Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN driver for Geschwister Schneider USB/CAN devices
   3 * and bytewerk.org candleLight USB CAN interfaces.
   4 *
   5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
   6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
   7 * Copyright (C) 2016 Hubert Denkmair
   8 *
   9 * Many thanks to all socketcan devs!
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clocksource.h>
  14#include <linux/ethtool.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/netdevice.h>
  18#include <linux/signal.h>
  19#include <linux/timecounter.h>
  20#include <linux/units.h>
  21#include <linux/usb.h>
  22#include <linux/workqueue.h>
  23
  24#include <linux/can.h>
  25#include <linux/can/dev.h>
  26#include <linux/can/error.h>
  27
  28/* Device specific constants */
  29#define USB_GS_USB_1_VENDOR_ID 0x1d50
  30#define USB_GS_USB_1_PRODUCT_ID 0x606f
  31
  32#define USB_CANDLELIGHT_VENDOR_ID 0x1209
  33#define USB_CANDLELIGHT_PRODUCT_ID 0x2323
  34
  35#define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
  36#define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
  37
  38#define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
  39#define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
  40
  41#define GS_USB_ENDPOINT_IN 1
  42#define GS_USB_ENDPOINT_OUT 2
  43
  44/* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
  45 * for timer overflow (will be after ~71 minutes)
  46 */
  47#define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
  48#define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
  49static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
  50	      CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
  51
  52/* Device specific constants */
  53enum gs_usb_breq {
  54	GS_USB_BREQ_HOST_FORMAT = 0,
  55	GS_USB_BREQ_BITTIMING,
  56	GS_USB_BREQ_MODE,
  57	GS_USB_BREQ_BERR,
  58	GS_USB_BREQ_BT_CONST,
  59	GS_USB_BREQ_DEVICE_CONFIG,
  60	GS_USB_BREQ_TIMESTAMP,
  61	GS_USB_BREQ_IDENTIFY,
  62	GS_USB_BREQ_GET_USER_ID,
  63	GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
  64	GS_USB_BREQ_SET_USER_ID,
  65	GS_USB_BREQ_DATA_BITTIMING,
  66	GS_USB_BREQ_BT_CONST_EXT,
  67	GS_USB_BREQ_SET_TERMINATION,
  68	GS_USB_BREQ_GET_TERMINATION,
  69	GS_USB_BREQ_GET_STATE,
  70};
  71
  72enum gs_can_mode {
  73	/* reset a channel. turns it off */
  74	GS_CAN_MODE_RESET = 0,
  75	/* starts a channel */
  76	GS_CAN_MODE_START
  77};
  78
  79enum gs_can_state {
  80	GS_CAN_STATE_ERROR_ACTIVE = 0,
  81	GS_CAN_STATE_ERROR_WARNING,
  82	GS_CAN_STATE_ERROR_PASSIVE,
  83	GS_CAN_STATE_BUS_OFF,
  84	GS_CAN_STATE_STOPPED,
  85	GS_CAN_STATE_SLEEPING
  86};
  87
  88enum gs_can_identify_mode {
  89	GS_CAN_IDENTIFY_OFF = 0,
  90	GS_CAN_IDENTIFY_ON
  91};
  92
  93enum gs_can_termination_state {
  94	GS_CAN_TERMINATION_STATE_OFF = 0,
  95	GS_CAN_TERMINATION_STATE_ON
  96};
  97
  98#define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
  99#define GS_USB_TERMINATION_ENABLED 120
 100
 101/* data types passed between host and device */
 102
 103/* The firmware on the original USB2CAN by Geschwister Schneider
 104 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
 105 * between the host and the device in host byte order. This is done
 106 * with the struct gs_host_config::byte_order member, which is sent
 107 * first to indicate the desired byte order.
 108 *
 109 * The widely used open source firmware candleLight doesn't support
 110 * this feature and exchanges the data in little endian byte order.
 111 */
 112struct gs_host_config {
 113	__le32 byte_order;
 114} __packed;
 115
 116struct gs_device_config {
 117	u8 reserved1;
 118	u8 reserved2;
 119	u8 reserved3;
 120	u8 icount;
 121	__le32 sw_version;
 122	__le32 hw_version;
 123} __packed;
 124
 125#define GS_CAN_MODE_NORMAL 0
 126#define GS_CAN_MODE_LISTEN_ONLY BIT(0)
 127#define GS_CAN_MODE_LOOP_BACK BIT(1)
 128#define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
 129#define GS_CAN_MODE_ONE_SHOT BIT(3)
 130#define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
 131/* GS_CAN_FEATURE_IDENTIFY BIT(5) */
 132/* GS_CAN_FEATURE_USER_ID BIT(6) */
 133#define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
 134#define GS_CAN_MODE_FD BIT(8)
 135/* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
 136/* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
 137/* GS_CAN_FEATURE_TERMINATION BIT(11) */
 138#define GS_CAN_MODE_BERR_REPORTING BIT(12)
 139/* GS_CAN_FEATURE_GET_STATE BIT(13) */
 140
 141struct gs_device_mode {
 142	__le32 mode;
 143	__le32 flags;
 144} __packed;
 145
 146struct gs_device_state {
 147	__le32 state;
 148	__le32 rxerr;
 149	__le32 txerr;
 150} __packed;
 151
 152struct gs_device_bittiming {
 153	__le32 prop_seg;
 154	__le32 phase_seg1;
 155	__le32 phase_seg2;
 156	__le32 sjw;
 157	__le32 brp;
 158} __packed;
 159
 160struct gs_identify_mode {
 161	__le32 mode;
 162} __packed;
 163
 164struct gs_device_termination_state {
 165	__le32 state;
 166} __packed;
 167
 168#define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
 169#define GS_CAN_FEATURE_LOOP_BACK BIT(1)
 170#define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
