Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
  3 */
  4#include "sja1105.h"
  5
  6#define SJA1105_TAS_CLKSRC_DISABLED	0
  7#define SJA1105_TAS_CLKSRC_STANDALONE	1
  8#define SJA1105_TAS_CLKSRC_AS6802	2
  9#define SJA1105_TAS_CLKSRC_PTP		3
 10#define SJA1105_GATE_MASK		GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
 11
 12#define work_to_sja1105_tas(d) \
 13	container_of((d), struct sja1105_tas_data, tas_work)
 14#define tas_to_sja1105(d) \
 15	container_of((d), struct sja1105_private, tas_data)
 16
 17static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
 18{
 19	struct sja1105_tas_data *tas_data = &priv->tas_data;
 20	struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
 21	struct dsa_switch *ds = priv->ds;
 22	s64 earliest_base_time = S64_MAX;
 23	s64 latest_base_time = 0;
 24	s64 its_cycle_time = 0;
 25	s64 max_cycle_time = 0;
 26	int port;
 27
 28	tas_data->enabled = false;
 29
 30	for (port = 0; port < ds->num_ports; port++) {
 31		const struct tc_taprio_qopt_offload *offload;
 32
 33		offload = tas_data->offload[port];
 34		if (!offload)
 35			continue;
 36
 37		tas_data->enabled = true;
 38
 39		if (max_cycle_time < offload->cycle_time)
 40			max_cycle_time = offload->cycle_time;
 41		if (latest_base_time < offload->base_time)
 42			latest_base_time = offload->base_time;
 43		if (earliest_base_time > offload->base_time) {
 44			earliest_base_time = offload->base_time;
 45			its_cycle_time = offload->cycle_time;
 46		}
 47	}
 48
 49	if (!list_empty(&gating_cfg->entries)) {
 50		tas_data->enabled = true;
 51
 52		if (max_cycle_time < gating_cfg->cycle_time)
 53			max_cycle_time = gating_cfg->cycle_time;
 54		if (latest_base_time < gating_cfg->base_time)
 55			latest_base_time = gating_cfg->base_time;
 56		if (earliest_base_time > gating_cfg->base_time) {
 57			earliest_base_time = gating_cfg->base_time;
 58			its_cycle_time = gating_cfg->cycle_time;
 59		}
 60	}
 61
 62	if (!tas_data->enabled)
 63		return 0;
 64
 65	/* Roll the earliest base time over until it is in a comparable
 66	 * time base with the latest, then compare their deltas.
 67	 * We want to enforce that all ports' base times are within
 68	 * SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
 69	 */
 70	earliest_base_time = future_base_time(earliest_base_time,
 71					      its_cycle_time,
 72					      latest_base_time);
 73	while (earliest_base_time > latest_base_time)
 74		earliest_base_time -= its_cycle_time;
 75	if (latest_base_time - earliest_base_time >
 76	    sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
 77		dev_err(ds->dev,
 78			"Base times too far apart: min %llu max %llu\n",
 79			earliest_base_time, latest_base_time);
 80		return -ERANGE;
 81	}
 82
 83	tas_data->earliest_base_time = earliest_base_time;
 84	tas_data->max_cycle_time = max_cycle_time;
 85
 86	dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
 87	dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
 88	dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
 89
 90	return 0;
 91}
 92
 93/* Lo and behold: the egress scheduler from hell.
 94 *
 95 * At the hardware level, the Time-Aware Shaper holds a global linear arrray of
 96 * all schedule entries for all ports. These are the Gate Control List (GCL)
 97 * entries, let's call them "timeslots" for short. This linear array of
 98 * timeslots is held in BLK_IDX_SCHEDULE.
 99 *
100 * Then there are a maximum of 8 "execution threads" inside the switch, which
101 * iterate cyclically through the "schedule". Each "cycle" has an entry point
102 * and an exit point, both being timeslot indices in the schedule table. The
103 * hardware calls each cycle a "subschedule".
