Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30
  31#include "e1000_mac.h"
  32#include "e1000_phy.h"
  33
  34static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
  35static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
  36					       u16 *phy_ctrl);
  37static s32  igb_wait_autoneg(struct e1000_hw *hw);
  38
  39/* Cable length tables */
  40static const u16 e1000_m88_cable_length_table[] =
  41	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  42#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  43                (sizeof(e1000_m88_cable_length_table) / \
  44                 sizeof(e1000_m88_cable_length_table[0]))
  45
  46static const u16 e1000_igp_2_cable_length_table[] =
  47    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
  48      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
  49      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
  50      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
  51      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
  52      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
  53      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
  54      104, 109, 114, 118, 121, 124};
  55#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  56		(sizeof(e1000_igp_2_cable_length_table) / \
  57		 sizeof(e1000_igp_2_cable_length_table[0]))
  58
  59/**
  60 *  igb_check_reset_block - Check if PHY reset is blocked
  61 *  @hw: pointer to the HW structure
  62 *
  63 *  Read the PHY management control register and check whether a PHY reset
  64 *  is blocked.  If a reset is not blocked return 0, otherwise
  65 *  return E1000_BLK_PHY_RESET (12).
  66 **/
  67s32 igb_check_reset_block(struct e1000_hw *hw)
  68{
  69	u32 manc;
  70
  71	manc = rd32(E1000_MANC);
  72
  73	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
  74	       E1000_BLK_PHY_RESET : 0;
  75}
  76
  77/**
  78 *  igb_get_phy_id - Retrieve the PHY ID and revision
  79 *  @hw: pointer to the HW structure
  80 *
  81 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  82 *  revision in the hardware structure.
  83 **/
  84s32 igb_get_phy_id(struct e1000_hw *hw)
  85{
  86	struct e1000_phy_info *phy = &hw->phy;
  87	s32 ret_val = 0;
  88	u16 phy_id;
  89
  90	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
  91	if (ret_val)
  92		goto out;
  93
  94	phy->id = (u32)(phy_id << 16);
  95	udelay(20);
  96	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
  97	if (ret_val)
  98		goto out;
  99
 100	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 101	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 102
 103out:
 104	return ret_val;
 105}
 106
 107/**
 108 *  igb_phy_reset_dsp - Reset PHY DSP
 109 *  @hw: pointer to the HW structure
 110 *
 111 *  Reset the digital signal processor.
 112 **/
 113static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
 114{
 115	s32 ret_val = 0;
 116
 117	if (!(hw->phy.ops.write_reg))
 118		goto out;
 119
 120	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 121	if (ret_val)
 122		goto out;
 123
 124	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
 125
 126out:
 127	return ret_val;
 128}
 129
 130/**
 131 *  igb_read_phy_reg_mdic - Read MDI control register
 132 *  @hw: pointer to the HW structure
 133 *  @offset: register offset to be read
 134 *  @data: pointer to the read data
 135 *
 136 *  Reads the MDI control regsiter in the PHY at offset and stores the
 137 *  information read to data.
 138 **/
 139s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 140{
 141	struct e1000_phy_info *phy = &hw->phy;
 142	u32 i, mdic = 0;
 143	s32 ret_val = 0;
 144
 145	if (offset > MAX_PHY_REG_ADDRESS) {
 146		hw_dbg("PHY Address %d is out of range\n", offset);
 147		ret_val = -E1000_ERR_PARAM;
 148		goto out;
 149	}
 150
 151	/*
 152	 * Set up Op-code, Phy Address, and register offset in the MDI
 153	 * Control register.  The MAC will take care of interfacing with the
 154	 * PHY to retrieve the desired data.
 155	 */
 156	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 157		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 158		(E1000_MDIC_OP_READ));
 159
 160	wr32(E1000_MDIC, mdic);
 161
 162	/*
 163	 * Poll the ready bit to see if the MDI read completed
 164	 * Increasing the time out as testing showed failures with
 165	 * the lower time out
 166	 */
 167	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 168		udelay(50);
 169		mdic = rd32(E1000_MDIC);
 170		if (mdic & E1000_MDIC_READY)
 171			break;
 172	}
 173	if (!(mdic & E1000_MDIC_READY)) {
 174		hw_dbg("MDI Read did not complete\n");
 175		ret_val = -E1000_ERR_PHY;
 176		goto out;
 177	}
 178	if (mdic & E1000_MDIC_ERROR) {
 179		hw_dbg("MDI Error\n");
 180		ret_val = -E1000_ERR_PHY;
 181		goto out;
 182	}
 183	*data = (u16) mdic;
 184
 185out:
 186	return ret_val;
 187}
 188
 189/**
 190 *  igb_write_phy_reg_mdic - Write MDI control register
 191 *  @hw: pointer to the HW structure
 192 *  @offset: register offset to write to
 193 *  @data: data to write to register at offset
 194 *
 195 *  Writes data to MDI control register in the PHY at offset.
 196 **/
 197s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 198{
 199	struct e1000_phy_info *phy = &hw->phy;
 200	u32 i, mdic = 0;
 201	s32 ret_val = 0;
 202
 203	if (offset > MAX_PHY_REG_ADDRESS) {
 204		hw_dbg("PHY Address %d is out of range\n", offset);
 205		ret_val = -E1000_ERR_PARAM;
 206		goto out;
 207	}
 208
 209	/*
 210	 * Set up Op-code, Phy Address, and register offset in the MDI
 211	 * Control register.  The MAC will take care of interfacing with the
 212	 * PHY to retrieve the desired data.
 213	 */
 214	mdic = (((u32)data) |
 215		(offset << E1000_MDIC_REG_SHIFT) |
 216		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 217		(E1000_MDIC_OP_WRITE));
 218
 219	wr32(E1000_MDIC, mdic);
 220
 221	/*
 222	 * Poll the ready bit to see if the MDI read completed
 223	 * Increasing the time out as testing showed failures with
 224	 * the lower time out
 225	 */
 226	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 227		udelay(50);
 228		mdic = rd32(E1000_MDIC);
 229		if (mdic & E1000_MDIC_READY)
 230			break;
 231	}
 232	if (!(mdic & E1000_MDIC_READY)) {
 233		hw_dbg("MDI Write did not complete\n");
 234		ret_val = -E1000_ERR_PHY;
 235		goto out;
 236	}
 237	if (mdic & E1000_MDIC_ERROR) {
 238		hw_dbg("MDI Error\n");
 239		ret_val = -E1000_ERR_PHY;
 240		goto out;
 241	}
 242
 243out:
 244	return ret_val;
 245}
 246
 247/**
 248 *  igb_read_phy_reg_i2c - Read PHY register using i2c
 249 *  @hw: pointer to the HW structure
 250 *  @offset: register offset to be read
 251 *  @data: pointer to the read data
 252 *
 253 *  Reads the PHY register at offset using the i2c interface and stores the
 254 *  retrieved information in data.
 255 **/
 256s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
 257{
 258	struct e1000_phy_info *phy = &hw->phy;
 259	u32 i, i2ccmd = 0;
 260
 261
 262	/*
 263	 * Set up Op-code, Phy Address, and register address in the I2CCMD
 264	 * register.  The MAC will take care of interfacing with the
 265	 * PHY to retrieve the desired data.
 266	 */
 267	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 268	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 269	          (E1000_I2CCMD_OPCODE_READ));
 270
 271	wr32(E1000_I2CCMD, i2ccmd);
 272
 273	/* Poll the ready bit to see if the I2C read completed */
 274	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 275		udelay(50);
 276		i2ccmd = rd32(E1000_I2CCMD);
 277		if (i2ccmd & E1000_I2CCMD_READY)
 278			break;
 279	}
 280	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 281		hw_dbg("I2CCMD Read did not complete\n");
 282		return -E1000_ERR_PHY;
 283	}
 284	if (i2ccmd & E1000_I2CCMD_ERROR) {
 285		hw_dbg("I2CCMD Error bit set\n");
 286		return -E1000_ERR_PHY;
 287	}
 288
 289	/* Need to byte-swap the 16-bit value. */
 290	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
 291
 292	return 0;
 293}
 294
 295/**
 296 *  igb_write_phy_reg_i2c - Write PHY register using i2c
 297 *  @hw: pointer to the HW structure
 298 *  @offset: register offset to write to
 299 *  @data: data to write at register offset
 300 *
 301 *  Writes the data to PHY register at the offset using the i2c interface.