 171#define GS_CAN_FEATURE_ONE_SHOT BIT(3)
 172#define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
 173#define GS_CAN_FEATURE_IDENTIFY BIT(5)
 174#define GS_CAN_FEATURE_USER_ID BIT(6)
 175#define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
 176#define GS_CAN_FEATURE_FD BIT(8)
 177#define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
 178#define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
 179#define GS_CAN_FEATURE_TERMINATION BIT(11)
 180#define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
 181#define GS_CAN_FEATURE_GET_STATE BIT(13)
 182#define GS_CAN_FEATURE_MASK GENMASK(13, 0)
 183
 184/* internal quirks - keep in GS_CAN_FEATURE space for now */
 185
 186/* CANtact Pro original firmware:
 187 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
 188 */
 189#define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
 190
 191struct gs_device_bt_const {
 192	__le32 feature;
 193	__le32 fclk_can;
 194	__le32 tseg1_min;
 195	__le32 tseg1_max;
 196	__le32 tseg2_min;
 197	__le32 tseg2_max;
 198	__le32 sjw_max;
 199	__le32 brp_min;
 200	__le32 brp_max;
 201	__le32 brp_inc;
 202} __packed;
 203
 204struct gs_device_bt_const_extended {
 205	__le32 feature;
 206	__le32 fclk_can;
 207	__le32 tseg1_min;
 208	__le32 tseg1_max;
 209	__le32 tseg2_min;
 210	__le32 tseg2_max;
 211	__le32 sjw_max;
 212	__le32 brp_min;
 213	__le32 brp_max;
 214	__le32 brp_inc;
 215
 216	__le32 dtseg1_min;
 217	__le32 dtseg1_max;
 218	__le32 dtseg2_min;
 219	__le32 dtseg2_max;
 220	__le32 dsjw_max;
 221	__le32 dbrp_min;
 222	__le32 dbrp_max;
 223	__le32 dbrp_inc;
 224} __packed;
 225
 226#define GS_CAN_FLAG_OVERFLOW BIT(0)
 227#define GS_CAN_FLAG_FD BIT(1)
 228#define GS_CAN_FLAG_BRS BIT(2)
 229#define GS_CAN_FLAG_ESI BIT(3)
 230
 231struct classic_can {
 232	u8 data[8];
 233} __packed;
 234
 235struct classic_can_ts {
 236	u8 data[8];
 237	__le32 timestamp_us;
 238} __packed;
 239
 240struct classic_can_quirk {
 241	u8 data[8];
 242	u8 quirk;
 243} __packed;
 244
 245struct canfd {
 246	u8 data[64];
 247} __packed;
 248
 249struct canfd_ts {
 250	u8 data[64];
 251	__le32 timestamp_us;
 252} __packed;
 253
 254struct canfd_quirk {
 255	u8 data[64];
 256	u8 quirk;
 257} __packed;
 258
 259struct gs_host_frame {
 260	u32 echo_id;
 261	__le32 can_id;
 262
 263	u8 can_dlc;
 264	u8 channel;
 265	u8 flags;
 266	u8 reserved;
 267
 268	union {
 269		DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
 270		DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
 271		DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
 272		DECLARE_FLEX_ARRAY(struct canfd, canfd);
 273		DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
 274		DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
 275	};
 276} __packed;
 277/* The GS USB devices make use of the same flags and masks as in
 278 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
 279 */
 280
 281/* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
 282#define GS_MAX_TX_URBS 10
 283/* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
 284#define GS_MAX_RX_URBS 30
 285/* Maximum number of interfaces the driver supports per device.
 286 * Current hardware only supports 3 interfaces. The future may vary.
 287 */
 288#define GS_MAX_INTF 3
 289
 290struct gs_tx_context {
 291	struct gs_can *dev;
 292	unsigned int echo_id;
 293};
 294
 295struct gs_can {
 296	struct can_priv can; /* must be the first member */
 297
 298	struct gs_usb *parent;
 299
 300	struct net_device *netdev;
 301	struct usb_device *udev;
 302
 303	struct can_bittiming_const bt_const, data_bt_const;
 304	unsigned int channel;	/* channel number */
 305
 306	/* time counter for hardware timestamps */
 307	struct cyclecounter cc;
 308	struct timecounter tc;
 309	spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
 310	struct delayed_work timestamp;
 311
 312	u32 feature;
 313	unsigned int hf_size_tx;
 314
 315	/* This lock prevents a race condition between xmit and receive. */
 316	spinlock_t tx_ctx_lock;
 317	struct gs_tx_context tx_context[GS_MAX_TX_URBS];
 318
 319	struct usb_anchor tx_submitted;
 320	atomic_t active_tx_urbs;
 321};
 322
 323/* usb interface struct */
 324struct gs_usb {
 325	struct gs_can *canch[GS_MAX_INTF];
 326	struct usb_anchor rx_submitted;
 327	struct usb_device *udev;
 328	unsigned int hf_size_rx;
 329	u8 active_channels;
 330};
 331
 332/* 'allocate' a tx context.
 333 * returns a valid tx context or NULL if there is no space.
 334 */
 335static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
 336{
 337	int i = 0;
 338	unsigned long flags;
 339
 340	spin_lock_irqsave(&dev->tx_ctx_lock, flags);
 341
 342	for (; i < GS_MAX_TX_URBS; i++) {
 343		if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
 344			dev->tx_context[i].echo_id = i;
 345			spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
 346			return &dev->tx_context[i];
 347		}
 348	}
 349
 350	spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
 351	return NULL;
 352}
 353
 354/* releases a tx context
 355 */
 356static void gs_free_tx_context(struct gs_tx_context *txc)
 357{
 358	txc->echo_id = GS_MAX_TX_URBS;
 359}
 360
 361/* Get a tx context by id.