104 *
105 * Subschedule (cycle) i starts when
106 *   ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
107 *
108 * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
109 *   k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
110 *   k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
111 *
112 * For each schedule entry (timeslot) k, the engine executes the gate control
113 * list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
114 *
115 *         +---------+
116 *         |         | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
117 *         +---------+
118 *              |
119 *              +-----------------+
120 *                                | .actsubsch
121 *  BLK_IDX_SCHEDULE_ENTRY_POINTS v
122 *                 +-------+-------+
123 *                 |cycle 0|cycle 1|
124 *                 +-------+-------+
125 *                   |  |      |  |
126 *  +----------------+  |      |  +-------------------------------------+
127 *  |   .subschindx     |      |             .subschindx                |
128 *  |                   |      +---------------+                        |
129 *  |          .address |        .address      |                        |
130 *  |                   |                      |                        |
131 *  |                   |                      |                        |
132 *  |  BLK_IDX_SCHEDULE v                      v                        |
133 *  |              +-------+-------+-------+-------+-------+------+     |
134 *  |              |entry 0|entry 1|entry 2|entry 3|entry 4|entry5|     |
135 *  |              +-------+-------+-------+-------+-------+------+     |
136 *  |                                  ^                    ^  ^  ^     |
137 *  |                                  |                    |  |  |     |
138 *  |        +-------------------------+                    |  |  |     |
139 *  |        |              +-------------------------------+  |  |     |
140 *  |        |              |              +-------------------+  |     |
141 *  |        |              |              |                      |     |
142 *  | +---------------------------------------------------------------+ |
143 *  | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
144 *  | +---------------------------------------------------------------+ |
145 *  |        ^              ^                BLK_IDX_SCHEDULE_PARAMS    |
146 *  |        |              |                                           |
147 *  +--------+              +-------------------------------------------+
148 *
149 *  In the above picture there are two subschedules (cycles):
150 *
151 *  - cycle 0: iterates the schedule table from 0 to 2 (and back)
152 *  - cycle 1: iterates the schedule table from 3 to 5 (and back)
153 *
154 *  All other possible execution threads must be marked as unused by making
155 *  their "subschedule end index" (subscheind) equal to the last valid
156 *  subschedule's end index (in this case 5).
157 */
158int sja1105_init_scheduling(struct sja1105_private *priv)
159{
160	struct sja1105_schedule_entry_points_entry *schedule_entry_points;
161	struct sja1105_schedule_entry_points_params_entry
162					*schedule_entry_points_params;
163	struct sja1105_schedule_params_entry *schedule_params;
164	struct sja1105_tas_data *tas_data = &priv->tas_data;
165	struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
166	struct sja1105_schedule_entry *schedule;
167	struct dsa_switch *ds = priv->ds;
168	struct sja1105_table *table;
169	int schedule_start_idx;
170	s64 entry_point_delta;
171	int schedule_end_idx;
172	int num_entries = 0;
173	int num_cycles = 0;
174	int cycle = 0;
175	int i, k = 0;
176	int port, rc;
177
178	rc = sja1105_tas_set_runtime_params(priv);
179	if (rc < 0)
180		return rc;
181
182	/* Discard previous Schedule Table */
183	table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
184	if (table->entry_count) {
185		kfree(table->entries);
186		table->entry_count = 0;
187	}
188
189	/* Discard previous Schedule Entry Points Parameters Table */
190	table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
191	if (table->entry_count) {
192		kfree(table->entries);
193		table->entry_count = 0;
194	}
195
196	/* Discard previous Schedule Parameters Table */
197	table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
198	if (table->entry_count) {
199		kfree(table->entries);
200		table->entry_count = 0;
201	}
202
203	/* Discard previous Schedule Entry Points Table */
204	table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
205	if (table->entry_count) {
206		kfree(table->entries);
207		table->entry_count = 0;
208	}
209
210	/* Figure out the dimensioning of the problem */
211	for (port = 0; port < ds->num_ports; port++) {
212		if (tas_data->offload[port]) {
213			num_entries += tas_data->offload[port]->num_entries;
214			num_cycles++;
215		}
216	}
217
218	if (!list_empty(&gating_cfg->entries)) {
219		num_entries += gating_cfg->num_entries;
220		num_cycles++;
221	}
222
223	/* Nothing to do */
224	if (!num_cycles)
225		return 0;
226
227	/* Pre-allocate space in the static config tables */
228
229	/* Schedule Table */
230	table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
231	table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
232				 GFP_KERNEL);
233	if (!table->entries)
234		return -ENOMEM;
235	table->entry_count = num_entries;
236	schedule = table->entries;
237
238	/* Schedule Points Parameters Table */
239	table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
240	table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
241				 table->ops->unpacked_entry_size, GFP_KERNEL);
242	if (!table->entries)
243		/* Previously allocated memory will be freed automatically in
244		 * sja1105_static_config_free. This is true for all early
245		 * returns below.
