Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * drivers/net/phy/micrel.c
  3 *
  4 * Driver for Micrel PHYs
  5 *
  6 * Author: David J. Choi
  7 *
  8 * Copyright (c) 2010 Micrel, Inc.
 
  9 *
 10 * This program is free software; you can redistribute  it and/or modify it
 11 * under  the terms of  the GNU General  Public License as published by the
 12 * Free Software Foundation;  either version 2 of the  License, or (at your
 13 * option) any later version.
 14 *
 15 * Support : ksz9021 1000/100/10 phy from Micrel
 16 *		ks8001, ks8737, ks8721, ks8041, ks8051 100/10 phy
 
 17 */
 18
 
 
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/phy.h>
 22#include <linux/micrel_phy.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24/* general Interrupt control/status reg in vendor specific block. */
 25#define MII_KSZPHY_INTCS			0x1B
 26#define	KSZPHY_INTCS_JABBER			(1 << 15)
 27#define	KSZPHY_INTCS_RECEIVE_ERR		(1 << 14)
 28#define	KSZPHY_INTCS_PAGE_RECEIVE		(1 << 13)
 29#define	KSZPHY_INTCS_PARELLEL			(1 << 12)
 30#define	KSZPHY_INTCS_LINK_PARTNER_ACK		(1 << 11)
 31#define	KSZPHY_INTCS_LINK_DOWN			(1 << 10)
 32#define	KSZPHY_INTCS_REMOTE_FAULT		(1 << 9)
 33#define	KSZPHY_INTCS_LINK_UP			(1 << 8)
 34#define	KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
 35						KSZPHY_INTCS_LINK_DOWN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37/* general PHY control reg in vendor specific block. */
 38#define	MII_KSZPHY_CTRL			0x1F
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39/* bitmap of PHY register to set interrupt mode */
 40#define KSZPHY_CTRL_INT_ACTIVE_HIGH		(1 << 9)
 41#define KSZ9021_CTRL_INT_ACTIVE_HIGH		(1 << 14)
 42#define KS8737_CTRL_INT_ACTIVE_HIGH		(1 << 14)
 43#define KSZ8051_RMII_50MHZ_CLK			(1 << 7)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45static int kszphy_ack_interrupt(struct phy_device *phydev)
 46{
 47	/* bit[7..0] int status, which is a read and clear register. */
 48	int rc;
 49
 50	rc = phy_read(phydev, MII_KSZPHY_INTCS);
 51
 52	return (rc < 0) ? rc : 0;
 53}
 54
 55static int kszphy_set_interrupt(struct phy_device *phydev)
 56{
 57	int temp;
 58	temp = (PHY_INTERRUPT_ENABLED == phydev->interrupts) ?
 59		KSZPHY_INTCS_ALL : 0;
 60	return phy_write(phydev, MII_KSZPHY_INTCS, temp);
 61}
 62
 63static int kszphy_config_intr(struct phy_device *phydev)
 64{
 65	int temp, rc;
 
 
 
 
 
 
 
 66
 67	/* set the interrupt pin active low */
 68	temp = phy_read(phydev, MII_KSZPHY_CTRL);
 69	temp &= ~KSZPHY_CTRL_INT_ACTIVE_HIGH;
 
 
 70	phy_write(phydev, MII_KSZPHY_CTRL, temp);
 71	rc = kszphy_set_interrupt(phydev);
 72	return rc < 0 ? rc : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73}
 74
 75static int ksz9021_config_intr(struct phy_device *phydev)
 76{
 77	int temp, rc;
 78
 79	/* set the interrupt pin active low */
 80	temp = phy_read(phydev, MII_KSZPHY_CTRL);
 81	temp &= ~KSZ9021_CTRL_INT_ACTIVE_HIGH;
 82	phy_write(phydev, MII_KSZPHY_CTRL, temp);
 83	rc = kszphy_set_interrupt(phydev);
 84	return rc < 0 ? rc : 0;
 
 
 
 
 
 
 85}
 86
 87static int ks8737_config_intr(struct phy_device *phydev)
 88{
 89	int temp, rc;
 90
 91	/* set the interrupt pin active low */
 92	temp = phy_read(phydev, MII_KSZPHY_CTRL);
 93	temp &= ~KS8737_CTRL_INT_ACTIVE_HIGH;
 94	phy_write(phydev, MII_KSZPHY_CTRL, temp);
 95	rc = kszphy_set_interrupt(phydev);
 96	return rc < 0 ? rc : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97}
 98
 99static int kszphy_config_init(struct phy_device *phydev)
100{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101	return 0;
102}
103
104static int ks8051_config_init(struct phy_device *phydev)
105{
 
106	int regval;
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
109		regval = phy_read(phydev, MII_KSZPHY_CTRL);
110		regval |= KSZ8051_RMII_50MHZ_CLK;
111		phy_write(phydev, MII_KSZPHY_CTRL, regval);
112	}
113
114	return 0;
115}
116
117static struct phy_driver ks8737_driver = {
118	.phy_id		= PHY_ID_KS8737,
119	.phy_id_mask	= 0x00fffff0,
120	.name		= "Micrel KS8737",
121	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause),
122	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
123	.config_init	= kszphy_config_init,
124	.config_aneg	= genphy_config_aneg,
125	.read_status	= genphy_read_status,
126	.ack_interrupt	= kszphy_ack_interrupt,
127	.config_intr	= ks8737_config_intr,
128	.driver		= { .owner = THIS_MODULE,},
129};
130
131static struct phy_driver ks8041_driver = {
132	.phy_id		= PHY_ID_KS8041,
133	.phy_id_mask	= 0x00fffff0,
134	.name		= "Micrel KS8041",
135	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause
136				| SUPPORTED_Asym_Pause),
137	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
138	.config_init	= kszphy_config_init,
139	.config_aneg	= genphy_config_aneg,
140	.read_status	= genphy_read_status,
141	.ack_interrupt	= kszphy_ack_interrupt,
142	.config_intr	= kszphy_config_intr,
143	.driver		= { .owner = THIS_MODULE,},
144};
145
146static struct phy_driver ks8051_driver = {
147	.phy_id		= PHY_ID_KS8051,
148	.phy_id_mask	= 0x00fffff0,
149	.name		= "Micrel KS8051",
150	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause
151				| SUPPORTED_Asym_Pause),
152	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
153	.config_init	= ks8051_config_init,
154	.config_aneg	= genphy_config_aneg,
155	.read_status	= genphy_read_status,
156	.ack_interrupt	= kszphy_ack_interrupt,
157	.config_intr	= kszphy_config_intr,
158	.driver		= { .owner = THIS_MODULE,},
159};
160
161static struct phy_driver ks8001_driver = {
162	.phy_id		= PHY_ID_KS8001,
163	.name		= "Micrel KS8001 or KS8721",
164	.phy_id_mask	= 0x00fffff0,
165	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause),
166	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
167	.config_init	= kszphy_config_init,
168	.config_aneg	= genphy_config_aneg,
169	.read_status	= genphy_read_status,
170	.ack_interrupt	= kszphy_ack_interrupt,
171	.config_intr	= kszphy_config_intr,
172	.driver		= { .owner = THIS_MODULE,},
173};
 
 
174
175static struct phy_driver ksz9021_driver = {
176	.phy_id		= PHY_ID_KSZ9021,
177	.phy_id_mask	= 0x000fff10,
178	.name		= "Micrel KSZ9021 Gigabit PHY",
179	.features	= (PHY_GBIT_FEATURES | SUPPORTED_Pause
180				| SUPPORTED_Asym_Pause),
181	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
182	.config_init	= kszphy_config_init,
183	.config_aneg	= genphy_config_aneg,
184	.read_status	= genphy_read_status,
185	.ack_interrupt	= kszphy_ack_interrupt,
186	.config_intr	= ksz9021_config_intr,
187	.driver		= { .owner = THIS_MODULE, },
188};
 
 
189
190static int __init ksphy_init(void)
 
191{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192	int ret;
 
 
 
 
 
 
 
 
193
194	ret = phy_driver_register(&ks8001_driver);
195	if (ret)
196		goto err1;
197
198	ret = phy_driver_register(&ksz9021_driver);
 
 
 
 
 
 
 
 
 
 
199	if (ret)
200		goto err2;
201
202	ret = phy_driver_register(&ks8737_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203	if (ret)
204		goto err3;
205	ret = phy_driver_register(&ks8041_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
206	if (ret)
207		goto err4;
208	ret = phy_driver_register(&ks8051_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209	if (ret)
210		goto err5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
212	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
214err5:
215	phy_driver_unregister(&ks8041_driver);
216err4:
217	phy_driver_unregister(&ks8737_driver);
218err3:
219	phy_driver_unregister(&ksz9021_driver);
220err2:
221	phy_driver_unregister(&ks8001_driver);
222err1:
223	return ret;
224}
225
226static void __exit ksphy_exit(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227{
228	phy_driver_unregister(&ks8001_driver);
229	phy_driver_unregister(&ks8737_driver);
230	phy_driver_unregister(&ksz9021_driver);
231	phy_driver_unregister(&ks8041_driver);
232	phy_driver_unregister(&ks8051_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233}
234
235module_init(ksphy_init);
236module_exit(ksphy_exit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237
238MODULE_DESCRIPTION("Micrel PHY driver");
239MODULE_AUTHOR("David J. Choi");
240MODULE_LICENSE("GPL");
241
242static struct mdio_device_id __maybe_unused micrel_tbl[] = {
243	{ PHY_ID_KSZ9021, 0x000fff10 },
244	{ PHY_ID_KS8001, 0x00fffff0 },
245	{ PHY_ID_KS8737, 0x00fffff0 },
246	{ PHY_ID_KS8041, 0x00fffff0 },
247	{ PHY_ID_KS8051, 0x00fffff0 },
 
 
 
 
 
 
 
 
 