 362 */
 363static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
 364					       unsigned int id)
 365{
 366	unsigned long flags;
 367
 368	if (id < GS_MAX_TX_URBS) {
 369		spin_lock_irqsave(&dev->tx_ctx_lock, flags);
 370		if (dev->tx_context[id].echo_id == id) {
 371			spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
 372			return &dev->tx_context[id];
 373		}
 374		spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
 375	}
 376	return NULL;
 377}
 378
 379static int gs_cmd_reset(struct gs_can *dev)
 380{
 381	struct gs_device_mode dm = {
 382		.mode = GS_CAN_MODE_RESET,
 383	};
 384
 385	return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
 386				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 387				    dev->channel, 0, &dm, sizeof(dm), 1000,
 388				    GFP_KERNEL);
 389}
 390
 391static inline int gs_usb_get_timestamp(const struct gs_can *dev,
 392				       u32 *timestamp_p)
 393{
 394	__le32 timestamp;
 395	int rc;
 396
 397	rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_TIMESTAMP,
 398				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 399				  dev->channel, 0,
 400				  &timestamp, sizeof(timestamp),
 401				  USB_CTRL_GET_TIMEOUT,
 402				  GFP_KERNEL);
 403	if (rc)
 404		return rc;
 405
 406	*timestamp_p = le32_to_cpu(timestamp);
 407
 408	return 0;
 409}
 410
 411static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
 412{
 413	struct gs_can *dev = container_of(cc, struct gs_can, cc);
 414	u32 timestamp = 0;
 415	int err;
 416
 417	lockdep_assert_held(&dev->tc_lock);
 418
 419	/* drop lock for synchronous USB transfer */
 420	spin_unlock_bh(&dev->tc_lock);
 421	err = gs_usb_get_timestamp(dev, &timestamp);
 422	spin_lock_bh(&dev->tc_lock);
 423	if (err)
 424		netdev_err(dev->netdev,
 425			   "Error %d while reading timestamp. HW timestamps may be inaccurate.",
 426			   err);
 427
 428	return timestamp;
 429}
 430
 431static void gs_usb_timestamp_work(struct work_struct *work)
 432{
 433	struct delayed_work *delayed_work = to_delayed_work(work);
 434	struct gs_can *dev;
 435
 436	dev = container_of(delayed_work, struct gs_can, timestamp);
 437	spin_lock_bh(&dev->tc_lock);
 438	timecounter_read(&dev->tc);
 439	spin_unlock_bh(&dev->tc_lock);
 440
 441	schedule_delayed_work(&dev->timestamp,
 442			      GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
 443}
 444
 445static void gs_usb_skb_set_timestamp(struct gs_can *dev,
 446				     struct sk_buff *skb, u32 timestamp)
 447{
 448	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
 449	u64 ns;
 450
 451	spin_lock_bh(&dev->tc_lock);
 452	ns = timecounter_cyc2time(&dev->tc, timestamp);
 453	spin_unlock_bh(&dev->tc_lock);
 454
 455	hwtstamps->hwtstamp = ns_to_ktime(ns);
 456}
 457
 458static void gs_usb_timestamp_init(struct gs_can *dev)
 459{
 460	struct cyclecounter *cc = &dev->cc;
 461
 462	cc->read = gs_usb_timestamp_read;
 463	cc->mask = CYCLECOUNTER_MASK(32);
 464	cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
 465	cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
 466
 467	spin_lock_init(&dev->tc_lock);
 468	spin_lock_bh(&dev->tc_lock);
 469	timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns());
 470	spin_unlock_bh(&dev->tc_lock);
 471
 472	INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work);
 473	schedule_delayed_work(&dev->timestamp,
 474			      GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
 475}
 476
 477static void gs_usb_timestamp_stop(struct gs_can *dev)
 478{
 479	cancel_delayed_work_sync(&dev->timestamp);
 480}
 481
 482static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
 483{
 484	struct can_device_stats *can_stats = &dev->can.can_stats;
 485
 486	if (cf->can_id & CAN_ERR_RESTARTED) {
 487		dev->can.state = CAN_STATE_ERROR_ACTIVE;
 488		can_stats->restarts++;
 489	} else if (cf->can_id & CAN_ERR_BUSOFF) {
 490		dev->can.state = CAN_STATE_BUS_OFF;
 491		can_stats->bus_off++;
 492	} else if (cf->can_id & CAN_ERR_CRTL) {
 493		if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
 494		    (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
 495			dev->can.state = CAN_STATE_ERROR_WARNING;
 496			can_stats->error_warning++;
 497		} else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
 498			   (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
 499			dev->can.state = CAN_STATE_ERROR_PASSIVE;
 500			can_stats->error_passive++;
 501		} else {
 502			dev->can.state = CAN_STATE_ERROR_ACTIVE;
 503		}
 504	}
 505}
 506
 507static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
 508				 const struct gs_host_frame *hf)
 509{
 510	u32 timestamp;
 511
 512	if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
 513		return;
 514
 515	if (hf->flags & GS_CAN_FLAG_FD)
 516		timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
 517	else
 518		timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
 519
 520	gs_usb_skb_set_timestamp(dev, skb, timestamp);
 521
 522	return;
 523}
 524
 525static void gs_usb_receive_bulk_callback(struct urb *urb)
 526{
 527	struct gs_usb *usbcan = urb->context;
 528	struct gs_can *dev;
 529	struct net_device *netdev;
 530	int rc;
 531	struct net_device_stats *stats;
 532	struct gs_host_frame *hf = urb->transfer_buffer;
 533	struct gs_tx_context *txc;
 534	struct can_frame *cf;
 535	struct canfd_frame *cfd;
 536	struct sk_buff *skb;
 537
 538	BUG_ON(!usbcan);
 539
 540	switch (urb->status) {
 541	case 0: /* success */
 542		break;
 543	case -ENOENT:
 544	case -ESHUTDOWN:
 545		return;
 546	default:
 547		/* do not resubmit aborted urbs. eg: when device goes down */