246		 */
247		return -ENOMEM;
248	table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
249	schedule_entry_points_params = table->entries;
250
251	/* Schedule Parameters Table */
252	table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
253	table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
254				 table->ops->unpacked_entry_size, GFP_KERNEL);
255	if (!table->entries)
256		return -ENOMEM;
257	table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
258	schedule_params = table->entries;
259
260	/* Schedule Entry Points Table */
261	table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
262	table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
263				 GFP_KERNEL);
264	if (!table->entries)
265		return -ENOMEM;
266	table->entry_count = num_cycles;
267	schedule_entry_points = table->entries;
268
269	/* Finally start populating the static config tables */
270	schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
271	schedule_entry_points_params->actsubsch = num_cycles - 1;
272
273	for (port = 0; port < ds->num_ports; port++) {
274		const struct tc_taprio_qopt_offload *offload;
275		/* Relative base time */
276		s64 rbt;
277
278		offload = tas_data->offload[port];
279		if (!offload)
280			continue;
281
282		schedule_start_idx = k;
283		schedule_end_idx = k + offload->num_entries - 1;
284		/* This is the base time expressed as a number of TAS ticks
285		 * relative to PTPSCHTM, which we'll (perhaps improperly) call
286		 * the operational base time.
287		 */
288		rbt = future_base_time(offload->base_time,
289				       offload->cycle_time,
290				       tas_data->earliest_base_time);
291		rbt -= tas_data->earliest_base_time;
292		/* UM10944.pdf 4.2.2. Schedule Entry Points table says that
293		 * delta cannot be zero, which is shitty. Advance all relative
294		 * base times by 1 TAS delta, so that even the earliest base
295		 * time becomes 1 in relative terms. Then start the operational
296		 * base time (PTPSCHTM) one TAS delta earlier than planned.
297		 */
298		entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
299
300		schedule_entry_points[cycle].subschindx = cycle;
301		schedule_entry_points[cycle].delta = entry_point_delta;
302		schedule_entry_points[cycle].address = schedule_start_idx;
303
304		/* The subschedule end indices need to be
305		 * monotonically increasing.
