Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Partial Parity Log for closing the RAID5 write hole
   4 * Copyright (c) 2017, Intel Corporation.
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/blkdev.h>
   9#include <linux/slab.h>
  10#include <linux/crc32c.h>
  11#include <linux/async_tx.h>
  12#include <linux/raid/md_p.h>
  13#include "md.h"
  14#include "raid5.h"
  15#include "raid5-log.h"
  16
  17/*
  18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
  19 * partial parity data. The header contains an array of entries
  20 * (struct ppl_header_entry) which describe the logged write requests.
  21 * Partial parity for the entries comes after the header, written in the same
  22 * sequence as the entries:
  23 *
  24 * Header
  25 *   entry0
  26 *   ...
  27 *   entryN
  28 * PP data
  29 *   PP for entry0
  30 *   ...
  31 *   PP for entryN
  32 *
  33 * An entry describes one or more consecutive stripe_heads, up to a full
  34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
  35 * number of stripe_heads in the entry and n is the number of modified data
  36 * disks. Every stripe_head in the entry must write to the same data disks.
  37 * An example of a valid case described by a single entry (writes to the first
  38 * stripe of a 4 disk array, 16k chunk size):
  39 *
  40 * sh->sector   dd0   dd1   dd2    ppl
  41 *            +-----+-----+-----+
  42 * 0          | --- | --- | --- | +----+
  43 * 8          | -W- | -W- | --- | | pp |   data_sector = 8
  44 * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
  45 * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
  46 *            +-----+-----+-----+ +----+
  47 *
  48 * data_sector is the first raid sector of the modified data, data_size is the
  49 * total size of modified data and pp_size is the size of partial parity for
  50 * this entry. Entries for full stripe writes contain no partial parity
  51 * (pp_size = 0), they only mark the stripes for which parity should be
  52 * recalculated after an unclean shutdown. Every entry holds a checksum of its
  53 * partial parity, the header also has a checksum of the header itself.
  54 *
  55 * A write request is always logged to the PPL instance stored on the parity
  56 * disk of the corresponding stripe. For each member disk there is one ppl_log
  57 * used to handle logging for this disk, independently from others. They are
  58 * grouped in child_logs array in struct ppl_conf, which is assigned to
  59 * r5conf->log_private.
  60 *
  61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
  62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
  63 * can be appended to the last entry if it meets the conditions for a valid
  64 * entry described above, otherwise a new entry is added. Checksums of entries
  65 * are calculated incrementally as stripes containing partial parity are being
  66 * added. ppl_submit_iounit() calculates the checksum of the header and submits
  67 * a bio containing the header page and partial parity pages (sh->ppl_page) for
  68 * all stripes of the io_unit. When the PPL write completes, the stripes
  69 * associated with the io_unit are released and raid5d starts writing their data
  70 * and parity. When all stripes are written, the io_unit is freed and the next
  71 * can be submitted.
  72 *
  73 * An io_unit is used to gather stripes until it is submitted or becomes full
  74 * (if the maximum number of entries or size of PPL is reached). Another io_unit
  75 * can't be submitted until the previous has completed (PPL and stripe
  76 * data+parity is written). The log->io_list tracks all io_units of a log
  77 * (for a single member disk). New io_units are added to the end of the list
  78 * and the first io_unit is submitted, if it is not submitted already.
  79 * The current io_unit accepting new stripes is always at the end of the list.
  80 *
  81 * If write-back cache is enabled for any of the disks in the array, its data
  82 * must be flushed before next io_unit is submitted.
  83 */
  84
  85#define PPL_SPACE_SIZE (128 * 1024)
  86
  87struct ppl_conf {
  88	struct mddev *mddev;
  89
  90	/* array of child logs, one for each raid disk */
  91	struct ppl_log *child_logs;
  92	int count;
  93
  94	int block_size;		/* the logical block size used for data_sector
  95				 * in ppl_header_entry */
  96	u32 signature;		/* raid array identifier */
  97	atomic64_t seq;		/* current log write sequence number */
  98
  99	struct kmem_cache *io_kc;
 100	mempool_t io_pool;
 101	struct bio_set bs;
 102	struct bio_set flush_bs;
 103
 104	/* used only for recovery */
 105	int recovered_entries;
 106	int mismatch_count;
 107
 108	/* stripes to retry if failed to allocate io_unit */
 109	struct list_head no_mem_stripes;
 110	spinlock_t no_mem_stripes_lock;
 111
 112	unsigned short write_hint;
 113};
 114
 115struct ppl_log {
 116	struct ppl_conf *ppl_conf;	/* shared between all log instances */
 117
 118	struct md_rdev *rdev;		/* array member disk associated with
 119					 * this log instance */
 120	struct mutex io_mutex;
 121	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
 122					 * always at the end of io_list */
 123	spinlock_t io_list_lock;
 124	struct list_head io_list;	/* all io_units of this log */
 125
 126	sector_t next_io_sector;
 127	unsigned int entry_space;
 128	bool use_multippl;
 129	bool wb_cache_on;
 130	unsigned long disk_flush_bitmap;
 131};
 132
 133#define PPL_IO_INLINE_BVECS 32
 134
 135struct ppl_io_unit {
 136	struct ppl_log *log;
 137
 138	struct page *header_page;	/* for ppl_header */
 139
 140	unsigned int entries_count;	/* number of entries in ppl_header */
 141	unsigned int pp_size;		/* total size current of partial parity */
 142
 143	u64 seq;			/* sequence number of this log write */
 144	struct list_head log_sibling;	/* log->io_list */
 145
 146	struct list_head stripe_list;	/* stripes added to the io_unit */
 147	atomic_t pending_stripes;	/* how many stripes not written to raid */
 148	atomic_t pending_flushes;	/* how many disk flushes are in progress */
 149
 150	bool submitted;			/* true if write to log started */
 151
 152	/* inline bio and its biovec for submitting the iounit */
 153	struct bio bio;
 154	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
 155};
 156
 157struct dma_async_tx_descriptor *
 158ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
 159		       struct dma_async_tx_descriptor *tx)
 160{
 161	int disks = sh->disks;
 162	struct page **srcs = percpu->scribble;
 163	int count = 0, pd_idx = sh->pd_idx, i;
 164	struct async_submit_ctl submit;
 165
 166	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
 167
 168	/*
 169	 * Partial parity is the XOR of stripe data chunks that are not changed
 170	 * during the write request. Depending on available data
 171	 * (read-modify-write vs. reconstruct-write case) we calculate it
 172	 * differently.
