the ieee80211_vif structure.
1468 *
1469 * Return: None.
1470 */
1471void rsi_inform_bss_status(struct rsi_common *common,
1472			   enum opmode opmode,
1473			   u8 status,
1474			   const u8 *addr,
1475			   u8 qos_enable,
1476			   u16 aid,
1477			   struct ieee80211_sta *sta,
1478			   u16 sta_id,
1479			   u16 assoc_cap,
1480			   struct ieee80211_vif *vif)
1481{
1482	if (status) {
1483		if (opmode == RSI_OPMODE_STA)
1484			common->hw_data_qs_blocked = true;
1485		rsi_hal_send_sta_notify_frame(common,
1486					      opmode,
1487					      STA_CONNECTED,
1488					      addr,
1489					      qos_enable,
1490					      aid, sta_id,
1491					      vif);
1492		if (!common->rate_config[common->band].fixed_enabled)
1493			rsi_send_auto_rate_request(common, sta, sta_id, vif);
1494		if (opmode == RSI_OPMODE_STA &&
1495		    !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1496		    !rsi_send_block_unblock_frame(common, false))
1497			common->hw_data_qs_blocked = false;
1498	} else {
1499		if (opmode == RSI_OPMODE_STA)
1500			common->hw_data_qs_blocked = true;
1501
1502		if (!(common->wow_flags & RSI_WOW_ENABLED))
1503			rsi_hal_send_sta_notify_frame(common, opmode,
1504						      STA_DISCONNECTED, addr,
1505						      qos_enable, aid, sta_id,
1506						      vif);
1507		if (opmode == RSI_OPMODE_STA)
1508			rsi_send_block_unblock_frame(common, true);
1509	}
1510}
1511
1512/**
1513 * rsi_eeprom_read() - This function sends a frame to read the mac address
1514 *		       from the eeprom.
1515 * @common: Pointer to the driver private structure.
1516 *
1517 * Return: 0 on success, -1 on failure.
1518 */
1519static int rsi_eeprom_read(struct rsi_common *common)
1520{
1521	struct rsi_eeprom_read_frame *mgmt_frame;
1522	struct rsi_hw *adapter = common->priv;
1523	struct sk_buff *skb;
1524
1525	rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1526
1527	skb = dev_alloc_skb(FRAME_DESC_SZ);
1528	if (!skb) {
1529		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1530			__func__);
1531		return -ENOMEM;
1532	}
1533
1534	memset(skb->data, 0, FRAME_DESC_SZ);
1535	mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1536
1537	/* FrameType */
1538	rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1539	mgmt_frame->pkt_type = EEPROM_READ;
1540
1541	/* Number of bytes to read */
1542	mgmt_frame->pkt_info =
1543		cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1544			    RSI_EEPROM_LEN_MASK);
1545	mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1546					    RSI_EEPROM_HDR_SIZE_MASK);
1547
1548	/* Address to read */
1549	mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1550
1551	skb_put(skb, FRAME_DESC_SZ);
1552
1553	return rsi_send_internal_mgmt_frame(common, skb);
1554}
1555
1556/**
1557 * rsi_send_block_unblock_frame() - This function sends a frame to block/unblock
1558 *                                  data queues in the firmware
1559 *
1560 * @common: Pointer to the driver private structure.
1561 * @block_event: Event block if true, unblock if false
1562 * returns 0 on success, -1 on failure.
1563 */
1564int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1565{
1566	struct rsi_block_unblock_data *mgmt_frame;
1567	struct sk_buff *skb;
1568
1569	rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1570
1571	skb = dev_alloc_skb(FRAME_DESC_SZ);
1572	if (!skb) {
1573		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1574			__func__);
1575		return -ENOMEM;
1576	}
1577
1578	memset(skb->data, 0, FRAME_DESC_SZ);
1579	mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1580
1581	rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1582	mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1583	mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1584
1585	if (block_event) {
1586		rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1587		mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1588		mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1589	} else {
1590		rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1591		mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1592		mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1593	}
1594
1595	skb_put(skb, FRAME_DESC_SZ);
1596
1597	return rsi_send_internal_mgmt_frame(common, skb);
1598}
1599
1600/**
1601 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1602 *
1603 * @common: Pointer to the driver private structure.