 548		return;
 549	}
 550
 551	/* device reports out of range channel id */
 552	if (hf->channel >= GS_MAX_INTF)
 553		goto device_detach;
 554
 555	dev = usbcan->canch[hf->channel];
 556
 557	netdev = dev->netdev;
 558	stats = &netdev->stats;
 559
 560	if (!netif_device_present(netdev))
 561		return;
 562
 563	if (hf->echo_id == -1) { /* normal rx */
 564		if (hf->flags & GS_CAN_FLAG_FD) {
 565			skb = alloc_canfd_skb(dev->netdev, &cfd);
 566			if (!skb)
 567				return;
 568
 569			cfd->can_id = le32_to_cpu(hf->can_id);
 570			cfd->len = can_fd_dlc2len(hf->can_dlc);
 571			if (hf->flags & GS_CAN_FLAG_BRS)
 572				cfd->flags |= CANFD_BRS;
 573			if (hf->flags & GS_CAN_FLAG_ESI)
 574				cfd->flags |= CANFD_ESI;
 575
 576			memcpy(cfd->data, hf->canfd->data, cfd->len);
 577		} else {
 578			skb = alloc_can_skb(dev->netdev, &cf);
 579			if (!skb)
 580				return;
 581
 582			cf->can_id = le32_to_cpu(hf->can_id);
 583			can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
 584
 585			memcpy(cf->data, hf->classic_can->data, 8);
 586
 587			/* ERROR frames tell us information about the controller */
 588			if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
 589				gs_update_state(dev, cf);
 590		}
 591
 592		gs_usb_set_timestamp(dev, skb, hf);
 593
 594		netdev->stats.rx_packets++;
 595		netdev->stats.rx_bytes += hf->can_dlc;
 596
 597		netif_rx(skb);
 598	} else { /* echo_id == hf->echo_id */
 599		if (hf->echo_id >= GS_MAX_TX_URBS) {
 600			netdev_err(netdev,
 601				   "Unexpected out of range echo id %u\n",
 602				   hf->echo_id);
 603			goto resubmit_urb;
 604		}
 605
 606		txc = gs_get_tx_context(dev, hf->echo_id);
 607
 608		/* bad devices send bad echo_ids. */
 609		if (!txc) {
 610			netdev_err(netdev,
 611				   "Unexpected unused echo id %u\n",
 612				   hf->echo_id);
 613			goto resubmit_urb;
 614		}
 615
 616		skb = dev->can.echo_skb[hf->echo_id];
 617		gs_usb_set_timestamp(dev, skb, hf);
 618
 619		netdev->stats.tx_packets++;
 620		netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
 621							   NULL);
 622
 623		gs_free_tx_context(txc);
 624
 625		atomic_dec(&dev->active_tx_urbs);
 626
 627		netif_wake_queue(netdev);
 628	}
 629
 630	if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
 631		skb = alloc_can_err_skb(netdev, &cf);
 632		if (!skb)
 633			goto resubmit_urb;
 634
 635		cf->can_id |= CAN_ERR_CRTL;
 636		cf->len = CAN_ERR_DLC;
 637		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 638		stats->rx_over_errors++;
 639		stats->rx_errors++;
 640		netif_rx(skb);
 641	}
 642
 643 resubmit_urb:
 644	usb_fill_bulk_urb(urb, usbcan->udev,
 645			  usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
 646			  hf, dev->parent->hf_size_rx,
 647			  gs_usb_receive_bulk_callback, usbcan);
 648
 649	rc = usb_submit_urb(urb, GFP_ATOMIC);
 650
 651	/* USB failure take down all interfaces */
 652	if (rc == -ENODEV) {
 653 device_detach:
 654		for (rc = 0; rc < GS_MAX_INTF; rc++) {
 655			if (usbcan->canch[rc])
 656				netif_device_detach(usbcan->canch[rc]->netdev);
 657		}
 658	}
 659}
 660
 661static int gs_usb_set_bittiming(struct net_device *netdev)
 662{
 663	struct gs_can *dev = netdev_priv(netdev);
 664	struct can_bittiming *bt = &dev->can.bittiming;
 665	struct gs_device_bittiming dbt = {
 666		.prop_seg = cpu_to_le32(bt->prop_seg),
 667		.phase_seg1 = cpu_to_le32(bt->phase_seg1),
 668		.phase_seg2 = cpu_to_le32(bt->phase_seg2),
 669		.sjw = cpu_to_le32(bt->sjw),
 670		.brp = cpu_to_le32(bt->brp),
 671	};
 672
 673	/* request bit timings */
 674	return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
 675				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 676				    dev->channel, 0, &dbt, sizeof(dbt), 1000,
 677				    GFP_KERNEL);
 678}
 679
 680static int gs_usb_set_data_bittiming(struct net_device *netdev)
 681{
 682	struct gs_can *dev = netdev_priv(netdev);
 683	struct can_bittiming *bt = &dev->can.data_bittiming;
 684	struct gs_device_bittiming dbt = {
 685		.prop_seg = cpu_to_le32(bt->prop_seg),
 686		.phase_seg1 = cpu_to_le32(bt->phase_seg1),
 687		.phase_seg2 = cpu_to_le32(bt->phase_seg2),
 688		.sjw = cpu_to_le32(bt->sjw),
 689		.brp = cpu_to_le32(bt->brp),
 690	};
 691	u8 request = GS_USB_BREQ_DATA_BITTIMING;
 692
 693	if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
 694		request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
 695
 696	/* request data bit timings */
 697	return usb_control_msg_send(dev->udev, 0, request,
 698				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 699				    dev->channel, 0, &dbt, sizeof(dbt), 1000,
 700				    GFP_KERNEL);
 701}
 702
 703static void gs_usb_xmit_callback(struct urb *urb)
 704{
 705	struct gs_tx_context *txc = urb->context;
 706	struct gs_can *dev = txc->dev;
 707	struct net_device *netdev = dev->netdev;
 708
 709	if (urb->status)
 710		netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
 711}
 712
 713static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
 714				     struct net_device *netdev)
 715{
 716	struct gs_can *dev = netdev_priv(netdev);
 717	struct net_device_stats *stats = &dev->netdev->stats;
 718	struct urb *urb;
 719	struct gs_host_frame *hf;
 720	struct can_frame *cf;
 721	struct canfd_frame *cfd;
 722	int rc;
 723	unsigned int idx;
 724	struct gs_tx_context *txc;
 725
 726	if (can_dev_dropped_skb(netdev, skb))
 727		return NETDEV_TX_OK;
 728
 729	/* find an empty context to keep track of transmission */
 730	txc = gs_alloc_tx_context(dev);
 731	if (!txc)
 732		return NETDEV_TX_BUSY;
 733