 173	 */
 174	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
 175		/*
 176		 * rmw: xor old data and parity from updated disks
 177		 * This is calculated earlier by ops_run_prexor5() so just copy
 178		 * the parity dev page.
 179		 */
 180		srcs[count++] = sh->dev[pd_idx].page;
 181	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
 182		/* rcw: xor data from all not updated disks */
 183		for (i = disks; i--;) {
 184			struct r5dev *dev = &sh->dev[i];
 185			if (test_bit(R5_UPTODATE, &dev->flags))
 186				srcs[count++] = dev->page;
 187		}
 188	} else {
 189		return tx;
 190	}
 191
 192	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
 193			  NULL, sh, (void *) (srcs + sh->disks + 2));
 194
 195	if (count == 1)
 196		tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
 197				  &submit);
 198	else
 199		tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
 200			       &submit);
 201
 202	return tx;
 203}
 204
 205static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
 206{
 207	struct kmem_cache *kc = pool_data;
 208	struct ppl_io_unit *io;
 209
 210	io = kmem_cache_alloc(kc, gfp_mask);
 211	if (!io)
 212		return NULL;
 213
 214	io->header_page = alloc_page(gfp_mask);
 215	if (!io->header_page) {
 216		kmem_cache_free(kc, io);
 217		return NULL;
 218	}
 219
 220	return io;
 221}
 222
 223static void ppl_io_pool_free(void *element, void *pool_data)
 224{
 225	struct kmem_cache *kc = pool_data;
 226	struct ppl_io_unit *io = element;
 227
 228	__free_page(io->header_page);
 229	kmem_cache_free(kc, io);
 230}
 231
 232static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
 233					  struct stripe_head *sh)
 234{
 235	struct ppl_conf *ppl_conf = log->ppl_conf;
 236	struct ppl_io_unit *io;
 237	struct ppl_header *pplhdr;
 238	struct page *header_page;
 239
 240	io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
 241	if (!io)
 242		return NULL;
 243
 244	header_page = io->header_page;
 245	memset(io, 0, sizeof(*io));
 246	io->header_page = header_page;
 247
 248	io->log = log;
 249	INIT_LIST_HEAD(&io->log_sibling);
 250	INIT_LIST_HEAD(&io->stripe_list);
 251	atomic_set(&io->pending_stripes, 0);
 252	atomic_set(&io->pending_flushes, 0);
 253	bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS,
 254		 REQ_OP_WRITE | REQ_FUA);
 255
 256	pplhdr = page_address(io->header_page);
 257	clear_page(pplhdr);
 258	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
 259	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
 260
 261	io->seq = atomic64_add_return(1, &ppl_conf->seq);
 262	pplhdr->generation = cpu_to_le64(io->seq);
 263
 264	return io;
 265}
 266
 267static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
 268{
 269	struct ppl_io_unit *io = log->current_io;
 270	struct ppl_header_entry *e = NULL;
 271	struct ppl_header *pplhdr;
 272	int i;
 273	sector_t data_sector = 0;
 274	int data_disks = 0;
 275	struct r5conf *conf = sh->raid_conf;
 276
 277	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
 278
 279	/* check if current io_unit is full */
 280	if (io && (io->pp_size == log->entry_space ||
 281		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
 282		pr_debug("%s: add io_unit blocked by seq: %llu\n",
 283			 __func__, io->seq);
 284		io = NULL;
 285	}
 286
 287	/* add a new unit if there is none or the current is full */
 288	if (!io) {
 289		io = ppl_new_iounit(log, sh);
 290		if (!io)
 291			return -ENOMEM;
 292		spin_lock_irq(&log->io_list_lock);
 293		list_add_tail(&io->log_sibling, &log->io_list);
 294		spin_unlock_irq(&log->io_list_lock);
 295
 296		log->current_io = io;
 297	}
 298
 299	for (i = 0; i < sh->disks; i++) {
 300		struct r5dev *dev = &sh->dev[i];
 301
 302		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
 303			if (!data_disks || dev->sector < data_sector)
 304				data_sector = dev->sector;
 305			data_disks++;
 306		}
 307	}
 308	BUG_ON(!data_disks);
 309
 310	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
 311		 io->seq, (unsigned long long)data_sector, data_disks);
 312
 313	pplhdr = page_address(io->header_page);
 314
 315	if (io->entries_count > 0) {
 316		struct ppl_header_entry *last =
 317				&pplhdr->entries[io->entries_count - 1];
 318		struct stripe_head *sh_last = list_last_entry(
 319				&io->stripe_list, struct stripe_head, log_list);
 320		u64 data_sector_last = le64_to_cpu(last->data_sector);
 321		u32 data_size_last = le32_to_cpu(last->data_size);
 322
 323		/*
 324		 * Check if we can append the stripe to the last entry. It must
 325		 * be just after the last logged stripe and write to the same
 326		 * disks. Use bit shift and logarithm to avoid 64-bit division.