 302 **/
 303s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
 304{
 305	struct e1000_phy_info *phy = &hw->phy;
 306	u32 i, i2ccmd = 0;
 307	u16 phy_data_swapped;
 308
 309
 310	/* Swap the data bytes for the I2C interface */
 311	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
 312
 313	/*
 314	 * Set up Op-code, Phy Address, and register address in the I2CCMD
 315	 * register.  The MAC will take care of interfacing with the
 316	 * PHY to retrieve the desired data.
 317	 */
 318	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 319	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 320	          E1000_I2CCMD_OPCODE_WRITE |
 321	          phy_data_swapped);
 322
 323	wr32(E1000_I2CCMD, i2ccmd);
 324
 325	/* Poll the ready bit to see if the I2C read completed */
 326	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 327		udelay(50);
 328		i2ccmd = rd32(E1000_I2CCMD);
 329		if (i2ccmd & E1000_I2CCMD_READY)
 330			break;
 331	}
 332	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 333		hw_dbg("I2CCMD Write did not complete\n");
 334		return -E1000_ERR_PHY;
 335	}
 336	if (i2ccmd & E1000_I2CCMD_ERROR) {
 337		hw_dbg("I2CCMD Error bit set\n");
 338		return -E1000_ERR_PHY;
 339	}
 340
 341	return 0;
 342}
 343
 344/**
 345 *  igb_read_phy_reg_igp - Read igp PHY register
 346 *  @hw: pointer to the HW structure
 347 *  @offset: register offset to be read
 348 *  @data: pointer to the read data
 349 *
 350 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 351 *  and storing the retrieved information in data.  Release any acquired
 352 *  semaphores before exiting.
 353 **/
 354s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 355{
 356	s32 ret_val = 0;
 357
 358	if (!(hw->phy.ops.acquire))
 359		goto out;
 360
 361	ret_val = hw->phy.ops.acquire(hw);
 362	if (ret_val)
 363		goto out;
 364
 365	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 366		ret_val = igb_write_phy_reg_mdic(hw,
 367						   IGP01E1000_PHY_PAGE_SELECT,
 368						   (u16)offset);
 369		if (ret_val) {
 370			hw->phy.ops.release(hw);
 371			goto out;
 372		}
 373	}
 374
 375	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 376					data);
 377
 378	hw->phy.ops.release(hw);
 379
 380out:
 381	return ret_val;
 382}
 383
 384/**
 385 *  igb_write_phy_reg_igp - Write igp PHY register
 386 *  @hw: pointer to the HW structure
 387 *  @offset: register offset to write to
 388 *  @data: data to write at register offset
 389 *
 390 *  Acquires semaphore, if necessary, then writes the data to PHY register
 391 *  at the offset.  Release any acquired semaphores before exiting.
 392 **/
 393s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 394{
 395	s32 ret_val = 0;
 396
 397	if (!(hw->phy.ops.acquire))
 398		goto out;
 399
 400	ret_val = hw->phy.ops.acquire(hw);
 401	if (ret_val)
 402		goto out;
 403
 404	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 405		ret_val = igb_write_phy_reg_mdic(hw,
 406						   IGP01E1000_PHY_PAGE_SELECT,
 407						   (u16)offset);
 408		if (ret_val) {
 409			hw->phy.ops.release(hw);
 410			goto out;
 411		}
 412	}
 413
 414	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 415					   data);
 416
 417	hw->phy.ops.release(hw);
 418
 419out:
 420	return ret_val;
 421}
 422
 423/**
 424 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
 425 *  @hw: pointer to the HW structure
 426 *
 427 *  Sets up Carrier-sense on Transmit and downshift values.
 428 **/
 429s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
 430{
 431	struct e1000_phy_info *phy = &hw->phy;
 432	s32 ret_val;
 433	u16 phy_data;
 434
 435
 436	if (phy->reset_disable) {
 437		ret_val = 0;
 438		goto out;
 439	}
 440
 441	if (phy->type == e1000_phy_82580) {
 442		ret_val = hw->phy.ops.reset(hw);
 443		if (ret_val) {
 444			hw_dbg("Error resetting the PHY.\n");
 445			goto out;
 446		}
 447	}
 448
 449	/* Enable CRS on TX. This must be set for half-duplex operation. */
 450	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
 451	if (ret_val)
 452		goto out;
 453
 454	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
 455
 456	/* Enable downshift */
 457	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
 458
 459	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
 460
 461out:
 462	return ret_val;
 463}
 464
 465/**
 466 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 467 *  @hw: pointer to the HW structure
 468 *
 469 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 470 *  and downshift values are set also.
 471 **/
 472s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
 473{
 474	struct e1000_phy_info *phy = &hw->phy;
 475	s32 ret_val;
 476	u16 phy_data;
 477
 478	if (phy->reset_disable) {
 479		ret_val = 0;
 480		goto out;
 481	}
 482
 483	/* Enable CRS on TX. This must be set for half-duplex operation. */
 484	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 485	if (ret_val)
 486		goto out;
 487
 488	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 489
 490	/*
 491	 * Options:
 492	 *   MDI/MDI-X = 0 (default)
 493	 *   0 - Auto for all speeds
 494	 *   1 - MDI mode
 495	 *   2 - MDI-X mode
 496	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 497	 */
 498	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 499
 500	switch (phy->mdix) {
 501	case 1:
 502		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 503		break;
 504	case 2:
 505		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 506		break;
 507	case 3:
 508		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 509		break;
 510	case 0:
 511	default:
 512		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 513		break;
 514	}
 515
 516	/*
 517	 * Options:
 518	 *   disable_polarity_correction = 0 (default)
 519	 *       Automatic Correction for Reversed Cable Polarity
 520	 *   0 - Disabled
 521	 *   1 - Enabled
 522	 */
 523	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 524	if (phy->disable_polarity_correction == 1)
 525		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 526
 527	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 528	if (ret_val)
 529		goto out;
 530
 531	if (phy->revision < E1000_REVISION_4) {
 532		/*
 533		 * Force TX_CLK in the Extended PHY Specific Control Register
 534		 * to 25MHz clock.
 535		 */
 536		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 537					     &phy_data);
 538		if (ret_val)
 539			goto out;
 540
 541		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 542
 543		if ((phy->revision == E1000_REVISION_2) &&
 544		    (phy->id == M88E1111_I_PHY_ID)) {
 545			/* 82573L PHY - set the downshift counter to 5x. */
 546			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 547			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 548		} else {
 549			/* Configure Master and Slave downshift values */
 550			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 551				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 552			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 553				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 554		}
 555		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 556					     phy_data);
 557		if (ret_val)
 558			goto out;
 559	}
 560
 561	/* Commit the changes. */
 562	ret_val = igb_phy_sw_reset(hw);
 563	if (ret_val) {
 564		hw_dbg("Error committing the PHY changes\n");
 565		goto out;
 566	}
 567
 568out:
 569	return ret_val;
 570}
 571
 572/**
 573 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
 574 *  @hw: pointer to the HW structure
 575 *
 576 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
 577 *  Also enables and sets the downshift parameters.
