Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Copyright 2016-2022 HabanaLabs, Ltd.
   5 * All Rights Reserved.
   6 */
   7
   8#include <uapi/misc/habanalabs.h>
   9#include "habanalabs.h"
  10#include "../include/hw_ip/mmu/mmu_general.h"
  11
  12#include <linux/uaccess.h>
  13#include <linux/slab.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pci-p2pdma.h>
  16
  17MODULE_IMPORT_NS(DMA_BUF);
  18
  19#define HL_MMU_DEBUG	0
  20
  21/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
  22#define DRAM_POOL_PAGE_SIZE SZ_8M
  23
  24static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
  25			struct hl_mem_in *args, u64 *handle);
  26
  27static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
  28{
  29	struct asic_fixed_properties *prop = &hdev->asic_prop;
  30	u64 psize;
  31
  32	/*
  33	 * for ASIC that supports setting the allocation page size by user we will address
  34	 * user's choice only if it is not 0 (as 0 means taking the default page size)
  35	 */
  36	if (prop->supports_user_set_page_size && args->alloc.page_size) {
  37		psize = args->alloc.page_size;
  38
  39		if (!is_power_of_2(psize)) {
  40			dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
  41			return -EINVAL;
  42		}
  43	} else {
  44		psize = prop->device_mem_alloc_default_page_size;
  45	}
  46
  47	*page_size = psize;
  48
  49	return 0;
  50}
  51
  52/*
  53 * The va ranges in context object contain a list with the available chunks of
  54 * device virtual memory.
  55 * There is one range for host allocations and one for DRAM allocations.
  56 *
  57 * On initialization each range contains one chunk of all of its available
  58 * virtual range which is a half of the total device virtual range.
  59 *
  60 * On each mapping of physical pages, a suitable virtual range chunk (with a
  61 * minimum size) is selected from the list. If the chunk size equals the
  62 * requested size, the chunk is returned. Otherwise, the chunk is split into
  63 * two chunks - one to return as result and a remainder to stay in the list.
  64 *
  65 * On each Unmapping of a virtual address, the relevant virtual chunk is
  66 * returned to the list. The chunk is added to the list and if its edges match
  67 * the edges of the adjacent chunks (means a contiguous chunk can be created),
  68 * the chunks are merged.
  69 *
  70 * On finish, the list is checked to have only one chunk of all the relevant
  71 * virtual range (which is a half of the device total virtual range).
  72 * If not (means not all mappings were unmapped), a warning is printed.
  73 */
  74
  75/*
  76 * alloc_device_memory() - allocate device memory.
  77 * @ctx: pointer to the context structure.
  78 * @args: host parameters containing the requested size.
  79 * @ret_handle: result handle.
  80 *
  81 * This function does the following:
  82 * - Allocate the requested size rounded up to 'dram_page_size' pages.
  83 * - Return unique handle for later map/unmap/free.
  84 */
  85static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
  86				u32 *ret_handle)
  87{
  88	struct hl_device *hdev = ctx->hdev;
  89	struct hl_vm *vm = &hdev->vm;
  90	struct hl_vm_phys_pg_pack *phys_pg_pack;
  91	u64 paddr = 0, total_size, num_pgs, i;
  92	u32 num_curr_pgs, page_size;
  93	bool contiguous;
  94	int handle, rc;
  95
  96	num_curr_pgs = 0;
  97
  98	rc = set_alloc_page_size(hdev, args, &page_size);
  99	if (rc)
 100		return rc;
 101
 102	num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
 103	total_size = num_pgs * page_size;
 104
 105	if (!total_size) {
 106		dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
 107		return -EINVAL;
 108	}
 109
 110	contiguous = args->flags & HL_MEM_CONTIGUOUS;
 111
 112	if (contiguous) {
 113		if (is_power_of_2(page_size))
 114			paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
 115								     total_size, NULL, page_size);
 116		else
 117			paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
 118		if (!paddr) {
 119			dev_err(hdev->dev,
 120				"Cannot allocate %llu contiguous pages with total size of %llu\n",
 121				num_pgs, total_size);
 122			return -ENOMEM;
 123		}
 124	}
 125
 126	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
 127	if (!phys_pg_pack) {
 128		rc = -ENOMEM;
 129		goto pages_pack_err;
 130	}
 131
 132	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
 133	phys_pg_pack->asid = ctx->asid;
 134	phys_pg_pack->npages = num_pgs;
 135	phys_pg_pack->page_size = page_size;
 136	phys_pg_pack->total_size = total_size;
 137	phys_pg_pack->flags = args->flags;
 138	phys_pg_pack->contiguous = contiguous;
 139
 140	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
 141	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
 142		rc = -ENOMEM;
 143		goto pages_arr_err;
 144	}
 145
 146	if (phys_pg_pack->contiguous) {
 147		for (i = 0 ; i < num_pgs ; i++)
 148			phys_pg_pack->pages[i] = paddr + i * page_size;
 149	} else {
 150		for (i = 0 ; i < num_pgs ; i++) {
 151			if (is_power_of_2(page_size))
 152				phys_pg_pack->pages[i] =
 153					(uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
 154									    page_size, NULL,
 155									    page_size);
 156			else
 157				phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
 158									page_size);
 159
 160			if (!phys_pg_pack->pages[i]) {
 161				dev_err(hdev->dev,
 162					"Cannot allocate device memory (out of memory)\n");
 163				rc = -ENOMEM;
 164				goto page_err;
 165			}
 166
 167			num_curr_pgs++;
 168		}
 169	}
 170
 171	spin_lock(&vm->idr_lock);
 172	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
 173				GFP_ATOMIC);
 174	spin_unlock(&vm->idr_lock);
 175
 176	if (handle < 0) {
 177		dev_err(hdev->dev, "Failed to get handle for page\n");
 178		rc = -EFAULT;
 179		goto idr_err;
 180	}
 181
 182	for (i = 0 ; i < num_pgs ; i++)
 183		kref_get(&vm->dram_pg_pool_refcount);
 184
 185	phys_pg_pack->handle = handle;
 186
 187	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
 188	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
 189
 190	*ret_handle = handle;
 191
 192	return 0;
 193
 194idr_err:
 195page_err:
 196	if (!phys_pg_pack->contiguous)
 197		for (i = 0 ; i < num_curr_pgs ; i++)
 198			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
 199					page_size);
 200
 201	kvfree(phys_pg_pack->pages);
 202pages_arr_err:
 203	kfree(phys_pg_pack);
 204pages_pack_err:
 205	if (contiguous)
 206		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
 207
 208	return rc;
 209}
 210
 211/**
 212 * dma_map_host_va() - DMA mapping of the given host virtual address.
 213 * @hdev: habanalabs device structure.
 214 * @addr: the host virtual address of the memory area.
 215 * @size: the size of the memory area.
 216 * @p_userptr: pointer to result userptr structure.
 217 *
 218 * This function does the following:
 219 * - Allocate userptr structure.
 220 * - Pin the given host memory using the userptr structure.
 221 * - Perform DMA mapping to have the DMA addresses of the pages.
 222 */
 223static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
 224				struct hl_userptr **p_userptr)
 225{
 226	struct hl_userptr *userptr;
 227	int rc;
 228
 229	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
 230	if (!userptr) {
 231		rc = -ENOMEM;
 232		goto userptr_err;
 233	}
 234
 235	rc = hl_pin_host_memory(hdev, addr, size, userptr);
 236	if (rc) {
 237		dev_err(hdev->dev, "Failed to pin host memory\n");
 238		goto pin_err;
 239	}
 240
 241	userptr->dma_mapped = true;
 242	userptr->dir = DMA_BIDIRECTIONAL;
 243	userptr->vm_type = VM_TYPE_USERPTR;
 244
 245	*p_userptr = userptr;
 246
 247	rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
 248	if (rc) {
 249		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
 250		goto dma_map_err;
 251	}
 252
 253	return 0;
 254
 255dma_map_err:
 256	hl_unpin_host_memory(hdev, userptr);
 257pin_err:
 258	kfree(userptr);
 259userptr_err:
 260
 261	return rc;
 262}
 263
 264/**
 265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
 266 * @hdev: habanalabs device structure.
 267 * @userptr: userptr to free.
 268 *
 269 * This function does the following:
 270 * - Unpins the physical pages.
 271 * - Frees the userptr structure.
 272 */
 273static void dma_unmap_host_va(struct hl_device *hdev,
 274				struct hl_userptr *userptr)
 275{
 276	hl_unpin_host_memory(hdev, userptr);
 277	kfree(userptr);
 278}
 279
 280/**
 281 * dram_pg_pool_do_release() - free DRAM pages pool
 282 * @ref: pointer to reference object.
 283 *
 284 * This function does the following:
 285 * - Frees the idr structure of physical pages handles.
 286 * - Frees the generic pool of DRAM physical pages.
 287 */
 288static void dram_pg_pool_do_release(struct kref *ref)
 289{
 290	struct hl_vm *vm = container_of(ref, struct hl_vm,
 291			dram_pg_pool_refcount);
 292
 293	/*
 294	 * free the idr here as only here we know for sure that there are no
 295	 * allocated physical pages and hence there are no handles in use
 296	 */
 297	idr_destroy(&vm->phys_pg_pack_handles);
 298	gen_pool_destroy(vm->dram_pg_pool);
 299}
 300
 301/**
 302 * free_phys_pg_pack() - free physical page pack.
 303 * @hdev: habanalabs device structure.
 304 * @phys_pg_pack: physical page pack to free.
 305 *
 306 * This function does the following:
 307 * - For DRAM memory only
 308 *   - iterate over the pack, free each physical block structure by
 309 *     returning it to the general pool.
 310 * - Free the hl_vm_phys_pg_pack structure.
 311 */
 312static void free_phys_pg_pack(struct hl_device *hdev,
 313				struct hl_vm_phys_pg_pack *phys_pg_pack)
 314{
 315	struct hl_vm *vm = &hdev->vm;
 316	u64 i;
 317
 318	if (phys_pg_pack->created_from_userptr)
 319		goto end;
 320
 321	if (phys_pg_pack->contiguous) {
 322		gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
 323			phys_pg_pack->total_size);
 324
 325		for (i = 0; i < phys_pg_pack->npages ; i++)
 326			kref_put(&vm->dram_pg_pool_refcount,
 327				dram_pg_pool_do_release);
 328	} else {
 329		for (i = 0 ; i < phys_pg_pack->npages ; i++) {
 330			gen_pool_free(vm->dram_pg_pool,
 331				phys_pg_pack->pages[i],
 332				phys_pg_pack->page_size);
 333			kref_put(&vm->dram_pg_pool_refcount,
 334				dram_pg_pool_do_release);
 335		}
 336	}
 337
 338end:
 339	kvfree(phys_pg_pack->pages);
 340	kfree(phys_pg_pack);
 341
 342	return;
 343}
 344
 345/**
 346 * free_device_memory() - free device memory.
 347 * @ctx: pointer to the context structure.
 348 * @args: host parameters containing the requested size.
 349 *
 350 * This function does the following:
 351 * - Free the device memory related to the given handle.