 327		 */
 328		if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
 329		    (data_sector >> ilog2(conf->chunk_sectors) ==
 330		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
 331		    ((data_sector - data_sector_last) * data_disks ==
 332		     data_size_last >> 9))
 333			e = last;
 334	}
 335
 336	if (!e) {
 337		e = &pplhdr->entries[io->entries_count++];
 338		e->data_sector = cpu_to_le64(data_sector);
 339		e->parity_disk = cpu_to_le32(sh->pd_idx);
 340		e->checksum = cpu_to_le32(~0);
 341	}
 342
 343	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
 344
 345	/* don't write any PP if full stripe write */
 346	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
 347		le32_add_cpu(&e->pp_size, PAGE_SIZE);
 348		io->pp_size += PAGE_SIZE;
 349		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
 350						    page_address(sh->ppl_page),
 351						    PAGE_SIZE));
 352	}
 353
 354	list_add_tail(&sh->log_list, &io->stripe_list);
 355	atomic_inc(&io->pending_stripes);
 356	sh->ppl_io = io;
 357
 358	return 0;
 359}
 360
 361int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
 362{
 363	struct ppl_conf *ppl_conf = conf->log_private;
 364	struct ppl_io_unit *io = sh->ppl_io;
 365	struct ppl_log *log;
 366
 367	if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
 368	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
 369	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
 370		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 371		return -EAGAIN;
 372	}
 373
 374	log = &ppl_conf->child_logs[sh->pd_idx];
 375
 376	mutex_lock(&log->io_mutex);
 377
 378	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
 379		mutex_unlock(&log->io_mutex);
 380		return -EAGAIN;
 381	}
 382
 383	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 384	clear_bit(STRIPE_DELAYED, &sh->state);
 385	atomic_inc(&sh->count);
 386
 387	if (ppl_log_stripe(log, sh)) {
 388		spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
 389		list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
 390		spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
 391	}
 392
 393	mutex_unlock(&log->io_mutex);
 394
 395	return 0;
 396}
 397
 398static void ppl_log_endio(struct bio *bio)
 399{
 400	struct ppl_io_unit *io = bio->bi_private;
 401	struct ppl_log *log = io->log;
 402	struct ppl_conf *ppl_conf = log->ppl_conf;
 403	struct stripe_head *sh, *next;
 404
 405	pr_debug("%s: seq: %llu\n", __func__, io->seq);
 406
 407	if (bio->bi_status)
 408		md_error(ppl_conf->mddev, log->rdev);
 409
 410	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 411		list_del_init(&sh->log_list);
 412
 413		set_bit(STRIPE_HANDLE, &sh->state);
 414		raid5_release_stripe(sh);
 415	}
 416}
 417
 418static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
 419{
 420	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n",
 421		 __func__, io->seq, bio->bi_iter.bi_size,
 422		 (unsigned long long)bio->bi_iter.bi_sector,
 423		 bio->bi_bdev);
 424
 425	submit_bio(bio);
 426}
 427
 428static void ppl_submit_iounit(struct ppl_io_unit *io)
 429{
 430	struct ppl_log *log = io->log;
 431	struct ppl_conf *ppl_conf = log->ppl_conf;
 432	struct ppl_header *pplhdr = page_address(io->header_page);
 433	struct bio *bio = &io->bio;
 434	struct stripe_head *sh;
 435	int i;
 436
 437	bio->bi_private = io;
 438
 439	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
 440		ppl_log_endio(bio);
 441		return;
 442	}
 443
 444	for (i = 0; i < io->entries_count; i++) {
 445		struct ppl_header_entry *e = &pplhdr->entries[i];
 446
 447		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
 448			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
 449			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
 450
 451		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
 452					     ilog2(ppl_conf->block_size >> 9));
 453		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
 454	}
 455
 456	pplhdr->entries_count = cpu_to_le32(io->entries_count);
 457	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
 458
 459	/* Rewind the buffer if current PPL is larger then remaining space */
 460	if (log->use_multippl &&
 461	    log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
 462	    (PPL_HEADER_SIZE + io->pp_size) >> 9)
 463		log->next_io_sector = log->rdev->ppl.sector;
 464
 465
 466	bio->bi_end_io = ppl_log_endio;
 467	bio->bi_iter.bi_sector = log->next_io_sector;
 468	bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
 469
 470	pr_debug("%s: log->current_io_sector: %llu\n", __func__,
 471	    (unsigned long long)log->next_io_sector);
 472
 473	if (log->use_multippl)
 474		log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
 475
 476	WARN_ON(log->disk_flush_bitmap != 0);
 477
 478	list_for_each_entry(sh, &io->stripe_list, log_list) {
 479		for (i = 0; i < sh->disks; i++) {
 480			struct r5dev *dev = &sh->dev[i];
 481
 482			if ((ppl_conf->child_logs[i].wb_cache_on) &&
 483			    (test_bit(R5_Wantwrite, &dev->flags))) {
 484				set_bit(i, &log->disk_flush_bitmap);
 485			}
 486		}
 487
 488		/* entries for full stripe writes have no partial parity */
 489		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
 490			continue;
 491
 492		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
 493			struct bio *prev = bio;
 494
 495			bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS,
 496					       prev->bi_opf, GFP_NOIO,
 497					       &ppl_conf->bs);
 498			bio->bi_iter.bi_sector = bio_end_sector(prev);
 499			bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
 500
 501			bio_chain(bio, prev);
 502			ppl_submit_iounit_bio(io, prev);
 503		}
 504	}
 505
 506	ppl_submit_iounit_bio(io, bio);
 507}
 508
 509static void ppl_submit_current_io(struct ppl_log *log)
 510{
 511	struct ppl_io_unit *io;
 512
 513	spin_lock_irq(&log->io_list_lock);