 734	/* create a URB, and a buffer for it */
 735	urb = usb_alloc_urb(0, GFP_ATOMIC);
 736	if (!urb)
 737		goto nomem_urb;
 738
 739	hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
 740	if (!hf) {
 741		netdev_err(netdev, "No memory left for USB buffer\n");
 742		goto nomem_hf;
 743	}
 744
 745	idx = txc->echo_id;
 746
 747	if (idx >= GS_MAX_TX_URBS) {
 748		netdev_err(netdev, "Invalid tx context %u\n", idx);
 749		goto badidx;
 750	}
 751
 752	hf->echo_id = idx;
 753	hf->channel = dev->channel;
 754	hf->flags = 0;
 755	hf->reserved = 0;
 756
 757	if (can_is_canfd_skb(skb)) {
 758		cfd = (struct canfd_frame *)skb->data;
 759
 760		hf->can_id = cpu_to_le32(cfd->can_id);
 761		hf->can_dlc = can_fd_len2dlc(cfd->len);
 762		hf->flags |= GS_CAN_FLAG_FD;
 763		if (cfd->flags & CANFD_BRS)
 764			hf->flags |= GS_CAN_FLAG_BRS;
 765		if (cfd->flags & CANFD_ESI)
 766			hf->flags |= GS_CAN_FLAG_ESI;
 767
 768		memcpy(hf->canfd->data, cfd->data, cfd->len);
 769	} else {
 770		cf = (struct can_frame *)skb->data;
 771
 772		hf->can_id = cpu_to_le32(cf->can_id);
 773		hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
 774
 775		memcpy(hf->classic_can->data, cf->data, cf->len);
 776	}
 777
 778	usb_fill_bulk_urb(urb, dev->udev,
 779			  usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
 780			  hf, dev->hf_size_tx,
 781			  gs_usb_xmit_callback, txc);
 782
 783	urb->transfer_flags |= URB_FREE_BUFFER;
 784	usb_anchor_urb(urb, &dev->tx_submitted);
 785
 786	can_put_echo_skb(skb, netdev, idx, 0);
 787
 788	atomic_inc(&dev->active_tx_urbs);
 789
 790	rc = usb_submit_urb(urb, GFP_ATOMIC);
 791	if (unlikely(rc)) {			/* usb send failed */
 792		atomic_dec(&dev->active_tx_urbs);
 793
 794		can_free_echo_skb(netdev, idx, NULL);
 795		gs_free_tx_context(txc);
 796
 797		usb_unanchor_urb(urb);
 798
 799		if (rc == -ENODEV) {
 800			netif_device_detach(netdev);
 801		} else {
 802			netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
 803			stats->tx_dropped++;
 804		}
 805	} else {
 806		/* Slow down tx path */
 807		if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
 808			netif_stop_queue(netdev);
 809	}
 810
 811	/* let usb core take care of this urb */
 812	usb_free_urb(urb);
 813
 814	return NETDEV_TX_OK;
 815
 816 badidx:
 817	kfree(hf);
 818 nomem_hf:
 819	usb_free_urb(urb);
 820
 821 nomem_urb:
 822	gs_free_tx_context(txc);
 823	dev_kfree_skb(skb);
 824	stats->tx_dropped++;
 825	return NETDEV_TX_OK;
 826}
 827
 828static int gs_can_open(struct net_device *netdev)
 829{
 830	struct gs_can *dev = netdev_priv(netdev);
 831	struct gs_usb *parent = dev->parent;
 832	struct gs_device_mode dm = {
 833		.mode = cpu_to_le32(GS_CAN_MODE_START),
 834	};
 835	struct gs_host_frame *hf;
 836	u32 ctrlmode;
 837	u32 flags = 0;
 838	int rc, i;
 839
 840	rc = open_candev(netdev);
 841	if (rc)
 842		return rc;
 843
 844	ctrlmode = dev->can.ctrlmode;
 845	if (ctrlmode & CAN_CTRLMODE_FD) {
 846		if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
 847			dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
 848		else
 849			dev->hf_size_tx = struct_size(hf, canfd, 1);
 850	} else {
 851		if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
 852			dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
 853		else
 854			dev->hf_size_tx = struct_size(hf, classic_can, 1);
 855	}
 856
 857	if (!parent->active_channels) {
 858		for (i = 0; i < GS_MAX_RX_URBS; i++) {
 859			struct urb *urb;
 860			u8 *buf;
 861
 862			/* alloc rx urb */
 863			urb = usb_alloc_urb(0, GFP_KERNEL);
 864			if (!urb)
 865				return -ENOMEM;
 866
 867			/* alloc rx buffer */
 868			buf = kmalloc(dev->parent->hf_size_rx,
 869				      GFP_KERNEL);
 870			if (!buf) {
 871				netdev_err(netdev,
 872					   "No memory left for USB buffer\n");
 873				usb_free_urb(urb);
 874				return -ENOMEM;
 875			}
 876
 877			/* fill, anchor, and submit rx urb */
 878			usb_fill_bulk_urb(urb,
 879					  dev->udev,
 880					  usb_rcvbulkpipe(dev->udev,
 881							  GS_USB_ENDPOINT_IN),
 882					  buf,
 883					  dev->parent->hf_size_rx,
 884					  gs_usb_receive_bulk_callback, parent);
 885			urb->transfer_flags |= URB_FREE_BUFFER;
 886
 887			usb_anchor_urb(urb, &parent->rx_submitted);
 888
 889			rc = usb_submit_urb(urb, GFP_KERNEL);
 890			if (rc) {
 891				if (rc == -ENODEV)
 892					netif_device_detach(dev->netdev);
 893
 894				netdev_err(netdev,
 895					   "usb_submit failed (err=%d)\n", rc);
 896
 897				usb_unanchor_urb(urb);
 898				usb_free_urb(urb);
 899				break;
 900			}
 901
 902			/* Drop reference,
 903			 * USB core will take care of freeing it
 904			 */
 905			usb_free_urb(urb);
 906		}
 907	}
 908
 909	/* flags */
 910	if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
 911		flags |= GS_CAN_MODE_LOOP_BACK;
 912
 913	if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
 914		flags |= GS_CAN_MODE_LISTEN_ONLY;
 915
 916	if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
 917		flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
 918
 919	if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
 920		flags |= GS_CAN_MODE_ONE_SHOT;
 921
 922	if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
 923		flags |= GS_CAN_MODE_BERR_REPORTING;
 924
 925	if (ctrlmode & CAN_CTRLMODE_FD)
 926		flags |= GS_CAN_MODE_FD;
 927
 928	/* if hardware supports timestamps, enable it */
 929	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
 930		flags |= GS_CAN_MODE_HW_TIMESTAMP;
 931
 932		/* start polling timestamp */
 933		gs_usb_timestamp_init(dev);
 934	}
 935
 936	/* finally start device */