306		 */
307		for (i = cycle; i < 8; i++)
308			schedule_params->subscheind[i] = schedule_end_idx;
309
310		for (i = 0; i < offload->num_entries; i++, k++) {
311			s64 delta_ns = offload->entries[i].interval;
312
313			schedule[k].delta = ns_to_sja1105_delta(delta_ns);
314			schedule[k].destports = BIT(port);
315			schedule[k].resmedia_en = true;
316			schedule[k].resmedia = SJA1105_GATE_MASK &
317					~offload->entries[i].gate_mask;
318		}
319		cycle++;
320	}
321
322	if (!list_empty(&gating_cfg->entries)) {
323		struct sja1105_gate_entry *e;
324
325		/* Relative base time */
326		s64 rbt;
327
328		schedule_start_idx = k;
329		schedule_end_idx = k + gating_cfg->num_entries - 1;
330		rbt = future_base_time(gating_cfg->base_time,
331				       gating_cfg->cycle_time,
332				       tas_data->earliest_base_time);
333		rbt -= tas_data->earliest_base_time;
334		entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
335
336		schedule_entry_points[cycle].subschindx = cycle;
337		schedule_entry_points[cycle].delta = entry_point_delta;
338		schedule_entry_points[cycle].address = schedule_start_idx;
339
340		for (i = cycle; i < 8; i++)
341			schedule_params->subscheind[i] = schedule_end_idx;
342
343		list_for_each_entry(e, &gating_cfg->entries, list) {
344			schedule[k].delta = ns_to_sja1105_delta(e->interval);
345			schedule[k].destports = e->rule->vl.destports;
346			schedule[k].setvalid = true;
347			schedule[k].txen = true;
348			schedule[k].vlindex = e->rule->vl.sharindx;
349			schedule[k].winstindex = e->rule->vl.sharindx;
350			if (e->gate_state) /* Gate open */
351				schedule[k].winst = true;
352			else /* Gate closed */
353				schedule[k].winend = true;
354			k++;
355		}
356	}
357
358	return 0;
359}
360
361/* Be there 2 port subschedules, each executing an arbitrary number of gate
362 * open/close events cyclically.
363 * None of those gate events must ever occur at the exact same time, otherwise
364 * the switch is known to act in exotically strange ways.
365 * However the hardware doesn't bother performing these integrity checks.
366 * So here we are with the task of validating whether the new @admin offload
367 * has any conflict with the already established TAS configuration in
368 * tas_data->offload.  We already know the other ports are in harmony with one
369 * another, otherwise we wouldn't have saved them.
370 * Each gate event executes periodically, with a period of @cycle_time and a
371 * phase given by its cycle's @base_time plus its offset within the cycle
372 * (which in turn is given by the length of the events prior to it).
373 * There are two aspects to possible collisions:
374 * - Collisions within one cycle's (actually the longest cycle's) time frame.
375 *   For that, we need to compare the cartesian product of each possible
376 *   occurrence of each event within one cycle time.
377 * - Collisions in the future. Events may not collide within one cycle time,
378 *   but if two port schedules don't have the same periodicity (aka the cycle
379 *   times aren't multiples of one another), they surely will some time in the
380 *   future (actually they will collide an infinite amount of times).
381 */
382static bool
383sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
384			    const struct tc_taprio_qopt_offload *admin)
385{
386	struct sja1105_tas_data *tas_data = &priv->tas_data;
387	const struct tc_taprio_qopt_offload *offload;
388	s64 max_cycle_time, min_cycle_time;
389	s64 delta1, delta2;
390	s64 rbt1, rbt2;
391	s64 stop_time;
392	s64 t1, t2;
393	int i, j;
394	s32 rem;
395
396	offload = tas_data->offload[port];
397	if (!offload)
398		return false;
399
400	/* Check if the two cycle times are multiples of one another.
401	 * If they aren't, then they will surely collide.
402	 */
403	max_cycle_time = max(offload->cycle_time, admin->cycle_time);
404	min_cycle_time = min(offload->cycle_time, admin->cycle_time);
405	div_s64_rem(max_cycle_time, min_cycle_time, &rem);
406	if (rem)
407		return true;
408
409	/* Calculate the "reduced" base time of each of the two cycles
410	 * (transposed back as close to 0 as possible) by dividing to
411	 * the cycle time.
412	 */
413	div_s64_rem(offload->base_time, offload->cycle_time, &rem);
414	rbt1 = rem;
415
416	div_s64_rem(admin->base_time, admin->cycle_time, &rem);
417	rbt2 = rem;
418
419	stop_time = max_cycle_time + max(rbt1, rbt2);
420
421	/* delta1 is the relative base time of each GCL entry within
422	 * the established ports' TAS config.