 514
 515	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
 516				      log_sibling);
 517	if (io && io->submitted)
 518		io = NULL;
 519
 520	spin_unlock_irq(&log->io_list_lock);
 521
 522	if (io) {
 523		io->submitted = true;
 524
 525		if (io == log->current_io)
 526			log->current_io = NULL;
 527
 528		ppl_submit_iounit(io);
 529	}
 530}
 531
 532void ppl_write_stripe_run(struct r5conf *conf)
 533{
 534	struct ppl_conf *ppl_conf = conf->log_private;
 535	struct ppl_log *log;
 536	int i;
 537
 538	for (i = 0; i < ppl_conf->count; i++) {
 539		log = &ppl_conf->child_logs[i];
 540
 541		mutex_lock(&log->io_mutex);
 542		ppl_submit_current_io(log);
 543		mutex_unlock(&log->io_mutex);
 544	}
 545}
 546
 547static void ppl_io_unit_finished(struct ppl_io_unit *io)
 548{
 549	struct ppl_log *log = io->log;
 550	struct ppl_conf *ppl_conf = log->ppl_conf;
 551	struct r5conf *conf = ppl_conf->mddev->private;
 552	unsigned long flags;
 553
 554	pr_debug("%s: seq: %llu\n", __func__, io->seq);
 555
 556	local_irq_save(flags);
 557
 558	spin_lock(&log->io_list_lock);
 559	list_del(&io->log_sibling);
 560	spin_unlock(&log->io_list_lock);
 561
 562	mempool_free(io, &ppl_conf->io_pool);
 563
 564	spin_lock(&ppl_conf->no_mem_stripes_lock);
 565	if (!list_empty(&ppl_conf->no_mem_stripes)) {
 566		struct stripe_head *sh;
 567
 568		sh = list_first_entry(&ppl_conf->no_mem_stripes,
 569				      struct stripe_head, log_list);
 570		list_del_init(&sh->log_list);
 571		set_bit(STRIPE_HANDLE, &sh->state);
 572		raid5_release_stripe(sh);
 573	}
 574	spin_unlock(&ppl_conf->no_mem_stripes_lock);
 575
 576	local_irq_restore(flags);
 577
 578	wake_up(&conf->wait_for_quiescent);
 579}
 580
 581static void ppl_flush_endio(struct bio *bio)
 582{
 583	struct ppl_io_unit *io = bio->bi_private;
 584	struct ppl_log *log = io->log;
 585	struct ppl_conf *ppl_conf = log->ppl_conf;
 586	struct r5conf *conf = ppl_conf->mddev->private;
 587
 588	pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev);
 589
 590	if (bio->bi_status) {
 591		struct md_rdev *rdev;
 592
 593		rcu_read_lock();
 594		rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
 595		if (rdev)
 596			md_error(rdev->mddev, rdev);
 597		rcu_read_unlock();
 598	}
 599
 600	bio_put(bio);
 601
 602	if (atomic_dec_and_test(&io->pending_flushes)) {
 603		ppl_io_unit_finished(io);
 604		md_wakeup_thread(conf->mddev->thread);
 605	}
 606}
 607
 608static void ppl_do_flush(struct ppl_io_unit *io)
 609{
 610	struct ppl_log *log = io->log;
 611	struct ppl_conf *ppl_conf = log->ppl_conf;
 612	struct r5conf *conf = ppl_conf->mddev->private;
 613	int raid_disks = conf->raid_disks;
 614	int flushed_disks = 0;
 615	int i;
 616
 617	atomic_set(&io->pending_flushes, raid_disks);
 618
 619	for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
 620		struct md_rdev *rdev;
 621		struct block_device *bdev = NULL;
 622
 623		rcu_read_lock();
 624		rdev = rcu_dereference(conf->disks[i].rdev);
 625		if (rdev && !test_bit(Faulty, &rdev->flags))
 626			bdev = rdev->bdev;
 627		rcu_read_unlock();
 628
 629		if (bdev) {
 630			struct bio *bio;
 631
 632			bio = bio_alloc_bioset(bdev, 0,
 633					       REQ_OP_WRITE | REQ_PREFLUSH,
 634					       GFP_NOIO, &ppl_conf->flush_bs);
 635			bio->bi_private = io;
 636			bio->bi_end_io = ppl_flush_endio;
 637
 638			pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev);
 639
 640			submit_bio(bio);
 641			flushed_disks++;
 642		}
 643	}
 644
 645	log->disk_flush_bitmap = 0;
 646
 647	for (i = flushed_disks ; i < raid_disks; i++) {
 648		if (atomic_dec_and_test(&io->pending_flushes))
 649			ppl_io_unit_finished(io);
 650	}
 651}
 652
 653static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
 654					    struct ppl_log *log)
 655{
 656	struct ppl_io_unit *io;
 657
 658	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
 659				      log_sibling);
 660
 661	return !io || !io->submitted;
 662}
 663
 664void ppl_quiesce(struct r5conf *conf, int quiesce)
 665{
 666	struct ppl_conf *ppl_conf = conf->log_private;
 667	int i;
 668
 669	if (quiesce) {
 670		for (i = 0; i < ppl_conf->count; i++) {
 671			struct ppl_log *log = &ppl_conf->child_logs[i];
 672
 673			spin_lock_irq(&log->io_list_lock);
 674			wait_event_lock_irq(conf->wait_for_quiescent,
 675					    ppl_no_io_unit_submitted(conf, log),
 676					    log->io_list_lock);
 677			spin_unlock_irq(&log->io_list_lock);
 678		}
 679	}
 680}
 681
 682int ppl_handle_flush_request(struct bio *bio)
 683{
 684	if (bio->bi_iter.bi_size == 0) {
 685		bio_endio(bio);
 686		return 0;
 687	}
 688	bio->bi_opf &= ~REQ_PREFLUSH;
 689	return -EAGAIN;
 690}
 691
 692void ppl_stripe_write_finished(struct stripe_head *sh)
 693{
 694	struct ppl_io_unit *io;
 695
 696	io = sh->ppl_io;
 697	sh->ppl_io = NULL;
 698
 699	if (io && atomic_dec_and_test(&io->pending_stripes)) {
 700		if (io->log->disk_flush_bitmap)
 701			ppl_do_flush(io);
 702		else
 703			ppl_io_unit_finished(io);
 704	}
 705}
 706
 707static void ppl_xor(int size, struct page *page1, struct page *page2)
 708{
 709	struct async_submit_ctl submit;
 710	struct dma_async_tx_descriptor *tx;
 711	struct page *xor_srcs[] = { page1, page2 };
 712
 713	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
 714			  NULL, NULL, NULL, NULL);
 715	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
 716
 717	async_tx_quiesce(&tx);
 718}
 719
 720/*
 721 * PPL recovery strategy: xor partial parity and data from all modified data
 722 * disks within a stripe and write the result as the new stripe parity. If all
 723 * stripe data disks are modified (full stripe write), no partial parity is
 724 * available, so just xor the data disks.
 725 *
 726 * Recovery of a PPL entry shall occur only if all modified data disks are
 727 * available and read from all of them succeeds.