 937	dev->can.state = CAN_STATE_ERROR_ACTIVE;
 938	dm.flags = cpu_to_le32(flags);
 939	rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
 940				  USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 941				  dev->channel, 0, &dm, sizeof(dm), 1000,
 942				  GFP_KERNEL);
 943	if (rc) {
 944		netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
 945		if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
 946			gs_usb_timestamp_stop(dev);
 947		dev->can.state = CAN_STATE_STOPPED;
 948		return rc;
 949	}
 950
 951	parent->active_channels++;
 952	if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
 953		netif_start_queue(netdev);
 954
 955	return 0;
 956}
 957
 958static int gs_usb_get_state(const struct net_device *netdev,
 959			    struct can_berr_counter *bec,
 960			    enum can_state *state)
 961{
 962	struct gs_can *dev = netdev_priv(netdev);
 963	struct gs_device_state ds;
 964	int rc;
 965
 966	rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
 967				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 968				  dev->channel, 0,
 969				  &ds, sizeof(ds),
 970				  USB_CTRL_GET_TIMEOUT,
 971				  GFP_KERNEL);
 972	if (rc)
 973		return rc;
 974
 975	if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
 976		return -EOPNOTSUPP;
 977
 978	*state = le32_to_cpu(ds.state);
 979	bec->txerr = le32_to_cpu(ds.txerr);
 980	bec->rxerr = le32_to_cpu(ds.rxerr);
 981
 982	return 0;
 983}
 984
 985static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
 986				       struct can_berr_counter *bec)
 987{
 988	enum can_state state;
 989
 990	return gs_usb_get_state(netdev, bec, &state);
 991}
 992
 993static int gs_can_close(struct net_device *netdev)
 994{
 995	int rc;
 996	struct gs_can *dev = netdev_priv(netdev);
 997	struct gs_usb *parent = dev->parent;
 998
 999	netif_stop_queue(netdev);
1000
1001	/* stop polling timestamp */
1002	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1003		gs_usb_timestamp_stop(dev);
1004
1005	/* Stop polling */
1006	parent->active_channels--;
1007	if (!parent->active_channels) {
1008		usb_kill_anchored_urbs(&parent->rx_submitted);
1009	}
1010
1011	/* Stop sending URBs */
1012	usb_kill_anchored_urbs(&dev->tx_submitted);
1013	atomic_set(&dev->active_tx_urbs, 0);
1014
1015	/* reset the device */
1016	rc = gs_cmd_reset(dev);
1017	if (rc < 0)
1018		netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
1019
1020	/* reset tx contexts */
1021	for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1022		dev->tx_context[rc].dev = dev;
1023		dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1024	}
1025
1026	/* close the netdev */
1027	close_candev(netdev);
1028
1029	return 0;
1030}
1031
1032static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1033{
1034	const struct gs_can *dev = netdev_priv(netdev);
1035
1036	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1037		return can_eth_ioctl_hwts(netdev, ifr, cmd);
1038
1039	return -EOPNOTSUPP;
1040}
1041
1042static const struct net_device_ops gs_usb_netdev_ops = {
1043	.ndo_open = gs_can_open,
1044	.ndo_stop = gs_can_close,
1045	.ndo_start_xmit = gs_can_start_xmit,
1046	.ndo_change_mtu = can_change_mtu,
1047	.ndo_eth_ioctl = gs_can_eth_ioctl,
1048};
1049
1050static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1051{
1052	struct gs_can *dev = netdev_priv(netdev);
1053	struct gs_identify_mode imode;
1054
1055	if (do_identify)
1056		imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1057	else
1058		imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1059
1060	return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1061				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1062				    dev->channel, 0, &imode, sizeof(imode), 100,
1063				    GFP_KERNEL);
1064}
1065
1066/* blink LED's for finding the this interface */
1067static int gs_usb_set_phys_id(struct net_device *netdev,
1068			      enum ethtool_phys_id_state state)
1069{
1070	const struct gs_can *dev = netdev_priv(netdev);
1071	int rc = 0;
1072
1073	if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1074		return -EOPNOTSUPP;
1075
1076	switch (state) {
1077	case ETHTOOL_ID_ACTIVE:
1078		rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1079		break;
1080	case ETHTOOL_ID_INACTIVE:
1081		rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1082		break;
1083	default:
1084		break;
1085	}
1086
1087	return rc;
1088}
1089
1090static int gs_usb_get_ts_info(struct net_device *netdev,
1091			      struct ethtool_ts_info *info)
1092{
1093	struct gs_can *dev = netdev_priv(netdev);
1094
1095	/* report if device supports HW timestamps */
1096	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1097		return can_ethtool_op_get_ts_info_hwts(netdev, info);
1098
1099	return ethtool_op_get_ts_info(netdev, info);
1100}
1101
1102static const struct ethtool_ops gs_usb_ethtool_ops = {
1103	.set_phys_id = gs_usb_set_phys_id,
1104	.get_ts_info = gs_usb_get_ts_info,
1105};
1106
1107static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1108{
1109	struct gs_can *dev = netdev_priv(netdev);
1110	struct gs_device_termination_state term_state;
1111	int rc;
1112
1113	rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1114				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1115				  dev->channel, 0,
1116				  &term_state, sizeof(term_state), 1000,
1117				  GFP_KERNEL);
1118	if (rc)
1119		return rc;
1120
1121	if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1122		*term = GS_USB_TERMINATION_ENABLED;
1123	else
1124		*term = GS_USB_TERMINATION_DISABLED;
1125
1126	return 0;
1127}
1128