 
248	{ }
249};
250
251MODULE_DEVICE_TABLE(mdio, micrel_tbl);
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * drivers/net/phy/micrel.c
   4 *
   5 * Driver for Micrel PHYs
   6 *
   7 * Author: David J. Choi
   8 *
   9 * Copyright (c) 2010-2013 Micrel, Inc.
  10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
  11 *
  12 * Support : Micrel Phys:
  13 *		Giga phys: ksz9021, ksz9031, ksz9131
  14 *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
  15 *			   ksz8021, ksz8031, ksz8051,
  16 *			   ksz8081, ksz8091,
  17 *			   ksz8061,
  18 *		Switch : ksz8873, ksz886x
  19 *			 ksz9477
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/ethtool_netlink.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/phy.h>
  27#include <linux/micrel_phy.h>
  28#include <linux/of.h>
  29#include <linux/clk.h>
  30#include <linux/delay.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/ptp_clock.h>
  33#include <linux/ptp_classify.h>
  34#include <linux/net_tstamp.h>
  35#include <linux/gpio/consumer.h>
  36
  37/* Operation Mode Strap Override */
  38#define MII_KSZPHY_OMSO				0x16
  39#define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
  40#define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
  41#define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
  42#define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
  43#define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
  44
  45/* general Interrupt control/status reg in vendor specific block. */
  46#define MII_KSZPHY_INTCS			0x1B
  47#define KSZPHY_INTCS_JABBER			BIT(15)
  48#define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
  49#define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
  50#define KSZPHY_INTCS_PARELLEL			BIT(12)
  51#define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
  52#define KSZPHY_INTCS_LINK_DOWN			BIT(10)
  53#define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
  54#define KSZPHY_INTCS_LINK_UP			BIT(8)
  55#define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
  56						KSZPHY_INTCS_LINK_DOWN)
  57#define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
  58#define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
  59#define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
  60						 KSZPHY_INTCS_LINK_UP_STATUS)
  61
  62/* LinkMD Control/Status */
  63#define KSZ8081_LMD				0x1d
  64#define KSZ8081_LMD_ENABLE_TEST			BIT(15)
  65#define KSZ8081_LMD_STAT_NORMAL			0
  66#define KSZ8081_LMD_STAT_OPEN			1
  67#define KSZ8081_LMD_STAT_SHORT			2
  68#define KSZ8081_LMD_STAT_FAIL			3
  69#define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
  70/* Short cable (<10 meter) has been detected by LinkMD */
  71#define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
  72#define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
  73
  74#define KSZ9x31_LMD				0x12
  75#define KSZ9x31_LMD_VCT_EN			BIT(15)
  76#define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
  77#define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
  78#define KSZ9x31_LMD_VCT_SEL_RESULT		0
  79#define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
  80#define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
  81#define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
  82#define KSZ9x31_LMD_VCT_ST_NORMAL		0
  83#define KSZ9x31_LMD_VCT_ST_OPEN			1
  84#define KSZ9x31_LMD_VCT_ST_SHORT		2
  85#define KSZ9x31_LMD_VCT_ST_FAIL			3
  86#define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
  87#define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
  88#define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
  89#define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
  90#define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
  91#define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
  92#define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
  93#define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
  94
  95#define KSZPHY_WIRE_PAIR_MASK			0x3
  96
  97#define LAN8814_CABLE_DIAG			0x12
  98#define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
  99#define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
 100#define LAN8814_PAIR_BIT_SHIFT			12
 101
 102#define LAN8814_WIRE_PAIR_MASK			0xF
 103
 104/* Lan8814 general Interrupt control/status reg in GPHY specific block. */
 105#define LAN8814_INTC				0x18
 106#define LAN8814_INTS				0x1B
 107
 108#define LAN8814_INT_LINK_DOWN			BIT(2)
 109#define LAN8814_INT_LINK_UP			BIT(0)
 110#define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
 111						 LAN8814_INT_LINK_DOWN)
 112
 113#define LAN8814_INTR_CTRL_REG			0x34
 114#define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
 115#define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
 116
 117/* Represents 1ppm adjustment in 2^32 format with
 118 * each nsec contains 4 clock cycles.
 119 * The value is calculated as following: (1/1000000)/((2^-32)/4)
 120 */
 121#define LAN8814_1PPM_FORMAT			17179
 122
 123#define PTP_RX_MOD				0x024F
 124#define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
 125#define PTP_RX_TIMESTAMP_EN			0x024D
 126#define PTP_TX_TIMESTAMP_EN			0x028D
 127
 128#define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
 129#define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
 130#define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
 131#define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
 132
 133#define PTP_TX_PARSE_L2_ADDR_EN			0x0284
 134#define PTP_RX_PARSE_L2_ADDR_EN			0x0244
 135
 136#define PTP_TX_PARSE_IP_ADDR_EN			0x0285
 137#define PTP_RX_PARSE_IP_ADDR_EN			0x0245
 138#define LTC_HARD_RESET				0x023F
 139#define LTC_HARD_RESET_				BIT(0)
 140
 141#define TSU_HARD_RESET				0x02C1
 142#define TSU_HARD_RESET_				BIT(0)
 143
 144#define PTP_CMD_CTL				0x0200
 145#define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
 146#define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
 147#define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
 148#define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
 149#define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
 150#define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
 151
 152#define PTP_CLOCK_SET_SEC_MID			0x0206
 153#define PTP_CLOCK_SET_SEC_LO			0x0207
 154#define PTP_CLOCK_SET_NS_HI			0x0208
 155#define PTP_CLOCK_SET_NS_LO			0x0209
 156
 157#define PTP_CLOCK_READ_SEC_MID			0x022A
 158#define PTP_CLOCK_READ_SEC_LO			0x022B
 159#define PTP_CLOCK_READ_NS_HI			0x022C
 160#define PTP_CLOCK_READ_NS_LO			0x022D
 161
 162#define PTP_OPERATING_MODE			0x0241
 163#define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
 164
 165#define PTP_TX_MOD				0x028F
 166#define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
 167#define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
 168
 169#define PTP_RX_PARSE_CONFIG			0x0242
 170#define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
 171#define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
 172#define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
 173
 174#define PTP_TX_PARSE_CONFIG			0x0282
 175#define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
 176#define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
 177#define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
 178
 179#define PTP_CLOCK_RATE_ADJ_HI			0x020C
 180#define PTP_CLOCK_RATE_ADJ_LO			0x020D
 181#define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
 182
 183#define PTP_LTC_STEP_ADJ_HI			0x0212
 184#define PTP_LTC_STEP_ADJ_LO			0x0213
 185#define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
 186
 187#define LAN8814_INTR_STS_REG			0x0033
 188#define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
 189#define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
 190#define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
 191#define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
 192
 193#define PTP_CAP_INFO				0x022A
 194#define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
 195#define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
 196
 197#define PTP_TX_EGRESS_SEC_HI			0x0296
 198#define PTP_TX_EGRESS_SEC_LO			0x0297
 199#define PTP_TX_EGRESS_NS_HI			0x0294
 200#define PTP_TX_EGRESS_NS_LO			0x0295
 201#define PTP_TX_MSG_HEADER2			0x0299
 202
 203#define PTP_RX_INGRESS_SEC_HI			0x0256
 204#define PTP_RX_INGRESS_SEC_LO			0x0257
 205#define PTP_RX_INGRESS_NS_HI			0x0254
 206#define PTP_RX_INGRESS_NS_LO			0x0255
 207#define PTP_RX_MSG_HEADER2			0x0259
 208
 209#define PTP_TSU_INT_EN				0x0200
 210#define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
 211#define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
 212#define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
 213#define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
 214
 215#define PTP_TSU_INT_STS				0x0201
 216#define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
 217#define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
 218#define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
 219#define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
 220
 221#define LAN8814_LED_CTRL_1			0x0
 222#define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
 223
 224/* PHY Control 1 */
 225#define MII_KSZPHY_CTRL_1			0x1e
 226#define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
 227
 228/* PHY Control 2 / PHY Control (if no PHY Control 1) */
 229#define MII_KSZPHY_CTRL_2			0x1f
 230#define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
 231/* bitmap of PHY register to set interrupt mode */
 232#define KSZ8081_CTRL2_HP_MDIX			BIT(15)
 233#define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
 234#define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
 235#define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
 236#define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
 237#define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
 238#define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
 239
 240/* Write/read to/from extended registers */
 241#define MII_KSZPHY_EXTREG			0x0b
 242#define KSZPHY_EXTREG_WRITE			0x8000
 243
 244#define MII_KSZPHY_EXTREG_WRITE			0x0c
 245#define MII_KSZPHY_EXTREG_READ			0x0d
 246
 247/* Extended registers */
 248#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
 249#define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
 250#define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
 251
 252#define PS_TO_REG				200
 253#define FIFO_SIZE				8
 254
 255struct kszphy_hw_stat {
 256	const char *string;
 257	u8 reg;
 258	u8 bits;
 259};
 260
 261static struct kszphy_hw_stat kszphy_hw_stats[] = {
 262	{ "phy_receive_errors", 21, 16},
 263	{ "phy_idle_errors", 10, 8 },
 264};
 265
 266struct kszphy_type {
 267	u32 led_mode_reg;
 268	u16 interrupt_level_mask;
 269	u16 cable_diag_reg;
 270	unsigned long pair_mask;
 271	bool has_broadcast_disable;
 272	bool has_nand_tree_disable;
 273	bool has_rmii_ref_clk_sel;
 274};
 275
 276/* Shared structure between the PHYs of the same package. */
 277struct lan8814_shared_priv {
 278	struct phy_device *phydev;
 279	struct ptp_clock *ptp_clock;
 280	struct ptp_clock_info ptp_clock_info;
 281
 282	/* Reference counter to how many ports in the package are enabling the
 283	 * timestamping
 284	 */
 285	u8 ref;
 286
 287	/* Lock for ptp_clock and ref */
 288	struct mutex shared_lock;
 289};
 290
 291struct lan8814_ptp_rx_ts {
 292	struct list_head list;
 293	u32 seconds;
 294	u32 nsec;
 295	u16 seq_id;
 296};
 297
 298struct kszphy_ptp_priv {
 299	struct mii_timestamper mii_ts;
 300	struct phy_device *phydev;
 301
 302	struct sk_buff_head tx_queue;
 303	struct sk_buff_head rx_queue;
 304
 305	struct list_head rx_ts_list;
 306	/* Lock for Rx ts fifo */
 307	spinlock_t rx_ts_lock;
 308
 309	int hwts_tx_type;
 310	enum hwtstamp_rx_filters rx_filter;
 311	int layer;
 312	int version;
 313};
 314
 315struct kszphy_priv {
 316	struct kszphy_ptp_priv ptp_priv;
 317	const struct kszphy_type *type;
 318	int led_mode;
 319	u16 vct_ctrl1000;
 320	bool rmii_ref_clk_sel;
 321	bool rmii_ref_clk_sel_val;
 322	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
 323};
 324
 325static const struct kszphy_type lan8814_type = {
 326	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
 327	.cable_diag_reg		= LAN8814_CABLE_DIAG,
 328	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
 329};
 330
 331static const struct kszphy_type ksz886x_type = {
 332	.cable_diag_reg		= KSZ8081_LMD,
 333	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
 334};
 335
 336static const struct kszphy_type ksz8021_type = {
 337	.led_mode_reg		= MII_KSZPHY_CTRL_2,
 338	.has_broadcast_disable	= true,
 339	.has_nand_tree_disable	= true,
 340	.has_rmii_ref_clk_sel	= true,
 341};
 342
 343static const struct kszphy_type ksz8041_type = {
 344	.led_mode_reg		= MII_KSZPHY_CTRL_1,
 345};
 346
 347static const struct kszphy_type ksz8051_type = {
 348	.led_mode_reg		= MII_KSZPHY_CTRL_2,
 349	.has_nand_tree_disable	= true,
 350};
 351
 352static const struct kszphy_type ksz8081_type = {
 353	.led_mode_reg		= MII_KSZPHY_CTRL_2,
 354	.has_broadcast_disable	= true,
 355	.has_nand_tree_disable	= true,
 356	.has_rmii_ref_clk_sel	= true,
 357};
 358
 359static const struct kszphy_type ks8737_type = {
 360	.interrupt_level_mask	= BIT(14),
 361};
 362
 363static const struct kszphy_type ksz9021_type = {
 364	.interrupt_level_mask	= BIT(14),
 365};
 366
 367static int kszphy_extended_write(struct phy_device *phydev,
 368				u32 regnum, u16 val)
 369{
 370	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
 371	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
 372}
 373
 374static int kszphy_extended_read(struct phy_device *phydev,
 375				u32 regnum)
 376{
 377	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
 378	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
 379}
 380
 381static int kszphy_ack_interrupt(struct phy_device *phydev)
 382{
 383	/* bit[7..0] int status, which is a read and clear register. */
 384	int rc;
 385
 386	rc = phy_read(phydev, MII_KSZPHY_INTCS);
 387
 388	return (rc < 0) ? rc : 0;
 389}
 390
 
 
 
 
 
 
 