1604 * @rx_filter_word: Flags of filter packets
1605 *
1606 * Returns 0 on success, -1 on failure.
1607 */
1608int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1609{
1610	struct rsi_mac_frame *cmd_frame;
1611	struct sk_buff *skb;
1612
1613	rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1614
1615	skb = dev_alloc_skb(FRAME_DESC_SZ);
1616	if (!skb) {
1617		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1618			__func__);
1619		return -ENOMEM;
1620	}
1621
1622	memset(skb->data, 0, FRAME_DESC_SZ);
1623	cmd_frame = (struct rsi_mac_frame *)skb->data;
1624
1625	cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1626	cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1627	cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1628
1629	skb_put(skb, FRAME_DESC_SZ);
1630
1631	return rsi_send_internal_mgmt_frame(common, skb);
1632}
1633
1634int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1635			struct ieee80211_vif *vif)
1636{
1637	struct rsi_common *common = adapter->priv;
1638	struct rsi_request_ps *ps;
1639	struct rsi_ps_info *ps_info;
1640	struct sk_buff *skb;
1641	int frame_len = sizeof(*ps);
1642
1643	skb = dev_alloc_skb(frame_len);
1644	if (!skb)
1645		return -ENOMEM;
1646	memset(skb->data, 0, frame_len);
1647
1648	ps = (struct rsi_request_ps *)skb->data;
1649	ps_info = &adapter->ps_info;
1650
1651	rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1652			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1653	ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1654	if (enable) {
1655		ps->ps_sleep.enable = RSI_PS_ENABLE;
1656		ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1657	} else {
1658		ps->ps_sleep.enable = RSI_PS_DISABLE;
1659		ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1660		ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1661	}
1662
1663	ps->ps_uapsd_acs = common->uapsd_bitmap;
1664
1665	ps->ps_sleep.sleep_type = ps_info->sleep_type;
1666	ps->ps_sleep.num_bcns_per_lis_int =
1667		cpu_to_le16(ps_info->num_bcns_per_lis_int);
1668	ps->ps_sleep.sleep_duration =
1669		cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1670
1671	if (vif->cfg.assoc)
1672		ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1673	else
1674		ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1675
1676	ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1677	ps->ps_dtim_interval_duration =
1678		cpu_to_le32(ps_info->dtim_interval_duration);
1679
1680	if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1681		ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1682
1683	ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1684	skb_put(skb, frame_len);
1685
1686	return rsi_send_internal_mgmt_frame(common, skb);
1687}
1688
1689static int rsi_send_w9116_features(struct rsi_common *common)
1690{
1691	struct rsi_wlan_9116_features *w9116_features;
1692	u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1693	struct sk_buff *skb;
1694
1695	rsi_dbg(MGMT_TX_ZONE,
1696		"%s: Sending wlan 9116 features\n", __func__);
1697
1698	skb = dev_alloc_skb(frame_len);
1699	if (!skb)
1700		return -ENOMEM;
1701	memset(skb->data, 0, frame_len);
1702
1703	w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1704
1705	w9116_features->pll_mode = common->w9116_features.pll_mode;
1706	w9116_features->rf_type = common->w9116_features.rf_type;
1707	w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1708	w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1709	w9116_features->afe_type = common->w9116_features.afe_type;
1710	if (common->w9116_features.dpd)
1711		w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1712	if (common->w9116_features.sifs_tx_enable)
1713		w9116_features->feature_enable |=
1714			cpu_to_le32(RSI_SIFS_TX_ENABLE);
1715	if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1716		w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1717	if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1718		w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1719	w9116_features->feature_enable |=
1720		cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1721
1722	rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1723			frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1724	w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1725	skb_put(skb, frame_len);
1726
1727	return rsi_send_internal_mgmt_frame(common, skb);
1728}
1729
1730/**
1731 * rsi_set_antenna() - This function send antenna configuration request
1732 *		       to device
1733 *
1734 * @common: Pointer to the driver private structure.