1129static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1130{
1131	struct gs_can *dev = netdev_priv(netdev);
1132	struct gs_device_termination_state term_state;
1133
1134	if (term == GS_USB_TERMINATION_ENABLED)
1135		term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1136	else
1137		term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1138
1139	return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1140				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1141				    dev->channel, 0,
1142				    &term_state, sizeof(term_state), 1000,
1143				    GFP_KERNEL);
1144}
1145
1146static const u16 gs_usb_termination_const[] = {
1147	GS_USB_TERMINATION_DISABLED,
1148	GS_USB_TERMINATION_ENABLED
1149};
1150
1151static struct gs_can *gs_make_candev(unsigned int channel,
1152				     struct usb_interface *intf,
1153				     struct gs_device_config *dconf)
1154{
1155	struct gs_can *dev;
1156	struct net_device *netdev;
1157	int rc;
1158	struct gs_device_bt_const_extended bt_const_extended;
1159	struct gs_device_bt_const bt_const;
1160	u32 feature;
1161
1162	/* fetch bit timing constants */
1163	rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1164				  GS_USB_BREQ_BT_CONST,
1165				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1166				  channel, 0, &bt_const, sizeof(bt_const), 1000,
1167				  GFP_KERNEL);
1168
1169	if (rc) {
1170		dev_err(&intf->dev,
1171			"Couldn't get bit timing const for channel %d (%pe)\n",
1172			channel, ERR_PTR(rc));
1173		return ERR_PTR(rc);
1174	}
1175
1176	/* create netdev */
1177	netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1178	if (!netdev) {
1179		dev_err(&intf->dev, "Couldn't allocate candev\n");
1180		return ERR_PTR(-ENOMEM);
1181	}
1182
1183	dev = netdev_priv(netdev);
1184
1185	netdev->netdev_ops = &gs_usb_netdev_ops;
1186	netdev->ethtool_ops = &gs_usb_ethtool_ops;
1187
1188	netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1189	netdev->dev_id = channel;
1190
1191	/* dev setup */
1192	strcpy(dev->bt_const.name, KBUILD_MODNAME);
1193	dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1194	dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1195	dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1196	dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1197	dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1198	dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1199	dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1200	dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1201
1202	dev->udev = interface_to_usbdev(intf);
1203	dev->netdev = netdev;
1204	dev->channel = channel;
1205
1206	init_usb_anchor(&dev->tx_submitted);
1207	atomic_set(&dev->active_tx_urbs, 0);
1208	spin_lock_init(&dev->tx_ctx_lock);
1209	for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1210		dev->tx_context[rc].dev = dev;
1211		dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1212	}
1213
1214	/* can setup */
1215	dev->can.state = CAN_STATE_STOPPED;
1216	dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1217	dev->can.bittiming_const = &dev->bt_const;
1218	dev->can.do_set_bittiming = gs_usb_set_bittiming;
1219
1220	dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1221
1222	feature = le32_to_cpu(bt_const.feature);
1223	dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1224	if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1225		dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1226
1227	if (feature & GS_CAN_FEATURE_LOOP_BACK)
1228		dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1229
1230	if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1231		dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1232
1233	if (feature & GS_CAN_FEATURE_ONE_SHOT)
1234		dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1235
1236	if (feature & GS_CAN_FEATURE_FD) {
1237		dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1238		/* The data bit timing will be overwritten, if
1239		 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1240		 */
1241		dev->can.data_bittiming_const = &dev->bt_const;
1242		dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1243	}
1244
1245	if (feature & GS_CAN_FEATURE_TERMINATION) {
1246		rc = gs_usb_get_termination(netdev, &dev->can.termination);
1247		if (rc) {
1248			dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1249
1250			dev_info(&intf->dev,
1251				 "Disabling termination support for channel %d (%pe)\n",
1252				 channel, ERR_PTR(rc));
1253		} else {
1254			dev->can.termination_const = gs_usb_termination_const;
1255			dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1256			dev->can.do_set_termination = gs_usb_set_termination;
1257		}
1258	}
1259
1260	if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1261		dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1262
1263	if (feature & GS_CAN_FEATURE_GET_STATE)
1264		dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1265
1266	/* The CANtact Pro from LinkLayer Labs is based on the
1267	 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1268	 * erratum. However, the current firmware (version 2) doesn't
1269	 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1270	 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1271	 * this issue.
1272	 *
1273	 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1274	 * CANtact Pro firmware uses a request value, which is already
1275	 * used by the candleLight firmware for a different purpose
1276	 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1277	 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1278	 * issue.