 
 391static int kszphy_config_intr(struct phy_device *phydev)
 392{
 393	const struct kszphy_type *type = phydev->drv->driver_data;
 394	int temp, err;
 395	u16 mask;
 396
 397	if (type && type->interrupt_level_mask)
 398		mask = type->interrupt_level_mask;
 399	else
 400		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
 401
 402	/* set the interrupt pin active low */
 403	temp = phy_read(phydev, MII_KSZPHY_CTRL);
 404	if (temp < 0)
 405		return temp;
 406	temp &= ~mask;
 407	phy_write(phydev, MII_KSZPHY_CTRL, temp);
 408
 409	/* enable / disable interrupts */
 410	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
 411		err = kszphy_ack_interrupt(phydev);
 412		if (err)
 413			return err;
 414
 415		temp = KSZPHY_INTCS_ALL;
 416		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
 417	} else {
 418		temp = 0;
 419		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
 420		if (err)
 421			return err;
 422
 423		err = kszphy_ack_interrupt(phydev);
 424	}
 425
 426	return err;
 427}
 428
 429static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
 430{
 431	int irq_status;
 432
 433	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
 434	if (irq_status < 0) {
 435		phy_error(phydev);
 436		return IRQ_NONE;
 437	}
 438
 439	if (!(irq_status & KSZPHY_INTCS_STATUS))
 440		return IRQ_NONE;
 441
 442	phy_trigger_machine(phydev);
 443
 444	return IRQ_HANDLED;
 445}
 446
 447static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
 448{
 449	int ctrl;
 450
 451	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
 452	if (ctrl < 0)
 453		return ctrl;
 454
 455	if (val)
 456		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
 457	else
 458		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
 459
 460	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
 461}
 462
 463static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
 464{
 465	int rc, temp, shift;
 466
 467	switch (reg) {
 468	case MII_KSZPHY_CTRL_1:
 469		shift = 14;
 470		break;
 471	case MII_KSZPHY_CTRL_2:
 472		shift = 4;
 473		break;
 474	default:
 475		return -EINVAL;
 476	}
 477
 478	temp = phy_read(phydev, reg);
 479	if (temp < 0) {
 480		rc = temp;
 481		goto out;
 482	}
 483
 484	temp &= ~(3 << shift);
 485	temp |= val << shift;
 486	rc = phy_write(phydev, reg, temp);
 487out:
 488	if (rc < 0)
 489		phydev_err(phydev, "failed to set led mode\n");
 490
 491	return rc;
 492}
 493
 494/* Disable PHY address 0 as the broadcast address, so that it can be used as a
 495 * unique (non-broadcast) address on a shared bus.
 496 */
 497static int kszphy_broadcast_disable(struct phy_device *phydev)
 498{
 499	int ret;
 500
 501	ret = phy_read(phydev, MII_KSZPHY_OMSO);
 502	if (ret < 0)
 503		goto out;
 504
 505	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
 506out:
 507	if (ret)
 508		phydev_err(phydev, "failed to disable broadcast address\n");
 509
 510	return ret;
 511}
 512
 513static int kszphy_nand_tree_disable(struct phy_device *phydev)
 514{
 515	int ret;
 516
 517	ret = phy_read(phydev, MII_KSZPHY_OMSO);
 518	if (ret < 0)
 519		goto out;
 520
 521	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
 522		return 0;
 523
 524	ret = phy_write(phydev, MII_KSZPHY_OMSO,
 525			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
 526out:
 527	if (ret)
 528		phydev_err(phydev, "failed to disable NAND tree mode\n");
 529
 530	return ret;
 531}
 532
 533/* Some config bits need to be set again on resume, handle them here. */
 534static int kszphy_config_reset(struct phy_device *phydev)
 535{
 536	struct kszphy_priv *priv = phydev->priv;
 537	int ret;
 538
 539	if (priv->rmii_ref_clk_sel) {
 540		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
 541		if (ret) {
 542			phydev_err(phydev,
 543				   "failed to set rmii reference clock\n");
 544			return ret;
 545		}
 546	}
 547
 548	if (priv->type && priv->led_mode >= 0)
 549		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
 550
 551	return 0;
 552}
 553
 554static int kszphy_config_init(struct phy_device *phydev)
 555{
 556	struct kszphy_priv *priv = phydev->priv;
 557	const struct kszphy_type *type;
 558
 559	if (!priv)
 560		return 0;
 561
 562	type = priv->type;
 563
 564	if (type && type->has_broadcast_disable)
 565		kszphy_broadcast_disable(phydev);
 566
 567	if (type && type->has_nand_tree_disable)
 568		kszphy_nand_tree_disable(phydev);
 569
 570	return kszphy_config_reset(phydev);
 571}
 572
 573static int ksz8041_fiber_mode(struct phy_device *phydev)
 574{
 575	struct device_node *of_node = phydev->mdio.dev.of_node;
 576
 577	return of_property_read_bool(of_node, "micrel,fiber-mode");
 578}
 579
 580static int ksz8041_config_init(struct phy_device *phydev)
 581{
 582	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
 583
 584	/* Limit supported and advertised modes in fiber mode */
 585	if (ksz8041_fiber_mode(phydev)) {
 586		phydev->dev_flags |= MICREL_PHY_FXEN;
 587		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
 588		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
 589
 590		linkmode_and(phydev->supported, phydev->supported, mask);
 591		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
 592				 phydev->supported);
 593		linkmode_and(phydev->advertising, phydev->advertising, mask);
 594		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
 595				 phydev->advertising);
 596		phydev->autoneg = AUTONEG_DISABLE;
 597	}
 598
 599	return kszphy_config_init(phydev);
 600}
 601
 602static int ksz8041_config_aneg(struct phy_device *phydev)
 603{
 604	/* Skip auto-negotiation in fiber mode */
 605	if (phydev->dev_flags & MICREL_PHY_FXEN) {
 606		phydev->speed = SPEED_100;
 607		return 0;
 608	}
 609
 610	return genphy_config_aneg(phydev);
 611}
 612
 613static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
 614					    const bool ksz_8051)
 615{
 616	int ret;
 617
 618	if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
 619		return 0;
 620
 621	ret = phy_read(phydev, MII_BMSR);
 622	if (ret < 0)
 623		return ret;
 624
 625	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
 626	 * exact PHY ID. However, they can be told apart by the extended
 627	 * capability registers presence. The KSZ8051 PHY has them while
 628	 * the switch does not.
 629	 */
 630	ret &= BMSR_ERCAP;
 631	if (ksz_8051)
 632		return ret;
 633	else
 634		return !ret;
 635}
 636
 637static int ksz8051_match_phy_device(struct phy_device *phydev)
 638{
 639	return ksz8051_ksz8795_match_phy_device(phydev, true);
 640}
 641
 642static int ksz8081_config_init(struct phy_device *phydev)
 643{
 644	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
 645	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
 646	 * pull-down is missing, the factory test mode should be cleared by
 647	 * manually writing a 0.
 648	 */
 649	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
 650
 651	return kszphy_config_init(phydev);
 652}
 653
 654static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
 655{
 656	u16 val;
 657
 658	switch (ctrl) {
 659	case ETH_TP_MDI:
 660		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
 661		break;
 662	case ETH_TP_MDI_X:
 663		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
 664			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
 665		break;
 666	case ETH_TP_MDI_AUTO:
 667		val = 0;
 668		break;
 669	default:
 670		return 0;
 671	}
 672
 673	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
 674			  KSZ8081_CTRL2_HP_MDIX |
 675			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
 676			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
 677			  KSZ8081_CTRL2_HP_MDIX | val);
 678}
 679
 680static int ksz8081_config_aneg(struct phy_device *phydev)
 681{
 682	int ret;
 683
 684	ret = genphy_config_aneg(phydev);
 685	if (ret)
 686		return ret;
 687
 688	/* The MDI-X configuration is automatically changed by the PHY after
 689	 * switching from autoneg off to on. So, take MDI-X configuration under
 690	 * own control and set it after autoneg configuration was done.
 691	 */
 692	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
 693}
 694
 695static int ksz8081_mdix_update(struct phy_device *phydev)
 696{
 697	int ret;
 698
 699	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
 700	if (ret < 0)
 701		return ret;
 702
 703	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
 704		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
 705			phydev->mdix_ctrl = ETH_TP_MDI_X;
 706		else
 707			phydev->mdix_ctrl = ETH_TP_MDI;
 708	} else {
 709		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
 710	}
 711
 712	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
 713	if (ret < 0)
 714		return ret;
 715
 716	if (ret & KSZ8081_CTRL1_MDIX_STAT)
 717		phydev->mdix = ETH_TP_MDI;
 718	else
 719		phydev->mdix = ETH_TP_MDI_X;
 720
 721	return 0;
 722}
 723
 724static int ksz8081_read_status(struct phy_device *phydev)
 725{
 726	int ret;
 727
 728	ret = ksz8081_mdix_update(phydev);
 729	if (ret < 0)
 730		return ret;
 731
 732	return genphy_read_status(phydev);
 733}
 734
 735static int ksz8061_config_init(struct phy_device *phydev)
 736{
 737	int ret;
 738
 739	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
 740	if (ret)
 741		return ret;
 742
 743	return kszphy_config_init(phydev);
 744}
 745
 746static int ksz8795_match_phy_device(struct phy_device *phydev)
 747{
 748	return ksz8051_ksz8795_match_phy_device(phydev, false);
 749}
 750
 751static int ksz9021_load_values_from_of(struct phy_device *phydev,
 752				       const struct device_node *of_node,
 753				       u16 reg,
 754				       const char *field1, const char *field2,
 755				       const char *field3, const char *field4)
 756{
 757	int val1 = -1;
 758	int val2 = -2;
 759	int val3 = -3;
 760	int val4 = -4;
 761	int newval;
 762	int matches = 0;
 763
 764	if (!of_property_read_u32(of_node, field1, &val1))
 765		matches++;
 766
 767	if (!of_property_read_u32(of_node, field2, &val2))
 768		matches++;
 769
 770	if (!of_property_read_u32(of_node, field3, &val3))
 771		matches++;
 772
 773	if (!of_property_read_u32(of_node, field4, &val4))
 774		matches++;
 775
 776	if (!matches)
 777		return 0;
 778
 779	if (matches < 4)
 780		newval = kszphy_extended_read(phydev, reg);
 781	else
 782		newval = 0;
 783
 784	if (val1 != -1)
 785		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
 786
 787	if (val2 != -2)
 788		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
 789
 790	if (val3 != -3)
 791		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
 792
 793	if (val4 != -4)
 794		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
 795
 796	return kszphy_extended_write(phydev, reg, newval);
 797}
 798
 799static int ksz9021_config_init(struct phy_device *phydev)
 800{
 801	const struct device_node *of_node;
 802	const struct device *dev_walker;
 803
 804	/* The Micrel driver has a deprecated option to place phy OF
 805	 * properties in the MAC node. Walk up the tree of devices to
 806	 * find a device with an OF node.
 807	 */
 808	dev_walker = &phydev->mdio.dev;
 809	do {
 810		of_node = dev_walker->of_node;
 811		dev_walker = dev_walker->parent;
 812
 813	} while (!of_node && dev_walker);
 814
 815	if (of_node) {
 816		ksz9021_load_values_from_of(phydev, of_node,
 817				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
 818				    "txen-skew-ps", "txc-skew-ps",
 819				    "rxdv-skew-ps", "rxc-skew-ps");
 820		ksz9021_load_values_from_of(phydev, of_node,
 821				    MII_KSZPHY_RX_DATA_PAD_SKEW,
 822				    "rxd0-skew-ps", "rxd1-skew-ps",
 823				    "rxd2-skew-ps", "rxd3-skew-ps");
 824		ksz9021_load_values_from_of(phydev, of_node,
 825				    MII_KSZPHY_TX_DATA_PAD_SKEW,
 826				    "txd0-skew-ps", "txd1-skew-ps",
 827				    "txd2-skew-ps", "txd3-skew-ps");
 828	}
 829	return 0;
 830}
 831
 832#define KSZ9031_PS_TO_REG		60
 833
 834/* Extended registers */
 835/* MMD Address 0x0 */
 836#define MII_KSZ9031RN_FLP_BURST_TX_LO	3
 837#define MII_KSZ9031RN_FLP_BURST_TX_HI	4
 838
 839/* MMD Address 0x2 */
 840#define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
 841#define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
 842#define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
 843
 844#define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
 845#define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
 846#define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
 847#define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
 848#define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
 849
 850#define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
 851#define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
 852#define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
 853#define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
 854#define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
 855
 856#define MII_KSZ9031RN_CLK_PAD_SKEW	8
 857#define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
 858#define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
 859
 860/* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
 861 * provide different RGMII options we need to configure delay offset
 862 * for each pad relative to build in delay.
 863 */
 864/* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
 865 * 1.80ns
 866 */
 867#define RX_ID				0x7
 868#define RX_CLK_ID			0x19
 869
 870/* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
 871 * internal 1.2ns delay.
 872 */
 873#define RX_ND				0xc
 874#define RX_CLK_ND			0x0
 875
 876/* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
 877#define TX_ID				0x0
 878#define TX_CLK_ID			0x1f
 879
 880/* set tx and tx_clk to "No delay adjustment" to keep 0ns
 881 * dealy
 882 */
 883#define TX_ND				0x7
 884#define TX_CLK_ND			0xf
 885
 886/* MMD Address 0x1C */
 887#define MII_KSZ9031RN_EDPD		0x23
 888#define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
 889
 890static int ksz9031_of_load_skew_values(struct phy_device *phydev,
 891				       const struct device_node *of_node,
 892				       u16 reg, size_t field_sz,
 893				       const char *field[], u8 numfields,
 894				       bool *update)
 895{
 896	int val[4] = {-1, -2, -3, -4};
 897	int matches = 0;
 898	u16 mask;
 899	u16 maxval;