 728 *
 729 * A PPL entry applies to a stripe, partial parity size for an entry is at most
 730 * the size of the chunk. Examples of possible cases for a single entry:
 731 *
 732 * case 0: single data disk write:
 733 *   data0    data1    data2     ppl        parity
 734 * +--------+--------+--------+           +--------------------+
 735 * | ------ | ------ | ------ | +----+    | (no change)        |
 736 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
 737 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
 738 * | ------ | ------ | ------ | +----+    | (no change)        |
 739 * +--------+--------+--------+           +--------------------+
 740 * pp_size = data_size
 741 *
 742 * case 1: more than one data disk write:
 743 *   data0    data1    data2     ppl        parity
 744 * +--------+--------+--------+           +--------------------+
 745 * | ------ | ------ | ------ | +----+    | (no change)        |
 746 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
 747 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
 748 * | ------ | ------ | ------ | +----+    | (no change)        |
 749 * +--------+--------+--------+           +--------------------+
 750 * pp_size = data_size / modified_data_disks
 751 *
 752 * case 2: write to all data disks (also full stripe write):
 753 *   data0    data1    data2                parity
 754 * +--------+--------+--------+           +--------------------+
 755 * | ------ | ------ | ------ |           | (no change)        |
 756 * | -data- | -data- | -data- | --------> | xor all data       |
 757 * | ------ | ------ | ------ | --------> | (no change)        |
 758 * | ------ | ------ | ------ |           | (no change)        |
 759 * +--------+--------+--------+           +--------------------+
 760 * pp_size = 0
 761 *
 762 * The following cases are possible only in other implementations. The recovery
 763 * code can handle them, but they are not generated at runtime because they can
 764 * be reduced to cases 0, 1 and 2:
 765 *
 766 * case 3:
 767 *   data0    data1    data2     ppl        parity
 768 * +--------+--------+--------+ +----+    +--------------------+
 769 * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
 770 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
 771 * | -data- | -data- | -data- | | -- | -> | xor all data       |
 772 * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
 773 * +--------+--------+--------+ +----+    +--------------------+
 774 * pp_size = chunk_size
 775 *
 776 * case 4:
 777 *   data0    data1    data2     ppl        parity
 778 * +--------+--------+--------+ +----+    +--------------------+
 779 * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
 780 * | ------ | ------ | ------ | | -- | -> | (no change)        |
 781 * | ------ | ------ | ------ | | -- | -> | (no change)        |
 782 * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
 783 * +--------+--------+--------+ +----+    +--------------------+
 784 * pp_size = chunk_size
 785 */
 786static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
 787			     sector_t ppl_sector)
 788{
 789	struct ppl_conf *ppl_conf = log->ppl_conf;
 790	struct mddev *mddev = ppl_conf->mddev;
 791	struct r5conf *conf = mddev->private;
 792	int block_size = ppl_conf->block_size;
 793	struct page *page1;
 794	struct page *page2;
 795	sector_t r_sector_first;
 796	sector_t r_sector_last;
 797	int strip_sectors;
 798	int data_disks;
 799	int i;
 800	int ret = 0;
 801	unsigned int pp_size = le32_to_cpu(e->pp_size);
 802	unsigned int data_size = le32_to_cpu(e->data_size);
 803
 804	page1 = alloc_page(GFP_KERNEL);
 805	page2 = alloc_page(GFP_KERNEL);
 806
 807	if (!page1 || !page2) {
 808		ret = -ENOMEM;
 809		goto out;
 810	}
 811
 812	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
 813
 814	if ((pp_size >> 9) < conf->chunk_sectors) {
 815		if (pp_size > 0) {
 816			data_disks = data_size / pp_size;
 817			strip_sectors = pp_size >> 9;
 818		} else {
 819			data_disks = conf->raid_disks - conf->max_degraded;
 820			strip_sectors = (data_size >> 9) / data_disks;
 821		}
 822		r_sector_last = r_sector_first +
 823				(data_disks - 1) * conf->chunk_sectors +
 824				strip_sectors;
 825	} else {
 826		data_disks = conf->raid_disks - conf->max_degraded;
 827		strip_sectors = conf->chunk_sectors;
 828		r_sector_last = r_sector_first + (data_size >> 9);
 829	}
 830
 831	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
 832		 (unsigned long long)r_sector_first,
 833		 (unsigned long long)r_sector_last);
 834
 835	/* if start and end is 4k aligned, use a 4k block */
 836	if (block_size == 512 &&
 837	    (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
 838	    (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
 839		block_size = RAID5_STRIPE_SIZE(conf);
 840
 841	/* iterate through blocks in strip */
 842	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
 843		bool update_parity = false;
 844		sector_t parity_sector;
 845		struct md_rdev *parity_rdev;
 846		struct stripe_head sh;
 847		int disk;
 848		int indent = 0;
 849
 850		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
 851		indent += 2;
 852
 853		memset(page_address(page1), 0, PAGE_SIZE);
 854
 855		/* iterate through data member disks */
 856		for (disk = 0; disk < data_disks; disk++) {
 857			int dd_idx;
 858			struct md_rdev *rdev;
 859			sector_t sector;
 860			sector_t r_sector = r_sector_first + i +
 861					    (disk * conf->chunk_sectors);
 862
 863			pr_debug("%s:%*s data member disk %d start\n",
 864				 __func__, indent, "", disk);
 865			indent += 2;
 866
 867			if (r_sector >= r_sector_last) {
 868				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
 869					 __func__, indent, "",
 870					 (unsigned long long)r_sector);
 871				indent -= 2;
 872				continue;
 873			}
 874
 875			update_parity = true;
 876
 877			/* map raid sector to member disk */
 878			sector = raid5_compute_sector(conf, r_sector, 0,
 879						      &dd_idx, NULL);
 880			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
 881				 __func__, indent, "",
 882				 (unsigned long long)r_sector, dd_idx,
 883				 (unsigned long long)sector);
 884
 885			/* Array has not started so rcu dereference is safe */
 886			rdev = rcu_dereference_protected(
 887					conf->disks[dd_idx].rdev, 1);
 888			if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
 889				      sector >= rdev->recovery_offset)) {
 890				pr_debug("%s:%*s data member disk %d missing\n",
 891					 __func__, indent, "", dd_idx);
 892				update_parity = false;
 893				break;
 894			}
 895
 896			pr_debug("%s:%*s reading data member disk %pg sector %llu\n",
 897				 __func__, indent, "", rdev->bdev,
 898				 (unsigned long long)sector);
 899			if (!sync_page_io(rdev, sector, block_size, page2,