1735 * @antenna: bitmap for tx antenna selection
1736 *
1737 * Return: 0 on Success, negative error code on failure
1738 */
1739int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1740{
1741	struct rsi_ant_sel_frame *ant_sel_frame;
1742	struct sk_buff *skb;
1743
1744	skb = dev_alloc_skb(FRAME_DESC_SZ);
1745	if (!skb) {
1746		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1747			__func__);
1748		return -ENOMEM;
1749	}
1750
1751	memset(skb->data, 0, FRAME_DESC_SZ);
1752
1753	ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1754	ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1755	ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1756	ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1757	rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1758			0, RSI_WIFI_MGMT_Q);
1759	skb_put(skb, FRAME_DESC_SZ);
1760
1761	return rsi_send_internal_mgmt_frame(common, skb);
1762}
1763
1764static int rsi_send_beacon(struct rsi_common *common)
1765{
1766	struct sk_buff *skb = NULL;
1767	u8 dword_align_bytes = 0;
1768
1769	skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1770	if (!skb)
1771		return -ENOMEM;
1772
1773	memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1774
1775	dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1776	if (dword_align_bytes)
1777		skb_pull(skb, (64 - dword_align_bytes));
1778	if (rsi_prepare_beacon(common, skb)) {
1779		rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1780		dev_kfree_skb(skb);
1781		return -EINVAL;
1782	}
1783	skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1784	rsi_set_event(&common->tx_thread.event);
1785	rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1786
1787	return 0;
1788}
1789
1790#ifdef CONFIG_PM
1791int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1792			    u16 sleep_status)
1793{
1794	struct rsi_wowlan_req *cmd_frame;
1795	struct sk_buff *skb;
1796	u8 length;
1797
1798	rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1799
1800	length = sizeof(*cmd_frame);
1801	skb = dev_alloc_skb(length);
1802	if (!skb)
1803		return -ENOMEM;
1804	memset(skb->data, 0, length);
1805	cmd_frame = (struct rsi_wowlan_req *)skb->data;
1806
1807	rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1808			(length - FRAME_DESC_SZ),
1809			RSI_WIFI_MGMT_Q);
1810	cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1811	cmd_frame->host_sleep_status = sleep_status;
1812	if (common->secinfo.gtk_cipher)
1813		flags |= RSI_WOW_GTK_REKEY;
1814	if (sleep_status)
1815		cmd_frame->wow_flags = flags;
1816	rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1817		cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1818
1819	skb_put(skb, length);
1820
1821	return rsi_send_internal_mgmt_frame(common, skb);
1822}
1823#endif
1824
1825int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1826{
1827	struct rsi_bgscan_params *params = &common->bgscan;
1828	struct cfg80211_scan_request *scan_req = common->hwscan;
1829	struct rsi_bgscan_config *bgscan;
1830	struct sk_buff *skb;
1831	u16 frame_len = sizeof(*bgscan);
1832	u8 i;
1833
1834	rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1835
1836	skb = dev_alloc_skb(frame_len);
1837	if (!skb)
1838		return -ENOMEM;
1839	memset(skb->data, 0, frame_len);
1840
1841	bgscan = (struct rsi_bgscan_config *)skb->data;
1842	rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1843			(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1844	bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1845	bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1846	bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1847	if (enable)
1848		bgscan->bgscan_periodicity =
1849			cpu_to_le16(params->bgscan_periodicity);
1850	bgscan->active_scan_duration =
1851			cpu_to_le16(params->active_scan_duration);
1852	bgscan->passive_scan_duration =
1853			cpu_to_le16(params->passive_scan_duration);
1854	bgscan->two_probe = params->two_probe;
1855
1856	bgscan->num_bgscan_channels = scan_req->n_channels;
1857	for (i = 0; i < bgscan->num_bgscan_channels; i++)
1858		bgscan->channels2scan[i] =
1859			cpu_to_le16(scan_req->channels[i]->hw_value);
1860
1861	skb_put(skb, frame_len);
1862