 900	u16 newval;
 901	int i;
 902
 903	for (i = 0; i < numfields; i++)
 904		if (!of_property_read_u32(of_node, field[i], val + i))
 905			matches++;
 906
 907	if (!matches)
 908		return 0;
 909
 910	*update |= true;
 911
 912	if (matches < numfields)
 913		newval = phy_read_mmd(phydev, 2, reg);
 914	else
 915		newval = 0;
 916
 917	maxval = (field_sz == 4) ? 0xf : 0x1f;
 918	for (i = 0; i < numfields; i++)
 919		if (val[i] != -(i + 1)) {
 920			mask = 0xffff;
 921			mask ^= maxval << (field_sz * i);
 922			newval = (newval & mask) |
 923				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
 924					<< (field_sz * i));
 925		}
 926
 927	return phy_write_mmd(phydev, 2, reg, newval);
 928}
 929
 930/* Center KSZ9031RNX FLP timing at 16ms. */
 931static int ksz9031_center_flp_timing(struct phy_device *phydev)
 932{
 933	int result;
 934
 935	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
 936			       0x0006);
 937	if (result)
 938		return result;
 939
 940	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
 941			       0x1A80);
 942	if (result)
 943		return result;
 944
 945	return genphy_restart_aneg(phydev);
 946}
 947
 948/* Enable energy-detect power-down mode */
 949static int ksz9031_enable_edpd(struct phy_device *phydev)
 950{
 951	int reg;
 952
 953	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
 954	if (reg < 0)
 955		return reg;
 956	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
 957			     reg | MII_KSZ9031RN_EDPD_ENABLE);
 958}
 959
 960static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
 961{
 962	u16 rx, tx, rx_clk, tx_clk;
 963	int ret;
 964
 965	switch (phydev->interface) {
 966	case PHY_INTERFACE_MODE_RGMII:
 967		tx = TX_ND;
 968		tx_clk = TX_CLK_ND;
 969		rx = RX_ND;
 970		rx_clk = RX_CLK_ND;
 971		break;
 972	case PHY_INTERFACE_MODE_RGMII_ID:
 973		tx = TX_ID;
 974		tx_clk = TX_CLK_ID;
 975		rx = RX_ID;
 976		rx_clk = RX_CLK_ID;
 977		break;
 978	case PHY_INTERFACE_MODE_RGMII_RXID:
 979		tx = TX_ND;
 980		tx_clk = TX_CLK_ND;
 981		rx = RX_ID;
 982		rx_clk = RX_CLK_ID;
 983		break;
 984	case PHY_INTERFACE_MODE_RGMII_TXID:
 985		tx = TX_ID;
 986		tx_clk = TX_CLK_ID;
 987		rx = RX_ND;
 988		rx_clk = RX_CLK_ND;
 989		break;
 990	default:
 991		return 0;
 992	}
 993
 994	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
 995			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
 996			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
 997	if (ret < 0)
 998		return ret;
 999
1000	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1001			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1002			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1003			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1004			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1005	if (ret < 0)
1006		return ret;
1007
1008	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1009			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1010			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1011			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1012			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1013	if (ret < 0)
1014		return ret;
1015
1016	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1017			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1018			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1019}
1020
1021static int ksz9031_config_init(struct phy_device *phydev)
1022{
1023	const struct device_node *of_node;
1024	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1025	static const char *rx_data_skews[4] = {
1026		"rxd0-skew-ps", "rxd1-skew-ps",
1027		"rxd2-skew-ps", "rxd3-skew-ps"
1028	};
1029	static const char *tx_data_skews[4] = {
1030		"txd0-skew-ps", "txd1-skew-ps",
1031		"txd2-skew-ps", "txd3-skew-ps"
1032	};
1033	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1034	const struct device *dev_walker;
1035	int result;
1036
1037	result = ksz9031_enable_edpd(phydev);
1038	if (result < 0)
1039		return result;
1040
1041	/* The Micrel driver has a deprecated option to place phy OF
1042	 * properties in the MAC node. Walk up the tree of devices to
1043	 * find a device with an OF node.
1044	 */
1045	dev_walker = &phydev->mdio.dev;
1046	do {
1047		of_node = dev_walker->of_node;
1048		dev_walker = dev_walker->parent;
1049	} while (!of_node && dev_walker);
1050
1051	if (of_node) {
1052		bool update = false;
1053
1054		if (phy_interface_is_rgmii(phydev)) {
1055			result = ksz9031_config_rgmii_delay(phydev);
1056			if (result < 0)
1057				return result;
1058		}
1059
1060		ksz9031_of_load_skew_values(phydev, of_node,
1061				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1062				clk_skews, 2, &update);
1063
1064		ksz9031_of_load_skew_values(phydev, of_node,
1065				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1066				control_skews, 2, &update);
1067
1068		ksz9031_of_load_skew_values(phydev, of_node,
1069				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1070				rx_data_skews, 4, &update);
1071
1072		ksz9031_of_load_skew_values(phydev, of_node,
1073				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1074				tx_data_skews, 4, &update);
1075
1076		if (update && !phy_interface_is_rgmii(phydev))
1077			phydev_warn(phydev,
1078				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1079
1080		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1081		 * When the device links in the 1000BASE-T slave mode only,
1082		 * the optional 125MHz reference output clock (CLK125_NDO)
1083		 * has wide duty cycle variation.
1084		 *
1085		 * The optional CLK125_NDO clock does not meet the RGMII
1086		 * 45/55 percent (min/max) duty cycle requirement and therefore
1087		 * cannot be used directly by the MAC side for clocking
1088		 * applications that have setup/hold time requirements on
1089		 * rising and falling clock edges.
1090		 *
1091		 * Workaround:
1092		 * Force the phy to be the master to receive a stable clock
1093		 * which meets the duty cycle requirement.
1094		 */
1095		if (of_property_read_bool(of_node, "micrel,force-master")) {
1096			result = phy_read(phydev, MII_CTRL1000);
1097			if (result < 0)
1098				goto err_force_master;
1099
1100			/* enable master mode, config & prefer master */
1101			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1102			result = phy_write(phydev, MII_CTRL1000, result);
1103			if (result < 0)
1104				goto err_force_master;
1105		}
1106	}
1107
1108	return ksz9031_center_flp_timing(phydev);
1109
1110err_force_master:
1111	phydev_err(phydev, "failed to force the phy to master mode\n");
1112	return result;
1113}
1114
1115#define KSZ9131_SKEW_5BIT_MAX	2400
1116#define KSZ9131_SKEW_4BIT_MAX	800
1117#define KSZ9131_OFFSET		700
1118#define KSZ9131_STEP		100
1119
1120static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1121				       struct device_node *of_node,
1122				       u16 reg, size_t field_sz,
1123				       char *field[], u8 numfields)
1124{
1125	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1126		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1127	int skewval, skewmax = 0;
1128	int matches = 0;
1129	u16 maxval;
1130	u16 newval;
1131	u16 mask;
1132	int i;
1133
1134	/* psec properties in dts should mean x pico seconds */
1135	if (field_sz == 5)
1136		skewmax = KSZ9131_SKEW_5BIT_MAX;
1137	else
1138		skewmax = KSZ9131_SKEW_4BIT_MAX;
1139
1140	for (i = 0; i < numfields; i++)
1141		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1142			if (skewval < -KSZ9131_OFFSET)
1143				skewval = -KSZ9131_OFFSET;
1144			else if (skewval > skewmax)
1145				skewval = skewmax;
1146
1147			val[i] = skewval + KSZ9131_OFFSET;
1148			matches++;
1149		}
1150
1151	if (!matches)
1152		return 0;
1153
1154	if (matches < numfields)
1155		newval = phy_read_mmd(phydev, 2, reg);
1156	else
1157		newval = 0;
1158
1159	maxval = (field_sz == 4) ? 0xf : 0x1f;
1160	for (i = 0; i < numfields; i++)
1161		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1162			mask = 0xffff;
1163			mask ^= maxval << (field_sz * i);
1164			newval = (newval & mask) |
1165				(((val[i] / KSZ9131_STEP) & maxval)
1166					<< (field_sz * i));
1167		}
1168
1169	return phy_write_mmd(phydev, 2, reg, newval);
1170}
1171
1172#define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1173#define KSZ9131RN_RXC_DLL_CTRL		76
1174#define KSZ9131RN_TXC_DLL_CTRL		77
1175#define KSZ9131RN_DLL_CTRL_BYPASS	BIT_MASK(12)
1176#define KSZ9131RN_DLL_ENABLE_DELAY	0
1177#define KSZ9131RN_DLL_DISABLE_DELAY	BIT(12)
1178
1179static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1180{
1181	u16 rxcdll_val, txcdll_val;
1182	int ret;
1183
1184	switch (phydev->interface) {
1185	case PHY_INTERFACE_MODE_RGMII:
1186		rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1187		txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1188		break;
1189	case PHY_INTERFACE_MODE_RGMII_ID:
1190		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1191		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1192		break;
1193	case PHY_INTERFACE_MODE_RGMII_RXID:
1194		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1195		txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1196		break;
1197	case PHY_INTERFACE_MODE_RGMII_TXID:
1198		rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1199		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1200		break;
1201	default:
1202		return 0;
1203	}
1204
1205	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1206			     KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1207			     rxcdll_val);
1208	if (ret < 0)
1209		return ret;
1210
1211	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1212			      KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1213			      txcdll_val);
1214}
1215
1216/* Silicon Errata DS80000693B
1217 *
1218 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1219 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1220 * according to the datasheet (off if there is no link).
1221 */
1222static int ksz9131_led_errata(struct phy_device *phydev)
1223{
1224	int reg;
1225
1226	reg = phy_read_mmd(phydev, 2, 0);
1227	if (reg < 0)
1228		return reg;
1229
1230	if (!(reg & BIT(4)))
1231		return 0;
1232
1233	return phy_set_bits(phydev, 0x1e, BIT(9));
1234}
1235
1236static int ksz9131_config_init(struct phy_device *phydev)
1237{
1238	struct device_node *of_node;
1239	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1240	char *rx_data_skews[4] = {
1241		"rxd0-skew-psec", "rxd1-skew-psec",
1242		"rxd2-skew-psec", "rxd3-skew-psec"
1243	};
1244	char *tx_data_skews[4] = {
1245		"txd0-skew-psec", "txd1-skew-psec",
1246		"txd2-skew-psec", "txd3-skew-psec"
1247	};
1248	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1249	const struct device *dev_walker;
1250	int ret;
1251
1252	dev_walker = &phydev->mdio.dev;
1253	do {
1254		of_node = dev_walker->of_node;
1255		dev_walker = dev_walker->parent;
1256	} while (!of_node && dev_walker);
1257
1258	if (!of_node)
1259		return 0;
1260
1261	if (phy_interface_is_rgmii(phydev)) {
1262		ret = ksz9131_config_rgmii_delay(phydev);
1263		if (ret < 0)
1264			return ret;
1265	}
1266
1267	ret = ksz9131_of_load_skew_values(phydev, of_node,
1268					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1269					  clk_skews, 2);
1270	if (ret < 0)
1271		return ret;
1272
1273	ret = ksz9131_of_load_skew_values(phydev, of_node,
1274					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1275					  control_skews, 2);
1276	if (ret < 0)
1277		return ret;
1278
1279	ret = ksz9131_of_load_skew_values(phydev, of_node,
1280					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1281					  rx_data_skews, 4);
1282	if (ret < 0)
1283		return ret;
1284
1285	ret = ksz9131_of_load_skew_values(phydev, of_node,
1286					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1287					  tx_data_skews, 4);
1288	if (ret < 0)
1289		return ret;
1290
1291	ret = ksz9131_led_errata(phydev);
1292	if (ret < 0)
1293		return ret;
1294
1295	return 0;
1296}
1297
1298#define MII_KSZ9131_AUTO_MDIX		0x1C
1299#define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1300#define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1301
1302static int ksz9131_mdix_update(struct phy_device *phydev)
1303{
1304	int ret;
1305
1306	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1307	if (ret < 0)
1308		return ret;
1309
1310	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1311		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1312			phydev->mdix_ctrl = ETH_TP_MDI;
1313		else
1314			phydev->mdix_ctrl = ETH_TP_MDI_X;
1315	} else {
1316		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1317	}
1318
1319	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1320		phydev->mdix = ETH_TP_MDI;
1321	else
1322		phydev->mdix = ETH_TP_MDI_X;
1323
1324	return 0;
1325}
1326
1327static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1328{
1329	u16 val;
1330
1331	switch (ctrl) {
1332	case ETH_TP_MDI:
1333		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1334		      MII_KSZ9131_AUTO_MDI_SET;
1335		break;
1336	case ETH_TP_MDI_X:
1337		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1338		break;
1339	case ETH_TP_MDI_AUTO:
1340		val = 0;
1341		break;
1342	default:
1343		return 0;
1344	}
1345
1346	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1347			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1348			  MII_KSZ9131_AUTO_MDI_SET, val);
1349}
1350
1351static int ksz9131_read_status(struct phy_device *phydev)
1352{
1353	int ret;
1354
1355	ret = ksz9131_mdix_update(phydev);
1356	if (ret < 0)
1357		return ret;
1358
1359	return genphy_read_status(phydev);
1360}
1361
1362static int ksz9131_config_aneg(struct phy_device *phydev)
1363{
1364	int ret;
1365
1366	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1367	if (ret)
1368		return ret;
1369
1370	return genphy_config_aneg(phydev);
1371}
1372
1373#define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1374#define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1375#define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1376static int ksz8873mll_read_status(struct phy_device *phydev)
1377{
1378	int regval;
1379
1380	/* dummy read */
1381	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1382
1383	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1384
1385	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1386		phydev->duplex = DUPLEX_HALF;