 900					REQ_OP_READ, false)) {
 901				md_error(mddev, rdev);
 902				pr_debug("%s:%*s read failed!\n", __func__,
 903					 indent, "");
 904				ret = -EIO;
 905				goto out;
 906			}
 907
 908			ppl_xor(block_size, page1, page2);
 909
 910			indent -= 2;
 911		}
 912
 913		if (!update_parity)
 914			continue;
 915
 916		if (pp_size > 0) {
 917			pr_debug("%s:%*s reading pp disk sector %llu\n",
 918				 __func__, indent, "",
 919				 (unsigned long long)(ppl_sector + i));
 920			if (!sync_page_io(log->rdev,
 921					ppl_sector - log->rdev->data_offset + i,
 922					block_size, page2, REQ_OP_READ,
 923					false)) {
 924				pr_debug("%s:%*s read failed!\n", __func__,
 925					 indent, "");
 926				md_error(mddev, log->rdev);
 927				ret = -EIO;
 928				goto out;
 929			}
 930
 931			ppl_xor(block_size, page1, page2);
 932		}
 933
 934		/* map raid sector to parity disk */
 935		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
 936				0, &disk, &sh);
 937		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
 938
 939		/* Array has not started so rcu dereference is safe */
 940		parity_rdev = rcu_dereference_protected(
 941					conf->disks[sh.pd_idx].rdev, 1);
 942
 943		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
 944		pr_debug("%s:%*s write parity at sector %llu, disk %pg\n",
 945			 __func__, indent, "",
 946			 (unsigned long long)parity_sector,
 947			 parity_rdev->bdev);
 948		if (!sync_page_io(parity_rdev, parity_sector, block_size,
 949				  page1, REQ_OP_WRITE, false)) {
 950			pr_debug("%s:%*s parity write error!\n", __func__,
 951				 indent, "");
 952			md_error(mddev, parity_rdev);
 953			ret = -EIO;
 954			goto out;
 955		}
 956	}
 957out:
 958	if (page1)
 959		__free_page(page1);
 960	if (page2)
 961		__free_page(page2);
 962	return ret;
 963}
 964
 965static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
 966		       sector_t offset)
 967{
 968	struct ppl_conf *ppl_conf = log->ppl_conf;
 969	struct md_rdev *rdev = log->rdev;
 970	struct mddev *mddev = rdev->mddev;
 971	sector_t ppl_sector = rdev->ppl.sector + offset +
 972			      (PPL_HEADER_SIZE >> 9);
 973	struct page *page;
 974	int i;
 975	int ret = 0;
 976
 977	page = alloc_page(GFP_KERNEL);
 978	if (!page)
 979		return -ENOMEM;
 980
 981	/* iterate through all PPL entries saved */
 982	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
 983		struct ppl_header_entry *e = &pplhdr->entries[i];
 984		u32 pp_size = le32_to_cpu(e->pp_size);
 985		sector_t sector = ppl_sector;
 986		int ppl_entry_sectors = pp_size >> 9;
 987		u32 crc, crc_stored;
 988
 989		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
 990			 __func__, rdev->raid_disk, i,
 991			 (unsigned long long)ppl_sector, pp_size);
 992
 993		crc = ~0;
 994		crc_stored = le32_to_cpu(e->checksum);
 995
 996		/* read parial parity for this entry and calculate its checksum */
 997		while (pp_size) {
 998			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
 999
1000			if (!sync_page_io(rdev, sector - rdev->data_offset,
1001					s, page, REQ_OP_READ, false)) {
1002				md_error(mddev, rdev);
1003				ret = -EIO;
1004				goto out;
1005			}
1006
1007			crc = crc32c_le(crc, page_address(page), s);
1008
1009			pp_size -= s;
1010			sector += s >> 9;
1011		}
1012
1013		crc = ~crc;
1014
1015		if (crc != crc_stored) {
1016			/*
1017			 * Don't recover this entry if the checksum does not
1018			 * match, but keep going and try to recover other
1019			 * entries.
1020			 */
1021			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1022				 __func__, crc_stored, crc);
1023			ppl_conf->mismatch_count++;
1024		} else {
1025			ret = ppl_recover_entry(log, e, ppl_sector);
1026			if (ret)
1027				goto out;
1028			ppl_conf->recovered_entries++;
1029		}
1030
1031		ppl_sector += ppl_entry_sectors;
1032	}
1033
1034	/* flush the disk cache after recovery if necessary */
1035	ret = blkdev_issue_flush(rdev->bdev);
1036out:
1037	__free_page(page);
1038	return ret;
1039}
1040
1041static int ppl_write_empty_header(struct ppl_log *log)
1042{
1043	struct page *page;
1044	struct ppl_header *pplhdr;
1045	struct md_rdev *rdev = log->rdev;
1046	int ret = 0;
1047
1048	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1049		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1050
1051	page = alloc_page(GFP_NOIO | __GFP_ZERO);
1052	if (!page)
1053		return -ENOMEM;
1054
1055	pplhdr = page_address(page);
1056	/* zero out PPL space to avoid collision with old PPLs */
1057	blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1058			    log->rdev->ppl.size, GFP_NOIO, 0);
1059	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1060	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1061	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1062
1063	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1064			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1065			  REQ_FUA, false)) {
1066		md_error(rdev->mddev, rdev);
1067		ret = -EIO;
1068	}
1069
1070	__free_page(page);
1071	return ret;
1072}
1073
1074static int ppl_load_distributed(struct ppl_log *log)
1075{
1076	struct ppl_conf *ppl_conf = log->ppl_conf;
1077	struct md_rdev *rdev = log->rdev;
1078	struct mddev *mddev = rdev->mddev;
1079	struct page *page, *page2;
1080	struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1081	u32 crc, crc_stored;
1082	u32 signature;
1083	int ret = 0, i;
1084	sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1085
1086	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1087	/* read PPL headers, find the recent one */
1088	page = alloc_page(GFP_KERNEL);
1089	if (!page)
1090		return -ENOMEM;
1091
1092	page2 = alloc_page(GFP_KERNEL);
1093	if (!page2) {
1094		__free_page(page);
1095		return -ENOMEM;
1096	}
1097
1098	/* searching ppl area for latest ppl */
1099	while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1100		if (!sync_page_io(rdev,
1101				  rdev->ppl.sector - rdev->data_offset +
1102				  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1103				  false)) {
1104			md_error(mddev, rdev);
1105			ret = -EIO;
1106			/* if not able to read - don't recover any PPL */
1107			pplhdr = NULL;
1108			break;
1109		}
1110		pplhdr = page_address(page);
1111
1112		/* check header validity */
1113		crc_stored = le32_to_cpu(pplhdr->checksum);
1114		pplhdr->checksum = 0;
1115		crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1116
1117		if (crc_stored != crc) {
1118			pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1119				 __func__, crc_stored, crc,
1120				 (unsigned long long)pplhdr_offset);
1121			pplhdr = prev_pplhdr;
1122			pplhdr_offset = prev_pplhdr_offset;
1123			break;
1124		}
1125
1126		signature = le32_to_cpu(pplhdr->signature);
1127
1128		if (mddev->external) {
1129			/*
1130			 * For external metadata the header signature is set and
1131			 * validated in userspace.