1863	return rsi_send_internal_mgmt_frame(common, skb);
1864}
1865
1866/* This function sends the probe request to be used by firmware in
1867 * background scan
1868 */
1869int rsi_send_bgscan_probe_req(struct rsi_common *common,
1870			      struct ieee80211_vif *vif)
1871{
1872	struct cfg80211_scan_request *scan_req = common->hwscan;
1873	struct rsi_bgscan_probe *bgscan;
1874	struct sk_buff *skb;
1875	struct sk_buff *probereq_skb;
1876	u16 frame_len = sizeof(*bgscan);
1877	size_t ssid_len = 0;
1878	u8 *ssid = NULL;
1879
1880	rsi_dbg(MGMT_TX_ZONE,
1881		"%s: Sending bgscan probe req frame\n", __func__);
1882
1883	if (common->priv->sc_nvifs <= 0)
1884		return -ENODEV;
1885
1886	if (scan_req->n_ssids) {
1887		ssid = scan_req->ssids[0].ssid;
1888		ssid_len = scan_req->ssids[0].ssid_len;
1889	}
1890
1891	skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1892	if (!skb)
1893		return -ENOMEM;
1894	memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1895
1896	bgscan = (struct rsi_bgscan_probe *)skb->data;
1897	bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1898	bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1899	if (common->band == NL80211_BAND_5GHZ) {
1900		bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1901		bgscan->def_chan = cpu_to_le16(40);
1902	} else {
1903		bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1904		bgscan->def_chan = cpu_to_le16(11);
1905	}
1906	bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1907
1908	probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1909					      ssid_len, scan_req->ie_len);
1910	if (!probereq_skb) {
1911		dev_kfree_skb(skb);
1912		return -ENOMEM;
1913	}
1914
1915	memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1916
1917	bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1918
1919	rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1920			(frame_len - FRAME_DESC_SZ + probereq_skb->len),
1921			RSI_WIFI_MGMT_Q);
1922
1923	skb_put(skb, frame_len + probereq_skb->len);
1924
1925	dev_kfree_skb(probereq_skb);
1926
1927	return rsi_send_internal_mgmt_frame(common, skb);
1928}
1929
1930/**
1931 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1932 * @common: Pointer to the driver private structure.
1933 * @msg: Pointer to received packet.
1934 *
1935 * Return: 0 on success, -1 on failure.
1936 */
1937static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1938				      u8 *msg)
1939{
1940	struct rsi_hw *adapter = common->priv;
1941	u8 sub_type = (msg[15] & 0xff);
1942	u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1943	u8 offset;
1944
1945	switch (sub_type) {
1946	case BOOTUP_PARAMS_REQUEST:
1947		rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1948			__func__);
1949		if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1950			if (adapter->device_model == RSI_DEV_9116) {
1951				common->band = NL80211_BAND_5GHZ;
1952				common->num_supp_bands = 2;
1953
1954				if (rsi_send_reset_mac(common))
1955					goto out;
1956				else
1957					common->fsm_state = FSM_RESET_MAC_SENT;
1958			} else {
1959				adapter->eeprom.length =
1960					(IEEE80211_ADDR_LEN +
1961					 WLAN_MAC_MAGIC_WORD_LEN +
1962					 WLAN_HOST_MODE_LEN);
1963				adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1964				if (rsi_eeprom_read(common)) {
1965					common->fsm_state = FSM_CARD_NOT_READY;
1966					goto out;
1967				}
1968				common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1969			}
1970		} else {
1971			rsi_dbg(INFO_ZONE,
1972				"%s: Received bootup params cfm in %d state\n",
1973				 __func__, common->fsm_state);
1974			return 0;
1975		}
1976		break;
1977
1978	case EEPROM_READ:
1979		rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1980		if (msg_len <= 0) {
1981			rsi_dbg(FSM_ZONE,
1982				"%s: [EEPROM_READ] Invalid len %d\n",
1983				__func__, msg_len);
1984			goto out;
1985		}
1986		if (msg[16] != MAGIC_WORD) {
1987			rsi_dbg(FSM_ZONE,
1988				"%s: [EEPROM_READ] Invalid token\n", __func__);
1989			common->fsm_state = FSM_CARD_NOT_READY;
1990			goto out;
1991		}
1992		if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1993			offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1994				  WLAN_MAC_MAGIC_WORD_LEN);