423	 */
424	for (i = 0, delta1 = 0;
425	     i < offload->num_entries;
426	     delta1 += offload->entries[i].interval, i++) {
427		/* delta2 is the relative base time of each GCL entry
428		 * within the newly added TAS config.
429		 */
430		for (j = 0, delta2 = 0;
431		     j < admin->num_entries;
432		     delta2 += admin->entries[j].interval, j++) {
433			/* t1 follows all possible occurrences of the
434			 * established ports' GCL entry i within the
435			 * first cycle time.
436			 */
437			for (t1 = rbt1 + delta1;
438			     t1 <= stop_time;
439			     t1 += offload->cycle_time) {
440				/* t2 follows all possible occurrences
441				 * of the newly added GCL entry j
442				 * within the first cycle time.
443				 */
444				for (t2 = rbt2 + delta2;
445				     t2 <= stop_time;
446				     t2 += admin->cycle_time) {
447					if (t1 == t2) {
448						dev_warn(priv->ds->dev,
449							 "GCL entry %d collides with entry %d of port %d\n",
450							 j, i, port);
451						return true;
452					}
453				}
454			}
455		}
456	}
457
458	return false;
459}
460
461/* Check the tc-taprio configuration on @port for conflicts with the tc-gate
462 * global subschedule. If @port is -1, check it against all ports.
463 * To reuse the sja1105_tas_check_conflicts logic without refactoring it,
464 * convert the gating configuration to a dummy tc-taprio offload structure.
465 */
466bool sja1105_gating_check_conflicts(struct sja1105_private *priv, int port,
467				    struct netlink_ext_ack *extack)
468{
469	struct sja1105_gating_config *gating_cfg = &priv->tas_data.gating_cfg;
470	size_t num_entries = gating_cfg->num_entries;
471	struct tc_taprio_qopt_offload *dummy;
472	struct dsa_switch *ds = priv->ds;
473	struct sja1105_gate_entry *e;
474	bool conflict;
475	int i = 0;
476
477	if (list_empty(&gating_cfg->entries))
478		return false;
479
480	dummy = kzalloc(struct_size(dummy, entries, num_entries), GFP_KERNEL);
481	if (!dummy) {
482		NL_SET_ERR_MSG_MOD(extack, "Failed to allocate memory");
483		return true;
484	}
485
486	dummy->num_entries = num_entries;
487	dummy->base_time = gating_cfg->base_time;
488	dummy->cycle_time = gating_cfg->cycle_time;
489
490	list_for_each_entry(e, &gating_cfg->entries, list)
491		dummy->entries[i++].interval = e->interval;
492
493	if (port != -1) {
494		conflict = sja1105_tas_check_conflicts(priv, port, dummy);
495	} else {
496		for (port = 0; port < ds->num_ports; port++) {
497			conflict = sja1105_tas_check_conflicts(priv, port,
498							       dummy);
499			if (conflict)
500				break;
501		}
502	}
503
504	kfree(dummy);
505
506	return conflict;
507}
508
509int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
510			    struct tc_taprio_qopt_offload *admin)
511{
512	struct sja1105_private *priv = ds->priv;
513	struct sja1105_tas_data *tas_data = &priv->tas_data;
514	int other_port, rc, i;
515
516	/* Can't change an already configured port (must delete qdisc first).
517	 * Can't delete the qdisc from an unconfigured port.
518	 */
519	if (!!tas_data->offload[port] == admin->enable)
520		return -EINVAL;
521
522	if (!admin->enable) {
523		taprio_offload_free(tas_data->offload[port]);
524		tas_data->offload[port] = NULL;
525
526		rc = sja1105_init_scheduling(priv);
527		if (rc < 0)
528			return rc;
529
530		return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
531	}
532
533	/* The cycle time extension is the amount of time the last cycle from
534	 * the old OPER needs to be extended in order to phase-align with the
535	 * base time of the ADMIN when that becomes the new OPER.