1132			 */
1133			ppl_conf->signature = signature;
1134		} else if (ppl_conf->signature != signature) {
1135			pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1136				 __func__, signature, ppl_conf->signature,
1137				 (unsigned long long)pplhdr_offset);
1138			pplhdr = prev_pplhdr;
1139			pplhdr_offset = prev_pplhdr_offset;
1140			break;
1141		}
1142
1143		if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1144		    le64_to_cpu(pplhdr->generation)) {
1145			/* previous was newest */
1146			pplhdr = prev_pplhdr;
1147			pplhdr_offset = prev_pplhdr_offset;
1148			break;
1149		}
1150
1151		prev_pplhdr_offset = pplhdr_offset;
1152		prev_pplhdr = pplhdr;
1153
1154		swap(page, page2);
1155
1156		/* calculate next potential ppl offset */
1157		for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1158			pplhdr_offset +=
1159			    le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1160		pplhdr_offset += PPL_HEADER_SIZE >> 9;
1161	}
1162
1163	/* no valid ppl found */
1164	if (!pplhdr)
1165		ppl_conf->mismatch_count++;
1166	else
1167		pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1168		    __func__, (unsigned long long)pplhdr_offset,
1169		    le64_to_cpu(pplhdr->generation));
1170
1171	/* attempt to recover from log if we are starting a dirty array */
1172	if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1173		ret = ppl_recover(log, pplhdr, pplhdr_offset);
1174
1175	/* write empty header if we are starting the array */
1176	if (!ret && !mddev->pers)
1177		ret = ppl_write_empty_header(log);
1178
1179	__free_page(page);
1180	__free_page(page2);
1181
1182	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1183		 __func__, ret, ppl_conf->mismatch_count,
1184		 ppl_conf->recovered_entries);
1185	return ret;
1186}
1187
1188static int ppl_load(struct ppl_conf *ppl_conf)
1189{
1190	int ret = 0;
1191	u32 signature = 0;
1192	bool signature_set = false;
1193	int i;
1194
1195	for (i = 0; i < ppl_conf->count; i++) {
1196		struct ppl_log *log = &ppl_conf->child_logs[i];
1197
1198		/* skip missing drive */
1199		if (!log->rdev)
1200			continue;
1201
1202		ret = ppl_load_distributed(log);
1203		if (ret)
1204			break;
1205
1206		/*
1207		 * For external metadata we can't check if the signature is
1208		 * correct on a single drive, but we can check if it is the same
1209		 * on all drives.
1210		 */
1211		if (ppl_conf->mddev->external) {
1212			if (!signature_set) {
1213				signature = ppl_conf->signature;
1214				signature_set = true;
1215			} else if (signature != ppl_conf->signature) {
1216				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1217					mdname(ppl_conf->mddev));
1218				ret = -EINVAL;
1219				break;
1220			}
1221		}
1222	}
1223
1224	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1225		 __func__, ret, ppl_conf->mismatch_count,
1226		 ppl_conf->recovered_entries);
1227	return ret;
1228}
1229
1230static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1231{
1232	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1233	clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1234
1235	kfree(ppl_conf->child_logs);
1236
1237	bioset_exit(&ppl_conf->bs);
1238	bioset_exit(&ppl_conf->flush_bs);
1239	mempool_exit(&ppl_conf->io_pool);
1240	kmem_cache_destroy(ppl_conf->io_kc);
1241
1242	kfree(ppl_conf);
1243}
1244
1245void ppl_exit_log(struct r5conf *conf)
1246{
1247	struct ppl_conf *ppl_conf = conf->log_private;
1248
1249	if (ppl_conf) {
1250		__ppl_exit_log(ppl_conf);
1251		conf->log_private = NULL;
1252	}
1253}
1254
1255static int ppl_validate_rdev(struct md_rdev *rdev)
1256{
1257	int ppl_data_sectors;
1258	int ppl_size_new;
1259
1260	/*
1261	 * The configured PPL size must be enough to store
1262	 * the header and (at the very least) partial parity
1263	 * for one stripe. Round it down to ensure the data
1264	 * space is cleanly divisible by stripe size.