 352 */
 353static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
 354{
 355	struct hl_device *hdev = ctx->hdev;
 356	struct hl_vm *vm = &hdev->vm;
 357	struct hl_vm_phys_pg_pack *phys_pg_pack;
 358	u32 handle = args->free.handle;
 359
 360	spin_lock(&vm->idr_lock);
 361	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
 362	if (!phys_pg_pack) {
 363		spin_unlock(&vm->idr_lock);
 364		dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
 365		return -EINVAL;
 366	}
 367
 368	if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
 369		spin_unlock(&vm->idr_lock);
 370		dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
 371		return -EINVAL;
 372	}
 373
 374	if (phys_pg_pack->exporting_cnt) {
 375		spin_unlock(&vm->idr_lock);
 376		dev_dbg(hdev->dev, "handle %u is exported, cannot free\n", handle);
 377		return -EINVAL;
 378	}
 379
 380	/* must remove from idr before the freeing of the physical pages as the refcount of the pool
 381	 * is also the trigger of the idr destroy
 382	 */
 383	idr_remove(&vm->phys_pg_pack_handles, handle);
 384	spin_unlock(&vm->idr_lock);
 385
 386	atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
 387	atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
 388
 389	free_phys_pg_pack(hdev, phys_pg_pack);
 390
 391	return 0;
 392}
 393
 394/**
 395 * clear_va_list_locked() - free virtual addresses list.
 396 * @hdev: habanalabs device structure.
 397 * @va_list: list of virtual addresses to free.
 398 *
 399 * This function does the following:
 400 * - Iterate over the list and free each virtual addresses block.
 401 *
 402 * This function should be called only when va_list lock is taken.
 403 */
 404static void clear_va_list_locked(struct hl_device *hdev,
 405		struct list_head *va_list)
 406{
 407	struct hl_vm_va_block *va_block, *tmp;
 408
 409	list_for_each_entry_safe(va_block, tmp, va_list, node) {
 410		list_del(&va_block->node);
 411		kfree(va_block);
 412	}
 413}
 414
 415/**
 416 * print_va_list_locked() - print virtual addresses list.
 417 * @hdev: habanalabs device structure.
 418 * @va_list: list of virtual addresses to print.
 419 *
 420 * This function does the following:
 421 * - Iterate over the list and print each virtual addresses block.
 422 *
 423 * This function should be called only when va_list lock is taken.
 424 */
 425static void print_va_list_locked(struct hl_device *hdev,
 426		struct list_head *va_list)
 427{
 428#if HL_MMU_DEBUG
 429	struct hl_vm_va_block *va_block;
 430
 431	dev_dbg(hdev->dev, "print va list:\n");
 432
 433	list_for_each_entry(va_block, va_list, node)
 434		dev_dbg(hdev->dev,
 435			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
 436			va_block->start, va_block->end, va_block->size);
 437#endif
 438}
 439
 440/**
 441 * merge_va_blocks_locked() - merge a virtual block if possible.
 442 * @hdev: pointer to the habanalabs device structure.
 443 * @va_list: pointer to the virtual addresses block list.
 444 * @va_block: virtual block to merge with adjacent blocks.
 445 *
 446 * This function does the following:
 447 * - Merge the given blocks with the adjacent blocks if their virtual ranges
 448 *   create a contiguous virtual range.
 449 *
 450 * This Function should be called only when va_list lock is taken.
 451 */
 452static void merge_va_blocks_locked(struct hl_device *hdev,
 453		struct list_head *va_list, struct hl_vm_va_block *va_block)
 454{
 455	struct hl_vm_va_block *prev, *next;
 456
 457	prev = list_prev_entry(va_block, node);
 458	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
 459		prev->end = va_block->end;
 460		prev->size = prev->end - prev->start + 1;
 461		list_del(&va_block->node);
 462		kfree(va_block);
 463		va_block = prev;
 464	}
 465
 466	next = list_next_entry(va_block, node);
 467	if (&next->node != va_list && va_block->end + 1 == next->start) {
 468		next->start = va_block->start;
 469		next->size = next->end - next->start + 1;
 470		list_del(&va_block->node);
 471		kfree(va_block);
 472	}
 473}
 474
 475/**
 476 * add_va_block_locked() - add a virtual block to the virtual addresses list.
 477 * @hdev: pointer to the habanalabs device structure.
 478 * @va_list: pointer to the virtual addresses block list.
 479 * @start: start virtual address.
 480 * @end: end virtual address.
 481 *
 482 * This function does the following:
 483 * - Add the given block to the virtual blocks list and merge with other blocks
 484 *   if a contiguous virtual block can be created.
 485 *
 486 * This Function should be called only when va_list lock is taken.
 487 */
 488static int add_va_block_locked(struct hl_device *hdev,
 489		struct list_head *va_list, u64 start, u64 end)
 490{
 491	struct hl_vm_va_block *va_block, *res = NULL;
 492	u64 size = end - start + 1;
 493
 494	print_va_list_locked(hdev, va_list);
 495
 496	list_for_each_entry(va_block, va_list, node) {
 497		/* TODO: remove upon matureness */
 498		if (hl_mem_area_crosses_range(start, size, va_block->start,
 499				va_block->end)) {
 500			dev_err(hdev->dev,
 501				"block crossing ranges at start 0x%llx, end 0x%llx\n",
 502				va_block->start, va_block->end);
 503			return -EINVAL;
 504		}
 505
 506		if (va_block->end < start)
 507			res = va_block;
 508	}
 509
 510	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
 511	if (!va_block)
 512		return -ENOMEM;
 513
 514	va_block->start = start;
 515	va_block->end = end;
 516	va_block->size = size;
 517
 518	if (!res)
 519		list_add(&va_block->node, va_list);
 520	else
 521		list_add(&va_block->node, &res->node);
 522
 523	merge_va_blocks_locked(hdev, va_list, va_block);
 524
 525	print_va_list_locked(hdev, va_list);
 526
 527	return 0;
 528}
 529
 530/**
 531 * add_va_block() - wrapper for add_va_block_locked.
 532 * @hdev: pointer to the habanalabs device structure.
 533 * @va_range: pointer to the virtual addresses range object.
 534 * @start: start virtual address.
 535 * @end: end virtual address.
 536 *
 537 * This function does the following:
 538 * - Takes the list lock and calls add_va_block_locked.
 539 */
 540static inline int add_va_block(struct hl_device *hdev,
 541		struct hl_va_range *va_range, u64 start, u64 end)
 542{
 543	int rc;
 544
 545	mutex_lock(&va_range->lock);
 546	rc = add_va_block_locked(hdev, &va_range->list, start, end);
 547	mutex_unlock(&va_range->lock);
 548
 549	return rc;
 550}
 551
 552/**
 553 * is_hint_crossing_range() - check if hint address crossing specified reserved.
 554 * @range_type: virtual space range type.
 555 * @start_addr: start virtual address.
 556 * @size: block size.
 557 * @prop: asic properties structure to retrieve reserved ranges from.
 558 */
 559static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
 560		u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
 561	bool range_cross;
 562
 563	if (range_type == HL_VA_RANGE_TYPE_DRAM)
 564		range_cross =
 565			hl_mem_area_crosses_range(start_addr, size,
 566			prop->hints_dram_reserved_va_range.start_addr,
 567			prop->hints_dram_reserved_va_range.end_addr);
 568	else if (range_type == HL_VA_RANGE_TYPE_HOST)
 569		range_cross =
 570			hl_mem_area_crosses_range(start_addr,	size,
 571			prop->hints_host_reserved_va_range.start_addr,
 572			prop->hints_host_reserved_va_range.end_addr);
 573	else
 574		range_cross =
 575			hl_mem_area_crosses_range(start_addr, size,
 576			prop->hints_host_hpage_reserved_va_range.start_addr,
 577			prop->hints_host_hpage_reserved_va_range.end_addr);
 578
 579	return range_cross;
 580}
 581
 582/**
 583 * get_va_block() - get a virtual block for the given size and alignment.
 584 *
 585 * @hdev: pointer to the habanalabs device structure.
 586 * @va_range: pointer to the virtual addresses range.
 587 * @size: requested block size.
 588 * @hint_addr: hint for requested address by the user.
 589 * @va_block_align: required alignment of the virtual block start address.
 590 * @range_type: va range type (host, dram)
 591 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
 592 *
 593 * This function does the following:
 594 * - Iterate on the virtual block list to find a suitable virtual block for the
 595 *   given size, hint address and alignment.
 596 * - Reserve the requested block and update the list.
 597 * - Return the start address of the virtual block.
 598 */
 599static u64 get_va_block(struct hl_device *hdev,
 600				struct hl_va_range *va_range,
 601				u64 size, u64 hint_addr, u32 va_block_align,
 602				enum hl_va_range_type range_type,
 603				u32 flags)
 604{
 605	struct hl_vm_va_block *va_block, *new_va_block = NULL;
 606	struct asic_fixed_properties *prop = &hdev->asic_prop;
 607	u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
 608		align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
 609		dram_hint_mask = prop->dram_hints_align_mask;
 610	bool add_prev = false;
 611	bool is_align_pow_2  = is_power_of_2(va_range->page_size);
 612	bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
 613	bool force_hint = flags & HL_MEM_FORCE_HINT;
 614
 615	if (is_align_pow_2)
 616		align_mask = ~((u64)va_block_align - 1);
 617	else
 618		/*
 619		 * with non-power-of-2 range we work only with page granularity
 620		 * and the start address is page aligned,
 621		 * so no need for alignment checking.
 622		 */
 623		size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
 624							va_range->page_size;
 625
 626	tmp_hint_addr = hint_addr & ~dram_hint_mask;
 627
 628	/* Check if we need to ignore hint address */
 629	if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
 630			(!is_align_pow_2 && is_hint_dram_addr &&
 631			do_div(tmp_hint_addr, va_range->page_size))) {
 632
 633		if (force_hint) {
 634			/* Hint must be respected, so here we just fail */
 635			dev_err(hdev->dev,
 636				"Hint address 0x%llx is not page aligned - cannot be respected\n",
 637				hint_addr);
 638			return 0;
 639		}
 640
 641		dev_dbg(hdev->dev,
 642			"Hint address 0x%llx will be ignored because it is not aligned\n",
 643			hint_addr);
 644		hint_addr = 0;
 645	}
 646
 647	mutex_lock(&va_range->lock);
 648
 649	print_va_list_locked(hdev, &va_range->list);
 650
 651	list_for_each_entry(va_block, &va_range->list, node) {
 652		/* Calc the first possible aligned addr */
 653		valid_start = va_block->start;
 654
 655		if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
 656			valid_start &= align_mask;
 657			valid_start += va_block_align;
 658			if (valid_start > va_block->end)
 659				continue;
 660		}
 661
 662		valid_size = va_block->end - valid_start + 1;
 663		if (valid_size < size)
 664			continue;
 665
 666		/*
 667		 * In case hint address is 0, and hints_range_reservation
 668		 * property enabled, then avoid allocating va blocks from the
 669		 * range reserved for hint addresses
 670		 */
 671		if (prop->hints_range_reservation && !hint_addr)
 672			if (is_hint_crossing_range(range_type, valid_start,
 673					size, prop))
 674				continue;
 675
 676		/* Pick the minimal length block which has the required size */
 677		if (!new_va_block || (valid_size < reserved_valid_size)) {
 678			new_va_block = va_block;
 679			reserved_valid_start = valid_start;
 680			reserved_valid_size = valid_size;
 681		}
 682
 683		if (hint_addr && hint_addr >= valid_start &&
 684					(hint_addr + size) <= va_block->end) {
 685			new_va_block = va_block;
 686			reserved_valid_start = hint_addr;
 687			reserved_valid_size = valid_size;
 688			break;
 689		}
 690	}
 691
 692	if (!new_va_block) {
 693		dev_err(hdev->dev, "no available va block for size %llu\n",
 694								size);
 695		goto out;
 696	}
 697
 698	if (force_hint && reserved_valid_start != hint_addr) {
 699		/* Hint address must be respected. If we are here - this means
 700		 * we could not respect it.
 701		 */
 702		dev_err(hdev->dev,
 703			"Hint address 0x%llx could not be respected\n",
 704			hint_addr);
 705		reserved_valid_start = 0;
 706		goto out;
 707	}
 708
 709	/*
 710	 * Check if there is some leftover range due to reserving the new
 711	 * va block, then return it to the main virtual addresses list.