 578 **/
 579s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
 580{
 581	struct e1000_phy_info *phy = &hw->phy;
 582	s32 ret_val;
 583	u16 phy_data;
 584
 585	if (phy->reset_disable) {
 586		ret_val = 0;
 587		goto out;
 588	}
 589
 590	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 591	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 592	if (ret_val)
 593		goto out;
 594
 595	/*
 596	 * Options:
 597	 *   MDI/MDI-X = 0 (default)
 598	 *   0 - Auto for all speeds
 599	 *   1 - MDI mode
 600	 *   2 - MDI-X mode
 601	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 602	 */
 603	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 604
 605	switch (phy->mdix) {
 606	case 1:
 607		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 608		break;
 609	case 2:
 610		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 611		break;
 612	case 3:
 613		/* M88E1112 does not support this mode) */
 614		if (phy->id != M88E1112_E_PHY_ID) {
 615			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 616			break;
 617		}
 618	case 0:
 619	default:
 620		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 621		break;
 622	}
 623
 624	/*
 625	 * Options:
 626	 *   disable_polarity_correction = 0 (default)
 627	 *       Automatic Correction for Reversed Cable Polarity
 628	 *   0 - Disabled
 629	 *   1 - Enabled
 630	 */
 631	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 632	if (phy->disable_polarity_correction == 1)
 633		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 634
 635	/* Enable downshift and setting it to X6 */
 636	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
 637	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
 638	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
 639
 640	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 641	if (ret_val)
 642		goto out;
 643
 644	/* Commit the changes. */
 645	ret_val = igb_phy_sw_reset(hw);
 646	if (ret_val) {
 647		hw_dbg("Error committing the PHY changes\n");
 648		goto out;
 649	}
 650
 651out:
 652	return ret_val;
 653}
 654
 655/**
 656 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 657 *  @hw: pointer to the HW structure
 658 *
 659 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 660 *  igp PHY's.
 661 **/
 662s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
 663{
 664	struct e1000_phy_info *phy = &hw->phy;
 665	s32 ret_val;
 666	u16 data;
 667
 668	if (phy->reset_disable) {
 669		ret_val = 0;
 670		goto out;
 671	}
 672
 673	ret_val = phy->ops.reset(hw);
 674	if (ret_val) {
 675		hw_dbg("Error resetting the PHY.\n");
 676		goto out;
 677	}
 678
 679	/*
 680	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 681	 * timeout issues when LFS is enabled.
 682	 */
 683	msleep(100);
 684
 685	/*
 686	 * The NVM settings will configure LPLU in D3 for
 687	 * non-IGP1 PHYs.
 688	 */
 689	if (phy->type == e1000_phy_igp) {
 690		/* disable lplu d3 during driver init */
 691		if (phy->ops.set_d3_lplu_state)
 692			ret_val = phy->ops.set_d3_lplu_state(hw, false);
 693		if (ret_val) {
 694			hw_dbg("Error Disabling LPLU D3\n");
 695			goto out;
 696		}
 697	}
 698
 699	/* disable lplu d0 during driver init */
 700	ret_val = phy->ops.set_d0_lplu_state(hw, false);
 701	if (ret_val) {
 702		hw_dbg("Error Disabling LPLU D0\n");
 703		goto out;
 704	}
 705	/* Configure mdi-mdix settings */
 706	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 707	if (ret_val)
 708		goto out;
 709
 710	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 711
 712	switch (phy->mdix) {
 713	case 1:
 714		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 715		break;
 716	case 2:
 717		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 718		break;
 719	case 0:
 720	default:
 721		data |= IGP01E1000_PSCR_AUTO_MDIX;
 722		break;
 723	}
 724	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
 725	if (ret_val)
 726		goto out;
 727
 728	/* set auto-master slave resolution settings */
 729	if (hw->mac.autoneg) {
 730		/*
 731		 * when autonegotiation advertisement is only 1000Mbps then we
 732		 * should disable SmartSpeed and enable Auto MasterSlave
 733		 * resolution as hardware default.
 734		 */
 735		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 736			/* Disable SmartSpeed */
 737			ret_val = phy->ops.read_reg(hw,
 738						    IGP01E1000_PHY_PORT_CONFIG,
 739						    &data);
 740			if (ret_val)
 741				goto out;
 742
 743			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 744			ret_val = phy->ops.write_reg(hw,
 745						     IGP01E1000_PHY_PORT_CONFIG,
 746						     data);
 747			if (ret_val)
 748				goto out;
 749
 750			/* Set auto Master/Slave resolution process */
 751			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 752			if (ret_val)
 753				goto out;
 754
 755			data &= ~CR_1000T_MS_ENABLE;
 756			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 757			if (ret_val)
 758				goto out;
 759		}
 760
 761		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 762		if (ret_val)
 763			goto out;
 764
 765		/* load defaults for future use */
 766		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 767			((data & CR_1000T_MS_VALUE) ?
 768			e1000_ms_force_master :
 769			e1000_ms_force_slave) :
 770			e1000_ms_auto;
 771
 772		switch (phy->ms_type) {
 773		case e1000_ms_force_master:
 774			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 775			break;
 776		case e1000_ms_force_slave:
 777			data |= CR_1000T_MS_ENABLE;
 778			data &= ~(CR_1000T_MS_VALUE);
 779			break;
 780		case e1000_ms_auto:
 781			data &= ~CR_1000T_MS_ENABLE;
 782		default:
 783			break;
 784		}
 785		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 786		if (ret_val)
 787			goto out;
 788	}
 789
 790out:
 791	return ret_val;
 792}
 793
 794/**
 795 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 796 *  @hw: pointer to the HW structure
 797 *
 798 *  Performs initial bounds checking on autoneg advertisement parameter, then
 799 *  configure to advertise the full capability.  Setup the PHY to autoneg
 800 *  and restart the negotiation process between the link partner.  If
 801 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 802 **/
 803static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
 804{
 805	struct e1000_phy_info *phy = &hw->phy;
 806	s32 ret_val;
 807	u16 phy_ctrl;
 808
 809	/*
 810	 * Perform some bounds checking on the autoneg advertisement
 811	 * parameter.
 812	 */
 813	phy->autoneg_advertised &= phy->autoneg_mask;
 814
 815	/*
 816	 * If autoneg_advertised is zero, we assume it was not defaulted
 817	 * by the calling code so we set to advertise full capability.
 818	 */
 819	if (phy->autoneg_advertised == 0)
 820		phy->autoneg_advertised = phy->autoneg_mask;
 821
 822	hw_dbg("Reconfiguring auto-neg advertisement params\n");
 823	ret_val = igb_phy_setup_autoneg(hw);
 824	if (ret_val) {
 825		hw_dbg("Error Setting up Auto-Negotiation\n");
 826		goto out;
 827	}
 828	hw_dbg("Restarting Auto-Neg\n");
 829
 830	/*
 831	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
 832	 * the Auto Neg Restart bit in the PHY control register.
 833	 */
 834	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
 835	if (ret_val)
 836		goto out;
 837
 838	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 839	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
 840	if (ret_val)
 841		goto out;
 842
 843	/*
 844	 * Does the user want to wait for Auto-Neg to complete here, or
 845	 * check at a later time (for example, callback routine).
 846	 */
 847	if (phy->autoneg_wait_to_complete) {
 848		ret_val = igb_wait_autoneg(hw);
 849		if (ret_val) {
 850			hw_dbg("Error while waiting for "
 851			       "autoneg to complete\n");
 852			goto out;
 853		}
 854	}
 855
 856	hw->mac.get_link_status = true;
 857
 858out:
 859	return ret_val;
 860}
 861
 862/**
 863 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 864 *  @hw: pointer to the HW structure
 865 *
 866 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 867 *  register and if the PHY is already setup for auto-negotiation, then
 868 *  return successful.  Otherwise, setup advertisement and flow control to
 869 *  the appropriate values for the wanted auto-negotiation.
 870 **/
 871static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
 872{
 873	struct e1000_phy_info *phy = &hw->phy;
 874	s32 ret_val;
 875	u16 mii_autoneg_adv_reg;
 876	u16 mii_1000t_ctrl_reg = 0;
 877
 878	phy->autoneg_advertised &= phy->autoneg_mask;
 879
 880	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 881	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 882	if (ret_val)
 883		goto out;
 884
 885	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 886		/* Read the MII 1000Base-T Control Register (Address 9). */
 887		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
 888					    &mii_1000t_ctrl_reg);
 889		if (ret_val)
 890			goto out;
 891	}
 892
 893	/*
 894	 * Need to parse both autoneg_advertised and fc and set up
 895	 * the appropriate PHY registers.  First we will parse for
 896	 * autoneg_advertised software override.  Since we can advertise
 897	 * a plethora of combinations, we need to check each bit
 898	 * individually.