1279	 */
1280	if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1281	    dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1282	    dev->udev->manufacturer && dev->udev->product &&
1283	    !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1284	    !strcmp(dev->udev->product, "CANtact Pro") &&
1285	    (le32_to_cpu(dconf->sw_version) <= 2))
1286		dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1287			GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1288
1289	/* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1290	if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1291	      feature & GS_CAN_FEATURE_IDENTIFY))
1292		dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1293
1294	/* fetch extended bit timing constants if device has feature
1295	 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1296	 */
1297	if (feature & GS_CAN_FEATURE_FD &&
1298	    feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1299		rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1300					  GS_USB_BREQ_BT_CONST_EXT,
1301					  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1302					  channel, 0, &bt_const_extended,
1303					  sizeof(bt_const_extended),
1304					  1000, GFP_KERNEL);
1305		if (rc) {
1306			dev_err(&intf->dev,
1307				"Couldn't get extended bit timing const for channel %d (%pe)\n",
1308				channel, ERR_PTR(rc));
1309			goto out_free_candev;
1310		}
1311
1312		strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1313		dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1314		dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1315		dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1316		dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1317		dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1318		dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1319		dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1320		dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1321
1322		dev->can.data_bittiming_const = &dev->data_bt_const;
1323	}
1324
1325	SET_NETDEV_DEV(netdev, &intf->dev);
1326
1327	rc = register_candev(dev->netdev);
1328	if (rc) {
1329		dev_err(&intf->dev,
1330			"Couldn't register candev for channel %d (%pe)\n",
1331			channel, ERR_PTR(rc));
1332		goto out_free_candev;
1333	}
1334
1335	return dev;
1336
1337 out_free_candev:
1338	free_candev(dev->netdev);
1339	return ERR_PTR(rc);
1340}
1341
1342static void gs_destroy_candev(struct gs_can *dev)
1343{
1344	unregister_candev(dev->netdev);
1345	usb_kill_anchored_urbs(&dev->tx_submitted);
1346	free_candev(dev->netdev);
1347}
1348
1349static int gs_usb_probe(struct usb_interface *intf,
1350			const struct usb_device_id *id)
1351{
1352	struct usb_device *udev = interface_to_usbdev(intf);
1353	struct gs_host_frame *hf;
1354	struct gs_usb *dev;
1355	struct gs_host_config hconf = {
1356		.byte_order = cpu_to_le32(0x0000beef),
1357	};
1358	struct gs_device_config dconf;
1359	unsigned int icount, i;
1360	int rc;
1361
1362	/* send host config */
1363	rc = usb_control_msg_send(udev, 0,
1364				  GS_USB_BREQ_HOST_FORMAT,
1365				  USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1366				  1, intf->cur_altsetting->desc.bInterfaceNumber,
1367				  &hconf, sizeof(hconf), 1000,
1368				  GFP_KERNEL);
1369	if (rc) {
1370		dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1371		return rc;
1372	}
1373
1374	/* read device config */
1375	rc = usb_control_msg_recv(udev, 0,
1376				  GS_USB_BREQ_DEVICE_CONFIG,
1377				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1378				  1, intf->cur_altsetting->desc.bInterfaceNumber,
1379				  &dconf, sizeof(dconf), 1000,
1380				  GFP_KERNEL);
1381	if (rc) {
1382		dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1383			rc);
1384		return rc;
1385	}
1386
1387	icount = dconf.icount + 1;
1388	dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1389
1390	if (icount > GS_MAX_INTF) {
1391		dev_err(&intf->dev,
1392			"Driver cannot handle more that %u CAN interfaces\n",
1393			GS_MAX_INTF);
1394		return -EINVAL;
1395	}
1396
1397	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1398	if (!dev)
1399		return -ENOMEM;
1400
1401	init_usb_anchor(&dev->rx_submitted);
1402
1403	usb_set_intfdata(intf, dev);
1404	dev->udev = udev;
1405
1406	for (i = 0; i < icount; i++) {
1407		unsigned int hf_size_rx = 0;
1408
1409		dev->canch[i] = gs_make_candev(i, intf, &dconf);
1410		if (IS_ERR_OR_NULL(dev->canch[i])) {
1411			/* save error code to return later */
1412			rc = PTR_ERR(dev->canch[i]);
1413
1414			/* on failure destroy previously created candevs */
1415			icount = i;
1416			for (i = 0; i < icount; i++)
1417				gs_destroy_candev(dev->canch[i]);
1418
1419			usb_kill_anchored_urbs(&dev->rx_submitted);
1420			kfree(dev);
1421			return rc;
1422		}
1423		dev->canch[i]->parent = dev;
1424
1425		/* set RX packet size based on FD and if hardware
1426                * timestamps are supported.
1427		*/
1428		if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1429			if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1430				hf_size_rx = struct_size(hf, canfd_ts, 1);
1431			else
1432				hf_size_rx = struct_size(hf, canfd, 1);
1433		} else {
1434			if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1435				hf_size_rx = struct_size(hf, classic_can_ts, 1);
1436			else
1437				hf_size_rx = struct_size(hf, classic_can, 1);
1438		}
1439		dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
1440	}
1441
1442	return 0;
1443}
1444
1445static void gs_usb_disconnect(struct usb_interface *intf)
1446{
1447	struct gs_usb *dev = usb_get_intfdata(intf);
1448	unsigned int i;
1449
1450	usb_set_intfdata(intf, NULL);
1451
1452	if (!dev) {
1453		dev_err(&intf->dev, "Disconnect (nodata)\n");
1454		return;
1455	}
1456
1457	for (i = 0; i < GS_MAX_INTF; i++)
1458		if (dev->canch[i])
1459			gs_destroy_candev(dev->canch[i]);
1460
1461	usb_kill_anchored_urbs(&dev->rx_submitted);
1462	kfree(dev);
1463}
1464
1465static const struct usb_device_id gs_usb_table[] = {
1466	{ USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1467				      USB_GS_USB_1_PRODUCT_ID, 0) },
1468	{ USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1469				      USB_CANDLELIGHT_PRODUCT_ID, 0) },
1470	{ USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1471				      USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1472	{ USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1473				      USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1474	{} /* Terminating entry */
1475};
1476
1477MODULE_DEVICE_TABLE(usb, gs_usb_table);
1478
1479static struct usb_driver gs_usb_driver = {
1480	.name = KBUILD_MODNAME,
1481	.probe = gs_usb_probe,
1482	.disconnect = gs_usb_disconnect,
1483	.id_table = gs_usb_table,
1484};
1485
1486module_usb_driver(gs_usb_driver);
1487
1488MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1489MODULE_DESCRIPTION(
1490"Socket CAN device driver for Geschwister Schneider Technologie-, "
1491"Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1492"and bytewerk.org candleLight USB CAN interfaces.");
1493MODULE_LICENSE("GPL v2");