 712	 */
 713	if (reserved_valid_start > new_va_block->start) {
 714		prev_start = new_va_block->start;
 715		prev_end = reserved_valid_start - 1;
 716
 717		new_va_block->start = reserved_valid_start;
 718		new_va_block->size = reserved_valid_size;
 719
 720		add_prev = true;
 721	}
 722
 723	if (new_va_block->size > size) {
 724		new_va_block->start += size;
 725		new_va_block->size = new_va_block->end - new_va_block->start + 1;
 726	} else {
 727		list_del(&new_va_block->node);
 728		kfree(new_va_block);
 729	}
 730
 731	if (add_prev)
 732		add_va_block_locked(hdev, &va_range->list, prev_start,
 733				prev_end);
 734
 735	print_va_list_locked(hdev, &va_range->list);
 736out:
 737	mutex_unlock(&va_range->lock);
 738
 739	return reserved_valid_start;
 740}
 741
 742/*
 743 * hl_reserve_va_block() - reserve a virtual block of a given size.
 744 * @hdev: pointer to the habanalabs device structure.
 745 * @ctx: current context
 746 * @type: virtual addresses range type.
 747 * @size: requested block size.
 748 * @alignment: required alignment in bytes of the virtual block start address,
 749 *             0 means no alignment.
 750 *
 751 * This function does the following:
 752 * - Iterate on the virtual block list to find a suitable virtual block for the
 753 *   given size and alignment.
 754 * - Reserve the requested block and update the list.
 755 * - Return the start address of the virtual block.
 756 */
 757u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
 758		enum hl_va_range_type type, u64 size, u32 alignment)
 759{
 760	return get_va_block(hdev, ctx->va_range[type], size, 0,
 761			max(alignment, ctx->va_range[type]->page_size),
 762			type, 0);
 763}
 764
 765/**
 766 * hl_get_va_range_type() - get va_range type for the given address and size.
 767 * @ctx: context to fetch va_range from.
 768 * @address: the start address of the area we want to validate.
 769 * @size: the size in bytes of the area we want to validate.
 770 * @type: returned va_range type.
 771 *
 772 * Return: true if the area is inside a valid range, false otherwise.
 773 */
 774static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
 775			enum hl_va_range_type *type)
 776{
 777	int i;
 778
 779	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
 780		if (hl_mem_area_inside_range(address, size,
 781				ctx->va_range[i]->start_addr,
 782				ctx->va_range[i]->end_addr)) {
 783			*type = i;
 784			return 0;
 785		}
 786	}
 787
 788	return -EINVAL;
 789}
 790
 791/**
 792 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
 793 * @hdev: pointer to the habanalabs device structure
 794 * @ctx: pointer to the context structure.
 795 * @start_addr: start virtual address.
 796 * @size: number of bytes to unreserve.
 797 *
 798 * This function does the following:
 799 * - Takes the list lock and calls add_va_block_locked.
 800 */
 801int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
 802		u64 start_addr, u64 size)
 803{
 804	enum hl_va_range_type type;
 805	int rc;
 806
 807	rc = hl_get_va_range_type(ctx, start_addr, size, &type);
 808	if (rc) {
 809		dev_err(hdev->dev,
 810			"cannot find va_range for va %#llx size %llu",
 811			start_addr, size);
 812		return rc;
 813	}
 814
 815	rc = add_va_block(hdev, ctx->va_range[type], start_addr,
 816						start_addr + size - 1);
 817	if (rc)
 818		dev_warn(hdev->dev,
 819			"add va block failed for vaddr: 0x%llx\n", start_addr);
 820
 821	return rc;
 822}
 823
 824/**
 825 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
 826 *                                    memory
 827 * @ctx: pointer to the context structure.
 828 * @userptr: userptr to initialize from.
 829 * @pphys_pg_pack: result pointer.
 830 * @force_regular_page: tell the function to ignore huge page optimization,
 831 *                      even if possible. Needed for cases where the device VA
 832 *                      is allocated before we know the composition of the
 833 *                      physical pages
 834 *
 835 * This function does the following:
 836 * - Pin the physical pages related to the given virtual block.
 837 * - Create a physical page pack from the physical pages related to the given
 838 *   virtual block.
 839 */
 840static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
 841				struct hl_userptr *userptr,
 842				struct hl_vm_phys_pg_pack **pphys_pg_pack,
 843				bool force_regular_page)
 844{
 845	u32 npages, page_size = PAGE_SIZE,
 846		huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
 847	u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
 848	struct hl_vm_phys_pg_pack *phys_pg_pack;
 849	bool first = true, is_huge_page_opt;
 850	u64 page_mask, total_npages;
 851	struct scatterlist *sg;
 852	dma_addr_t dma_addr;
 853	int rc, i, j;
 854
 855	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
 856	if (!phys_pg_pack)
 857		return -ENOMEM;
 858
 859	phys_pg_pack->vm_type = userptr->vm_type;
 860	phys_pg_pack->created_from_userptr = true;
 861	phys_pg_pack->asid = ctx->asid;
 862	atomic_set(&phys_pg_pack->mapping_cnt, 1);
 863
 864	is_huge_page_opt = (force_regular_page ? false : true);
 865
 866	/* Only if all dma_addrs are aligned to 2MB and their
 867	 * sizes is at least 2MB, we can use huge page mapping.
 868	 * We limit the 2MB optimization to this condition,
 869	 * since later on we acquire the related VA range as one
 870	 * consecutive block.
 871	 */
 872	total_npages = 0;
 873	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
 874		npages = hl_get_sg_info(sg, &dma_addr);
 875
 876		total_npages += npages;
 877
 878		if ((npages % pgs_in_huge_page) ||
 879					(dma_addr & (huge_page_size - 1)))
 880			is_huge_page_opt = false;
 881	}
 882
 883	if (is_huge_page_opt) {
 884		page_size = huge_page_size;
 885		do_div(total_npages, pgs_in_huge_page);
 886	}
 887
 888	page_mask = ~(((u64) page_size) - 1);
 889
 890	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
 891						GFP_KERNEL);
 892	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
 893		rc = -ENOMEM;
 894		goto page_pack_arr_mem_err;
 895	}
 896
 897	phys_pg_pack->npages = total_npages;
 898	phys_pg_pack->page_size = page_size;
 899	phys_pg_pack->total_size = total_npages * page_size;
 900
 901	j = 0;
 902	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
 903		npages = hl_get_sg_info(sg, &dma_addr);
 904
 905		/* align down to physical page size and save the offset */
 906		if (first) {
 907			first = false;
 908			phys_pg_pack->offset = dma_addr & (page_size - 1);
 909			dma_addr &= page_mask;
 910		}
 911
 912		while (npages) {
 913			phys_pg_pack->pages[j++] = dma_addr;
 914			dma_addr += page_size;
 915
 916			if (is_huge_page_opt)
 917				npages -= pgs_in_huge_page;
 918			else
 919				npages--;
 920		}
 921	}
 922
 923	*pphys_pg_pack = phys_pg_pack;
 924
 925	return 0;
 926
 927page_pack_arr_mem_err:
 928	kfree(phys_pg_pack);
 929
 930	return rc;
 931}
 932
 933/**
 934 * map_phys_pg_pack() - maps the physical page pack..
 935 * @ctx: pointer to the context structure.
 936 * @vaddr: start address of the virtual area to map from.
 937 * @phys_pg_pack: the pack of physical pages to map to.
 938 *
 939 * This function does the following:
 940 * - Maps each chunk of virtual memory to matching physical chunk.
 941 * - Stores number of successful mappings in the given argument.
 942 * - Returns 0 on success, error code otherwise.
 943 */
 944static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
 945				struct hl_vm_phys_pg_pack *phys_pg_pack)
 946{
 947	struct hl_device *hdev = ctx->hdev;
 948	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
 949	u32 page_size = phys_pg_pack->page_size;
 950	int rc = 0;
 951	bool is_host_addr;
 952
 953	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
 954		paddr = phys_pg_pack->pages[i];
 955
 956		rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
 957				(i + 1) == phys_pg_pack->npages);
 958		if (rc) {
 959			dev_err(hdev->dev,
 960				"map failed for handle %u, npages: %llu, mapped: %llu",
 961				phys_pg_pack->handle, phys_pg_pack->npages,
 962				mapped_pg_cnt);
 963			goto err;
 964		}
 965
 966		mapped_pg_cnt++;
 967		next_vaddr += page_size;
 968	}
 969
 970	return 0;
 971
 972err:
 973	is_host_addr = !hl_is_dram_va(hdev, vaddr);
 974
 975	next_vaddr = vaddr;
 976	for (i = 0 ; i < mapped_pg_cnt ; i++) {
 977		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
 978					(i + 1) == mapped_pg_cnt))
 979			dev_warn_ratelimited(hdev->dev,
 980				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
 981					phys_pg_pack->handle, next_vaddr,
 982					phys_pg_pack->pages[i], page_size);
 983
 984		next_vaddr += page_size;
 985
 986		/*
 987		 * unmapping on Palladium can be really long, so avoid a CPU
 988		 * soft lockup bug by sleeping a little between unmapping pages
 989		 *
 990		 * In addition, on host num of pages could be huge,
 991		 * because page size could be 4KB, so when unmapping host
 992		 * pages sleep every 32K pages to avoid soft lockup
 993		 */
 994		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
 995			usleep_range(50, 200);
 996	}
 997
 998	return rc;
 999}
1000
1001/**
1002 * unmap_phys_pg_pack() - unmaps the physical page pack.
1003 * @ctx: pointer to the context structure.
1004 * @vaddr: start address of the virtual area to unmap.
1005 * @phys_pg_pack: the pack of physical pages to unmap.
1006 */
1007static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1008				struct hl_vm_phys_pg_pack *phys_pg_pack)
1009{
1010	struct hl_device *hdev = ctx->hdev;
1011	u64 next_vaddr, i;
1012	bool is_host_addr;
1013	u32 page_size;
1014
1015	is_host_addr = !hl_is_dram_va(hdev, vaddr);
1016	page_size = phys_pg_pack->page_size;
1017	next_vaddr = vaddr;
1018
1019	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1020		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1021				       (i + 1) == phys_pg_pack->npages))
1022			dev_warn_ratelimited(hdev->dev,
1023			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
1024
1025		/*
1026		 * unmapping on Palladium can be really long, so avoid a CPU
1027		 * soft lockup bug by sleeping a little between unmapping pages
1028		 *
1029		 * In addition, on host num of pages could be huge,
1030		 * because page size could be 4KB, so when unmapping host
1031		 * pages sleep every 32K pages to avoid soft lockup
1032		 */
1033		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1034			usleep_range(50, 200);
1035	}
1036}
1037
1038static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
1039					u64 *paddr)
1040{
1041	struct hl_device *hdev = ctx->hdev;
1042	struct hl_vm *vm = &hdev->vm;
1043	struct hl_vm_phys_pg_pack *phys_pg_pack;
1044	u32 handle;
1045
1046	handle = lower_32_bits(args->map_device.handle);
1047	spin_lock(&vm->idr_lock);
1048	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1049	if (!phys_pg_pack) {
1050		spin_unlock(&vm->idr_lock);
1051		dev_err(hdev->dev, "no match for handle %u\n", handle);
1052		return -EINVAL;
1053	}
1054
1055	*paddr = phys_pg_pack->pages[0];
1056
1057	spin_unlock(&vm->idr_lock);
1058
1059	return 0;
1060}
1061
1062/**
1063 * map_device_va() - map the given memory.
1064 * @ctx: pointer to the context structure.
1065 * @args: host parameters with handle/host virtual address.
1066 * @device_addr: pointer to result device virtual address.