 899	 */
 900
 901	/*
 902	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 903	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 904	 * the  1000Base-T Control Register (Address 9).
 905	 */
 906	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 907				 NWAY_AR_100TX_HD_CAPS |
 908				 NWAY_AR_10T_FD_CAPS   |
 909				 NWAY_AR_10T_HD_CAPS);
 910	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 911
 912	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 913
 914	/* Do we want to advertise 10 Mb Half Duplex? */
 915	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 916		hw_dbg("Advertise 10mb Half duplex\n");
 917		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 918	}
 919
 920	/* Do we want to advertise 10 Mb Full Duplex? */
 921	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 922		hw_dbg("Advertise 10mb Full duplex\n");
 923		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 924	}
 925
 926	/* Do we want to advertise 100 Mb Half Duplex? */
 927	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 928		hw_dbg("Advertise 100mb Half duplex\n");
 929		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 930	}
 931
 932	/* Do we want to advertise 100 Mb Full Duplex? */
 933	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 934		hw_dbg("Advertise 100mb Full duplex\n");
 935		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 936	}
 937
 938	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 939	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 940		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
 941
 942	/* Do we want to advertise 1000 Mb Full Duplex? */
 943	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 944		hw_dbg("Advertise 1000mb Full duplex\n");
 945		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
 946	}
 947
 948	/*
 949	 * Check for a software override of the flow control settings, and
 950	 * setup the PHY advertisement registers accordingly.  If
 951	 * auto-negotiation is enabled, then software will have to set the
 952	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 953	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
 954	 * negotiation.
 955	 *
 956	 * The possible values of the "fc" parameter are:
 957	 *      0:  Flow control is completely disabled
 958	 *      1:  Rx flow control is enabled (we can receive pause frames
 959	 *          but not send pause frames).
 960	 *      2:  Tx flow control is enabled (we can send pause frames
 961	 *          but we do not support receiving pause frames).
 962	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
 963	 *  other:  No software override.  The flow control configuration
 964	 *          in the EEPROM is used.
 965	 */
 966	switch (hw->fc.current_mode) {
 967	case e1000_fc_none:
 968		/*
 969		 * Flow control (RX & TX) is completely disabled by a
 970		 * software over-ride.
 971		 */
 972		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 973		break;
 974	case e1000_fc_rx_pause:
 975		/*
 976		 * RX Flow control is enabled, and TX Flow control is
 977		 * disabled, by a software over-ride.
 978		 *
 979		 * Since there really isn't a way to advertise that we are
 980		 * capable of RX Pause ONLY, we will advertise that we
 981		 * support both symmetric and asymmetric RX PAUSE.  Later
 982		 * (in e1000_config_fc_after_link_up) we will disable the
 983		 * hw's ability to send PAUSE frames.
 984		 */
 985		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 986		break;
 987	case e1000_fc_tx_pause:
 988		/*
 989		 * TX Flow control is enabled, and RX Flow control is
 990		 * disabled, by a software over-ride.
 991		 */
 992		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
 993		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
 994		break;
 995	case e1000_fc_full:
 996		/*
 997		 * Flow control (both RX and TX) is enabled by a software
 998		 * over-ride.
 999		 */
1000		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1001		break;
1002	default:
1003		hw_dbg("Flow control param set incorrectly\n");
1004		ret_val = -E1000_ERR_CONFIG;
1005		goto out;
1006	}
1007
1008	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1009	if (ret_val)
1010		goto out;
1011
1012	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1013
1014	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1015		ret_val = phy->ops.write_reg(hw,
1016					     PHY_1000T_CTRL,
1017					     mii_1000t_ctrl_reg);
1018		if (ret_val)
1019			goto out;
1020	}
1021
1022out:
1023	return ret_val;
1024}
1025
1026/**
1027 *  igb_setup_copper_link - Configure copper link settings
1028 *  @hw: pointer to the HW structure
1029 *
1030 *  Calls the appropriate function to configure the link for auto-neg or forced
1031 *  speed and duplex.  Then we check for link, once link is established calls
1032 *  to configure collision distance and flow control are called.  If link is
1033 *  not established, we return -E1000_ERR_PHY (-2).
1034 **/
1035s32 igb_setup_copper_link(struct e1000_hw *hw)
1036{
1037	s32 ret_val;
1038	bool link;
1039
1040
1041	if (hw->mac.autoneg) {
1042		/*
1043		 * Setup autoneg and flow control advertisement and perform
1044		 * autonegotiation.
1045		 */
1046		ret_val = igb_copper_link_autoneg(hw);
1047		if (ret_val)
1048			goto out;
1049	} else {
1050		/*
1051		 * PHY will be set to 10H, 10F, 100H or 100F
1052		 * depending on user settings.
1053		 */
1054		hw_dbg("Forcing Speed and Duplex\n");
1055		ret_val = hw->phy.ops.force_speed_duplex(hw);
1056		if (ret_val) {
1057			hw_dbg("Error Forcing Speed and Duplex\n");
1058			goto out;
1059		}
1060	}
1061
1062	/*
1063	 * Check link status. Wait up to 100 microseconds for link to become
1064	 * valid.
1065	 */
1066	ret_val = igb_phy_has_link(hw,
1067	                           COPPER_LINK_UP_LIMIT,
1068	                           10,
1069	                           &link);
1070	if (ret_val)
1071		goto out;
1072
1073	if (link) {
1074		hw_dbg("Valid link established!!!\n");
1075		igb_config_collision_dist(hw);
1076		ret_val = igb_config_fc_after_link_up(hw);
1077	} else {
1078		hw_dbg("Unable to establish link!!!\n");
1079	}
1080
1081out:
1082	return ret_val;
1083}
1084
1085/**
1086 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1087 *  @hw: pointer to the HW structure
1088 *
1089 *  Calls the PHY setup function to force speed and duplex.  Clears the
1090 *  auto-crossover to force MDI manually.  Waits for link and returns
1091 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1092 **/
1093s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1094{
1095	struct e1000_phy_info *phy = &hw->phy;
1096	s32 ret_val;
1097	u16 phy_data;
1098	bool link;
1099
1100	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1101	if (ret_val)
1102		goto out;
1103
1104	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1105
1106	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1107	if (ret_val)
1108		goto out;
1109
1110	/*
1111	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1112	 * forced whenever speed and duplex are forced.
1113	 */
1114	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1115	if (ret_val)
1116		goto out;
1117
1118	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1119	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1120
1121	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1122	if (ret_val)
1123		goto out;
1124
1125	hw_dbg("IGP PSCR: %X\n", phy_data);
1126
1127	udelay(1);
1128
1129	if (phy->autoneg_wait_to_complete) {
1130		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1131
1132		ret_val = igb_phy_has_link(hw,
1133						     PHY_FORCE_LIMIT,
1134						     100000,
1135						     &link);
1136		if (ret_val)
1137			goto out;
1138
1139		if (!link)
1140			hw_dbg("Link taking longer than expected.\n");
1141
1142		/* Try once more */
1143		ret_val = igb_phy_has_link(hw,
1144						     PHY_FORCE_LIMIT,
1145						     100000,
1146						     &link);
1147		if (ret_val)
1148			goto out;
1149	}
1150
1151out:
1152	return ret_val;
1153}
1154
1155/**
1156 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1157 *  @hw: pointer to the HW structure
1158 *
1159 *  Calls the PHY setup function to force speed and duplex.  Clears the
1160 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1161 *  changes.  If time expires while waiting for link up, we reset the DSP.
1162 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1163 *  successful completion, else return corresponding error code.