536	 * But of course our switch needs to be reset to switch-over between
537	 * the ADMIN and the OPER configs - so much for a seamless transition.
538	 * So don't add insult over injury and just say we don't support cycle
539	 * time extension.
540	 */
541	if (admin->cycle_time_extension)
542		return -ENOTSUPP;
543
544	for (i = 0; i < admin->num_entries; i++) {
545		s64 delta_ns = admin->entries[i].interval;
546		s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
547		bool too_long, too_short;
548
549		too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
550		too_short = (delta_cycles == 0);
551		if (too_long || too_short) {
552			dev_err(priv->ds->dev,
553				"Interval %llu too %s for GCL entry %d\n",
554				delta_ns, too_long ? "long" : "short", i);
555			return -ERANGE;
556		}
557	}
558
559	for (other_port = 0; other_port < ds->num_ports; other_port++) {
560		if (other_port == port)
561			continue;
562
563		if (sja1105_tas_check_conflicts(priv, other_port, admin))
564			return -ERANGE;
565	}
566
567	if (sja1105_gating_check_conflicts(priv, port, NULL)) {
568		dev_err(ds->dev, "Conflict with tc-gate schedule\n");
569		return -ERANGE;
570	}
571
572	tas_data->offload[port] = taprio_offload_get(admin);
573
574	rc = sja1105_init_scheduling(priv);
575	if (rc < 0)
576		return rc;
577
578	return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
579}
580
581static int sja1105_tas_check_running(struct sja1105_private *priv)
582{
583	struct sja1105_tas_data *tas_data = &priv->tas_data;
584	struct dsa_switch *ds = priv->ds;
585	struct sja1105_ptp_cmd cmd = {0};
586	int rc;
587
588	rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
589	if (rc < 0)
590		return rc;
591
592	if (cmd.ptpstrtsch == 1)
593		/* Schedule successfully started */
594		tas_data->state = SJA1105_TAS_STATE_RUNNING;
595	else if (cmd.ptpstopsch == 1)
596		/* Schedule is stopped */
597		tas_data->state = SJA1105_TAS_STATE_DISABLED;
598	else
599		/* Schedule is probably not configured with PTP clock source */
600		rc = -EINVAL;
601
602	return rc;
603}
604
605/* Write to PTPCLKCORP */
606static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
607				    u64 correction)
608{
609	const struct sja1105_regs *regs = priv->info->regs;
610	u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
611
612	return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
613				&ptpclkcorp, NULL);
614}
615
616/* Write to PTPSCHTM */
617static int sja1105_tas_set_base_time(struct sja1105_private *priv,
618				     u64 base_time)
619{
620	const struct sja1105_regs *regs = priv->info->regs;
621	u64 ptpschtm = ns_to_sja1105_ticks(base_time);
622
623	return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
624				&ptpschtm, NULL);
625}
626
627static int sja1105_tas_start(struct sja1105_private *priv)
628{
629	struct sja1105_tas_data *tas_data = &priv->tas_data;
630	struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
631	struct dsa_switch *ds = priv->ds;
632	int rc;
633
634	dev_dbg(ds->dev, "Starting the TAS\n");
635
636	if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
637	    tas_data->state == SJA1105_TAS_STATE_RUNNING) {
638		dev_err(ds->dev, "TAS already started\n");
639		return -EINVAL;
640	}
641
642	cmd->ptpstrtsch = 1;
643	cmd->ptpstopsch = 0;
644
645	rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
646	if (rc < 0)
647		return rc;
648
649	tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
650
651	return 0;
652}
653
654static int sja1105_tas_stop(struct sja1105_private *priv)
655{
656	struct sja1105_tas_data *tas_data = &priv->tas_data;
657	struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
658	struct dsa_switch *ds = priv->ds;
659	int rc;
660
661	dev_dbg(ds->dev, "Stopping the TAS\n");
662
663	if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
664		dev_err(ds->dev, "TAS already disabled\n");
665		return -EINVAL;
666	}
667
668	cmd->ptpstopsch = 1;
669	cmd->ptpstrtsch = 0;
670
671	rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
672	if (rc < 0)
673		return rc;
674
675	tas_data->state = SJA1105_TAS_STATE_DISABLED;
676
677	return 0;
678}
679
680/* The schedule engine and the PTP clock are driven by the same oscillator, and
681 * they run in parallel. But whilst the PTP clock can keep an absolute
682 * time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
683 * up a delta, which is 200ns), and wrapping around at the end of each cycle.