1067 *
1068 * This function does the following:
1069 * - If given a physical device memory handle, map to a device virtual block
1070 *   and return the start address of this block.
1071 * - If given a host virtual address and size, find the related physical pages,
1072 *   map a device virtual block to this pages and return the start address of
1073 *   this block.
1074 */
1075static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1076{
1077	struct hl_vm_phys_pg_pack *phys_pg_pack;
1078	enum hl_va_range_type va_range_type = 0;
1079	struct hl_device *hdev = ctx->hdev;
1080	struct hl_userptr *userptr = NULL;
1081	u32 handle = 0, va_block_align;
1082	struct hl_vm_hash_node *hnode;
1083	struct hl_vm *vm = &hdev->vm;
1084	struct hl_va_range *va_range;
1085	bool is_userptr, do_prefetch;
1086	u64 ret_vaddr, hint_addr;
1087	enum vm_type *vm_type;
1088	int rc;
1089
1090	/* set map flags */
1091	is_userptr = args->flags & HL_MEM_USERPTR;
1092	do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1093
1094	/* Assume failure */
1095	*device_addr = 0;
1096
1097	if (is_userptr) {
1098		u64 addr = args->map_host.host_virt_addr,
1099			size = args->map_host.mem_size;
1100		u32 page_size = hdev->asic_prop.pmmu.page_size,
1101			huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1102
1103		rc = dma_map_host_va(hdev, addr, size, &userptr);
1104		if (rc) {
1105			dev_err(hdev->dev, "failed to get userptr from va\n");
1106			return rc;
1107		}
1108
1109		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1110				&phys_pg_pack, false);
1111		if (rc) {
1112			dev_err(hdev->dev,
1113				"unable to init page pack for vaddr 0x%llx\n",
1114				addr);
1115			goto init_page_pack_err;
1116		}
1117
1118		vm_type = (enum vm_type *) userptr;
1119		hint_addr = args->map_host.hint_addr;
1120		handle = phys_pg_pack->handle;
1121
1122		/* get required alignment */
1123		if (phys_pg_pack->page_size == page_size) {
1124			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1125			va_range_type = HL_VA_RANGE_TYPE_HOST;
1126			/*
1127			 * huge page alignment may be needed in case of regular
1128			 * page mapping, depending on the host VA alignment
1129			 */
1130			if (addr & (huge_page_size - 1))
1131				va_block_align = page_size;
1132			else
1133				va_block_align = huge_page_size;
1134		} else {
1135			/*
1136			 * huge page alignment is needed in case of huge page
1137			 * mapping
1138			 */
1139			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1140			va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1141			va_block_align = huge_page_size;
1142		}
1143	} else {
1144		handle = lower_32_bits(args->map_device.handle);
1145
1146		spin_lock(&vm->idr_lock);
1147		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1148		if (!phys_pg_pack) {
1149			spin_unlock(&vm->idr_lock);
1150			dev_err(hdev->dev,
1151				"no match for handle %u\n", handle);
1152			return -EINVAL;
1153		}
1154
1155		/* increment now to avoid freeing device memory while mapping */
1156		atomic_inc(&phys_pg_pack->mapping_cnt);
1157
1158		spin_unlock(&vm->idr_lock);
1159
1160		vm_type = (enum vm_type *) phys_pg_pack;
1161
1162		hint_addr = args->map_device.hint_addr;
1163
1164		/* DRAM VA alignment is the same as the MMU page size */
1165		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1166		va_range_type = HL_VA_RANGE_TYPE_DRAM;
1167		va_block_align = hdev->asic_prop.dmmu.page_size;
1168	}
1169
1170	/*
1171	 * relevant for mapping device physical memory only, as host memory is
1172	 * implicitly shared
1173	 */
1174	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1175			phys_pg_pack->asid != ctx->asid) {
1176		dev_err(hdev->dev,
1177			"Failed to map memory, handle %u is not shared\n",
1178			handle);
1179		rc = -EPERM;
1180		goto shared_err;
1181	}
1182
1183	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1184	if (!hnode) {
1185		rc = -ENOMEM;
1186		goto hnode_err;
1187	}
1188
1189	if (hint_addr && phys_pg_pack->offset) {
1190		if (args->flags & HL_MEM_FORCE_HINT) {
1191			/* Fail if hint must be respected but it can't be */
1192			dev_err(hdev->dev,
1193				"Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1194				hint_addr, phys_pg_pack->offset);
1195			rc = -EINVAL;
1196			goto va_block_err;
1197		}
1198		dev_dbg(hdev->dev,
1199			"Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1200			hint_addr, phys_pg_pack->offset);
1201	}
1202
1203	ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1204					hint_addr, va_block_align,
1205					va_range_type, args->flags);
1206	if (!ret_vaddr) {
1207		dev_err(hdev->dev, "no available va block for handle %u\n",
1208				handle);
1209		rc = -ENOMEM;
1210		goto va_block_err;
1211	}
1212
1213	mutex_lock(&hdev->mmu_lock);
1214
1215	rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1216	if (rc) {
1217		dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
1218		mutex_unlock(&hdev->mmu_lock);
1219		goto map_err;
1220	}
1221
1222	rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1223				ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1224	mutex_unlock(&hdev->mmu_lock);
1225	if (rc)
1226		goto map_err;
1227
1228	/*
1229	 * prefetch is done upon user's request. it is performed in WQ as and so can
1230	 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1231	 */
1232	if (do_prefetch) {
1233		rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1234							phys_pg_pack->total_size);
1235		if (rc)
1236			goto map_err;
1237	}
1238
1239	ret_vaddr += phys_pg_pack->offset;
1240
1241	hnode->ptr = vm_type;
1242	hnode->vaddr = ret_vaddr;
1243
1244	mutex_lock(&ctx->mem_hash_lock);
1245	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1246	mutex_unlock(&ctx->mem_hash_lock);
1247
1248	*device_addr = ret_vaddr;
1249
1250	if (is_userptr)
1251		free_phys_pg_pack(hdev, phys_pg_pack);
1252
1253	return rc;
1254
1255map_err:
1256	if (add_va_block(hdev, va_range, ret_vaddr,
1257				ret_vaddr + phys_pg_pack->total_size - 1))
1258		dev_warn(hdev->dev,
1259			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1260				handle, ret_vaddr);
1261
1262va_block_err:
1263	kfree(hnode);
1264hnode_err:
1265shared_err:
1266	atomic_dec(&phys_pg_pack->mapping_cnt);
1267	if (is_userptr)
1268		free_phys_pg_pack(hdev, phys_pg_pack);
1269init_page_pack_err:
1270	if (is_userptr)
1271		dma_unmap_host_va(hdev, userptr);
1272
1273	return rc;
1274}
1275
1276/**
1277 * unmap_device_va() - unmap the given device virtual address.
1278 * @ctx: pointer to the context structure.
1279 * @args: host parameters with device virtual address to unmap.
1280 * @ctx_free: true if in context free flow, false otherwise.
1281 *
1282 * This function does the following:
1283 * - unmap the physical pages related to the given virtual address.
1284 * - return the device virtual block to the virtual block list.
1285 */
1286static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1287				bool ctx_free)
1288{
1289	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1290	u64 vaddr = args->unmap.device_virt_addr;
1291	struct hl_vm_hash_node *hnode = NULL;
1292	struct asic_fixed_properties *prop;
1293	struct hl_device *hdev = ctx->hdev;
1294	struct hl_userptr *userptr = NULL;
1295	struct hl_va_range *va_range;
1296	enum vm_type *vm_type;
1297	bool is_userptr;
1298	int rc = 0;
1299
1300	prop = &hdev->asic_prop;
1301
1302	/* protect from double entrance */
1303	mutex_lock(&ctx->mem_hash_lock);
1304	hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1305		if (vaddr == hnode->vaddr)
1306			break;
1307
1308	if (!hnode) {
1309		mutex_unlock(&ctx->mem_hash_lock);
1310		dev_err(hdev->dev,
1311			"unmap failed, no mem hnode for vaddr 0x%llx\n",
1312			vaddr);
1313		return -EINVAL;
1314	}
1315
1316	hash_del(&hnode->node);
1317	mutex_unlock(&ctx->mem_hash_lock);
1318
1319	vm_type = hnode->ptr;
1320
1321	if (*vm_type == VM_TYPE_USERPTR) {
1322		is_userptr = true;
1323		userptr = hnode->ptr;
1324
1325		rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1326							false);
1327		if (rc) {
1328			dev_err(hdev->dev,
1329				"unable to init page pack for vaddr 0x%llx\n",
1330				vaddr);
1331			goto vm_type_err;
1332		}
1333
1334		if (phys_pg_pack->page_size ==
1335					hdev->asic_prop.pmmu.page_size)
1336			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1337		else
1338			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1339	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1340		is_userptr = false;
1341		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1342		phys_pg_pack = hnode->ptr;
1343	} else {
1344		dev_warn(hdev->dev,
1345			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1346				vaddr);
1347		rc = -EFAULT;
1348		goto vm_type_err;
1349	}
1350
1351	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1352		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1353		rc = -EINVAL;
1354		goto mapping_cnt_err;
1355	}
1356
1357	if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1358		vaddr = prop->dram_base_address +
1359			DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1360						phys_pg_pack->page_size) *
1361							phys_pg_pack->page_size;
1362	else
1363		vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1364
1365	mutex_lock(&hdev->mmu_lock);
1366
1367	unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1368
1369	/*
1370	 * During context free this function is called in a loop to clean all
1371	 * the context mappings. Hence the cache invalidation can be called once
1372	 * at the loop end rather than for each iteration
1373	 */
1374	if (!ctx_free)
1375		rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1376							phys_pg_pack->total_size);
1377
1378	mutex_unlock(&hdev->mmu_lock);
1379
1380	/*
1381	 * If the context is closing we don't need to check for the MMU cache
1382	 * invalidation return code and update the VA free list as in this flow
1383	 * we invalidate the MMU cache outside of this unmap function and the VA
1384	 * free list will be freed anyway.
1385	 */
1386	if (!ctx_free) {
1387		int tmp_rc;
1388
1389		tmp_rc = add_va_block(hdev, va_range, vaddr,
1390					vaddr + phys_pg_pack->total_size - 1);
1391		if (tmp_rc) {
1392			dev_warn(hdev->dev,
1393					"add va block failed for vaddr: 0x%llx\n",
1394					vaddr);
1395			if (!rc)
1396				rc = tmp_rc;
1397		}
1398	}
1399
1400	atomic_dec(&phys_pg_pack->mapping_cnt);
1401	kfree(hnode);
1402
1403	if (is_userptr) {
1404		free_phys_pg_pack(hdev, phys_pg_pack);
1405		dma_unmap_host_va(hdev, userptr);
1406	}
1407
1408	return rc;
1409
1410mapping_cnt_err:
1411	if (is_userptr)
1412		free_phys_pg_pack(hdev, phys_pg_pack);
1413vm_type_err:
1414	mutex_lock(&ctx->mem_hash_lock);
1415	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1416	mutex_unlock(&ctx->mem_hash_lock);
1417
1418	return rc;
1419}
1420
1421static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1422{
1423	u32 block_id;
1424	int rc;
1425
1426	*handle = 0;
1427	if (size)
1428		*size = 0;
1429
1430	rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1431	if (rc)
1432		return rc;
1433
1434	*handle = block_id | HL_MMAP_TYPE_BLOCK;
1435	*handle <<= PAGE_SHIFT;
1436
1437	return 0;
1438}
1439
1440static void hw_block_vm_close(struct vm_area_struct *vma)
1441{
1442	struct hl_vm_hw_block_list_node *lnode =
1443		(struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1444	struct hl_ctx *ctx = lnode->ctx;
1445	long new_mmap_size;
1446
1447	new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1448	if (new_mmap_size > 0) {
1449		lnode->mapped_size = new_mmap_size;
1450		return;
1451	}
1452
1453	mutex_lock(&ctx->hw_block_list_lock);
1454	list_del(&lnode->node);
1455	mutex_unlock(&ctx->hw_block_list_lock);
1456	hl_ctx_put(ctx);
1457	kfree(lnode);
1458	vma->vm_private_data = NULL;
1459}
1460
1461static const struct vm_operations_struct hw_block_vm_ops = {
1462	.close = hw_block_vm_close
1463};
1464
1465/**
1466 * hl_hw_block_mmap() - mmap a hw block to user.