1387	else
1388		phydev->duplex = DUPLEX_FULL;
1389
1390	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1391		phydev->speed = SPEED_10;
1392	else
1393		phydev->speed = SPEED_100;
1394
1395	phydev->link = 1;
1396	phydev->pause = phydev->asym_pause = 0;
1397
1398	return 0;
1399}
1400
1401static int ksz9031_get_features(struct phy_device *phydev)
1402{
1403	int ret;
1404
1405	ret = genphy_read_abilities(phydev);
1406	if (ret < 0)
1407		return ret;
1408
1409	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1410	 * Whenever the device's Asymmetric Pause capability is set to 1,
1411	 * link-up may fail after a link-up to link-down transition.
1412	 *
1413	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1414	 *
1415	 * Workaround:
1416	 * Do not enable the Asymmetric Pause capability bit.
1417	 */
1418	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1419
1420	/* We force setting the Pause capability as the core will force the
1421	 * Asymmetric Pause capability to 1 otherwise.
1422	 */
1423	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1424
1425	return 0;
1426}
1427
1428static int ksz9031_read_status(struct phy_device *phydev)
1429{
1430	int err;
1431	int regval;
1432
1433	err = genphy_read_status(phydev);
1434	if (err)
1435		return err;
1436
1437	/* Make sure the PHY is not broken. Read idle error count,
1438	 * and reset the PHY if it is maxed out.
1439	 */
1440	regval = phy_read(phydev, MII_STAT1000);
1441	if ((regval & 0xFF) == 0xFF) {
1442		phy_init_hw(phydev);
1443		phydev->link = 0;
1444		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1445			phydev->drv->config_intr(phydev);
1446		return genphy_config_aneg(phydev);
1447	}
1448
1449	return 0;
1450}
1451
1452static int ksz9x31_cable_test_start(struct phy_device *phydev)
1453{
1454	struct kszphy_priv *priv = phydev->priv;
1455	int ret;
1456
1457	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1458	 * Prior to running the cable diagnostics, Auto-negotiation should
1459	 * be disabled, full duplex set and the link speed set to 1000Mbps
1460	 * via the Basic Control Register.
1461	 */
1462	ret = phy_modify(phydev, MII_BMCR,
1463			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1464			 BMCR_ANENABLE | BMCR_SPEED100,
1465			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1466	if (ret)
1467		return ret;
1468
1469	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1470	 * The Master-Slave configuration should be set to Slave by writing
1471	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1472	 * Register.
1473	 */
1474	ret = phy_read(phydev, MII_CTRL1000);
1475	if (ret < 0)
1476		return ret;
1477
1478	/* Cache these bits, they need to be restored once LinkMD finishes. */
1479	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1480	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1481	ret |= CTL1000_ENABLE_MASTER;
1482
1483	return phy_write(phydev, MII_CTRL1000, ret);
1484}
1485
1486static int ksz9x31_cable_test_result_trans(u16 status)
1487{
1488	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1489	case KSZ9x31_LMD_VCT_ST_NORMAL:
1490		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1491	case KSZ9x31_LMD_VCT_ST_OPEN:
1492		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1493	case KSZ9x31_LMD_VCT_ST_SHORT:
1494		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1495	case KSZ9x31_LMD_VCT_ST_FAIL:
1496		fallthrough;
1497	default:
1498		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1499	}
1500}
1501
1502static bool ksz9x31_cable_test_failed(u16 status)
1503{
1504	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1505
1506	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1507}
1508
1509static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1510{
1511	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1512	case KSZ9x31_LMD_VCT_ST_OPEN:
1513		fallthrough;
1514	case KSZ9x31_LMD_VCT_ST_SHORT:
1515		return true;
1516	}
1517	return false;
1518}
1519
1520static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1521{
1522	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1523
1524	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1525	 *
1526	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1527	 */
1528	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
1529		dt = clamp(dt - 22, 0, 255);
1530
1531	return (dt * 400) / 10;
1532}
1533
1534static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1535{
1536	int val, ret;
1537
1538	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1539				    !(val & KSZ9x31_LMD_VCT_EN),
1540				    30000, 100000, true);
1541
1542	return ret < 0 ? ret : 0;
1543}
1544
1545static int ksz9x31_cable_test_get_pair(int pair)
1546{
1547	static const int ethtool_pair[] = {
1548		ETHTOOL_A_CABLE_PAIR_A,
1549		ETHTOOL_A_CABLE_PAIR_B,
1550		ETHTOOL_A_CABLE_PAIR_C,
1551		ETHTOOL_A_CABLE_PAIR_D,
1552	};
1553
1554	return ethtool_pair[pair];
1555}
1556
1557static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1558{
1559	int ret, val;
1560
1561	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1562	 * To test each individual cable pair, set the cable pair in the Cable
1563	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1564	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1565	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1566	 * will self clear when the test is concluded.
1567	 */
1568	ret = phy_write(phydev, KSZ9x31_LMD,
1569			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1570	if (ret)
1571		return ret;
1572
1573	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1574	if (ret)
1575		return ret;
1576
1577	val = phy_read(phydev, KSZ9x31_LMD);
1578	if (val < 0)
1579		return val;
1580
1581	if (ksz9x31_cable_test_failed(val))
1582		return -EAGAIN;
1583
1584	ret = ethnl_cable_test_result(phydev,
1585				      ksz9x31_cable_test_get_pair(pair),
1586				      ksz9x31_cable_test_result_trans(val));
1587	if (ret)
1588		return ret;
1589
1590	if (!ksz9x31_cable_test_fault_length_valid(val))
1591		return 0;
1592
1593	return ethnl_cable_test_fault_length(phydev,
1594					     ksz9x31_cable_test_get_pair(pair),
1595					     ksz9x31_cable_test_fault_length(phydev, val));
1596}
1597
1598static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1599					 bool *finished)
1600{
1601	struct kszphy_priv *priv = phydev->priv;
1602	unsigned long pair_mask = 0xf;
1603	int retries = 20;
1604	int pair, ret, rv;
1605
1606	*finished = false;
1607
1608	/* Try harder if link partner is active */
1609	while (pair_mask && retries--) {
1610		for_each_set_bit(pair, &pair_mask, 4) {
1611			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1612			if (ret == -EAGAIN)
1613				continue;
1614			if (ret < 0)
1615				return ret;
1616			clear_bit(pair, &pair_mask);
1617		}
1618		/* If link partner is in autonegotiation mode it will send 2ms
1619		 * of FLPs with at least 6ms of silence.
1620		 * Add 2ms sleep to have better chances to hit this silence.
1621		 */
1622		if (pair_mask)
1623			usleep_range(2000, 3000);
1624	}
1625
1626	/* Report remaining unfinished pair result as unknown. */
1627	for_each_set_bit(pair, &pair_mask, 4) {
1628		ret = ethnl_cable_test_result(phydev,
1629					      ksz9x31_cable_test_get_pair(pair),
1630					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1631	}
1632
1633	*finished = true;
1634
1635	/* Restore cached bits from before LinkMD got started. */
1636	rv = phy_modify(phydev, MII_CTRL1000,
1637			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1638			priv->vct_ctrl1000);
1639	if (rv)
1640		return rv;
1641
1642	return ret;
1643}
1644
1645static int ksz8873mll_config_aneg(struct phy_device *phydev)
1646{
1647	return 0;
1648}
1649
1650static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1651{
1652	u16 val;
1653
1654	switch (ctrl) {
1655	case ETH_TP_MDI:
1656		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1657		break;
1658	case ETH_TP_MDI_X:
1659		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1660		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1661		 * sheet seems to be missing:
1662		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1663		 * 0 = Normal operation (transmit on TX+/TX- pins)
1664		 */
1665		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1666		break;
1667	case ETH_TP_MDI_AUTO:
1668		val = 0;
1669		break;
1670	default:
1671		return 0;
1672	}
1673
1674	return phy_modify(phydev, MII_BMCR,
1675			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1676			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1677			  KSZ886X_BMCR_HP_MDIX | val);
1678}
1679
1680static int ksz886x_config_aneg(struct phy_device *phydev)
1681{
1682	int ret;
1683
1684	ret = genphy_config_aneg(phydev);
1685	if (ret)
1686		return ret;
1687
1688	/* The MDI-X configuration is automatically changed by the PHY after
1689	 * switching from autoneg off to on. So, take MDI-X configuration under
1690	 * own control and set it after autoneg configuration was done.
1691	 */
1692	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1693}
1694
1695static int ksz886x_mdix_update(struct phy_device *phydev)
1696{
1697	int ret;
1698
1699	ret = phy_read(phydev, MII_BMCR);
1700	if (ret < 0)
1701		return ret;
1702
1703	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1704		if (ret & KSZ886X_BMCR_FORCE_MDI)
1705			phydev->mdix_ctrl = ETH_TP_MDI_X;
1706		else
1707			phydev->mdix_ctrl = ETH_TP_MDI;
1708	} else {
1709		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1710	}
1711
1712	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1713	if (ret < 0)
1714		return ret;
1715
1716	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1717	if (ret & KSZ886X_CTRL_MDIX_STAT)
1718		phydev->mdix = ETH_TP_MDI_X;
1719	else
1720		phydev->mdix = ETH_TP_MDI;
1721
1722	return 0;
1723}
1724
1725static int ksz886x_read_status(struct phy_device *phydev)
1726{
1727	int ret;
1728
1729	ret = ksz886x_mdix_update(phydev);
1730	if (ret < 0)
1731		return ret;
1732
1733	return genphy_read_status(phydev);
1734}
1735
1736static int kszphy_get_sset_count(struct phy_device *phydev)
1737{
1738	return ARRAY_SIZE(kszphy_hw_stats);
1739}
1740
1741static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1742{
1743	int i;
1744
1745	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1746		strscpy(data + i * ETH_GSTRING_LEN,
1747			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1748	}
1749}
1750
1751static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1752{
1753	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1754	struct kszphy_priv *priv = phydev->priv;
1755	int val;
1756	u64 ret;
1757
1758	val = phy_read(phydev, stat.reg);
1759	if (val < 0) {
1760		ret = U64_MAX;
1761	} else {
1762		val = val & ((1 << stat.bits) - 1);
1763		priv->stats[i] += val;
1764		ret = priv->stats[i];
1765	}
1766
1767	return ret;
1768}
1769
1770static void kszphy_get_stats(struct phy_device *phydev,
1771			     struct ethtool_stats *stats, u64 *data)
1772{
1773	int i;
1774
1775	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1776		data[i] = kszphy_get_stat(phydev, i);
1777}
1778
1779static int kszphy_suspend(struct phy_device *phydev)
1780{
1781	/* Disable PHY Interrupts */
1782	if (phy_interrupt_is_valid(phydev)) {
1783		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1784		if (phydev->drv->config_intr)
1785			phydev->drv->config_intr(phydev);
1786	}
1787
1788	return genphy_suspend(phydev);
1789}
1790
1791static void kszphy_parse_led_mode(struct phy_device *phydev)
1792{
1793	const struct kszphy_type *type = phydev->drv->driver_data;
1794	const struct device_node *np = phydev->mdio.dev.of_node;
1795	struct kszphy_priv *priv = phydev->priv;
1796	int ret;
1797
1798	if (type && type->led_mode_reg) {
1799		ret = of_property_read_u32(np, "micrel,led-mode",
1800					   &priv->led_mode);
1801
1802		if (ret)
1803			priv->led_mode = -1;
1804
1805		if (priv->led_mode > 3) {
1806			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1807				   priv->led_mode);
1808			priv->led_mode = -1;
1809		}
1810	} else {
1811		priv->led_mode = -1;
1812	}
1813}
1814
1815static int kszphy_resume(struct phy_device *phydev)
1816{
1817	int ret;
1818
1819	genphy_resume(phydev);
1820
1821	/* After switching from power-down to normal mode, an internal global
1822	 * reset is automatically generated. Wait a minimum of 1 ms before
1823	 * read/write access to the PHY registers.
1824	 */
1825	usleep_range(1000, 2000);
1826
1827	ret = kszphy_config_reset(phydev);
1828	if (ret)
1829		return ret;
1830
1831	/* Enable PHY Interrupts */
1832	if (phy_interrupt_is_valid(phydev)) {
1833		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1834		if (phydev->drv->config_intr)
1835			phydev->drv->config_intr(phydev);
1836	}
1837
1838	return 0;
1839}
1840
1841static int kszphy_probe(struct phy_device *phydev)
1842{
1843	const struct kszphy_type *type = phydev->drv->driver_data;
1844	const struct device_node *np = phydev->mdio.dev.of_node;
1845	struct kszphy_priv *priv;
1846	struct clk *clk;
1847
1848	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1849	if (!priv)
1850		return -ENOMEM;
1851
1852	phydev->priv = priv;
1853
1854	priv->type = type;
1855
1856	kszphy_parse_led_mode(phydev);
1857
1858	clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1859	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1860	if (!IS_ERR_OR_NULL(clk)) {
1861		unsigned long rate = clk_get_rate(clk);
1862		bool rmii_ref_clk_sel_25_mhz;
1863
1864		if (type)
1865			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1866		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1867				"micrel,rmii-reference-clock-select-25-mhz");
1868
1869		if (rate > 24500000 && rate < 25500000) {
1870			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1871		} else if (rate > 49500000 && rate < 50500000) {
1872			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1873		} else {
1874			phydev_err(phydev, "Clock rate out of range: %ld\n",
1875				   rate);
1876			return -EINVAL;
1877		}
1878	}
1879
1880	if (ksz8041_fiber_mode(phydev))
1881		phydev->port = PORT_FIBRE;
1882
1883	/* Support legacy board-file configuration */
1884	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
1885		priv->rmii_ref_clk_sel = true;
1886		priv->rmii_ref_clk_sel_val = true;
 
