Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/*
  4 * Copyright 2016-2021 HabanaLabs, Ltd.
  5 * All Rights Reserved.
  6 */
  7
  8#include "habanalabs.h"
  9
 10#include <linux/slab.h>
 11
 12static void encaps_handle_do_release(struct hl_cs_encaps_sig_handle *handle, bool put_hw_sob,
 13					bool put_ctx)
 14{
 15	struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr;
 16
 17	if (put_hw_sob)
 18		hw_sob_put(handle->hw_sob);
 19
 20	spin_lock(&mgr->lock);
 21	idr_remove(&mgr->handles, handle->id);
 22	spin_unlock(&mgr->lock);
 23
 24	if (put_ctx)
 25		hl_ctx_put(handle->ctx);
 26
 27	kfree(handle);
 28}
 29
 30void hl_encaps_release_handle_and_put_ctx(struct kref *ref)
 31{
 32	struct hl_cs_encaps_sig_handle *handle =
 33			container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
 34
 35	encaps_handle_do_release(handle, false, true);
 36}
 37
 38static void hl_encaps_release_handle_and_put_sob(struct kref *ref)
 39{
 40	struct hl_cs_encaps_sig_handle *handle =
 41			container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
 42
 43	encaps_handle_do_release(handle, true, false);
 44}
 45
 46void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref)
 47{
 48	struct hl_cs_encaps_sig_handle *handle =
 49			container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
 50
 51	encaps_handle_do_release(handle, true, true);
 52}
 53
 54static void hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr *mgr)
 55{
 56	spin_lock_init(&mgr->lock);
 57	idr_init(&mgr->handles);
 58}
 59
 60static void hl_encaps_sig_mgr_fini(struct hl_device *hdev, struct hl_encaps_signals_mgr *mgr)
 61{
 62	struct hl_cs_encaps_sig_handle *handle;
 63	struct idr *idp;
 64	u32 id;
 65
 66	idp = &mgr->handles;
 67
 68	/* The IDR is expected to be empty at this stage, because any left signal should have been
 69	 * released as part of CS roll-back.
 70	 */
 71	if (!idr_is_empty(idp)) {
 72		dev_warn(hdev->dev,
 73			"device released while some encaps signals handles are still allocated\n");
 74		idr_for_each_entry(idp, handle, id)
 75			kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob);
 76	}
 77
 78	idr_destroy(&mgr->handles);
 79}
 80
 81static void hl_ctx_fini(struct hl_ctx *ctx)
 82{
 83	struct hl_device *hdev = ctx->hdev;
 84	int i;
 85
 86	/* Release all allocated HW block mapped list entries and destroy
 87	 * the mutex.
 88	 */
 89	hl_hw_block_mem_fini(ctx);
 90
 91	/*
 92	 * If we arrived here, there are no jobs waiting for this context
 93	 * on its queues so we can safely remove it.
 94	 * This is because for each CS, we increment the ref count and for
 95	 * every CS that was finished we decrement it and we won't arrive
 96	 * to this function unless the ref count is 0
 97	 */
 98
 99	for (i = 0 ; i < hdev->asic_prop.max_pending_cs ; i++)
100		hl_fence_put(ctx->cs_pending[i]);
101
102	kfree(ctx->cs_pending);
103
104	if (ctx->asid != HL_KERNEL_ASID_ID) {
105		dev_dbg(hdev->dev, "closing user context %d\n", ctx->asid);
106
107		/* The engines are stopped as there is no executing CS, but the
108		 * Coresight might be still working by accessing addresses
109		 * related to the stopped engines. Hence stop it explicitly.