684 * The schedule engine is started when the PTP clock reaches the PTPSCHTM time
685 * (in PTP domain).
686 * Because the PTP clock can be rate-corrected (accelerated or slowed down) by
687 * a software servo, and the schedule engine clock runs in parallel to the PTP
688 * clock, there is logic internal to the switch that periodically keeps the
689 * schedule engine from drifting away. The frequency with which this internal
690 * syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
691 * a value also in the PTP clock domain, and is also rate-corrected.
692 * To be precise, during a correction period, there is logic to determine by
693 * how many scheduler clock ticks has the PTP clock drifted. At the end of each
694 * correction period/beginning of new one, the length of a delta is shrunk or
695 * expanded with an integer number of ticks, compared with the typical 25.
696 * So a delta lasts for 200ns (or 25 ticks) only on average.
697 * Sometimes it is longer, sometimes it is shorter. The internal syntonization
698 * logic can adjust for at most 5 ticks each 20 ticks.
699 *
700 * The first implication is that you should choose your schedule correction
701 * period to be an integer multiple of the schedule length. Preferably one.
702 * In case there are schedules of multiple ports active, then the correction
703 * period needs to be a multiple of them all. Given the restriction that the
704 * cycle times have to be multiples of one another anyway, this means the
705 * correction period can simply be the largest cycle time, hence the current
706 * choice. This way, the updates are always synchronous to the transmission
707 * cycle, and therefore predictable.
708 *
709 * The second implication is that at the beginning of a correction period, the
710 * first few deltas will be modulated in time, until the schedule engine is
711 * properly phase-aligned with the PTP clock. For this reason, you should place
712 * your best-effort traffic at the beginning of a cycle, and your
713 * time-triggered traffic afterwards.
714 *
715 * The third implication is that once the schedule engine is started, it can
716 * only adjust for so much drift within a correction period. In the servo you
717 * can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
718 * want to do the latter, you need to stop and restart the schedule engine,
719 * which is what the state machine handles.
720 */
721static void sja1105_tas_state_machine(struct work_struct *work)
722{
723	struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
724	struct sja1105_private *priv = tas_to_sja1105(tas_data);
725	struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
726	struct timespec64 base_time_ts, now_ts;
727	struct dsa_switch *ds = priv->ds;
728	struct timespec64 diff;
729	s64 base_time, now;
730	int rc = 0;
731
732	mutex_lock(&ptp_data->lock);
733
734	switch (tas_data->state) {
735	case SJA1105_TAS_STATE_DISABLED:
736		/* Can't do anything at all if clock is still being stepped */
737		if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
738			break;
739
740		rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
741		if (rc < 0)
742			break;
743
744		rc = __sja1105_ptp_gettimex(ds, &now, NULL);
745		if (rc < 0)
746			break;
747
748		/* Plan to start the earliest schedule first. The others
749		 * will be started in hardware, by way of their respective
750		 * entry points delta.
751		 * Try our best to avoid fringe cases (race condition between
752		 * ptpschtm and ptpstrtsch) by pushing the oper_base_time at
753		 * least one second in the future from now. This is not ideal,
754		 * but this only needs to buy us time until the
755		 * sja1105_tas_start command below gets executed.