1467 * @hpriv: pointer to the private data of the fd
1468 * @vma: pointer to vm_area_struct of the process
1469 *
1470 * Driver increments context reference for every HW block mapped in order
1471 * to prevent user from closing FD without unmapping first
1472 */
1473int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1474{
1475	struct hl_vm_hw_block_list_node *lnode;
1476	struct hl_device *hdev = hpriv->hdev;
1477	struct hl_ctx *ctx = hpriv->ctx;
1478	u32 block_id, block_size;
1479	int rc;
1480
1481	/* We use the page offset to hold the block id and thus we need to clear
1482	 * it before doing the mmap itself
1483	 */
1484	block_id = vma->vm_pgoff;
1485	vma->vm_pgoff = 0;
1486
1487	/* Driver only allows mapping of a complete HW block */
1488	block_size = vma->vm_end - vma->vm_start;
1489
1490	if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1491		dev_err(hdev->dev,
1492			"user pointer is invalid - 0x%lx\n",
1493			vma->vm_start);
1494
1495		return -EINVAL;
1496	}
1497
1498	lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1499	if (!lnode)
1500		return -ENOMEM;
1501
1502	rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1503	if (rc) {
1504		kfree(lnode);
1505		return rc;
1506	}
1507
1508	hl_ctx_get(ctx);
1509
1510	lnode->ctx = ctx;
1511	lnode->vaddr = vma->vm_start;
1512	lnode->block_size = block_size;
1513	lnode->mapped_size = lnode->block_size;
1514	lnode->id = block_id;
1515
1516	vma->vm_private_data = lnode;
1517	vma->vm_ops = &hw_block_vm_ops;
1518
1519	mutex_lock(&ctx->hw_block_list_lock);
1520	list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1521	mutex_unlock(&ctx->hw_block_list_lock);
1522
1523	vma->vm_pgoff = block_id;
1524
1525	return 0;
1526}
1527
1528static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1529			struct device *dev, enum dma_data_direction dir)
1530{
1531	dma_addr_t addr;
1532	int rc;
1533
1534	addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1535				DMA_ATTR_SKIP_CPU_SYNC);
1536	rc = dma_mapping_error(dev, addr);
1537	if (rc)
1538		return rc;
1539
1540	sg_set_page(sg, NULL, chunk_size, 0);
1541	sg_dma_address(sg) = addr;
1542	sg_dma_len(sg) = chunk_size;
1543
1544	return 0;
1545}
1546
1547static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1548						u64 page_size, struct device *dev,
1549						enum dma_data_direction dir)
1550{
1551	u64 chunk_size, bar_address, dma_max_seg_size;
1552	struct asic_fixed_properties *prop;
1553	int rc, i, j, nents, cur_page;
1554	struct scatterlist *sg;
1555	struct sg_table *sgt;
1556
1557	prop = &hdev->asic_prop;
1558
1559	dma_max_seg_size = dma_get_max_seg_size(dev);
1560
1561	/* We would like to align the max segment size to PAGE_SIZE, so the
1562	 * SGL will contain aligned addresses that can be easily mapped to
1563	 * an MMU
1564	 */
1565	dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
1566	if (dma_max_seg_size < PAGE_SIZE) {
1567		dev_err_ratelimited(hdev->dev,
1568				"dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1569				dma_max_seg_size);
1570		return ERR_PTR(-EINVAL);
1571	}
1572
1573	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1574	if (!sgt)
1575		return ERR_PTR(-ENOMEM);
1576
1577	/* If the size of each page is larger than the dma max segment size,
1578	 * then we can't combine pages and the number of entries in the SGL
1579	 * will just be the
1580	 * <number of pages> * <chunks of max segment size in each page>
1581	 */
1582	if (page_size > dma_max_seg_size)
1583		nents = npages * DIV_ROUND_UP_ULL(page_size, dma_max_seg_size);
1584	else
1585		/* Get number of non-contiguous chunks */
1586		for (i = 1, nents = 1, chunk_size = page_size ; i < npages ; i++) {
1587			if (pages[i - 1] + page_size != pages[i] ||
1588					chunk_size + page_size > dma_max_seg_size) {
1589				nents++;
1590				chunk_size = page_size;
1591				continue;
1592			}
1593
1594			chunk_size += page_size;
1595		}
1596
1597	rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1598	if (rc)
1599		goto error_free;
1600
1601	cur_page = 0;
1602
1603	if (page_size > dma_max_seg_size) {
1604		u64 size_left, cur_device_address = 0;
1605
1606		size_left = page_size;
1607
1608		/* Need to split each page into the number of chunks of
1609		 * dma_max_seg_size
1610		 */
1611		for_each_sgtable_dma_sg(sgt, sg, i) {
1612			if (size_left == page_size)
1613				cur_device_address =
1614					pages[cur_page] - prop->dram_base_address;
1615			else
1616				cur_device_address += dma_max_seg_size;
1617
1618			chunk_size = min(size_left, dma_max_seg_size);
1619
1620			bar_address = hdev->dram_pci_bar_start + cur_device_address;
1621
1622			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1623			if (rc)
1624				goto error_unmap;
1625
1626			if (size_left > dma_max_seg_size) {
1627				size_left -= dma_max_seg_size;
1628			} else {
1629				cur_page++;
1630				size_left = page_size;
1631			}
1632		}
1633	} else {
1634		/* Merge pages and put them into the scatterlist */
1635		for_each_sgtable_dma_sg(sgt, sg, i) {
1636			chunk_size = page_size;
1637			for (j = cur_page + 1 ; j < npages ; j++) {
1638				if (pages[j - 1] + page_size != pages[j] ||
1639						chunk_size + page_size > dma_max_seg_size)
1640					break;
1641
1642				chunk_size += page_size;
1643			}
1644
1645			bar_address = hdev->dram_pci_bar_start +
1646					(pages[cur_page] - prop->dram_base_address);
1647
1648			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1649			if (rc)
1650				goto error_unmap;
1651
1652			cur_page = j;
1653		}
1654	}
1655
1656	/* Because we are not going to include a CPU list we want to have some
1657	 * chance that other users will detect this by setting the orig_nents
1658	 * to 0 and using only nents (length of DMA list) when going over the
1659	 * sgl
1660	 */
1661	sgt->orig_nents = 0;
1662
1663	return sgt;
1664
1665error_unmap:
1666	for_each_sgtable_dma_sg(sgt, sg, i) {
1667		if (!sg_dma_len(sg))
1668			continue;
1669
1670		dma_unmap_resource(dev, sg_dma_address(sg),
1671					sg_dma_len(sg), dir,
1672					DMA_ATTR_SKIP_CPU_SYNC);
1673	}
1674
1675	sg_free_table(sgt);
1676
1677error_free:
1678	kfree(sgt);
1679	return ERR_PTR(rc);
1680}
1681
1682static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1683				struct dma_buf_attachment *attachment)
1684{
1685	struct hl_dmabuf_priv *hl_dmabuf;
1686	struct hl_device *hdev;
1687	int rc;
1688
1689	hl_dmabuf = dmabuf->priv;
1690	hdev = hl_dmabuf->ctx->hdev;
1691
1692	rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1693
1694	if (rc < 0)
1695		attachment->peer2peer = false;
1696	return 0;
1697}
1698
1699static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1700					enum dma_data_direction dir)
1701{
1702	struct dma_buf *dma_buf = attachment->dmabuf;
1703	struct hl_vm_phys_pg_pack *phys_pg_pack;
1704	struct hl_dmabuf_priv *hl_dmabuf;
1705	struct hl_device *hdev;
1706	struct sg_table *sgt;
1707
1708	hl_dmabuf = dma_buf->priv;
1709	hdev = hl_dmabuf->ctx->hdev;
1710	phys_pg_pack = hl_dmabuf->phys_pg_pack;
1711
1712	if (!attachment->peer2peer) {
1713		dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1714		return ERR_PTR(-EPERM);
1715	}
1716
1717	if (phys_pg_pack)
1718		sgt = alloc_sgt_from_device_pages(hdev,
1719						phys_pg_pack->pages,
1720						phys_pg_pack->npages,
1721						phys_pg_pack->page_size,
1722						attachment->dev,
1723						dir);
1724	else
1725		sgt = alloc_sgt_from_device_pages(hdev,
1726						&hl_dmabuf->device_address,
1727						1,
1728						hl_dmabuf->dmabuf->size,
1729						attachment->dev,
1730						dir);
1731
1732	if (IS_ERR(sgt))
1733		dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1734
1735	return sgt;
1736}
1737
1738static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1739				  struct sg_table *sgt,
1740				  enum dma_data_direction dir)
1741{
1742	struct scatterlist *sg;
1743	int i;
1744
1745	/* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1746	 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1747	 * device memory).
1748	 *
1749	 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1750	 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1751	 */
1752	for_each_sgtable_dma_sg(sgt, sg, i)
1753		dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1754					sg_dma_len(sg), dir,
1755					DMA_ATTR_SKIP_CPU_SYNC);
1756
1757	/* Need to restore orig_nents because sg_free_table use that field */
1758	sgt->orig_nents = sgt->nents;
1759	sg_free_table(sgt);
1760	kfree(sgt);
1761}
1762
1763static void hl_release_dmabuf(struct dma_buf *dmabuf)
1764{
1765	struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1766	struct hl_ctx *ctx = hl_dmabuf->ctx;
1767	struct hl_device *hdev = ctx->hdev;
1768	struct hl_vm *vm = &hdev->vm;
1769
1770	if (hl_dmabuf->phys_pg_pack) {
1771		spin_lock(&vm->idr_lock);
1772		hl_dmabuf->phys_pg_pack->exporting_cnt--;
1773		spin_unlock(&vm->idr_lock);
1774	}
1775
1776	hl_ctx_put(hl_dmabuf->ctx);
1777
1778	kfree(hl_dmabuf);
1779}
1780
1781static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1782	.attach = hl_dmabuf_attach,
1783	.map_dma_buf = hl_map_dmabuf,
1784	.unmap_dma_buf = hl_unmap_dmabuf,
1785	.release = hl_release_dmabuf,
1786};
1787
1788static int export_dmabuf_common(struct hl_ctx *ctx,
1789				struct hl_dmabuf_priv *hl_dmabuf,
1790				u64 total_size, int flags, int *dmabuf_fd)
1791{
1792	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1793	struct hl_device *hdev = ctx->hdev;
1794	int rc, fd;
1795
1796	exp_info.ops = &habanalabs_dmabuf_ops;
1797	exp_info.size = total_size;
1798	exp_info.flags = flags;
1799	exp_info.priv = hl_dmabuf;
1800
1801	hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1802	if (IS_ERR(hl_dmabuf->dmabuf)) {
1803		dev_err(hdev->dev, "failed to export dma-buf\n");
1804		return PTR_ERR(hl_dmabuf->dmabuf);
1805	}
1806
1807	fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
1808	if (fd < 0) {
1809		dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf\n");
1810		rc = fd;
1811		goto err_dma_buf_put;
1812	}
1813
1814	hl_dmabuf->ctx = ctx;
1815	hl_ctx_get(hl_dmabuf->ctx);
1816
1817	*dmabuf_fd = fd;
1818
1819	return 0;
1820
1821err_dma_buf_put:
1822	dma_buf_put(hl_dmabuf->dmabuf);
1823	return rc;
1824}
1825
1826/**
1827 * export_dmabuf_from_addr() - export a dma-buf object for the given memory
1828 *                             address and size.