1164 **/
1165s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1166{
1167	struct e1000_phy_info *phy = &hw->phy;
1168	s32 ret_val;
1169	u16 phy_data;
1170	bool link;
1171
1172	/*
1173	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1174	 * forced whenever speed and duplex are forced.
1175	 */
1176	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1177	if (ret_val)
1178		goto out;
1179
1180	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1181	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1182	if (ret_val)
1183		goto out;
1184
1185	hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1186
1187	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1188	if (ret_val)
1189		goto out;
1190
1191	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1192
1193	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1194	if (ret_val)
1195		goto out;
1196
1197	/* Reset the phy to commit changes. */
1198	ret_val = igb_phy_sw_reset(hw);
1199	if (ret_val)
1200		goto out;
1201
1202	if (phy->autoneg_wait_to_complete) {
1203		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1204
1205		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1206		if (ret_val)
1207			goto out;
1208
1209		if (!link) {
1210			if (hw->phy.type != e1000_phy_m88 ||
1211			    hw->phy.id == I347AT4_E_PHY_ID ||
1212			    hw->phy.id == M88E1112_E_PHY_ID) {
1213				hw_dbg("Link taking longer than expected.\n");
1214			} else {
1215
1216				/*
1217				 * We didn't get link.
1218				 * Reset the DSP and cross our fingers.
1219				 */
1220				ret_val = phy->ops.write_reg(hw,
1221							     M88E1000_PHY_PAGE_SELECT,
1222							     0x001d);
1223				if (ret_val)
1224					goto out;
1225				ret_val = igb_phy_reset_dsp(hw);
1226				if (ret_val)
1227					goto out;
1228			}
1229		}
1230
1231		/* Try once more */
1232		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1233					   100000, &link);
1234		if (ret_val)
1235			goto out;
1236	}
1237
1238	if (hw->phy.type != e1000_phy_m88 ||
1239	    hw->phy.id == I347AT4_E_PHY_ID ||
1240	    hw->phy.id == M88E1112_E_PHY_ID)
1241		goto out;
1242
1243	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1244	if (ret_val)
1245		goto out;
1246
1247	/*
1248	 * Resetting the phy means we need to re-force TX_CLK in the
1249	 * Extended PHY Specific Control Register to 25MHz clock from
1250	 * the reset value of 2.5MHz.
1251	 */
1252	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1253	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1254	if (ret_val)
1255		goto out;
1256
1257	/*
1258	 * In addition, we must re-enable CRS on Tx for both half and full
1259	 * duplex.
1260	 */
1261	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1262	if (ret_val)
1263		goto out;
1264
1265	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1266	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1267
1268out:
1269	return ret_val;
1270}
1271
1272/**
1273 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1274 *  @hw: pointer to the HW structure
1275 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1276 *
1277 *  Forces speed and duplex on the PHY by doing the following: disable flow
1278 *  control, force speed/duplex on the MAC, disable auto speed detection,
1279 *  disable auto-negotiation, configure duplex, configure speed, configure
1280 *  the collision distance, write configuration to CTRL register.  The
1281 *  caller must write to the PHY_CONTROL register for these settings to
1282 *  take affect.
1283 **/
1284static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1285					       u16 *phy_ctrl)
1286{
1287	struct e1000_mac_info *mac = &hw->mac;
1288	u32 ctrl;
1289
1290	/* Turn off flow control when forcing speed/duplex */
1291	hw->fc.current_mode = e1000_fc_none;
1292
1293	/* Force speed/duplex on the mac */
1294	ctrl = rd32(E1000_CTRL);
1295	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1296	ctrl &= ~E1000_CTRL_SPD_SEL;
1297
1298	/* Disable Auto Speed Detection */
1299	ctrl &= ~E1000_CTRL_ASDE;
1300
1301	/* Disable autoneg on the phy */
1302	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1303
1304	/* Forcing Full or Half Duplex? */
1305	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1306		ctrl &= ~E1000_CTRL_FD;
1307		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1308		hw_dbg("Half Duplex\n");
1309	} else {
1310		ctrl |= E1000_CTRL_FD;
1311		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1312		hw_dbg("Full Duplex\n");
1313	}
1314
1315	/* Forcing 10mb or 100mb? */
1316	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1317		ctrl |= E1000_CTRL_SPD_100;
1318		*phy_ctrl |= MII_CR_SPEED_100;
1319		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1320		hw_dbg("Forcing 100mb\n");
1321	} else {
1322		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1323		*phy_ctrl |= MII_CR_SPEED_10;
1324		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1325		hw_dbg("Forcing 10mb\n");
1326	}
1327
1328	igb_config_collision_dist(hw);
1329
1330	wr32(E1000_CTRL, ctrl);
1331}
1332
1333/**
1334 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1335 *  @hw: pointer to the HW structure
1336 *  @active: boolean used to enable/disable lplu
1337 *
1338 *  Success returns 0, Failure returns 1
1339 *
1340 *  The low power link up (lplu) state is set to the power management level D3
1341 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1342 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1343 *  is used during Dx states where the power conservation is most important.
1344 *  During driver activity, SmartSpeed should be enabled so performance is
1345 *  maintained.
1346 **/
1347s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1348{
1349	struct e1000_phy_info *phy = &hw->phy;
1350	s32 ret_val = 0;
1351	u16 data;
1352
1353	if (!(hw->phy.ops.read_reg))
1354		goto out;
1355
1356	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1357	if (ret_val)
1358		goto out;
1359
1360	if (!active) {
1361		data &= ~IGP02E1000_PM_D3_LPLU;
1362		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1363					     data);
1364		if (ret_val)
1365			goto out;
1366		/*
1367		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1368		 * during Dx states where the power conservation is most
1369		 * important.  During driver activity we should enable
1370		 * SmartSpeed, so performance is maintained.
1371		 */
1372		if (phy->smart_speed == e1000_smart_speed_on) {
1373			ret_val = phy->ops.read_reg(hw,
1374						    IGP01E1000_PHY_PORT_CONFIG,
1375						    &data);
1376			if (ret_val)
1377				goto out;
1378
1379			data |= IGP01E1000_PSCFR_SMART_SPEED;
1380			ret_val = phy->ops.write_reg(hw,
1381						     IGP01E1000_PHY_PORT_CONFIG,
1382						     data);
1383			if (ret_val)
1384				goto out;
1385		} else if (phy->smart_speed == e1000_smart_speed_off) {
1386			ret_val = phy->ops.read_reg(hw,
1387						     IGP01E1000_PHY_PORT_CONFIG,
1388						     &data);
1389			if (ret_val)
1390				goto out;
1391
1392			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1393			ret_val = phy->ops.write_reg(hw,
1394						     IGP01E1000_PHY_PORT_CONFIG,
1395						     data);
1396			if (ret_val)
1397				goto out;
1398		}
1399	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1400		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1401		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1402		data |= IGP02E1000_PM_D3_LPLU;
1403		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1404					      data);
1405		if (ret_val)
1406			goto out;
1407
1408		/* When LPLU is enabled, we should disable SmartSpeed */
1409		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1410					     &data);
1411		if (ret_val)
1412			goto out;
1413
1414		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1415		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1416					      data);
1417	}
1418
1419out:
1420	return ret_val;
1421}
1422
1423/**
1424 *  igb_check_downshift - Checks whether a downshift in speed occurred
1425 *  @hw: pointer to the HW structure
1426 *
1427 *  Success returns 0, Failure returns 1
1428 *
1429 *  A downshift is detected by querying the PHY link health.