1265	 */
1266	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1267
1268	if (ppl_data_sectors > 0)
1269		ppl_data_sectors = rounddown(ppl_data_sectors,
1270				RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
1271
1272	if (ppl_data_sectors <= 0) {
1273		pr_warn("md/raid:%s: PPL space too small on %pg\n",
1274			mdname(rdev->mddev), rdev->bdev);
1275		return -ENOSPC;
1276	}
1277
1278	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1279
1280	if ((rdev->ppl.sector < rdev->data_offset &&
1281	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1282	    (rdev->ppl.sector >= rdev->data_offset &&
1283	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1284		pr_warn("md/raid:%s: PPL space overlaps with data on %pg\n",
1285			mdname(rdev->mddev), rdev->bdev);
1286		return -EINVAL;
1287	}
1288
1289	if (!rdev->mddev->external &&
1290	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1291	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1292		pr_warn("md/raid:%s: PPL space overlaps with superblock on %pg\n",
1293			mdname(rdev->mddev), rdev->bdev);
1294		return -EINVAL;
1295	}
1296
1297	rdev->ppl.size = ppl_size_new;
1298
1299	return 0;
1300}
1301
1302static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1303{
1304	if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1305				      PPL_HEADER_SIZE) * 2) {
1306		log->use_multippl = true;
1307		set_bit(MD_HAS_MULTIPLE_PPLS,
1308			&log->ppl_conf->mddev->flags);
1309		log->entry_space = PPL_SPACE_SIZE;
1310	} else {
1311		log->use_multippl = false;
1312		log->entry_space = (log->rdev->ppl.size << 9) -
1313				   PPL_HEADER_SIZE;
1314	}
1315	log->next_io_sector = rdev->ppl.sector;
1316
1317	if (bdev_write_cache(rdev->bdev))
1318		log->wb_cache_on = true;
1319}
1320
1321int ppl_init_log(struct r5conf *conf)
1322{
1323	struct ppl_conf *ppl_conf;
1324	struct mddev *mddev = conf->mddev;
1325	int ret = 0;
1326	int max_disks;
1327	int i;
1328
1329	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1330		 mdname(conf->mddev));
1331
1332	if (PAGE_SIZE != 4096)
1333		return -EINVAL;
1334
1335	if (mddev->level != 5) {
1336		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1337			mdname(mddev), mddev->level);
1338		return -EINVAL;
1339	}
1340
1341	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1342		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1343			mdname(mddev));
1344		return -EINVAL;
1345	}
1346
1347	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1348		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1349			mdname(mddev));
1350		return -EINVAL;
1351	}
1352
1353	max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
1354		BITS_PER_BYTE;
1355	if (conf->raid_disks > max_disks) {
1356		pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1357			mdname(mddev), max_disks);
1358		return -EINVAL;
1359	}
1360
1361	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1362	if (!ppl_conf)
1363		return -ENOMEM;
1364
1365	ppl_conf->mddev = mddev;
1366
1367	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1368	if (!ppl_conf->io_kc) {
1369		ret = -ENOMEM;
1370		goto err;
1371	}
1372
1373	ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1374			   ppl_io_pool_free, ppl_conf->io_kc);
1375	if (ret)
1376		goto err;
1377
1378	ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1379	if (ret)
1380		goto err;
1381
1382	ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1383	if (ret)
1384		goto err;
1385
1386	ppl_conf->count = conf->raid_disks;
1387	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1388				       GFP_KERNEL);
1389	if (!ppl_conf->child_logs) {
1390		ret = -ENOMEM;
1391		goto err;
1392	}
1393
1394	atomic64_set(&ppl_conf->seq, 0);
1395	INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1396	spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1397
1398	if (!mddev->external) {
1399		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1400		ppl_conf->block_size = 512;
1401	} else {
1402		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1403	}
1404
1405	for (i = 0; i < ppl_conf->count; i++) {
1406		struct ppl_log *log = &ppl_conf->child_logs[i];
1407		/* Array has not started so rcu dereference is safe */
1408		struct md_rdev *rdev =
1409			rcu_dereference_protected(conf->disks[i].rdev, 1);
1410
1411		mutex_init(&log->io_mutex);
1412		spin_lock_init(&log->io_list_lock);
1413		INIT_LIST_HEAD(&log->io_list);
1414
1415		log->ppl_conf = ppl_conf;
1416		log->rdev = rdev;
1417
1418		if (rdev) {
1419			ret = ppl_validate_rdev(rdev);
1420			if (ret)
1421				goto err;
1422
1423			ppl_init_child_log(log, rdev);
1424		}
1425	}
1426
1427	/* load and possibly recover the logs from the member disks */
1428	ret = ppl_load(ppl_conf);
1429
1430	if (ret) {
1431		goto err;
1432	} else if (!mddev->pers && mddev->recovery_cp == 0 &&
1433		   ppl_conf->recovered_entries > 0 &&
1434		   ppl_conf->mismatch_count == 0) {
1435		/*
1436		 * If we are starting a dirty array and the recovery succeeds
1437		 * without any issues, set the array as clean.
1438		 */
1439		mddev->recovery_cp = MaxSector;
1440		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1441	} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1442		/* no mismatch allowed when enabling PPL for a running array */
1443		ret = -EINVAL;
1444		goto err;
1445	}
1446
1447	conf->log_private = ppl_conf;
1448	set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1449
1450	return 0;
1451err:
1452	__ppl_exit_log(ppl_conf);
1453	return ret;
1454}
1455
1456int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1457{
1458	struct ppl_conf *ppl_conf = conf->log_private;
1459	struct ppl_log *log;
1460	int ret = 0;
1461
1462	if (!rdev)
1463		return -EINVAL;
1464
1465	pr_debug("%s: disk: %d operation: %s dev: %pg\n",
1466		 __func__, rdev->raid_disk, add ? "add" : "remove",
1467		 rdev->bdev);
1468
1469	if (rdev->raid_disk < 0)
1470		return 0;
1471
1472	if (rdev->raid_disk >= ppl_conf->count)
1473		return -ENODEV;
1474
1475	log = &ppl_conf->child_logs[rdev->raid_disk];
1476
1477	mutex_lock(&log->io_mutex);
1478	if (add) {
1479		ret = ppl_validate_rdev(rdev);
1480		if (!ret) {
1481			log->rdev = rdev;
1482			ret = ppl_write_empty_header(log);
1483			ppl_init_child_log(log, rdev);
1484		}
1485	} else {
1486		log->rdev = NULL;
1487	}
1488	mutex_unlock(&log->io_mutex);
1489
1490	return ret;
1491}
1492
1493static ssize_t
1494ppl_write_hint_show(struct mddev *mddev, char *buf)
1495{
1496	return sprintf(buf, "%d\n", 0);
1497}
1498
1499static ssize_t
1500ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1501{
1502	struct r5conf *conf;
1503	int err = 0;
1504	unsigned short new;
1505
1506	if (len >= PAGE_SIZE)
1507		return -EINVAL;
1508	if (kstrtou16(page, 10, &new))
1509		return -EINVAL;
1510
1511	err = mddev_lock(mddev);
1512	if (err)
1513		return err;
1514
1515	conf = mddev->private;
1516	if (!conf)
1517		err = -ENODEV;
1518	else if (!raid5_has_ppl(conf) || !conf->log_private)
1519		err = -EINVAL;
1520
1521	mddev_unlock(mddev);
1522
1523	return err ?: len;
1524}
1525
1526struct md_sysfs_entry
1527ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1528			ppl_write_hint_show,
1529			ppl_write_hint_store);