1829 * @ctx: pointer to the context structure.
1830 * @device_addr:  device memory physical address.
1831 * @size: size of device memory.
1832 * @flags: DMA-BUF file/FD flags.
1833 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
1834 *
1835 * Create and export a dma-buf object for an existing memory allocation inside
1836 * the device memory, and return a FD which is associated with the dma-buf
1837 * object.
1838 *
1839 * Return: 0 on success, non-zero for failure.
1840 */
1841static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 device_addr,
1842					u64 size, int flags, int *dmabuf_fd)
1843{
1844	struct hl_dmabuf_priv *hl_dmabuf;
1845	struct hl_device *hdev = ctx->hdev;
1846	struct asic_fixed_properties *prop;
1847	u64 bar_address;
1848	int rc;
1849
1850	prop = &hdev->asic_prop;
1851
1852	if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
1853		dev_dbg(hdev->dev,
1854			"exported device memory address 0x%llx should be aligned to 0x%lx\n",
1855			device_addr, PAGE_SIZE);
1856		return -EINVAL;
1857	}
1858
1859	if (size < PAGE_SIZE) {
1860		dev_dbg(hdev->dev,
1861			"exported device memory size %llu should be equal to or greater than %lu\n",
1862			size, PAGE_SIZE);
1863		return -EINVAL;
1864	}
1865
1866	if (device_addr < prop->dram_user_base_address ||
1867				device_addr + size > prop->dram_end_address ||
1868				device_addr + size < device_addr) {
1869		dev_dbg(hdev->dev,
1870			"DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1871			device_addr, size);
1872		return -EINVAL;
1873	}
1874
1875	bar_address = hdev->dram_pci_bar_start +
1876			(device_addr - prop->dram_base_address);
1877
1878	if (bar_address + size >
1879			hdev->dram_pci_bar_start + prop->dram_pci_bar_size ||
1880			bar_address + size < bar_address) {
1881		dev_dbg(hdev->dev,
1882			"DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1883			device_addr, size);
1884		return -EINVAL;
1885	}
1886
1887	hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
1888	if (!hl_dmabuf)
1889		return -ENOMEM;
1890
1891	hl_dmabuf->device_address = device_addr;
1892
1893	rc = export_dmabuf_common(ctx, hl_dmabuf, size, flags, dmabuf_fd);
1894	if (rc)
1895		goto err_free_dmabuf_wrapper;
1896
1897	return 0;
1898
1899err_free_dmabuf_wrapper:
1900	kfree(hl_dmabuf);
1901	return rc;
1902}
1903
1904/**
1905 * export_dmabuf_from_handle() - export a dma-buf object for the given memory
1906 *                               handle.
1907 * @ctx: pointer to the context structure.
1908 * @handle: device memory allocation handle.
1909 * @flags: DMA-BUF file/FD flags.
1910 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
1911 *
1912 * Create and export a dma-buf object for an existing memory allocation inside
1913 * the device memory, and return a FD which is associated with the dma-buf
1914 * object.
1915 *
1916 * Return: 0 on success, non-zero for failure.
1917 */
1918static int export_dmabuf_from_handle(struct hl_ctx *ctx, u64 handle, int flags,
1919					int *dmabuf_fd)
1920{
1921	struct hl_vm_phys_pg_pack *phys_pg_pack;
1922	struct hl_dmabuf_priv *hl_dmabuf;
1923	struct hl_device *hdev = ctx->hdev;
1924	struct asic_fixed_properties *prop;
1925	struct hl_vm *vm = &hdev->vm;
1926	u64 bar_address;
1927	int rc, i;
1928
1929	prop = &hdev->asic_prop;
1930
1931	if (upper_32_bits(handle)) {
1932		dev_dbg(hdev->dev, "no match for handle 0x%llx\n", handle);
1933		return -EINVAL;
1934	}
1935
1936	spin_lock(&vm->idr_lock);
1937
1938	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) handle);
1939	if (!phys_pg_pack) {
1940		spin_unlock(&vm->idr_lock);
1941		dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) handle);
1942		return -EINVAL;
1943	}
1944
1945	/* increment now to avoid freeing device memory while exporting */
1946	phys_pg_pack->exporting_cnt++;
1947
1948	spin_unlock(&vm->idr_lock);
1949
1950	if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
1951		dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", handle);
1952		rc = -EINVAL;
1953		goto err_dec_exporting_cnt;
1954	}
1955
1956	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1957
1958		bar_address = hdev->dram_pci_bar_start +
1959						(phys_pg_pack->pages[i] -
1960						prop->dram_base_address);
1961
1962		if (bar_address + phys_pg_pack->page_size >
1963			hdev->dram_pci_bar_start + prop->dram_pci_bar_size ||
1964			bar_address + phys_pg_pack->page_size < bar_address) {
1965
1966			dev_dbg(hdev->dev,
1967				"DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1968				phys_pg_pack->pages[i],
1969				phys_pg_pack->page_size);
1970
1971			rc = -EINVAL;
1972			goto err_dec_exporting_cnt;
1973		}
1974	}
1975
1976	hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
1977	if (!hl_dmabuf) {
1978		rc = -ENOMEM;
1979		goto err_dec_exporting_cnt;
1980	}
1981
1982	hl_dmabuf->phys_pg_pack = phys_pg_pack;
1983
1984	rc = export_dmabuf_common(ctx, hl_dmabuf, phys_pg_pack->total_size,
1985				flags, dmabuf_fd);
1986	if (rc)
1987		goto err_free_dmabuf_wrapper;
1988
1989	return 0;
1990
1991err_free_dmabuf_wrapper:
1992	kfree(hl_dmabuf);
1993
1994err_dec_exporting_cnt:
1995	spin_lock(&vm->idr_lock);
1996	phys_pg_pack->exporting_cnt--;
1997	spin_unlock(&vm->idr_lock);
1998
1999	return rc;
2000}
2001
2002static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
2003{
2004	struct hl_device *hdev = hpriv->hdev;
2005	u64 block_handle, device_addr = 0;
2006	struct hl_ctx *ctx = hpriv->ctx;
2007	u32 handle = 0, block_size;
2008	int rc;
2009
2010	switch (args->in.op) {
2011	case HL_MEM_OP_ALLOC:
2012		if (args->in.alloc.mem_size == 0) {
2013			dev_err(hdev->dev, "alloc size must be larger than 0\n");
2014			rc = -EINVAL;
2015			goto out;
2016		}
2017
2018		/* Force contiguous as there are no real MMU
2019		 * translations to overcome physical memory gaps
2020		 */
2021		args->in.flags |= HL_MEM_CONTIGUOUS;
2022		rc = alloc_device_memory(ctx, &args->in, &handle);
2023
2024		memset(args, 0, sizeof(*args));
2025		args->out.handle = (__u64) handle;
2026		break;
2027
2028	case HL_MEM_OP_FREE:
2029		rc = free_device_memory(ctx, &args->in);
2030		break;
2031
2032	case HL_MEM_OP_MAP:
2033		if (args->in.flags & HL_MEM_USERPTR) {
2034			dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n");
2035			rc = -EPERM;
2036		} else {
2037			rc = get_paddr_from_handle(ctx, &args->in, &device_addr);
2038			memset(args, 0, sizeof(*args));
2039			args->out.device_virt_addr = device_addr;
2040		}
2041
2042		break;
2043
2044	case HL_MEM_OP_UNMAP:
2045		rc = 0;
2046		break;
2047
2048	case HL_MEM_OP_MAP_BLOCK:
2049		rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size);
2050		args->out.block_handle = block_handle;
2051		args->out.block_size = block_size;
2052		break;
2053
2054	case HL_MEM_OP_EXPORT_DMABUF_FD:
2055		dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n");
2056		rc = -EPERM;
2057		break;
2058
2059	case HL_MEM_OP_TS_ALLOC:
2060		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2061		break;
2062	default:
2063		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2064		rc = -EINVAL;
2065		break;
2066	}
2067
2068out:
2069	return rc;
2070}
2071
2072static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2073{
2074	struct hl_ts_buff *ts_buff = buf->private;
2075
2076	vfree(ts_buff->kernel_buff_address);
2077	vfree(ts_buff->user_buff_address);
2078	kfree(ts_buff);
2079}
2080
2081static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2082{
2083	struct hl_ts_buff *ts_buff = buf->private;
2084
2085	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE;
2086	return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2087}
2088
2089static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2090{
2091	struct hl_ts_buff *ts_buff = NULL;
2092	u32 size, num_elements;
2093	void *p;
2094
2095	num_elements = *(u32 *)args;
2096
2097	ts_buff = kzalloc(sizeof(*ts_buff), GFP_KERNEL);
2098	if (!ts_buff)
2099		return -ENOMEM;
2100
2101	/* Allocate the user buffer */
2102	size = num_elements * sizeof(u64);
2103	p = vmalloc_user(size);
2104	if (!p)
2105		goto free_mem;
2106
2107	ts_buff->user_buff_address = p;
2108	buf->mappable_size = size;
2109
2110	/* Allocate the internal kernel buffer */
2111	size = num_elements * sizeof(struct hl_user_pending_interrupt);
2112	p = vzalloc(size);
2113	if (!p)
2114		goto free_user_buff;
2115
2116	ts_buff->kernel_buff_address = p;
2117	ts_buff->kernel_buff_size = size;
2118
2119	buf->private = ts_buff;
2120
2121	return 0;
2122
2123free_user_buff:
2124	vfree(ts_buff->user_buff_address);
2125free_mem:
2126	kfree(ts_buff);
2127	return -ENOMEM;
2128}
2129
2130static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2131	.topic = "TS",
2132	.mem_id = HL_MMAP_TYPE_TS_BUFF,
2133	.mmap = hl_ts_mmap,
2134	.alloc = hl_ts_alloc_buf,
2135	.release = ts_buff_release,
2136};
2137
2138/**
2139 * allocate_timestamps_buffers() - allocate timestamps buffers
2140 * This function will allocate ts buffer that will later on be mapped to the user
2141 * in order to be able to read the timestamp.
2142 * in additon it'll allocate an extra buffer for registration management.
2143 * since we cannot fail during registration for out-of-memory situation, so
2144 * we'll prepare a pool which will be used as user interrupt nodes and instead
2145 * of dynamically allocating nodes while registration we'll pick the node from
2146 * this pool. in addtion it'll add node to the mapping hash which will be used
2147 * to map user ts buffer to the internal kernel ts buffer.