1430 **/
1431s32 igb_check_downshift(struct e1000_hw *hw)
1432{
1433	struct e1000_phy_info *phy = &hw->phy;
1434	s32 ret_val;
1435	u16 phy_data, offset, mask;
1436
1437	switch (phy->type) {
1438	case e1000_phy_m88:
1439	case e1000_phy_gg82563:
1440		offset	= M88E1000_PHY_SPEC_STATUS;
1441		mask	= M88E1000_PSSR_DOWNSHIFT;
1442		break;
1443	case e1000_phy_igp_2:
1444	case e1000_phy_igp:
1445	case e1000_phy_igp_3:
1446		offset	= IGP01E1000_PHY_LINK_HEALTH;
1447		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1448		break;
1449	default:
1450		/* speed downshift not supported */
1451		phy->speed_downgraded = false;
1452		ret_val = 0;
1453		goto out;
1454	}
1455
1456	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1457
1458	if (!ret_val)
1459		phy->speed_downgraded = (phy_data & mask) ? true : false;
1460
1461out:
1462	return ret_val;
1463}
1464
1465/**
1466 *  igb_check_polarity_m88 - Checks the polarity.
1467 *  @hw: pointer to the HW structure
1468 *
1469 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1470 *
1471 *  Polarity is determined based on the PHY specific status register.
1472 **/
1473static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1474{
1475	struct e1000_phy_info *phy = &hw->phy;
1476	s32 ret_val;
1477	u16 data;
1478
1479	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1480
1481	if (!ret_val)
1482		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1483				      ? e1000_rev_polarity_reversed
1484				      : e1000_rev_polarity_normal;
1485
1486	return ret_val;
1487}
1488
1489/**
1490 *  igb_check_polarity_igp - Checks the polarity.
1491 *  @hw: pointer to the HW structure
1492 *
1493 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1494 *
1495 *  Polarity is determined based on the PHY port status register, and the
1496 *  current speed (since there is no polarity at 100Mbps).
1497 **/
1498static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1499{
1500	struct e1000_phy_info *phy = &hw->phy;
1501	s32 ret_val;
1502	u16 data, offset, mask;
1503
1504	/*
1505	 * Polarity is determined based on the speed of
1506	 * our connection.
1507	 */
1508	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1509	if (ret_val)
1510		goto out;
1511
1512	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1513	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1514		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1515		mask	= IGP01E1000_PHY_POLARITY_MASK;
1516	} else {
1517		/*
1518		 * This really only applies to 10Mbps since
1519		 * there is no polarity for 100Mbps (always 0).
1520		 */
1521		offset	= IGP01E1000_PHY_PORT_STATUS;
1522		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1523	}
1524
1525	ret_val = phy->ops.read_reg(hw, offset, &data);
1526
1527	if (!ret_val)
1528		phy->cable_polarity = (data & mask)
1529				      ? e1000_rev_polarity_reversed
1530				      : e1000_rev_polarity_normal;
1531
1532out:
1533	return ret_val;
1534}
1535
1536/**
1537 *  igb_wait_autoneg - Wait for auto-neg compeletion
1538 *  @hw: pointer to the HW structure
1539 *
1540 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1541 *  limit to expire, which ever happens first.
1542 **/
1543static s32 igb_wait_autoneg(struct e1000_hw *hw)
1544{
1545	s32 ret_val = 0;
1546	u16 i, phy_status;
1547
1548	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1549	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1550		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1551		if (ret_val)
1552			break;
1553		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1554		if (ret_val)
1555			break;
1556		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1557			break;
1558		msleep(100);
1559	}
1560
1561	/*
1562	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1563	 * has completed.
1564	 */
1565	return ret_val;
1566}
1567
1568/**
1569 *  igb_phy_has_link - Polls PHY for link
1570 *  @hw: pointer to the HW structure
1571 *  @iterations: number of times to poll for link
1572 *  @usec_interval: delay between polling attempts
1573 *  @success: pointer to whether polling was successful or not
1574 *
1575 *  Polls the PHY status register for link, 'iterations' number of times.
1576 **/
1577s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1578			       u32 usec_interval, bool *success)
1579{
1580	s32 ret_val = 0;
1581	u16 i, phy_status;
1582
1583	for (i = 0; i < iterations; i++) {
1584		/*
1585		 * Some PHYs require the PHY_STATUS register to be read
1586		 * twice due to the link bit being sticky.  No harm doing
1587		 * it across the board.
1588		 */
1589		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1590		if (ret_val) {
1591			/*
1592			 * If the first read fails, another entity may have
1593			 * ownership of the resources, wait and try again to
1594			 * see if they have relinquished the resources yet.
1595			 */
1596			udelay(usec_interval);
1597		}
1598		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1599		if (ret_val)
1600			break;
1601		if (phy_status & MII_SR_LINK_STATUS)
1602			break;
1603		if (usec_interval >= 1000)
1604			mdelay(usec_interval/1000);
1605		else
1606			udelay(usec_interval);
1607	}
1608
1609	*success = (i < iterations) ? true : false;
1610
1611	return ret_val;
1612}
1613
1614/**
1615 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1616 *  @hw: pointer to the HW structure
1617 *
1618 *  Reads the PHY specific status register to retrieve the cable length
1619 *  information.  The cable length is determined by averaging the minimum and
1620 *  maximum values to get the "average" cable length.  The m88 PHY has four
1621 *  possible cable length values, which are:
1622 *	Register Value		Cable Length
1623 *	0			< 50 meters
1624 *	1			50 - 80 meters
1625 *	2			80 - 110 meters
1626 *	3			110 - 140 meters
1627 *	4			> 140 meters
1628 **/
1629s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1630{
1631	struct e1000_phy_info *phy = &hw->phy;
1632	s32 ret_val;
1633	u16 phy_data, index;
1634
1635	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1636	if (ret_val)
1637		goto out;
1638
1639	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1640		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1641	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1642		ret_val = -E1000_ERR_PHY;
1643		goto out;
1644	}
1645
1646	phy->min_cable_length = e1000_m88_cable_length_table[index];
1647	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1648
1649	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1650
1651out:
1652	return ret_val;
1653}
1654
1655s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1656{
1657	struct e1000_phy_info *phy = &hw->phy;
1658	s32 ret_val;
1659	u16 phy_data, phy_data2, index, default_page, is_cm;
1660
1661	switch (hw->phy.id) {
1662	case I347AT4_E_PHY_ID:
1663		/* Remember the original page select and set it to 7 */
1664		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1665					    &default_page);
1666		if (ret_val)
1667			goto out;
1668
1669		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1670		if (ret_val)
1671			goto out;
1672
1673		/* Get cable length from PHY Cable Diagnostics Control Reg */
1674		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1675					    &phy_data);
1676		if (ret_val)
1677			goto out;
1678
1679		/* Check if the unit of cable length is meters or cm */
1680		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1681		if (ret_val)
1682			goto out;
1683
1684		is_cm = !(phy_data & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1685
1686		/* Populate the phy structure with cable length in meters */
1687		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1688		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1689		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1690
1691		/* Reset the page selec to its original value */
1692		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1693					     default_page);
1694		if (ret_val)
1695			goto out;
1696		break;
1697	case M88E1112_E_PHY_ID:
1698		/* Remember the original page select and set it to 5 */
1699		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1700					    &default_page);
1701		if (ret_val)
1702			goto out;
1703
1704		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1705		if (ret_val)
1706			goto out;
1707
1708		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1709					    &phy_data);
1710		if (ret_val)
1711			goto out;
1712
1713		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1714			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1715		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1716			ret_val = -E1000_ERR_PHY;
1717			goto out;
1718		}
1719
1720		phy->min_cable_length = e1000_m88_cable_length_table[index];
1721		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1722
1723		phy->cable_length = (phy->min_cable_length +
1724				     phy->max_cable_length) / 2;
1725
1726		/* Reset the page select to its original value */
1727		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1728					     default_page);
1729		if (ret_val)
1730			goto out;
1731
1732		break;
1733	default:
1734		ret_val = -E1000_ERR_PHY;
1735		goto out;
1736	}
1737
1738out:
1739	return ret_val;
1740}
1741
1742/**
1743 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1744 *  @hw: pointer to the HW structure
1745 *
1746 *  The automatic gain control (agc) normalizes the amplitude of the
1747 *  received signal, adjusting for the attenuation produced by the
1748 *  cable.  By reading the AGC registers, which represent the
1749 *  combination of coarse and fine gain value, the value can be put
1750 *  into a lookup table to obtain the approximate cable length
1751 *  for each channel.