1887	}
1888
1889	return 0;
1890}
1891
1892static int lan8814_cable_test_start(struct phy_device *phydev)
1893{
1894	/* If autoneg is enabled, we won't be able to test cross pair
1895	 * short. In this case, the PHY will "detect" a link and
1896	 * confuse the internal state machine - disable auto neg here.
1897	 * Set the speed to 1000mbit and full duplex.
1898	 */
1899	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
1900			  BMCR_SPEED1000 | BMCR_FULLDPLX);
1901}
 
 
 
1902
1903static int ksz886x_cable_test_start(struct phy_device *phydev)
1904{
1905	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
1906		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
1907
1908	/* If autoneg is enabled, we won't be able to test cross pair
1909	 * short. In this case, the PHY will "detect" a link and
1910	 * confuse the internal state machine - disable auto neg here.
1911	 * If autoneg is disabled, we should set the speed to 10mbit.
1912	 */
1913	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
1914}
 
 
 
 
 
 
 
1915
1916static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
1917{
1918	switch (FIELD_GET(mask, status)) {
1919	case KSZ8081_LMD_STAT_NORMAL:
1920		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1921	case KSZ8081_LMD_STAT_SHORT:
1922		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1923	case KSZ8081_LMD_STAT_OPEN:
1924		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1925	case KSZ8081_LMD_STAT_FAIL:
1926		fallthrough;
1927	default:
1928		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1929	}
1930}
1931
1932static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
1933{
1934	return FIELD_GET(mask, status) ==
1935		KSZ8081_LMD_STAT_FAIL;
1936}
1937
1938static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
1939{
1940	switch (FIELD_GET(mask, status)) {
1941	case KSZ8081_LMD_STAT_OPEN:
1942		fallthrough;
1943	case KSZ8081_LMD_STAT_SHORT:
1944		return true;
1945	}
1946	return false;
1947}
1948
1949static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
1950							   u16 status, u16 data_mask)
1951{
1952	int dt;
1953
1954	/* According to the data sheet the distance to the fault is
1955	 * DELTA_TIME * 0.4 meters for ksz phys.
1956	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
1957	 */
1958	dt = FIELD_GET(data_mask, status);
1959
1960	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814)
1961		return ((dt - 22) * 800) / 10;
1962	else
1963		return (dt * 400) / 10;
1964}
1965
1966static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
1967{
1968	const struct kszphy_type *type = phydev->drv->driver_data;
1969	int val, ret;
1970
1971	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
1972				    !(val & KSZ8081_LMD_ENABLE_TEST),
1973				    30000, 100000, true);
1974
1975	return ret < 0 ? ret : 0;
1976}
1977
1978static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
1979{
1980	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
1981					    ETHTOOL_A_CABLE_PAIR_B,
1982					    ETHTOOL_A_CABLE_PAIR_C,
1983					    ETHTOOL_A_CABLE_PAIR_D,
1984					  };
1985	u32 fault_length;
1986	int ret;
1987	int val;
1988
1989	val = KSZ8081_LMD_ENABLE_TEST;
1990	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
1991
1992	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
1993	if (ret < 0)
1994		return ret;
1995
1996	ret = ksz886x_cable_test_wait_for_completion(phydev);
1997	if (ret)
1998		return ret;
1999
2000	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2001	if (val < 0)
2002		return val;
2003
2004	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2005		return -EAGAIN;
2006
2007	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2008				      ksz886x_cable_test_result_trans(val,
2009								      LAN8814_CABLE_DIAG_STAT_MASK
2010								      ));
2011	if (ret)
2012		return ret;
2013
2014	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2015		return 0;
2016
2017	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2018						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2019
2020	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2021}
2022
2023static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2024{
2025	static const int ethtool_pair[] = {
2026		ETHTOOL_A_CABLE_PAIR_A,
2027		ETHTOOL_A_CABLE_PAIR_B,
2028	};
2029	int ret, val, mdix;
2030	u32 fault_length;
2031
2032	/* There is no way to choice the pair, like we do one ksz9031.
2033	 * We can workaround this limitation by using the MDI-X functionality.
2034	 */
2035	if (pair == 0)
2036		mdix = ETH_TP_MDI;
2037	else
2038		mdix = ETH_TP_MDI_X;
2039
2040	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2041	case PHY_ID_KSZ8081:
2042		ret = ksz8081_config_mdix(phydev, mdix);
2043		break;
2044	case PHY_ID_KSZ886X:
2045		ret = ksz886x_config_mdix(phydev, mdix);
2046		break;
2047	default:
2048		ret = -ENODEV;
2049	}
2050
2051	if (ret)
2052		return ret;
2053
2054	/* Now we are ready to fire. This command will send a 100ns pulse
2055	 * to the pair.
2056	 */
2057	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2058	if (ret)
2059		return ret;
2060
2061	ret = ksz886x_cable_test_wait_for_completion(phydev);
2062	if (ret)
2063		return ret;
2064
2065	val = phy_read(phydev, KSZ8081_LMD);
2066	if (val < 0)
2067		return val;
2068
2069	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2070		return -EAGAIN;
2071
2072	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2073				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2074	if (ret)
2075		return ret;
2076
2077	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2078		return 0;
2079
2080	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2081
2082	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2083}
2084
2085static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2086					 bool *finished)
2087{
2088	const struct kszphy_type *type = phydev->drv->driver_data;
2089	unsigned long pair_mask = type->pair_mask;
2090	int retries = 20;
2091	int pair, ret;
2092
2093	*finished = false;
2094
2095	/* Try harder if link partner is active */
2096	while (pair_mask && retries--) {
2097		for_each_set_bit(pair, &pair_mask, 4) {
2098			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2099				ret = lan8814_cable_test_one_pair(phydev, pair);
2100			else
2101				ret = ksz886x_cable_test_one_pair(phydev, pair);
2102			if (ret == -EAGAIN)
2103				continue;
2104			if (ret < 0)
2105				return ret;
2106			clear_bit(pair, &pair_mask);
2107		}
2108		/* If link partner is in autonegotiation mode it will send 2ms
2109		 * of FLPs with at least 6ms of silence.
2110		 * Add 2ms sleep to have better chances to hit this silence.
2111		 */
2112		if (pair_mask)
2113			msleep(2);
2114	}
2115
2116	*finished = true;
2117
2118	return ret;
2119}
2120
2121#define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2122#define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2123#define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2124
2125#define LAN8814_QSGMII_SOFT_RESET			0x43
2126#define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2127#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2128#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2129#define LAN8814_ALIGN_SWAP				0x4a
2130#define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2131#define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2132
2133#define LAN8804_ALIGN_SWAP				0x4a
2134#define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2135#define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2136#define LAN8814_CLOCK_MANAGEMENT			0xd
2137#define LAN8814_LINK_QUALITY				0x8e
2138
2139static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2140{
2141	int data;
2142
2143	phy_lock_mdio_bus(phydev);
2144	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2145	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2146	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2147		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2148	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2149	phy_unlock_mdio_bus(phydev);
2150
2151	return data;
2152}
2153
2154static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2155				 u16 val)
2156{
2157	phy_lock_mdio_bus(phydev);
2158	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2159	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2160	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2161		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2162
2163	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2164	if (val != 0)
2165		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2166			   val);
2167	phy_unlock_mdio_bus(phydev);
2168	return val;
2169}
2170
2171static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2172{
2173	u16 val = 0;
2174
2175	if (enable)
2176		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2177		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2178		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2179		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2180
2181	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2182}
2183
2184static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2185				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2186{
2187	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2188	*seconds = (*seconds << 16) |
2189		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2190
2191	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2192	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2193			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2194
2195	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2196}
2197
2198static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2199				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2200{
2201	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2202	*seconds = *seconds << 16 |
2203		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2204
2205	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2206	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2207			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2208
2209	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2210}
2211
2212static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2213{
2214	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2215	struct phy_device *phydev = ptp_priv->phydev;
2216	struct lan8814_shared_priv *shared = phydev->shared->priv;
2217
2218	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2219				SOF_TIMESTAMPING_RX_HARDWARE |
2220				SOF_TIMESTAMPING_RAW_HARDWARE;
2221
2222	info->phc_index = ptp_clock_index(shared->ptp_clock);
2223
2224	info->tx_types =
2225		(1 << HWTSTAMP_TX_OFF) |
2226		(1 << HWTSTAMP_TX_ON) |
2227		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2228
2229	info->rx_filters =
2230		(1 << HWTSTAMP_FILTER_NONE) |
2231		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2232		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2233		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2234		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2235
2236	return 0;
2237}
2238
2239static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2240{
2241	int i;
2242
2243	for (i = 0; i < FIFO_SIZE; ++i)
2244		lanphy_read_page_reg(phydev, 5,
2245				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2246
2247	/* Read to clear overflow status bit */
2248	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2249}
2250
2251static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2252{
2253	struct kszphy_ptp_priv *ptp_priv =
2254			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2255	struct phy_device *phydev = ptp_priv->phydev;
2256	struct lan8814_shared_priv *shared = phydev->shared->priv;
2257	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2258	struct hwtstamp_config config;
2259	int txcfg = 0, rxcfg = 0;
2260	int pkt_ts_enable;
2261
2262	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2263		return -EFAULT;
2264
2265	ptp_priv->hwts_tx_type = config.tx_type;
2266	ptp_priv->rx_filter = config.rx_filter;
2267
2268	switch (config.rx_filter) {
2269	case HWTSTAMP_FILTER_NONE:
2270		ptp_priv->layer = 0;
2271		ptp_priv->version = 0;
2272		break;
2273	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2274	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2275	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2276		ptp_priv->layer = PTP_CLASS_L4;
2277		ptp_priv->version = PTP_CLASS_V2;
2278		break;
2279	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2280	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2281	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2282		ptp_priv->layer = PTP_CLASS_L2;
2283		ptp_priv->version = PTP_CLASS_V2;
2284		break;
2285	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2286	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2287	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2288		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2289		ptp_priv->version = PTP_CLASS_V2;
2290		break;
2291	default:
2292		return -ERANGE;
2293	}
2294
2295	if (ptp_priv->layer & PTP_CLASS_L2) {
2296		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2297		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2298	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2299		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2300		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2301	}
2302	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2303	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2304
2305	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2306			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2307	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2308	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2309
2310	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2311		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2312				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2313
2314	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2315		lan8814_config_ts_intr(ptp_priv->phydev, true);
2316	else
2317		lan8814_config_ts_intr(ptp_priv->phydev, false);
2318
2319	mutex_lock(&shared->shared_lock);
2320	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2321		shared->ref++;
2322	else
2323		shared->ref--;
2324
2325	if (shared->ref)
2326		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2327				      PTP_CMD_CTL_PTP_ENABLE_);
2328	else
2329		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2330				      PTP_CMD_CTL_PTP_DISABLE_);
2331	mutex_unlock(&shared->shared_lock);
2332
2333	/* In case of multiple starts and stops, these needs to be cleared */
2334	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2335		list_del(&rx_ts->list);
2336		kfree(rx_ts);
2337	}
2338	skb_queue_purge(&ptp_priv->rx_queue);
2339	skb_queue_purge(&ptp_priv->tx_queue);
2340
2341	lan8814_flush_fifo(ptp_priv->phydev, false);
2342	lan8814_flush_fifo(ptp_priv->phydev, true);
2343
2344	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2345}
2346
2347static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2348			     struct sk_buff *skb, int type)
2349{
2350	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2351
2352	switch (ptp_priv->hwts_tx_type) {
2353	case HWTSTAMP_TX_ONESTEP_SYNC:
2354		if (ptp_msg_is_sync(skb, type)) {
2355			kfree_skb(skb);
2356			return;
2357		}
2358		fallthrough;
2359	case HWTSTAMP_TX_ON:
2360		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2361		skb_queue_tail(&ptp_priv->tx_queue, skb);
2362		break;
2363	case HWTSTAMP_TX_OFF:
2364	default:
2365		kfree_skb(skb);
2366		break;
2367	}
2368}
2369
2370static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2371{
2372	struct ptp_header *ptp_header;
2373	u32 type;
2374
2375	skb_push(skb, ETH_HLEN);
2376	type = ptp_classify_raw(skb);
2377	ptp_header = ptp_parse_header(skb, type);
2378	skb_pull_inline(skb, ETH_HLEN);
2379
2380	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2381}
2382
2383static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2384				struct sk_buff *skb)
2385{
2386	struct skb_shared_hwtstamps *shhwtstamps;
2387	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2388	unsigned long flags;
2389	bool ret = false;
2390	u16 skb_sig;
2391
2392	lan8814_get_sig_rx(skb, &skb_sig);
2393
2394	/* Iterate over all RX timestamps and match it with the received skbs */