2148 * @hpriv: pointer to the private data of the fd
2149 * @args: ioctl input
2150 * @handle: user timestamp buffer handle as an output
2151 */
2152static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2153{
2154	struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2155	struct hl_mmap_mem_buf *buf;
2156
2157	if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2158		dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2159				args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2160		return -EINVAL;
2161	}
2162
2163	buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2164	if (!buf)
2165		return -ENOMEM;
2166
2167	*handle = buf->handle;
2168
2169	return 0;
2170}
2171
2172int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
2173{
2174	enum hl_device_status status;
2175	union hl_mem_args *args = data;
2176	struct hl_device *hdev = hpriv->hdev;
2177	struct hl_ctx *ctx = hpriv->ctx;
2178	u64 block_handle, device_addr = 0;
2179	u32 handle = 0, block_size;
2180	int rc, dmabuf_fd = -EBADF;
2181
2182	if (!hl_device_operational(hdev, &status)) {
2183		dev_warn_ratelimited(hdev->dev,
2184			"Device is %s. Can't execute MEMORY IOCTL\n",
2185			hdev->status[status]);
2186		return -EBUSY;
2187	}
2188
2189	if (!hdev->mmu_enable)
2190		return mem_ioctl_no_mmu(hpriv, args);
2191
2192	switch (args->in.op) {
2193	case HL_MEM_OP_ALLOC:
2194		if (args->in.alloc.mem_size == 0) {
2195			dev_err(hdev->dev,
2196				"alloc size must be larger than 0\n");
2197			rc = -EINVAL;
2198			goto out;
2199		}
2200
2201		/* If DRAM does not support virtual memory the driver won't
2202		 * handle the allocation/freeing of that memory. However, for
2203		 * system administration/monitoring purposes, the driver will
2204		 * keep track of the amount of DRAM memory that is allocated
2205		 * and freed by the user. Because this code totally relies on
2206		 * the user's input, the driver can't ensure the validity
2207		 * of this accounting.
2208		 */
2209		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2210			atomic64_add(args->in.alloc.mem_size,
2211					&ctx->dram_phys_mem);
2212			atomic64_add(args->in.alloc.mem_size,
2213					&hdev->dram_used_mem);
2214
2215			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2216			rc = 0;
2217
2218			memset(args, 0, sizeof(*args));
2219			args->out.handle = 0;
2220			goto out;
2221		}
2222
2223		rc = alloc_device_memory(ctx, &args->in, &handle);
2224
2225		memset(args, 0, sizeof(*args));
2226		args->out.handle = (__u64) handle;
2227		break;
2228
2229	case HL_MEM_OP_FREE:
2230		/* If DRAM does not support virtual memory the driver won't
2231		 * handle the allocation/freeing of that memory. However, for
2232		 * system administration/monitoring purposes, the driver will
2233		 * keep track of the amount of DRAM memory that is allocated
2234		 * and freed by the user. Because this code totally relies on
2235		 * the user's input, the driver can't ensure the validity
2236		 * of this accounting.
2237		 */
2238		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2239			atomic64_sub(args->in.alloc.mem_size,
2240					&ctx->dram_phys_mem);
2241			atomic64_sub(args->in.alloc.mem_size,
2242					&hdev->dram_used_mem);
2243
2244			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2245			rc = 0;
2246
2247			goto out;
2248		}
2249
2250		rc = free_device_memory(ctx, &args->in);
2251		break;
2252
2253	case HL_MEM_OP_MAP:
2254		rc = map_device_va(ctx, &args->in, &device_addr);
2255
2256		memset(args, 0, sizeof(*args));
2257		args->out.device_virt_addr = device_addr;
2258		break;
2259
2260	case HL_MEM_OP_UNMAP:
2261		rc = unmap_device_va(ctx, &args->in, false);
2262		break;
2263
2264	case HL_MEM_OP_MAP_BLOCK:
2265		rc = map_block(hdev, args->in.map_block.block_addr,
2266				&block_handle, &block_size);
2267		args->out.block_handle = block_handle;
2268		args->out.block_size = block_size;
2269		break;
2270
2271	case HL_MEM_OP_EXPORT_DMABUF_FD:
2272		if (hdev->asic_prop.dram_supports_virtual_memory)
2273			rc = export_dmabuf_from_handle(ctx,
2274					args->in.export_dmabuf_fd.handle,
2275					args->in.flags,
2276					&dmabuf_fd);
2277		else
2278			rc = export_dmabuf_from_addr(ctx,
2279					args->in.export_dmabuf_fd.handle,
2280					args->in.export_dmabuf_fd.mem_size,
2281					args->in.flags,
2282					&dmabuf_fd);
2283		memset(args, 0, sizeof(*args));
2284		args->out.fd = dmabuf_fd;
2285		break;
2286
2287	case HL_MEM_OP_TS_ALLOC:
2288		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2289		break;
2290	default:
2291		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2292		rc = -EINVAL;
2293		break;
2294	}
2295
2296out:
2297	return rc;
2298}
2299
2300static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2301				u32 npages, u64 start, u32 offset,
2302				struct hl_userptr *userptr)
2303{
2304	int rc;
2305
2306	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2307		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2308		return -EFAULT;
2309	}
2310
2311	userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2312	if (!userptr->pages)
2313		return -ENOMEM;
2314
2315	rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2316				 userptr->pages);
2317
2318	if (rc != npages) {
2319		dev_err(hdev->dev,
2320			"Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2321			rc, addr, size, npages);
2322		if (rc < 0)
2323			goto destroy_pages;
2324		npages = rc;
2325		rc = -EFAULT;
2326		goto put_pages;
2327	}
2328	userptr->npages = npages;
2329
2330	rc = sg_alloc_table_from_pages(userptr->sgt,
2331				       userptr->pages,
2332				       npages, offset, size, GFP_KERNEL);
2333	if (rc < 0) {
2334		dev_err(hdev->dev, "failed to create SG table from pages\n");
2335		goto put_pages;
2336	}
2337
2338	return 0;
2339
2340put_pages:
2341	unpin_user_pages(userptr->pages, npages);
2342destroy_pages:
2343	kvfree(userptr->pages);
2344	return rc;
2345}
2346
2347/**
2348 * hl_pin_host_memory() - pins a chunk of host memory.
2349 * @hdev: pointer to the habanalabs device structure.
2350 * @addr: the host virtual address of the memory area.
2351 * @size: the size of the memory area.
2352 * @userptr: pointer to hl_userptr structure.
2353 *
2354 * This function does the following:
2355 * - Pins the physical pages.
2356 * - Create an SG list from those pages.
2357 */
2358int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2359					struct hl_userptr *userptr)
2360{
2361	u64 start, end;
2362	u32 npages, offset;
2363	int rc;
2364
2365	if (!size) {
2366		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2367		return -EINVAL;
2368	}
2369
2370	/*
2371	 * If the combination of the address and size requested for this memory
2372	 * region causes an integer overflow, return error.
2373	 */
2374	if (((addr + size) < addr) ||
2375			PAGE_ALIGN(addr + size) < (addr + size)) {
2376		dev_err(hdev->dev,
2377			"user pointer 0x%llx + %llu causes integer overflow\n",
2378			addr, size);
2379		return -EINVAL;
2380	}
2381
2382	userptr->pid = current->pid;
2383	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2384	if (!userptr->sgt)
2385		return -ENOMEM;
2386
2387	start = addr & PAGE_MASK;
2388	offset = addr & ~PAGE_MASK;
2389	end = PAGE_ALIGN(addr + size);
2390	npages = (end - start) >> PAGE_SHIFT;
2391
2392	userptr->size = size;
2393	userptr->addr = addr;
2394	userptr->dma_mapped = false;
2395	INIT_LIST_HEAD(&userptr->job_node);
2396
2397	rc = get_user_memory(hdev, addr, size, npages, start, offset,
2398				userptr);
2399	if (rc) {
2400		dev_err(hdev->dev,
2401			"failed to get user memory for address 0x%llx\n",
2402			addr);
2403		goto free_sgt;
2404	}
2405
2406	hl_debugfs_add_userptr(hdev, userptr);
2407
2408	return 0;
2409
2410free_sgt:
2411	kfree(userptr->sgt);
2412	return rc;
2413}
2414
2415/*
2416 * hl_unpin_host_memory - unpins a chunk of host memory.
2417 * @hdev: pointer to the habanalabs device structure
2418 * @userptr: pointer to hl_userptr structure
2419 *
2420 * This function does the following:
2421 * - Unpins the physical pages related to the host memory
2422 * - Free the SG list
2423 */
2424void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2425{
2426	hl_debugfs_remove_userptr(hdev, userptr);
2427
2428	if (userptr->dma_mapped)
2429		hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2430
2431	unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2432	kvfree(userptr->pages);
2433
2434	list_del(&userptr->job_node);
2435
2436	sg_free_table(userptr->sgt);
2437	kfree(userptr->sgt);
2438}
2439
2440/**
2441 * hl_userptr_delete_list() - clear userptr list.
2442 * @hdev: pointer to the habanalabs device structure.
2443 * @userptr_list: pointer to the list to clear.
2444 *
2445 * This function does the following:
2446 * - Iterates over the list and unpins the host memory and frees the userptr
2447 *   structure.
2448 */
2449void hl_userptr_delete_list(struct hl_device *hdev,
2450				struct list_head *userptr_list)
2451{
2452	struct hl_userptr *userptr, *tmp;
2453
2454	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2455		hl_unpin_host_memory(hdev, userptr);
2456		kfree(userptr);
2457	}
2458
2459	INIT_LIST_HEAD(userptr_list);
2460}
2461
2462/**
2463 * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2464 * @hdev: pointer to the habanalabs device structure.
2465 * @addr: user address to check.
2466 * @size: user block size to check.
2467 * @userptr_list: pointer to the list to clear.
2468 * @userptr: pointer to userptr to check.
2469 *
2470 * This function does the following:
2471 * - Iterates over the list and checks if the given userptr is in it, means is
2472 *   pinned. If so, returns true, otherwise returns false.
2473 */
2474bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2475				u32 size, struct list_head *userptr_list,
2476				struct hl_userptr **userptr)
2477{
2478	list_for_each_entry((*userptr), userptr_list, job_node) {
2479		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2480			return true;
2481	}
2482
2483	return false;
2484}
2485
2486/**
2487 * va_range_init() - initialize virtual addresses range.
2488 * @hdev: pointer to the habanalabs device structure.
2489 * @va_ranges: pointer to va_ranges array.
2490 * @range_type: virtual address range type.
2491 * @start: range start address, inclusive.
2492 * @end: range end address, inclusive.
2493 * @page_size: page size for this va_range.
2494 *
2495 * This function does the following:
2496 * - Initializes the virtual addresses list of the given range with the given
2497 *   addresses.
2498 */
2499static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2500				enum hl_va_range_type range_type, u64 start,
2501				u64 end, u32 page_size)
2502{
2503	struct hl_va_range *va_range = va_ranges[range_type];
2504	int rc;
2505
2506	INIT_LIST_HEAD(&va_range->list);
2507
2508	/*
2509	 * PAGE_SIZE alignment
2510	 * it is the caller's responsibility to align the addresses if the
2511	 * page size is not a power of 2
2512	 */
2513
2514	if (is_power_of_2(page_size)) {
2515		start = round_up(start, page_size);
2516
2517		/*
2518		 * The end of the range is inclusive, hence we need to align it
2519		 * to the end of the last full page in the range. For example if
2520		 * end = 0x3ff5 with page size 0x1000, we need to align it to
2521		 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2522		 */
2523		end = round_down(end + 1, page_size) - 1;
2524	}
2525
2526	if (start >= end) {
2527		dev_err(hdev->dev, "too small vm range for va list\n");
2528		return -EFAULT;
2529	}
2530
2531	rc = add_va_block(hdev, va_range, start, end);
2532
2533	if (rc) {
2534		dev_err(hdev->dev, "Failed to init host va list\n");
2535		return rc;
2536	}
2537
2538	va_range->start_addr = start;
2539	va_range->end_addr = end;
2540	va_range->page_size = page_size;
2541
2542	return 0;
2543}
2544
2545/**
2546 * va_range_fini() - clear a virtual addresses range.
2547 * @hdev: pointer to the habanalabs structure.
2548 * @va_range: pointer to virtual addresses range.
2549 *
2550 * This function does the following:
2551 * - Frees the virtual addresses block list and its lock.