1995			memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1996			adapter->eeprom.length =
1997				((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1998			adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1999			if (rsi_eeprom_read(common)) {
2000				rsi_dbg(ERR_ZONE,
2001					"%s: Failed reading RF band\n",
2002					__func__);
2003				common->fsm_state = FSM_CARD_NOT_READY;
2004				goto out;
2005			}
2006			common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
2007		} else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
2008			if ((msg[17] & 0x3) == 0x3) {
2009				rsi_dbg(INIT_ZONE, "Dual band supported\n");
2010				common->band = NL80211_BAND_5GHZ;
2011				common->num_supp_bands = 2;
2012			} else if ((msg[17] & 0x3) == 0x1) {
2013				rsi_dbg(INIT_ZONE,
2014					"Only 2.4Ghz band supported\n");
2015				common->band = NL80211_BAND_2GHZ;
2016				common->num_supp_bands = 1;
2017			}
2018			if (rsi_send_reset_mac(common))
2019				goto out;
2020			common->fsm_state = FSM_RESET_MAC_SENT;
2021		} else {
2022			rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2023				__func__);
2024			return 0;
2025		}
2026		break;
2027
2028	case RESET_MAC_REQ:
2029		if (common->fsm_state == FSM_RESET_MAC_SENT) {
2030			rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2031				__func__);
2032
2033			if (rsi_load_radio_caps(common))
2034				goto out;
2035			else
2036				common->fsm_state = FSM_RADIO_CAPS_SENT;
2037		} else {
2038			rsi_dbg(ERR_ZONE,
2039				"%s: Received reset mac cfm in %d state\n",
2040				 __func__, common->fsm_state);
2041			return 0;
2042		}
2043		break;
2044
2045	case RADIO_CAPABILITIES:
2046		if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2047			common->rf_reset = 1;
2048			if (adapter->device_model == RSI_DEV_9116 &&
2049			    rsi_send_w9116_features(common)) {
2050				rsi_dbg(ERR_ZONE,
2051					"Failed to send 9116 features\n");
2052				goto out;
2053			}
2054			if (rsi_program_bb_rf(common)) {
2055				goto out;
2056			} else {
2057				common->fsm_state = FSM_BB_RF_PROG_SENT;
2058				rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2059					__func__);
2060			}
2061		} else {
2062			rsi_dbg(INFO_ZONE,
2063				"%s: Received radio caps cfm in %d state\n",
2064				 __func__, common->fsm_state);
2065			return 0;
2066		}
2067		break;
2068
2069	case BB_PROG_VALUES_REQUEST:
2070	case RF_PROG_VALUES_REQUEST:
2071	case BBP_PROG_IN_TA:
2072		rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2073		if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2074			common->bb_rf_prog_count--;
2075			if (!common->bb_rf_prog_count) {
2076				common->fsm_state = FSM_MAC_INIT_DONE;
2077				if (common->reinit_hw) {
2078					complete(&common->wlan_init_completion);
2079				} else {
2080					if (common->bt_defer_attach)
2081						rsi_attach_bt(common);
2082
2083					return rsi_mac80211_attach(common);
2084				}
2085			}
2086		} else {
2087			rsi_dbg(INFO_ZONE,
2088				"%s: Received bbb_rf cfm in %d state\n",
2089				 __func__, common->fsm_state);
2090			return 0;
2091		}
2092		break;
2093
2094	case SCAN_REQUEST:
2095		rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2096		break;
2097
2098	case WAKEUP_SLEEP_REQUEST:
2099		rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2100		return rsi_handle_ps_confirm(adapter, msg);
2101
2102	case BG_SCAN_PROBE_REQ:
2103		rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2104		if (common->bgscan_en) {
2105			struct cfg80211_scan_info info;
2106
2107			if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2108				common->bgscan_en = 0;
2109			info.aborted = false;
2110			ieee80211_scan_completed(adapter->hw, &info);
2111		}
2112		rsi_dbg(INFO_ZONE, "Background scan completed\n");
2113		break;
2114
2115	default:
2116		rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2117			__func__);
2118		break;
2119	}
2120	return 0;
2121out:
2122	rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2123		__func__);
2124	return -EINVAL;
2125}
2126
2127int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2128{
2129	int status;
2130
2131	switch (common->fsm_state) {