110		 */
111		if (hdev->in_debug)
112			hl_device_set_debug_mode(hdev, ctx, false);
113
114		hdev->asic_funcs->ctx_fini(ctx);
115
116		hl_dec_ctx_fini(ctx);
117
118		hl_cb_va_pool_fini(ctx);
119		hl_vm_ctx_fini(ctx);
120		hl_asid_free(hdev, ctx->asid);
121		hl_encaps_sig_mgr_fini(hdev, &ctx->sig_mgr);
122	} else {
123		dev_dbg(hdev->dev, "closing kernel context\n");
124		hdev->asic_funcs->ctx_fini(ctx);
125		hl_vm_ctx_fini(ctx);
126		hl_mmu_ctx_fini(ctx);
127	}
128}
129
130void hl_ctx_do_release(struct kref *ref)
131{
132	struct hl_ctx *ctx;
133
134	ctx = container_of(ref, struct hl_ctx, refcount);
135
136	hl_ctx_fini(ctx);
137
138	if (ctx->hpriv) {
139		struct hl_fpriv *hpriv = ctx->hpriv;
140
141		mutex_lock(&hpriv->ctx_lock);
142		hpriv->ctx = NULL;
143		mutex_unlock(&hpriv->ctx_lock);
144
145		hl_hpriv_put(hpriv);
146	}
147
148	kfree(ctx);
149}
150
151int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv)
152{
153	struct hl_ctx_mgr *ctx_mgr = &hpriv->ctx_mgr;
154	struct hl_ctx *ctx;
155	int rc;
156
157	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
158	if (!ctx) {
159		rc = -ENOMEM;
160		goto out_err;
161	}
162
163	mutex_lock(&ctx_mgr->lock);
164	rc = idr_alloc(&ctx_mgr->handles, ctx, 1, 0, GFP_KERNEL);
165	mutex_unlock(&ctx_mgr->lock);
166
167	if (rc < 0) {
168		dev_err(hdev->dev, "Failed to allocate IDR for a new CTX\n");
169		goto free_ctx;
170	}
171
172	ctx->handle = rc;
173
174	rc = hl_ctx_init(hdev, ctx, false);
175	if (rc)
176		goto remove_from_idr;
177
178	hl_hpriv_get(hpriv);
179	ctx->hpriv = hpriv;
180
181	/* TODO: remove for multiple contexts per process */
182	hpriv->ctx = ctx;
183
184	/* TODO: remove the following line for multiple process support */
185	hdev->is_compute_ctx_active = true;
186
187	return 0;
188
189remove_from_idr:
190	mutex_lock(&ctx_mgr->lock);
191	idr_remove(&ctx_mgr->handles, ctx->handle);
192	mutex_unlock(&ctx_mgr->lock);
193free_ctx:
194	kfree(ctx);
195out_err:
196	return rc;
197}
198
199int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
200{
201	int rc = 0, i;
202
203	ctx->hdev = hdev;
204
205	kref_init(&ctx->refcount);
206
207	ctx->cs_sequence = 1;
208	spin_lock_init(&ctx->cs_lock);
209	atomic_set(&ctx->thread_ctx_switch_token, 1);
210	ctx->thread_ctx_switch_wait_token = 0;
211	ctx->cs_pending = kcalloc(hdev->asic_prop.max_pending_cs,
212				sizeof(struct hl_fence *),
213				GFP_KERNEL);
214	if (!ctx->cs_pending)
215		return -ENOMEM;
216
217	INIT_LIST_HEAD(&ctx->outcome_store.used_list);
218	INIT_LIST_HEAD(&ctx->outcome_store.free_list);
219	hash_init(ctx->outcome_store.outcome_map);
220	for (i = 0; i < ARRAY_SIZE(ctx->outcome_store.nodes_pool); ++i)
221		list_add(&ctx->outcome_store.nodes_pool[i].list_link,
222			 &ctx->outcome_store.free_list);
223
224	hl_hw_block_mem_init(ctx);
225
226	if (is_kernel_ctx) {
227		ctx->asid = HL_KERNEL_ASID_ID; /* Kernel driver gets ASID 0 */
228		rc = hl_vm_ctx_init(ctx);
229		if (rc) {
230			dev_err(hdev->dev, "Failed to init mem ctx module\n");
231			rc = -ENOMEM;
232			goto err_hw_block_mem_fini;
233		}
234
235		rc = hdev->asic_funcs->ctx_init(ctx);
236		if (rc) {
237			dev_err(hdev->dev, "ctx_init failed\n");
238			goto err_vm_ctx_fini;
239		}
240	} else {
241		ctx->asid = hl_asid_alloc(hdev);
242		if (!ctx->asid) {
243			dev_err(hdev->dev, "No free ASID, failed to create context\n");
244			rc = -ENOMEM;
245			goto err_hw_block_mem_fini;
246		}
247
248		rc = hl_vm_ctx_init(ctx);
249		if (rc) {
250			dev_err(hdev->dev, "Failed to init mem ctx module\n");
251			rc = -ENOMEM;
252			goto err_asid_free;
253		}
254
255		rc = hl_cb_va_pool_init(ctx);
256		if (rc) {
257			dev_err(hdev->dev,
258				"Failed to init VA pool for mapped CB\n");
259			goto err_vm_ctx_fini;
260		}
261
262		rc = hdev->asic_funcs->ctx_init(ctx);
263		if (rc) {
264			dev_err(hdev->dev, "ctx_init failed\n");
265			goto err_cb_va_pool_fini;
266		}
267
268		hl_encaps_sig_mgr_init(&ctx->sig_mgr);
269
270		dev_dbg(hdev->dev, "create user context %d\n", ctx->asid);
271	}
272
273	return 0;
274
275err_cb_va_pool_fini:
276	hl_cb_va_pool_fini(ctx);
277err_vm_ctx_fini:
278	hl_vm_ctx_fini(ctx);
279err_asid_free:
280	if (ctx->asid != HL_KERNEL_ASID_ID)
281		hl_asid_free(hdev, ctx->asid);
282err_hw_block_mem_fini:
283	hl_hw_block_mem_fini(ctx);
284	kfree(ctx->cs_pending);
285
286	return rc;
287}
288
289static int hl_ctx_get_unless_zero(struct hl_ctx *ctx)
290{
291	return kref_get_unless_zero(&ctx->refcount);
292}
293
294void hl_ctx_get(struct hl_ctx *ctx)
295{
296	kref_get(&ctx->refcount);
297}
298
299int hl_ctx_put(struct hl_ctx *ctx)
300{
301	return kref_put(&ctx->refcount, hl_ctx_do_release);
302}
303
304struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev)
305{
306	struct hl_ctx *ctx = NULL;
307	struct hl_fpriv *hpriv;
308
309	mutex_lock(&hdev->fpriv_list_lock);
310
311	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) {
312		mutex_lock(&hpriv->ctx_lock);
313		ctx = hpriv->ctx;
314		if (ctx && !hl_ctx_get_unless_zero(ctx))
315			ctx = NULL;
316		mutex_unlock(&hpriv->ctx_lock);
317
318		/* There can only be a single user which has opened the compute device, so exit
319		 * immediately once we find its context or if we see that it has been released
320		 */
321		break;
322	}
323
324	mutex_unlock(&hdev->fpriv_list_lock);
325
326	return ctx;
327}
328
329/*
330 * hl_ctx_get_fence_locked - get CS fence under CS lock
331 *
332 * @ctx: pointer to the context structure.