2552 */
2553static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2554{
2555	mutex_lock(&va_range->lock);
2556	clear_va_list_locked(hdev, &va_range->list);
2557	mutex_unlock(&va_range->lock);
2558
2559	mutex_destroy(&va_range->lock);
2560	kfree(va_range);
2561}
2562
2563/**
2564 * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2565 * @ctx: pointer to the habanalabs context structure.
2566 * @host_range_start: host virtual addresses range start.
2567 * @host_range_end: host virtual addresses range end.
2568 * @host_page_size: host page size.
2569 * @host_huge_range_start: host virtual addresses range start for memory
2570 *                         allocated with huge pages.
2571 * @host_huge_range_end: host virtual addresses range end for memory allocated
2572 *                        with huge pages.
2573 * @host_huge_page_size: host huge page size.
2574 * @dram_range_start: dram virtual addresses range start.
2575 * @dram_range_end: dram virtual addresses range end.
2576 * @dram_page_size: dram page size.
2577 *
2578 * This function initializes the following:
2579 * - MMU for context.
2580 * - Virtual address to area descriptor hashtable.
2581 * - Virtual block list of available virtual memory.
2582 */
2583static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2584					u64 host_range_start,
2585					u64 host_range_end,
2586					u32 host_page_size,
2587					u64 host_huge_range_start,
2588					u64 host_huge_range_end,
2589					u32 host_huge_page_size,
2590					u64 dram_range_start,
2591					u64 dram_range_end,
2592					u32 dram_page_size)
2593{
2594	struct hl_device *hdev = ctx->hdev;
2595	int i, rc;
2596
2597	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2598		ctx->va_range[i] =
2599			kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2600		if (!ctx->va_range[i]) {
2601			rc = -ENOMEM;
2602			goto free_va_range;
2603		}
2604	}
2605
2606	rc = hl_mmu_ctx_init(ctx);
2607	if (rc) {
2608		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2609		goto free_va_range;
2610	}
2611
2612	mutex_init(&ctx->mem_hash_lock);
2613	hash_init(ctx->mem_hash);
2614
2615	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2616
2617	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2618			host_range_start, host_range_end, host_page_size);
2619	if (rc) {
2620		dev_err(hdev->dev, "failed to init host vm range\n");
2621		goto mmu_ctx_fini;
2622	}
2623
2624	if (hdev->pmmu_huge_range) {
2625		mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2626
2627		rc = va_range_init(hdev,
2628			ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2629			host_huge_range_start, host_huge_range_end,
2630			host_huge_page_size);
2631		if (rc) {
2632			dev_err(hdev->dev,
2633				"failed to init host huge vm range\n");
2634			goto clear_host_va_range;
2635		}
2636	} else {
2637		kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2638		ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2639				ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2640	}
2641
2642	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2643
2644	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2645			dram_range_start, dram_range_end, dram_page_size);
2646	if (rc) {
2647		dev_err(hdev->dev, "failed to init dram vm range\n");
2648		goto clear_host_huge_va_range;
2649	}
2650
2651	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2652
2653	return 0;
2654
2655clear_host_huge_va_range:
2656	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2657
2658	if (hdev->pmmu_huge_range) {
2659		mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2660		clear_va_list_locked(hdev,
2661			&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2662		mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2663	}
2664clear_host_va_range:
2665	if (hdev->pmmu_huge_range)
2666		mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2667	mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2668	clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2669	mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2670mmu_ctx_fini:
2671	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2672	mutex_destroy(&ctx->mem_hash_lock);
2673	hl_mmu_ctx_fini(ctx);
2674free_va_range:
2675	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2676		kfree(ctx->va_range[i]);
2677
2678	return rc;
2679}
2680
2681int hl_vm_ctx_init(struct hl_ctx *ctx)
2682{
2683	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2684	u64 host_range_start, host_range_end, host_huge_range_start,
2685		host_huge_range_end, dram_range_start, dram_range_end;
2686	u32 host_page_size, host_huge_page_size, dram_page_size;
2687
2688	atomic64_set(&ctx->dram_phys_mem, 0);
2689
2690	/*
2691	 * - If MMU is enabled, init the ranges as usual.
2692	 * - If MMU is disabled, in case of host mapping, the returned address
2693	 *   is the given one.
2694	 *   In case of DRAM mapping, the returned address is the physical
2695	 *   address of the memory related to the given handle.
2696	 */
2697	if (!ctx->hdev->mmu_enable)
2698		return 0;
2699
2700	dram_range_start = prop->dmmu.start_addr;
2701	dram_range_end = prop->dmmu.end_addr - 1;
2702	dram_page_size = prop->dram_page_size ?
2703				prop->dram_page_size : prop->dmmu.page_size;
2704	host_range_start = prop->pmmu.start_addr;
2705	host_range_end = prop->pmmu.end_addr - 1;
2706	host_page_size = prop->pmmu.page_size;
2707	host_huge_range_start = prop->pmmu_huge.start_addr;
2708	host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2709	host_huge_page_size = prop->pmmu_huge.page_size;
2710
2711	return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2712			host_page_size, host_huge_range_start,
2713			host_huge_range_end, host_huge_page_size,
2714			dram_range_start, dram_range_end, dram_page_size);
2715}
2716
2717/**
2718 * hl_vm_ctx_fini() - virtual memory teardown of context.
2719 * @ctx: pointer to the habanalabs context structure.
2720 *
2721 * This function perform teardown the following:
2722 * - Virtual block list of available virtual memory.
2723 * - Virtual address to area descriptor hashtable.
2724 * - MMU for context.
2725 *
2726 * In addition this function does the following:
2727 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2728 *   hashtable should be empty as no valid mappings should exist at this
2729 *   point.
2730 * - Frees any existing physical page list from the idr which relates to the
2731 *   current context asid.
2732 * - This function checks the virtual block list for correctness. At this point
2733 *   the list should contain one element which describes the whole virtual
2734 *   memory range of the context. Otherwise, a warning is printed.
2735 */
2736void hl_vm_ctx_fini(struct hl_ctx *ctx)
2737{
2738	struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2739	struct hl_device *hdev = ctx->hdev;
2740	struct hl_vm_hash_node *hnode;
2741	struct hl_vm *vm = &hdev->vm;
2742	struct hlist_node *tmp_node;
2743	struct list_head free_list;
2744	struct hl_mem_in args;
2745	int i;
2746
2747	if (!hdev->mmu_enable)
2748		return;
2749
2750	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2751
2752	/*
2753	 * Clearly something went wrong on hard reset so no point in printing
2754	 * another side effect error
2755	 */
2756	if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2757		dev_dbg(hdev->dev,
2758			"user released device without removing its memory mappings\n");
2759
2760	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2761		dev_dbg(hdev->dev,
2762			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2763			hnode->vaddr, ctx->asid);
2764		args.unmap.device_virt_addr = hnode->vaddr;
2765		unmap_device_va(ctx, &args, true);
2766	}
2767
2768	mutex_lock(&hdev->mmu_lock);
2769
2770	/* invalidate the cache once after the unmapping loop */
2771	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2772	hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2773
2774	mutex_unlock(&hdev->mmu_lock);
2775
2776	INIT_LIST_HEAD(&free_list);
2777
2778	spin_lock(&vm->idr_lock);
2779	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2780		if (phys_pg_list->asid == ctx->asid) {
2781			dev_dbg(hdev->dev,
2782				"page list 0x%px of asid %d is still alive\n",
2783				phys_pg_list, ctx->asid);
2784
2785			atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2786			idr_remove(&vm->phys_pg_pack_handles, i);
2787			list_add(&phys_pg_list->node, &free_list);
2788		}
2789	spin_unlock(&vm->idr_lock);
2790
2791	list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2792		free_phys_pg_pack(hdev, phys_pg_list);
2793
2794	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2795	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2796
2797	if (hdev->pmmu_huge_range)
2798		va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2799
2800	mutex_destroy(&ctx->mem_hash_lock);
2801	hl_mmu_ctx_fini(ctx);
2802
2803	/* In this case we need to clear the global accounting of DRAM usage
2804	 * because the user notifies us on allocations. If the user is no more,
2805	 * all DRAM is available
2806	 */
2807	if (ctx->asid != HL_KERNEL_ASID_ID &&
2808			!hdev->asic_prop.dram_supports_virtual_memory)
2809		atomic64_set(&hdev->dram_used_mem, 0);
2810}
2811
2812/**
2813 * hl_vm_init() - initialize virtual memory module.
2814 * @hdev: pointer to the habanalabs device structure.
2815 *
2816 * This function initializes the following:
2817 * - MMU module.
2818 * - DRAM physical pages pool of 2MB.
2819 * - Idr for device memory allocation handles.
2820 */
2821int hl_vm_init(struct hl_device *hdev)
2822{
2823	struct asic_fixed_properties *prop = &hdev->asic_prop;
2824	struct hl_vm *vm = &hdev->vm;
2825	int rc;
2826
2827	if (is_power_of_2(prop->dram_page_size))
2828		vm->dram_pg_pool =
2829			gen_pool_create(__ffs(prop->dram_page_size), -1);
2830	else
2831		vm->dram_pg_pool =
2832			gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2833
2834	if (!vm->dram_pg_pool) {
2835		dev_err(hdev->dev, "Failed to create dram page pool\n");
2836		return -ENOMEM;
2837	}
2838
2839	kref_init(&vm->dram_pg_pool_refcount);
2840
2841	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2842			prop->dram_end_address - prop->dram_user_base_address,
2843			-1);
2844
2845	if (rc) {
2846		dev_err(hdev->dev,
2847			"Failed to add memory to dram page pool %d\n", rc);
2848		goto pool_add_err;
2849	}
2850
2851	spin_lock_init(&vm->idr_lock);
2852	idr_init(&vm->phys_pg_pack_handles);
2853
2854	atomic64_set(&hdev->dram_used_mem, 0);
2855
2856	vm->init_done = true;
2857
2858	return 0;
2859
2860pool_add_err:
2861	gen_pool_destroy(vm->dram_pg_pool);
2862
2863	return rc;
2864}
2865
2866/**
2867 * hl_vm_fini() - virtual memory module teardown.
2868 * @hdev: pointer to the habanalabs device structure.
2869 *
2870 * This function perform teardown to the following:
2871 * - Idr for device memory allocation handles.
2872 * - DRAM physical pages pool of 2MB.
2873 * - MMU module.
2874 */
2875void hl_vm_fini(struct hl_device *hdev)
2876{
2877	struct hl_vm *vm = &hdev->vm;
2878
2879	if (!vm->init_done)
2880		return;
2881
2882	/*
2883	 * At this point all the contexts should be freed and hence no DRAM
2884	 * memory should be in use. Hence the DRAM pool should be freed here.
2885	 */
2886	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2887		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2888				__func__);
2889
2890	vm->init_done = false;
2891}
2892
2893/**
2894 * hl_hw_block_mem_init() - HW block memory initialization.
2895 * @ctx: pointer to the habanalabs context structure.
2896 *
2897 * This function initializes the HW block virtual mapped addresses list and
2898 * it's lock.
2899 */
2900void hl_hw_block_mem_init(struct hl_ctx *ctx)
2901{
2902	mutex_init(&ctx->hw_block_list_lock);
2903	INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2904}
2905
2906/**
2907 * hl_hw_block_mem_fini() - HW block memory teardown.
2908 * @ctx: pointer to the habanalabs context structure.
2909 *
2910 * This function clears the HW block virtual mapped addresses list and destroys
2911 * it's lock.
2912 */
2913void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2914{
2915	struct hl_vm_hw_block_list_node *lnode, *tmp;
2916
2917	if (!list_empty(&ctx->hw_block_mem_list))
2918		dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2919
2920	list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2921		list_del(&lnode->node);
2922		kfree(lnode);
2923	}
2924
2925	mutex_destroy(&ctx->hw_block_list_lock);
2926}