756		 */
757		base_time = future_base_time(tas_data->earliest_base_time,
758					     tas_data->max_cycle_time,
759					     now + 1ull * NSEC_PER_SEC);
760		base_time -= sja1105_delta_to_ns(1);
761
762		rc = sja1105_tas_set_base_time(priv, base_time);
763		if (rc < 0)
764			break;
765
766		tas_data->oper_base_time = base_time;
767
768		rc = sja1105_tas_start(priv);
769		if (rc < 0)
770			break;
771
772		base_time_ts = ns_to_timespec64(base_time);
773		now_ts = ns_to_timespec64(now);
774
775		dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
776			base_time_ts.tv_sec, base_time_ts.tv_nsec,
777			now_ts.tv_sec, now_ts.tv_nsec);
778
779		break;
780
781	case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
782		if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
783			/* Clock was stepped.. bad news for TAS */
784			sja1105_tas_stop(priv);
785			break;
786		}
787
788		/* Check if TAS has actually started, by comparing the
789		 * scheduled start time with the SJA1105 PTP clock
790		 */
791		rc = __sja1105_ptp_gettimex(ds, &now, NULL);
792		if (rc < 0)
793			break;
794
795		if (now < tas_data->oper_base_time) {
796			/* TAS has not started yet */
797			diff = ns_to_timespec64(tas_data->oper_base_time - now);
798			dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
799				diff.tv_sec, diff.tv_nsec);
800			break;
801		}
802
803		/* Time elapsed, what happened? */
804		rc = sja1105_tas_check_running(priv);
805		if (rc < 0)
806			break;
807
808		if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
809			/* TAS has started */
810			dev_err(ds->dev,
811				"TAS not started despite time elapsed\n");
812
813		break;
814
815	case SJA1105_TAS_STATE_RUNNING:
816		/* Clock was stepped.. bad news for TAS */
817		if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
818			sja1105_tas_stop(priv);
819			break;
820		}
821
822		rc = sja1105_tas_check_running(priv);
823		if (rc < 0)
824			break;
825
826		if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
827			dev_err(ds->dev, "TAS surprisingly stopped\n");
828
829		break;
830
831	default:
832		if (net_ratelimit())
833			dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
834	}
835
836	if (rc && net_ratelimit())
837		dev_err(ds->dev, "An operation returned %d\n", rc);
838
839	mutex_unlock(&ptp_data->lock);
840}
841
842void sja1105_tas_clockstep(struct dsa_switch *ds)
843{
844	struct sja1105_private *priv = ds->priv;
845	struct sja1105_tas_data *tas_data = &priv->tas_data;
846
847	if (!tas_data->enabled)
848		return;
849
850	tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
851	schedule_work(&tas_data->tas_work);
852}
853
854void sja1105_tas_adjfreq(struct dsa_switch *ds)
855{
856	struct sja1105_private *priv = ds->priv;
857	struct sja1105_tas_data *tas_data = &priv->tas_data;
858
859	if (!tas_data->enabled)
860		return;
861
862	/* No reason to schedule the workqueue, nothing changed */
863	if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
864		return;
865
866	tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
867	schedule_work(&tas_data->tas_work);
868}
869
870void sja1105_tas_setup(struct dsa_switch *ds)
871{
872	struct sja1105_private *priv = ds->priv;
873	struct sja1105_tas_data *tas_data = &priv->tas_data;
874
875	INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
876	tas_data->state = SJA1105_TAS_STATE_DISABLED;
877	tas_data->last_op = SJA1105_PTP_NONE;
878
879	INIT_LIST_HEAD(&tas_data->gating_cfg.entries);
880}
881
882void sja1105_tas_teardown(struct dsa_switch *ds)
883{
884	struct sja1105_private *priv = ds->priv;
885	struct tc_taprio_qopt_offload *offload;
886	int port;
887
888	cancel_work_sync(&priv->tas_data.tas_work);
889
890	for (port = 0; port < ds->num_ports; port++) {
891		offload = priv->tas_data.offload[port];
892		if (!offload)
893			continue;
894
895		taprio_offload_free(offload);
896	}
897}