2395	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2396	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2397		/* Check if we found the signature we were looking for. */
2398		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2399			continue;
2400
2401		shhwtstamps = skb_hwtstamps(skb);
2402		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2403		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2404						  rx_ts->nsec);
2405		list_del(&rx_ts->list);
2406		kfree(rx_ts);
2407
2408		ret = true;
2409		break;
2410	}
2411	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2412
2413	if (ret)
2414		netif_rx(skb);
2415	return ret;
2416}
2417
2418static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2419{
2420	struct kszphy_ptp_priv *ptp_priv =
2421			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2422
2423	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2424	    type == PTP_CLASS_NONE)
2425		return false;
2426
2427	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2428		return false;
2429
2430	/* If we failed to match then add it to the queue for when the timestamp
2431	 * will come
2432	 */
2433	if (!lan8814_match_rx_ts(ptp_priv, skb))
2434		skb_queue_tail(&ptp_priv->rx_queue, skb);
2435
2436	return true;
2437}
2438
2439static void lan8814_ptp_clock_set(struct phy_device *phydev,
2440				  u32 seconds, u32 nano_seconds)
2441{
2442	u32 sec_low, sec_high, nsec_low, nsec_high;
2443
2444	sec_low = seconds & 0xffff;
2445	sec_high = (seconds >> 16) & 0xffff;
2446	nsec_low = nano_seconds & 0xffff;
2447	nsec_high = (nano_seconds >> 16) & 0x3fff;
2448
2449	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2450	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2451	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2452	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2453
2454	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2455}
2456
2457static void lan8814_ptp_clock_get(struct phy_device *phydev,
2458				  u32 *seconds, u32 *nano_seconds)
2459{
2460	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2461
2462	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2463	*seconds = (*seconds << 16) |
2464		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2465
2466	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2467	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2468			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2469}
2470
2471static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2472				   struct timespec64 *ts)
2473{
2474	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2475							  ptp_clock_info);
2476	struct phy_device *phydev = shared->phydev;
2477	u32 nano_seconds;
2478	u32 seconds;
2479
2480	mutex_lock(&shared->shared_lock);
2481	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2482	mutex_unlock(&shared->shared_lock);
2483	ts->tv_sec = seconds;
2484	ts->tv_nsec = nano_seconds;
2485
2486	return 0;
2487}
2488
2489static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2490				   const struct timespec64 *ts)
2491{
2492	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2493							  ptp_clock_info);
2494	struct phy_device *phydev = shared->phydev;
2495
2496	mutex_lock(&shared->shared_lock);
2497	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2498	mutex_unlock(&shared->shared_lock);
2499
2500	return 0;
2501}
2502
2503static void lan8814_ptp_clock_step(struct phy_device *phydev,
2504				   s64 time_step_ns)
2505{
2506	u32 nano_seconds_step;
2507	u64 abs_time_step_ns;
2508	u32 unsigned_seconds;
2509	u32 nano_seconds;
2510	u32 remainder;
2511	s32 seconds;
2512
2513	if (time_step_ns >  15000000000LL) {
2514		/* convert to clock set */
2515		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2516		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2517						&remainder);
2518		nano_seconds += remainder;
2519		if (nano_seconds >= 1000000000) {
2520			unsigned_seconds++;
2521			nano_seconds -= 1000000000;
2522		}
2523		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2524		return;
2525	} else if (time_step_ns < -15000000000LL) {
2526		/* convert to clock set */
2527		time_step_ns = -time_step_ns;
2528
2529		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2530		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2531						&remainder);
2532		nano_seconds_step = remainder;
2533		if (nano_seconds < nano_seconds_step) {
2534			unsigned_seconds--;
2535			nano_seconds += 1000000000;
2536		}
2537		nano_seconds -= nano_seconds_step;
2538		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2539				      nano_seconds);
2540		return;
2541	}
2542
2543	/* do clock step */
2544	if (time_step_ns >= 0) {
2545		abs_time_step_ns = (u64)time_step_ns;
2546		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2547					   &remainder);
2548		nano_seconds = remainder;
2549	} else {
2550		abs_time_step_ns = (u64)(-time_step_ns);
2551		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2552			    &remainder));
2553		nano_seconds = remainder;
2554		if (nano_seconds > 0) {
2555			/* subtracting nano seconds is not allowed
2556			 * convert to subtracting from seconds,
2557			 * and adding to nanoseconds
2558			 */
2559			seconds--;
2560			nano_seconds = (1000000000 - nano_seconds);
2561		}
2562	}
2563
2564	if (nano_seconds > 0) {
2565		/* add 8 ns to cover the likely normal increment */
2566		nano_seconds += 8;
2567	}
2568
2569	if (nano_seconds >= 1000000000) {
2570		/* carry into seconds */
2571		seconds++;
2572		nano_seconds -= 1000000000;
2573	}
2574
2575	while (seconds) {
2576		if (seconds > 0) {
2577			u32 adjustment_value = (u32)seconds;
2578			u16 adjustment_value_lo, adjustment_value_hi;
2579
2580			if (adjustment_value > 0xF)
2581				adjustment_value = 0xF;
2582
2583			adjustment_value_lo = adjustment_value & 0xffff;
2584			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2585
2586			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2587					      adjustment_value_lo);
2588			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2589					      PTP_LTC_STEP_ADJ_DIR_ |
2590					      adjustment_value_hi);
2591			seconds -= ((s32)adjustment_value);
2592		} else {
2593			u32 adjustment_value = (u32)(-seconds);
2594			u16 adjustment_value_lo, adjustment_value_hi;
2595
2596			if (adjustment_value > 0xF)
2597				adjustment_value = 0xF;
2598
2599			adjustment_value_lo = adjustment_value & 0xffff;
2600			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2601
2602			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2603					      adjustment_value_lo);
2604			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2605					      adjustment_value_hi);
2606			seconds += ((s32)adjustment_value);
2607		}
2608		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2609				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2610	}
2611	if (nano_seconds) {
2612		u16 nano_seconds_lo;
2613		u16 nano_seconds_hi;
2614
2615		nano_seconds_lo = nano_seconds & 0xffff;
2616		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2617
2618		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2619				      nano_seconds_lo);
2620		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2621				      PTP_LTC_STEP_ADJ_DIR_ |
2622				      nano_seconds_hi);
2623		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2624				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2625	}
2626}
2627
2628static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2629{
2630	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2631							  ptp_clock_info);
2632	struct phy_device *phydev = shared->phydev;
2633
2634	mutex_lock(&shared->shared_lock);
2635	lan8814_ptp_clock_step(phydev, delta);
2636	mutex_unlock(&shared->shared_lock);
2637
2638	return 0;
2639}
2640
2641static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2642{
2643	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2644							  ptp_clock_info);
2645	struct phy_device *phydev = shared->phydev;
2646	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2647	bool positive = true;
2648	u32 kszphy_rate_adj;
2649
2650	if (scaled_ppm < 0) {
2651		scaled_ppm = -scaled_ppm;
2652		positive = false;
2653	}
2654
2655	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2656	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2657
2658	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2659	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2660
2661	if (positive)
2662		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2663
2664	mutex_lock(&shared->shared_lock);
2665	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2666	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2667	mutex_unlock(&shared->shared_lock);
2668
2669	return 0;
2670}
2671
2672static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2673{
2674	struct ptp_header *ptp_header;
2675	u32 type;
2676
2677	type = ptp_classify_raw(skb);
2678	ptp_header = ptp_parse_header(skb, type);
2679
2680	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2681}
2682
2683static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2684{
2685	struct phy_device *phydev = ptp_priv->phydev;
2686	struct skb_shared_hwtstamps shhwtstamps;
2687	struct sk_buff *skb, *skb_tmp;
2688	unsigned long flags;
2689	u32 seconds, nsec;
2690	bool ret = false;
2691	u16 skb_sig;
2692	u16 seq_id;
2693
2694	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2695
2696	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2697	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2698		lan8814_get_sig_tx(skb, &skb_sig);
2699
2700		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2701			continue;
2702
2703		__skb_unlink(skb, &ptp_priv->tx_queue);
2704		ret = true;
2705		break;
2706	}
2707	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2708
2709	if (ret) {
2710		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2711		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2712		skb_complete_tx_timestamp(skb, &shhwtstamps);
2713	}
2714}
2715
2716static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2717{
2718	struct phy_device *phydev = ptp_priv->phydev;
2719	u32 reg;
2720
2721	do {
2722		lan8814_dequeue_tx_skb(ptp_priv);
2723
2724		/* If other timestamps are available in the FIFO,
2725		 * process them.
2726		 */
2727		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2728	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2729}
2730
2731static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2732			      struct lan8814_ptp_rx_ts *rx_ts)
2733{
2734	struct skb_shared_hwtstamps *shhwtstamps;
2735	struct sk_buff *skb, *skb_tmp;
2736	unsigned long flags;
2737	bool ret = false;
2738	u16 skb_sig;
2739
2740	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2741	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2742		lan8814_get_sig_rx(skb, &skb_sig);
2743
2744		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2745			continue;
2746
2747		__skb_unlink(skb, &ptp_priv->rx_queue);
2748
2749		ret = true;
2750		break;
2751	}
2752	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2753
2754	if (ret) {
2755		shhwtstamps = skb_hwtstamps(skb);
2756		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2757		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2758		netif_rx(skb);
2759	}
2760
2761	return ret;
2762}
2763
2764static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2765{
2766	struct phy_device *phydev = ptp_priv->phydev;
2767	struct lan8814_ptp_rx_ts *rx_ts;
2768	unsigned long flags;
2769	u32 reg;
2770
2771	do {
2772		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2773		if (!rx_ts)
2774			return;
2775
2776		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2777				      &rx_ts->seq_id);
2778
2779		/* If we failed to match the skb add it to the queue for when
2780		 * the frame will come
2781		 */
2782		if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2783			spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2784			list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2785			spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2786		} else {
2787			kfree(rx_ts);
2788		}
2789
2790		/* If other timestamps are available in the FIFO,
2791		 * process them.
2792		 */
2793		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2794	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2795}
2796
2797static void lan8814_handle_ptp_interrupt(struct phy_device *phydev)
2798{
2799	struct kszphy_priv *priv = phydev->priv;
2800	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2801	u16 status;
2802
2803	status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2804	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2805		lan8814_get_tx_ts(ptp_priv);
2806
2807	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2808		lan8814_get_rx_ts(ptp_priv);
2809
2810	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2811		lan8814_flush_fifo(phydev, true);
2812		skb_queue_purge(&ptp_priv->tx_queue);
2813	}
2814
2815	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2816		lan8814_flush_fifo(phydev, false);
2817		skb_queue_purge(&ptp_priv->rx_queue);
2818	}
2819}
2820
2821static int lan8804_config_init(struct phy_device *phydev)
2822{
2823	int val;
2824
2825	/* MDI-X setting for swap A,B transmit */
2826	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2827	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2828	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2829	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2830
2831	/* Make sure that the PHY will not stop generating the clock when the
2832	 * link partner goes down
2833	 */
2834	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2835	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2836
2837	return 0;
2838}
2839
2840static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
2841{
2842	int status;
2843
2844	status = phy_read(phydev, LAN8814_INTS);
2845	if (status < 0) {
2846		phy_error(phydev);
2847		return IRQ_NONE;
2848	}
2849
2850	if (status > 0)
2851		phy_trigger_machine(phydev);
2852
2853	return IRQ_HANDLED;
2854}
2855
2856#define LAN8804_OUTPUT_CONTROL			25
2857#define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
2858#define LAN8804_CONTROL				31
2859#define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
2860
2861static int lan8804_config_intr(struct phy_device *phydev)
2862{
2863	int err;
2864
2865	/* This is an internal PHY of lan966x and is not possible to change the
2866	 * polarity on the GIC found in lan966x, therefore change the polarity
2867	 * of the interrupt in the PHY from being active low instead of active
2868	 * high.
2869	 */
2870	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
2871
2872	/* By default interrupt buffer is open-drain in which case the interrupt
2873	 * can be active only low. Therefore change the interrupt buffer to be
2874	 * push-pull to be able to change interrupt polarity
2875	 */
2876	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
2877		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
2878
2879	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2880		err = phy_read(phydev, LAN8814_INTS);
2881		if (err < 0)
2882			return err;
2883
2884		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2885		if (err)
2886			return err;
2887	} else {
2888		err = phy_write(phydev, LAN8814_INTC, 0);
2889		if (err)
2890			return err;
2891
2892		err = phy_read(phydev, LAN8814_INTS);
2893		if (err < 0)
2894			return err;
2895	}
2896
2897	return 0;
2898}
2899
2900static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
2901{
2902	int irq_status, tsu_irq_status;
2903	int ret = IRQ_NONE;
2904
2905	irq_status = phy_read(phydev, LAN8814_INTS);
2906	if (irq_status < 0) {
2907		phy_error(phydev);
2908		return IRQ_NONE;
2909	}
2910
2911	if (irq_status & LAN8814_INT_LINK) {
2912		phy_trigger_machine(phydev);
2913		ret = IRQ_HANDLED;
2914	}
2915
2916	while (1) {
2917		tsu_irq_status = lanphy_read_page_reg(phydev, 4,
2918						      LAN8814_INTR_STS_REG);
2919
2920		if (tsu_irq_status > 0 &&
2921		    (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ |
2922				       LAN8814_INTR_STS_REG_1588_TSU1_ |
2923				       LAN8814_INTR_STS_REG_1588_TSU2_ |
2924				       LAN8814_INTR_STS_REG_1588_TSU3_))) {
2925			lan8814_handle_ptp_interrupt(phydev);
2926			ret = IRQ_HANDLED;
2927		} else {
2928			break;
2929		}
2930	}
2931
 