1752 **/
1753s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1754{
1755	struct e1000_phy_info *phy = &hw->phy;
1756	s32 ret_val = 0;
1757	u16 phy_data, i, agc_value = 0;
1758	u16 cur_agc_index, max_agc_index = 0;
1759	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1760	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1761	       IGP02E1000_PHY_AGC_A,
1762	       IGP02E1000_PHY_AGC_B,
1763	       IGP02E1000_PHY_AGC_C,
1764	       IGP02E1000_PHY_AGC_D
1765	};
1766
1767	/* Read the AGC registers for all channels */
1768	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1769		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1770		if (ret_val)
1771			goto out;
1772
1773		/*
1774		 * Getting bits 15:9, which represent the combination of
1775		 * coarse and fine gain values.  The result is a number
1776		 * that can be put into the lookup table to obtain the
1777		 * approximate cable length.
1778		 */
1779		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1780				IGP02E1000_AGC_LENGTH_MASK;
1781
1782		/* Array index bound check. */
1783		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1784		    (cur_agc_index == 0)) {
1785			ret_val = -E1000_ERR_PHY;
1786			goto out;
1787		}
1788
1789		/* Remove min & max AGC values from calculation. */
1790		if (e1000_igp_2_cable_length_table[min_agc_index] >
1791		    e1000_igp_2_cable_length_table[cur_agc_index])
1792			min_agc_index = cur_agc_index;
1793		if (e1000_igp_2_cable_length_table[max_agc_index] <
1794		    e1000_igp_2_cable_length_table[cur_agc_index])
1795			max_agc_index = cur_agc_index;
1796
1797		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1798	}
1799
1800	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1801		      e1000_igp_2_cable_length_table[max_agc_index]);
1802	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1803
1804	/* Calculate cable length with the error range of +/- 10 meters. */
1805	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1806				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1807	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1808
1809	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1810
1811out:
1812	return ret_val;
1813}
1814
1815/**
1816 *  igb_get_phy_info_m88 - Retrieve PHY information
1817 *  @hw: pointer to the HW structure
1818 *
1819 *  Valid for only copper links.  Read the PHY status register (sticky read)
1820 *  to verify that link is up.  Read the PHY special control register to
1821 *  determine the polarity and 10base-T extended distance.  Read the PHY
1822 *  special status register to determine MDI/MDIx and current speed.  If
1823 *  speed is 1000, then determine cable length, local and remote receiver.
1824 **/
1825s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1826{
1827	struct e1000_phy_info *phy = &hw->phy;
1828	s32  ret_val;
1829	u16 phy_data;
1830	bool link;
1831
1832	if (phy->media_type != e1000_media_type_copper) {
1833		hw_dbg("Phy info is only valid for copper media\n");
1834		ret_val = -E1000_ERR_CONFIG;
1835		goto out;
1836	}
1837
1838	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1839	if (ret_val)
1840		goto out;
1841
1842	if (!link) {
1843		hw_dbg("Phy info is only valid if link is up\n");
1844		ret_val = -E1000_ERR_CONFIG;
1845		goto out;
1846	}
1847
1848	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849	if (ret_val)
1850		goto out;
1851
1852	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1853				   ? true : false;
1854
1855	ret_val = igb_check_polarity_m88(hw);
1856	if (ret_val)
1857		goto out;
1858
1859	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1860	if (ret_val)
1861		goto out;
1862
1863	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1864
1865	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1866		ret_val = phy->ops.get_cable_length(hw);
1867		if (ret_val)
1868			goto out;
1869
1870		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1871		if (ret_val)
1872			goto out;
1873
1874		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1875				? e1000_1000t_rx_status_ok
1876				: e1000_1000t_rx_status_not_ok;
1877
1878		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1879				 ? e1000_1000t_rx_status_ok
1880				 : e1000_1000t_rx_status_not_ok;
1881	} else {
1882		/* Set values to "undefined" */
1883		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1884		phy->local_rx = e1000_1000t_rx_status_undefined;
1885		phy->remote_rx = e1000_1000t_rx_status_undefined;
1886	}
1887
1888out:
1889	return ret_val;
1890}
1891
1892/**
1893 *  igb_get_phy_info_igp - Retrieve igp PHY information
1894 *  @hw: pointer to the HW structure
1895 *
1896 *  Read PHY status to determine if link is up.  If link is up, then
1897 *  set/determine 10base-T extended distance and polarity correction.  Read
1898 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1899 *  determine on the cable length, local and remote receiver.
1900 **/
1901s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1902{
1903	struct e1000_phy_info *phy = &hw->phy;
1904	s32 ret_val;
1905	u16 data;
1906	bool link;
1907
1908	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1909	if (ret_val)
1910		goto out;
1911
1912	if (!link) {
1913		hw_dbg("Phy info is only valid if link is up\n");
1914		ret_val = -E1000_ERR_CONFIG;
1915		goto out;
1916	}
1917
1918	phy->polarity_correction = true;
1919
1920	ret_val = igb_check_polarity_igp(hw);
1921	if (ret_val)
1922		goto out;
1923
1924	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1925	if (ret_val)
1926		goto out;
1927
1928	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1929
1930	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1931	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1932		ret_val = phy->ops.get_cable_length(hw);
1933		if (ret_val)
1934			goto out;
1935
1936		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1937		if (ret_val)
1938			goto out;
1939
1940		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1941				? e1000_1000t_rx_status_ok
1942				: e1000_1000t_rx_status_not_ok;
1943
1944		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1945				 ? e1000_1000t_rx_status_ok
1946				 : e1000_1000t_rx_status_not_ok;
1947	} else {
1948		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1949		phy->local_rx = e1000_1000t_rx_status_undefined;
1950		phy->remote_rx = e1000_1000t_rx_status_undefined;
1951	}
1952
1953out:
1954	return ret_val;
1955}
1956
1957/**
1958 *  igb_phy_sw_reset - PHY software reset
1959 *  @hw: pointer to the HW structure
1960 *
1961 *  Does a software reset of the PHY by reading the PHY control register and
1962 *  setting/write the control register reset bit to the PHY.
1963 **/
1964s32 igb_phy_sw_reset(struct e1000_hw *hw)
1965{
1966	s32 ret_val = 0;
1967	u16 phy_ctrl;
1968
1969	if (!(hw->phy.ops.read_reg))
1970		goto out;
1971
1972	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1973	if (ret_val)
1974		goto out;
1975
1976	phy_ctrl |= MII_CR_RESET;
1977	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1978	if (ret_val)
1979		goto out;
1980
1981	udelay(1);
1982
1983out:
1984	return ret_val;
1985}
1986
1987/**
1988 *  igb_phy_hw_reset - PHY hardware reset
1989 *  @hw: pointer to the HW structure
1990 *
1991 *  Verify the reset block is not blocking us from resetting.  Acquire
1992 *  semaphore (if necessary) and read/set/write the device control reset
1993 *  bit in the PHY.  Wait the appropriate delay time for the device to
1994 *  reset and relase the semaphore (if necessary).