2132	case FSM_CARD_NOT_READY:
2133		rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2134		rsi_set_default_parameters(common);
2135		if (rsi_send_common_dev_params(common) < 0)
2136			return -EINVAL;
2137		common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2138		break;
2139	case FSM_COMMON_DEV_PARAMS_SENT:
2140		rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2141
2142		if (common->priv->device_model == RSI_DEV_9116) {
2143			if (msg[16] != MAGIC_WORD) {
2144				rsi_dbg(FSM_ZONE,
2145					"%s: [EEPROM_READ] Invalid token\n",
2146					__func__);
2147				common->fsm_state = FSM_CARD_NOT_READY;
2148				return -EINVAL;
2149			}
2150			memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2151			rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2152		}
2153		/* Get usb buffer status register address */
2154		common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2155		rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2156			common->priv->usb_buffer_status_reg);
2157
2158		if (common->priv->device_model == RSI_DEV_9116)
2159			status = rsi_load_9116_bootup_params(common);
2160		else
2161			status = rsi_load_bootup_params(common);
2162		if (status < 0) {
2163			common->fsm_state = FSM_CARD_NOT_READY;
2164			return status;
2165		}
2166		common->fsm_state = FSM_BOOT_PARAMS_SENT;
2167		break;
2168	default:
2169		rsi_dbg(ERR_ZONE,
2170			"%s: card ready indication in invalid state %d.\n",
2171			__func__, common->fsm_state);
2172		return -EINVAL;
2173	}
2174
2175	return 0;
2176}
2177
2178/**
2179 * rsi_mgmt_pkt_recv() - This function processes the management packets
2180 *			 received from the hardware.
2181 * @common: Pointer to the driver private structure.
2182 * @msg: Pointer to the received packet.
2183 *
2184 * Return: 0 on success, -1 on failure.
2185 */
2186int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2187{
2188	s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2189	u16 msg_type = (msg[2]);
2190
2191	rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2192		__func__, msg_len, msg_type);
2193
2194	switch (msg_type) {
2195	case TA_CONFIRM_TYPE:
2196		return rsi_handle_ta_confirm_type(common, msg);
2197	case CARD_READY_IND:
2198		common->hibernate_resume = false;
2199		rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2200			__func__);
2201		return rsi_handle_card_ready(common, msg);
2202	case TX_STATUS_IND:
2203		switch (msg[RSI_TX_STATUS_TYPE]) {
2204		case PROBEREQ_CONFIRM:
2205			common->mgmt_q_block = false;
2206			rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2207				__func__);
2208			break;
2209		case EAPOL4_CONFIRM:
2210			if (msg[RSI_TX_STATUS]) {
2211				common->eapol4_confirm = true;
2212				if (!rsi_send_block_unblock_frame(common,
2213								  false))
2214					common->hw_data_qs_blocked = false;
2215			}
2216		}
2217		break;
2218	case BEACON_EVENT_IND:
2219		rsi_dbg(INFO_ZONE, "Beacon event\n");
2220		if (common->fsm_state != FSM_MAC_INIT_DONE)
2221			return -1;
2222		if (common->iface_down)
2223			return -1;
2224		if (!common->beacon_enabled)
2225			return -1;
2226		rsi_send_beacon(common);
2227		break;
2228	case WOWLAN_WAKEUP_REASON:
2229		rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2230		switch (msg[15]) {
2231		case RSI_UNICAST_MAGIC_PKT:
2232			rsi_dbg(ERR_ZONE,
2233				"*** Wakeup for Unicast magic packet ***\n");
2234			break;
2235		case RSI_BROADCAST_MAGICPKT:
2236			rsi_dbg(ERR_ZONE,
2237				"*** Wakeup for Broadcast magic packet ***\n");
2238			break;
2239		case RSI_EAPOL_PKT:
2240			rsi_dbg(ERR_ZONE,
2241				"*** Wakeup for GTK renewal ***\n");
2242			break;
2243		case RSI_DISCONNECT_PKT:
2244			rsi_dbg(ERR_ZONE,
2245				"*** Wakeup for Disconnect ***\n");
2246			break;
2247		case RSI_HW_BMISS_PKT:
2248			rsi_dbg(ERR_ZONE,
2249				"*** Wakeup for HW Beacon miss ***\n");
2250			break;
2251		default:
2252			rsi_dbg(ERR_ZONE,
2253				"##### Un-intentional Wakeup #####\n");
2254			break;
2255	}
2256	break;
2257	case RX_DOT11_MGMT:
2258		return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2259	default:
2260		rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2261	}
2262	return 0;
2263}