 
 
 
 
 
 
 
 
2932	return ret;
2933}
2934
2935static int lan8814_ack_interrupt(struct phy_device *phydev)
2936{
2937	/* bit[12..0] int status, which is a read and clear register. */
2938	int rc;
2939
2940	rc = phy_read(phydev, LAN8814_INTS);
2941
2942	return (rc < 0) ? rc : 0;
2943}
2944
2945static int lan8814_config_intr(struct phy_device *phydev)
2946{
2947	int err;
2948
2949	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
2950			      LAN8814_INTR_CTRL_REG_POLARITY |
2951			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
2952
2953	/* enable / disable interrupts */
2954	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2955		err = lan8814_ack_interrupt(phydev);
2956		if (err)
2957			return err;
2958
2959		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2960	} else {
2961		err = phy_write(phydev, LAN8814_INTC, 0);
2962		if (err)
2963			return err;
2964
2965		err = lan8814_ack_interrupt(phydev);
2966	}
2967
2968	return err;
2969}
2970
2971static void lan8814_ptp_init(struct phy_device *phydev)
2972{
2973	struct kszphy_priv *priv = phydev->priv;
2974	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2975	u32 temp;
2976
2977	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2978	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2979		return;
2980
2981	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
2982
2983	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
2984	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2985	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
2986
2987	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
2988	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2989	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
2990
2991	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
2992	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
2993
2994	/* Removing default registers configs related to L2 and IP */
2995	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
2996	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
2997	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
2998	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
2999
3000	skb_queue_head_init(&ptp_priv->tx_queue);
3001	skb_queue_head_init(&ptp_priv->rx_queue);
3002	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3003	spin_lock_init(&ptp_priv->rx_ts_lock);
3004
3005	ptp_priv->phydev = phydev;
3006
3007	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3008	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3009	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3010	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3011
3012	phydev->mii_ts = &ptp_priv->mii_ts;
3013}
3014
3015static int lan8814_ptp_probe_once(struct phy_device *phydev)
3016{
3017	struct lan8814_shared_priv *shared = phydev->shared->priv;
3018
3019	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3020	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3021		return 0;
3022
3023	/* Initialise shared lock for clock*/
3024	mutex_init(&shared->shared_lock);
3025
3026	shared->ptp_clock_info.owner = THIS_MODULE;
3027	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3028	shared->ptp_clock_info.max_adj = 31249999;
3029	shared->ptp_clock_info.n_alarm = 0;
3030	shared->ptp_clock_info.n_ext_ts = 0;
3031	shared->ptp_clock_info.n_pins = 0;
3032	shared->ptp_clock_info.pps = 0;
3033	shared->ptp_clock_info.pin_config = NULL;
3034	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3035	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3036	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3037	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3038	shared->ptp_clock_info.getcrosststamp = NULL;
3039
3040	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3041					       &phydev->mdio.dev);
3042	if (IS_ERR_OR_NULL(shared->ptp_clock)) {
3043		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3044			   PTR_ERR(shared->ptp_clock));
3045		return -EINVAL;
3046	}
3047
3048	phydev_dbg(phydev, "successfully registered ptp clock\n");
3049
3050	shared->phydev = phydev;
3051
3052	/* The EP.4 is shared between all the PHYs in the package and also it
3053	 * can be accessed by any of the PHYs
3054	 */
3055	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3056	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3057			      PTP_OPERATING_MODE_STANDALONE_);
3058
3059	return 0;
3060}
3061
3062static void lan8814_setup_led(struct phy_device *phydev, int val)
3063{
3064	int temp;
3065
3066	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3067
3068	if (val)
3069		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3070	else
3071		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3072
3073	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3074}
3075
3076static int lan8814_config_init(struct phy_device *phydev)
3077{
3078	struct kszphy_priv *lan8814 = phydev->priv;
3079	int val;
3080
3081	/* Reset the PHY */
3082	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3083	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3084	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3085
3086	/* Disable ANEG with QSGMII PCS Host side */
3087	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3088	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3089	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3090
3091	/* MDI-X setting for swap A,B transmit */
3092	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3093	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3094	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3095	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3096
3097	if (lan8814->led_mode >= 0)
3098		lan8814_setup_led(phydev, lan8814->led_mode);
3099
3100	return 0;
3101}
3102
3103/* It is expected that there will not be any 'lan8814_take_coma_mode'
3104 * function called in suspend. Because the GPIO line can be shared, so if one of
3105 * the phys goes back in coma mode, then all the other PHYs will go, which is
3106 * wrong.
3107 */
3108static int lan8814_release_coma_mode(struct phy_device *phydev)
3109{
3110	struct gpio_desc *gpiod;
3111
3112	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3113					GPIOD_OUT_HIGH_OPEN_DRAIN |
3114					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3115	if (IS_ERR(gpiod))
3116		return PTR_ERR(gpiod);
3117
3118	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3119	gpiod_set_value_cansleep(gpiod, 0);
3120
3121	return 0;
3122}
3123
3124static int lan8814_probe(struct phy_device *phydev)
3125{
3126	const struct kszphy_type *type = phydev->drv->driver_data;
3127	struct kszphy_priv *priv;
3128	u16 addr;
3129	int err;
3130
3131	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3132	if (!priv)
3133		return -ENOMEM;
3134
3135	phydev->priv = priv;
3136
3137	priv->type = type;
3138
3139	kszphy_parse_led_mode(phydev);
3140
3141	/* Strap-in value for PHY address, below register read gives starting
3142	 * phy address value
3143	 */
3144	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3145	devm_phy_package_join(&phydev->mdio.dev, phydev,
3146			      addr, sizeof(struct lan8814_shared_priv));
3147
3148	if (phy_package_init_once(phydev)) {
3149		err = lan8814_release_coma_mode(phydev);
3150		if (err)
3151			return err;
3152
3153		err = lan8814_ptp_probe_once(phydev);
3154		if (err)
3155			return err;
3156	}
3157
3158	lan8814_ptp_init(phydev);
3159
3160	return 0;
3161}
3162
3163static struct phy_driver ksphy_driver[] = {
3164{
3165	.phy_id		= PHY_ID_KS8737,
3166	.phy_id_mask	= MICREL_PHY_ID_MASK,
3167	.name		= "Micrel KS8737",
3168	/* PHY_BASIC_FEATURES */
3169	.driver_data	= &ks8737_type,
3170	.probe		= kszphy_probe,
3171	.config_init	= kszphy_config_init,
3172	.config_intr	= kszphy_config_intr,
3173	.handle_interrupt = kszphy_handle_interrupt,
3174	.suspend	= kszphy_suspend,
3175	.resume		= kszphy_resume,
3176}, {
3177	.phy_id		= PHY_ID_KSZ8021,
3178	.phy_id_mask	= 0x00ffffff,
3179	.name		= "Micrel KSZ8021 or KSZ8031",
3180	/* PHY_BASIC_FEATURES */
3181	.driver_data	= &ksz8021_type,
3182	.probe		= kszphy_probe,
3183	.config_init	= kszphy_config_init,
3184	.config_intr	= kszphy_config_intr,
3185	.handle_interrupt = kszphy_handle_interrupt,
3186	.get_sset_count = kszphy_get_sset_count,
3187	.get_strings	= kszphy_get_strings,
3188	.get_stats	= kszphy_get_stats,
3189	.suspend	= kszphy_suspend,
3190	.resume		= kszphy_resume,
3191}, {
3192	.phy_id		= PHY_ID_KSZ8031,
3193	.phy_id_mask	= 0x00ffffff,
3194	.name		= "Micrel KSZ8031",
3195	/* PHY_BASIC_FEATURES */
3196	.driver_data	= &ksz8021_type,
3197	.probe		= kszphy_probe,
3198	.config_init	= kszphy_config_init,
3199	.config_intr	= kszphy_config_intr,
3200	.handle_interrupt = kszphy_handle_interrupt,
3201	.get_sset_count = kszphy_get_sset_count,
3202	.get_strings	= kszphy_get_strings,
3203	.get_stats	= kszphy_get_stats,
3204	.suspend	= kszphy_suspend,
3205	.resume		= kszphy_resume,
3206}, {
3207	.phy_id		= PHY_ID_KSZ8041,
3208	.phy_id_mask	= MICREL_PHY_ID_MASK,
3209	.name		= "Micrel KSZ8041",
3210	/* PHY_BASIC_FEATURES */
3211	.driver_data	= &ksz8041_type,
3212	.probe		= kszphy_probe,
3213	.config_init	= ksz8041_config_init,
3214	.config_aneg	= ksz8041_config_aneg,
3215	.config_intr	= kszphy_config_intr,
3216	.handle_interrupt = kszphy_handle_interrupt,
3217	.get_sset_count = kszphy_get_sset_count,
3218	.get_strings	= kszphy_get_strings,
3219	.get_stats	= kszphy_get_stats,
3220	/* No suspend/resume callbacks because of errata DS80000700A,
3221	 * receiver error following software power down.
3222	 */
3223}, {
3224	.phy_id		= PHY_ID_KSZ8041RNLI,
3225	.phy_id_mask	= MICREL_PHY_ID_MASK,
3226	.name		= "Micrel KSZ8041RNLI",
3227	/* PHY_BASIC_FEATURES */
3228	.driver_data	= &ksz8041_type,
3229	.probe		= kszphy_probe,
3230	.config_init	= kszphy_config_init,
3231	.config_intr	= kszphy_config_intr,
3232	.handle_interrupt = kszphy_handle_interrupt,
3233	.get_sset_count = kszphy_get_sset_count,
3234	.get_strings	= kszphy_get_strings,
3235	.get_stats	= kszphy_get_stats,
3236	.suspend	= kszphy_suspend,
3237	.resume		= kszphy_resume,
3238}, {
3239	.name		= "Micrel KSZ8051",
3240	/* PHY_BASIC_FEATURES */
3241	.driver_data	= &ksz8051_type,
3242	.probe		= kszphy_probe,
3243	.config_init	= kszphy_config_init,
3244	.config_intr	= kszphy_config_intr,
3245	.handle_interrupt = kszphy_handle_interrupt,
3246	.get_sset_count = kszphy_get_sset_count,
3247	.get_strings	= kszphy_get_strings,
3248	.get_stats	= kszphy_get_stats,
3249	.match_phy_device = ksz8051_match_phy_device,
3250	.suspend	= kszphy_suspend,
3251	.resume		= kszphy_resume,
3252}, {
3253	.phy_id		= PHY_ID_KSZ8001,
3254	.name		= "Micrel KSZ8001 or KS8721",
3255	.phy_id_mask	= 0x00fffffc,
3256	/* PHY_BASIC_FEATURES */
3257	.driver_data	= &ksz8041_type,
3258	.probe		= kszphy_probe,
3259	.config_init	= kszphy_config_init,
3260	.config_intr	= kszphy_config_intr,
3261	.handle_interrupt = kszphy_handle_interrupt,
3262	.get_sset_count = kszphy_get_sset_count,
3263	.get_strings	= kszphy_get_strings,
3264	.get_stats	= kszphy_get_stats,
3265	.suspend	= kszphy_suspend,
3266	.resume		= kszphy_resume,
3267}, {
3268	.phy_id		= PHY_ID_KSZ8081,
3269	.name		= "Micrel KSZ8081 or KSZ8091",
3270	.phy_id_mask	= MICREL_PHY_ID_MASK,
3271	.flags		= PHY_POLL_CABLE_TEST,
3272	/* PHY_BASIC_FEATURES */
3273	.driver_data	= &ksz8081_type,
3274	.probe		= kszphy_probe,
3275	.config_init	= ksz8081_config_init,
3276	.soft_reset	= genphy_soft_reset,
3277	.config_aneg	= ksz8081_config_aneg,
3278	.read_status	= ksz8081_read_status,
3279	.config_intr	= kszphy_config_intr,
3280	.handle_interrupt = kszphy_handle_interrupt,
3281	.get_sset_count = kszphy_get_sset_count,
3282	.get_strings	= kszphy_get_strings,
3283	.get_stats	= kszphy_get_stats,
3284	.suspend	= kszphy_suspend,
3285	.resume		= kszphy_resume,
3286	.cable_test_start	= ksz886x_cable_test_start,
3287	.cable_test_get_status	= ksz886x_cable_test_get_status,
3288}, {
3289	.phy_id		= PHY_ID_KSZ8061,
3290	.name		= "Micrel KSZ8061",
3291	.phy_id_mask	= MICREL_PHY_ID_MASK,
3292	/* PHY_BASIC_FEATURES */
3293	.probe		= kszphy_probe,
3294	.config_init	= ksz8061_config_init,
3295	.config_intr	= kszphy_config_intr,
3296	.handle_interrupt = kszphy_handle_interrupt,
3297	.suspend	= kszphy_suspend,
3298	.resume		= kszphy_resume,
3299}, {
3300	.phy_id		= PHY_ID_KSZ9021,
3301	.phy_id_mask	= 0x000ffffe,
3302	.name		= "Micrel KSZ9021 Gigabit PHY",
3303	/* PHY_GBIT_FEATURES */
3304	.driver_data	= &ksz9021_type,
3305	.probe		= kszphy_probe,
3306	.get_features	= ksz9031_get_features,
3307	.config_init	= ksz9021_config_init,
3308	.config_intr	= kszphy_config_intr,
3309	.handle_interrupt = kszphy_handle_interrupt,
3310	.get_sset_count = kszphy_get_sset_count,
3311	.get_strings	= kszphy_get_strings,
3312	.get_stats	= kszphy_get_stats,
3313	.suspend	= kszphy_suspend,
3314	.resume		= kszphy_resume,
3315	.read_mmd	= genphy_read_mmd_unsupported,
3316	.write_mmd	= genphy_write_mmd_unsupported,
3317}, {
3318	.phy_id		= PHY_ID_KSZ9031,
3319	.phy_id_mask	= MICREL_PHY_ID_MASK,
3320	.name		= "Micrel KSZ9031 Gigabit PHY",
3321	.flags		= PHY_POLL_CABLE_TEST,
3322	.driver_data	= &ksz9021_type,
3323	.probe		= kszphy_probe,
3324	.get_features	= ksz9031_get_features,
3325	.config_init	= ksz9031_config_init,
3326	.soft_reset	= genphy_soft_reset,
3327	.read_status	= ksz9031_read_status,
3328	.config_intr	= kszphy_config_intr,
3329	.handle_interrupt = kszphy_handle_interrupt,
3330	.get_sset_count = kszphy_get_sset_count,
3331	.get_strings	= kszphy_get_strings,
3332	.get_stats	= kszphy_get_stats,
3333	.suspend	= kszphy_suspend,
3334	.resume		= kszphy_resume,
3335	.cable_test_start	= ksz9x31_cable_test_start,
3336	.cable_test_get_status	= ksz9x31_cable_test_get_status,
3337}, {
3338	.phy_id		= PHY_ID_LAN8814,
3339	.phy_id_mask	= MICREL_PHY_ID_MASK,
3340	.name		= "Microchip INDY Gigabit Quad PHY",
3341	.flags          = PHY_POLL_CABLE_TEST,
3342	.config_init	= lan8814_config_init,
3343	.driver_data	= &lan8814_type,
3344	.probe		= lan8814_probe,
3345	.soft_reset	= genphy_soft_reset,
3346	.read_status	= ksz9031_read_status,
3347	.get_sset_count	= kszphy_get_sset_count,
3348	.get_strings	= kszphy_get_strings,
3349	.get_stats	= kszphy_get_stats,
3350	.suspend	= genphy_suspend,
3351	.resume		= kszphy_resume,
3352	.config_intr	= lan8814_config_intr,
3353	.handle_interrupt = lan8814_handle_interrupt,
3354	.cable_test_start	= lan8814_cable_test_start,
3355	.cable_test_get_status	= ksz886x_cable_test_get_status,
3356}, {
3357	.phy_id		= PHY_ID_LAN8804,
3358	.phy_id_mask	= MICREL_PHY_ID_MASK,
3359	.name		= "Microchip LAN966X Gigabit PHY",
3360	.config_init	= lan8804_config_init,
3361	.driver_data	= &ksz9021_type,
3362	.probe		= kszphy_probe,
3363	.soft_reset	= genphy_soft_reset,
3364	.read_status	= ksz9031_read_status,
3365	.get_sset_count	= kszphy_get_sset_count,
3366	.get_strings	= kszphy_get_strings,
3367	.get_stats	= kszphy_get_stats,
3368	.suspend	= genphy_suspend,
3369	.resume		= kszphy_resume,
3370	.config_intr	= lan8804_config_intr,
3371	.handle_interrupt = lan8804_handle_interrupt,
3372}, {
3373	.phy_id		= PHY_ID_KSZ9131,
3374	.phy_id_mask	= MICREL_PHY_ID_MASK,
3375	.name		= "Microchip KSZ9131 Gigabit PHY",
3376	/* PHY_GBIT_FEATURES */
3377	.flags		= PHY_POLL_CABLE_TEST,
3378	.driver_data	= &ksz9021_type,
3379	.probe		= kszphy_probe,
3380	.config_init	= ksz9131_config_init,
3381	.config_intr	= kszphy_config_intr,
3382	.config_aneg	= ksz9131_config_aneg,
3383	.read_status	= ksz9131_read_status,
3384	.handle_interrupt = kszphy_handle_interrupt,
3385	.get_sset_count = kszphy_get_sset_count,
3386	.get_strings	= kszphy_get_strings,
3387	.get_stats	= kszphy_get_stats,
3388	.suspend	= kszphy_suspend,
3389	.resume		= kszphy_resume,
3390	.cable_test_start	= ksz9x31_cable_test_start,
3391	.cable_test_get_status	= ksz9x31_cable_test_get_status,
3392}, {
3393	.phy_id		= PHY_ID_KSZ8873MLL,
3394	.phy_id_mask	= MICREL_PHY_ID_MASK,
3395	.name		= "Micrel KSZ8873MLL Switch",
3396	/* PHY_BASIC_FEATURES */
3397	.config_init	= kszphy_config_init,
3398	.config_aneg	= ksz8873mll_config_aneg,
3399	.read_status	= ksz8873mll_read_status,
3400	.suspend	= genphy_suspend,
3401	.resume		= genphy_resume,
3402}, {
3403	.phy_id		= PHY_ID_KSZ886X,
3404	.phy_id_mask	= MICREL_PHY_ID_MASK,
3405	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
3406	.driver_data	= &ksz886x_type,
3407	/* PHY_BASIC_FEATURES */
3408	.flags		= PHY_POLL_CABLE_TEST,
3409	.config_init	= kszphy_config_init,
3410	.config_aneg	= ksz886x_config_aneg,
3411	.read_status	= ksz886x_read_status,
3412	.suspend	= genphy_suspend,
3413	.resume		= genphy_resume,
3414	.cable_test_start	= ksz886x_cable_test_start,
3415	.cable_test_get_status	= ksz886x_cable_test_get_status,
3416}, {
3417	.name		= "Micrel KSZ87XX Switch",
3418	/* PHY_BASIC_FEATURES */
3419	.config_init	= kszphy_config_init,
3420	.match_phy_device = ksz8795_match_phy_device,
3421	.suspend	= genphy_suspend,
3422	.resume		= genphy_resume,
3423}, {
3424	.phy_id		= PHY_ID_KSZ9477,
3425	.phy_id_mask	= MICREL_PHY_ID_MASK,
3426	.name		= "Microchip KSZ9477",
3427	/* PHY_GBIT_FEATURES */
3428	.config_init	= kszphy_config_init,
3429	.config_intr	= kszphy_config_intr,
3430	.handle_interrupt = kszphy_handle_interrupt,
3431	.suspend	= genphy_suspend,
3432	.resume		= genphy_resume,
3433} };
3434
3435module_phy_driver(ksphy_driver);
3436
3437MODULE_DESCRIPTION("Micrel PHY driver");
3438MODULE_AUTHOR("David J. Choi");
3439MODULE_LICENSE("GPL");
3440
3441static struct mdio_device_id __maybe_unused micrel_tbl[] = {
3442	{ PHY_ID_KSZ9021, 0x000ffffe },
3443	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
3444	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
3445	{ PHY_ID_KSZ8001, 0x00fffffc },
3446	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
3447	{ PHY_ID_KSZ8021, 0x00ffffff },
3448	{ PHY_ID_KSZ8031, 0x00ffffff },
3449	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
3450	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
3451	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
3452	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
3453	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
3454	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
3455	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
3456	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
3457	{ }
3458};
3459
3460MODULE_DEVICE_TABLE(mdio, micrel_tbl);