1995 **/
1996s32 igb_phy_hw_reset(struct e1000_hw *hw)
1997{
1998	struct e1000_phy_info *phy = &hw->phy;
1999	s32  ret_val;
2000	u32 ctrl;
2001
2002	ret_val = igb_check_reset_block(hw);
2003	if (ret_val) {
2004		ret_val = 0;
2005		goto out;
2006	}
2007
2008	ret_val = phy->ops.acquire(hw);
2009	if (ret_val)
2010		goto out;
2011
2012	ctrl = rd32(E1000_CTRL);
2013	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2014	wrfl();
2015
2016	udelay(phy->reset_delay_us);
2017
2018	wr32(E1000_CTRL, ctrl);
2019	wrfl();
2020
2021	udelay(150);
2022
2023	phy->ops.release(hw);
2024
2025	ret_val = phy->ops.get_cfg_done(hw);
2026
2027out:
2028	return ret_val;
2029}
2030
2031/**
2032 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2033 *  @hw: pointer to the HW structure
2034 *
2035 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2036 **/
2037s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2038{
2039	hw_dbg("Running IGP 3 PHY init script\n");
2040
2041	/* PHY init IGP 3 */
2042	/* Enable rise/fall, 10-mode work in class-A */
2043	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2044	/* Remove all caps from Replica path filter */
2045	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2046	/* Bias trimming for ADC, AFE and Driver (Default) */
2047	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2048	/* Increase Hybrid poly bias */
2049	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2050	/* Add 4% to TX amplitude in Giga mode */
2051	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2052	/* Disable trimming (TTT) */
2053	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2054	/* Poly DC correction to 94.6% + 2% for all channels */
2055	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2056	/* ABS DC correction to 95.9% */
2057	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2058	/* BG temp curve trim */
2059	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2060	/* Increasing ADC OPAMP stage 1 currents to max */
2061	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2062	/* Force 1000 ( required for enabling PHY regs configuration) */
2063	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2064	/* Set upd_freq to 6 */
2065	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2066	/* Disable NPDFE */
2067	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2068	/* Disable adaptive fixed FFE (Default) */
2069	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2070	/* Enable FFE hysteresis */
2071	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2072	/* Fixed FFE for short cable lengths */
2073	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2074	/* Fixed FFE for medium cable lengths */
2075	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2076	/* Fixed FFE for long cable lengths */
2077	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2078	/* Enable Adaptive Clip Threshold */
2079	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2080	/* AHT reset limit to 1 */
2081	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2082	/* Set AHT master delay to 127 msec */
2083	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2084	/* Set scan bits for AHT */
2085	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2086	/* Set AHT Preset bits */
2087	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2088	/* Change integ_factor of channel A to 3 */
2089	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2090	/* Change prop_factor of channels BCD to 8 */
2091	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2092	/* Change cg_icount + enable integbp for channels BCD */
2093	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2094	/*
2095	 * Change cg_icount + enable integbp + change prop_factor_master
2096	 * to 8 for channel A
2097	 */
2098	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2099	/* Disable AHT in Slave mode on channel A */
2100	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2101	/*
2102	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2103	 * Enable SPD+B2B
2104	 */
2105	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2106	/* Enable restart AN on an1000_dis change */
2107	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2108	/* Enable wh_fifo read clock in 10/100 modes */
2109	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2110	/* Restart AN, Speed selection is 1000 */
2111	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2112
2113	return 0;
2114}
2115
2116/**
2117 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2118 * @hw: pointer to the HW structure
2119 *
2120 * In the case of a PHY power down to save power, or to turn off link during a
2121 * driver unload, restore the link to previous settings.
2122 **/
2123void igb_power_up_phy_copper(struct e1000_hw *hw)
2124{
2125	u16 mii_reg = 0;
2126
2127	/* The PHY will retain its settings across a power down/up cycle */
2128	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2129	mii_reg &= ~MII_CR_POWER_DOWN;
2130	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2131}
2132
2133/**
2134 * igb_power_down_phy_copper - Power down copper PHY
2135 * @hw: pointer to the HW structure
2136 *
2137 * Power down PHY to save power when interface is down and wake on lan
2138 * is not enabled.
2139 **/
2140void igb_power_down_phy_copper(struct e1000_hw *hw)
2141{
2142	u16 mii_reg = 0;
2143
2144	/* The PHY will retain its settings across a power down/up cycle */
2145	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2146	mii_reg |= MII_CR_POWER_DOWN;
2147	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2148	msleep(1);
2149}
2150
2151/**
2152 *  igb_check_polarity_82580 - Checks the polarity.
2153 *  @hw: pointer to the HW structure
2154 *
2155 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2156 *
2157 *  Polarity is determined based on the PHY specific status register.
2158 **/
2159static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2160{
2161	struct e1000_phy_info *phy = &hw->phy;
2162	s32 ret_val;
2163	u16 data;
2164
2165
2166	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2167
2168	if (!ret_val)
2169		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2170		                      ? e1000_rev_polarity_reversed
2171		                      : e1000_rev_polarity_normal;
2172
2173	return ret_val;
2174}
2175
2176/**
2177 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2178 *  @hw: pointer to the HW structure
2179 *
2180 *  Calls the PHY setup function to force speed and duplex.  Clears the
2181 *  auto-crossover to force MDI manually.  Waits for link and returns
2182 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2183 **/
2184s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2185{
2186	struct e1000_phy_info *phy = &hw->phy;
2187	s32 ret_val;
2188	u16 phy_data;
2189	bool link;
2190
2191
2192	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2193	if (ret_val)
2194		goto out;
2195
2196	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2197
2198	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2199	if (ret_val)
2200		goto out;
2201
2202	/*
2203	 * Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2204	 * forced whenever speed and duplex are forced.
2205	 */
2206	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2207	if (ret_val)
2208		goto out;
2209
2210	phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2211	phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2212
2213	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2214	if (ret_val)
2215		goto out;
2216
2217	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2218
2219	udelay(1);
2220
2221	if (phy->autoneg_wait_to_complete) {
2222		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2223
2224		ret_val = igb_phy_has_link(hw,
2225		                           PHY_FORCE_LIMIT,
2226		                           100000,
2227		                           &link);
2228		if (ret_val)
2229			goto out;
2230
2231		if (!link)
2232			hw_dbg("Link taking longer than expected.\n");
2233
2234		/* Try once more */
2235		ret_val = igb_phy_has_link(hw,
2236		                           PHY_FORCE_LIMIT,
2237		                           100000,
2238		                           &link);
2239		if (ret_val)
2240			goto out;
2241	}
2242
2243out:
2244	return ret_val;
2245}
2246
2247/**
2248 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2249 *  @hw: pointer to the HW structure
2250 *
2251 *  Read PHY status to determine if link is up.  If link is up, then
2252 *  set/determine 10base-T extended distance and polarity correction.  Read
2253 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2254 *  determine on the cable length, local and remote receiver.
2255 **/
2256s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2257{
2258	struct e1000_phy_info *phy = &hw->phy;
2259	s32 ret_val;
2260	u16 data;
2261	bool link;
2262
2263
2264	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2265	if (ret_val)
2266		goto out;
2267
2268	if (!link) {
2269		hw_dbg("Phy info is only valid if link is up\n");
2270		ret_val = -E1000_ERR_CONFIG;
2271		goto out;
2272	}
2273
2274	phy->polarity_correction = true;
2275
2276	ret_val = igb_check_polarity_82580(hw);
2277	if (ret_val)
2278		goto out;
2279
2280	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2281	if (ret_val)
2282		goto out;
2283
2284	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2285
2286	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2287	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2288		ret_val = hw->phy.ops.get_cable_length(hw);
2289		if (ret_val)
2290			goto out;
2291
2292		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2293		if (ret_val)
2294			goto out;
2295
2296		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2297		                ? e1000_1000t_rx_status_ok
2298		                : e1000_1000t_rx_status_not_ok;
2299
2300		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2301		                 ? e1000_1000t_rx_status_ok
2302		                 : e1000_1000t_rx_status_not_ok;
2303	} else {
2304		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2305		phy->local_rx = e1000_1000t_rx_status_undefined;
2306		phy->remote_rx = e1000_1000t_rx_status_undefined;
2307	}
2308
2309out:
2310	return ret_val;
2311}
2312
2313/**
2314 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2315 *  @hw: pointer to the HW structure
2316 *
2317 * Reads the diagnostic status register and verifies result is valid before
2318 * placing it in the phy_cable_length field.
2319 **/
2320s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2321{
2322	struct e1000_phy_info *phy = &hw->phy;
2323	s32 ret_val;
2324	u16 phy_data, length;
2325
2326
2327	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2328	if (ret_val)
2329		goto out;
2330
2331	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2332	         I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2333
2334	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2335		ret_val = -E1000_ERR_PHY;
2336
2337	phy->cable_length = length;
2338
2339out:
2340	return ret_val;
2341}