333 * @seq: CS sequences number
334 *
335 * @return valid fence pointer on success, NULL if fence is gone, otherwise
336 *         error pointer.
337 *
338 * NOTE: this function shall be called with cs_lock locked
339 */
340static struct hl_fence *hl_ctx_get_fence_locked(struct hl_ctx *ctx, u64 seq)
341{
342	struct asic_fixed_properties *asic_prop = &ctx->hdev->asic_prop;
343	struct hl_fence *fence;
344
345	if (seq >= ctx->cs_sequence)
346		return ERR_PTR(-EINVAL);
347
348	if (seq + asic_prop->max_pending_cs < ctx->cs_sequence)
349		return NULL;
350
351	fence = ctx->cs_pending[seq & (asic_prop->max_pending_cs - 1)];
352	hl_fence_get(fence);
353	return fence;
354}
355
356struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq)
357{
358	struct hl_fence *fence;
359
360	spin_lock(&ctx->cs_lock);
361
362	fence = hl_ctx_get_fence_locked(ctx, seq);
363
364	spin_unlock(&ctx->cs_lock);
365
366	return fence;
367}
368
369/*
370 * hl_ctx_get_fences - get multiple CS fences under the same CS lock
371 *
372 * @ctx: pointer to the context structure.
373 * @seq_arr: array of CS sequences to wait for
374 * @fence: fence array to store the CS fences
375 * @arr_len: length of seq_arr and fence_arr
376 *
377 * @return 0 on success, otherwise non 0 error code
378 */
379int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
380				struct hl_fence **fence, u32 arr_len)
381{
382	struct hl_fence **fence_arr_base = fence;
383	int i, rc = 0;
384
385	spin_lock(&ctx->cs_lock);
386
387	for (i = 0; i < arr_len; i++, fence++) {
388		u64 seq = seq_arr[i];
389
390		*fence = hl_ctx_get_fence_locked(ctx, seq);
391
392		if (IS_ERR(*fence)) {
393			dev_err(ctx->hdev->dev,
394				"Failed to get fence for CS with seq 0x%llx\n",
395					seq);
396			rc = PTR_ERR(*fence);
397			break;
398		}
399	}
400
401	spin_unlock(&ctx->cs_lock);
402
403	if (rc)
404		hl_fences_put(fence_arr_base, i);
405
406	return rc;
407}
408
409/*
410 * hl_ctx_mgr_init - initialize the context manager
411 *
412 * @ctx_mgr: pointer to context manager structure
413 *
414 * This manager is an object inside the hpriv object of the user process.
415 * The function is called when a user process opens the FD.
416 */
417void hl_ctx_mgr_init(struct hl_ctx_mgr *ctx_mgr)
418{
419	mutex_init(&ctx_mgr->lock);
420	idr_init(&ctx_mgr->handles);
421}
422
423/*
424 * hl_ctx_mgr_fini - finalize the context manager
425 *
426 * @hdev: pointer to device structure
427 * @ctx_mgr: pointer to context manager structure
428 *
429 * This function goes over all the contexts in the manager and frees them.
430 * It is called when a process closes the FD.
431 */
432void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *ctx_mgr)
433{
434	struct hl_ctx *ctx;
435	struct idr *idp;
436	u32 id;
437
438	idp = &ctx_mgr->handles;
439
440	idr_for_each_entry(idp, ctx, id)
441		kref_put(&ctx->refcount, hl_ctx_do_release);
442
443	idr_destroy(&ctx_mgr->handles);
444	mutex_destroy(&ctx_mgr->lock);
445}