Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2015 Google, Inc.
  4 *
  5 * Author: Sami Tolvanen <samitolvanen@google.com>
  6 */
  7
  8#include "dm-verity-fec.h"
  9#include <linux/math64.h>
 10
 11#define DM_MSG_PREFIX	"verity-fec"
 12
 13/*
 14 * If error correction has been configured, returns true.
 15 */
 16bool verity_fec_is_enabled(struct dm_verity *v)
 17{
 18	return v->fec && v->fec->dev;
 19}
 20
 21/*
 22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
 23 * length fields.
 24 */
 25static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
 26{
 27	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
 28}
 29
 30/*
 31 * Return an interleaved offset for a byte in RS block.
 32 */
 33static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
 34{
 35	u32 mod;
 36
 37	mod = do_div(offset, v->fec->rsn);
 38	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
 39}
 40
 41/*
 42 * Decode an RS block using Reed-Solomon.
 43 */
 44static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
 45			  u8 *data, u8 *fec, int neras)
 46{
 47	int i;
 48	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
 49
 50	for (i = 0; i < v->fec->roots; i++)
 51		par[i] = fec[i];
 52
 53	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
 54			  fio->erasures, 0, NULL);
 55}
 56
 57/*
 58 * Read error-correcting codes for the requested RS block. Returns a pointer
 59 * to the data block. Caller is responsible for releasing buf.
 60 */
 61static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
 62			   unsigned *offset, struct dm_buffer **buf)
 63{
 64	u64 position, block, rem;
 65	u8 *res;
 66
 67	position = (index + rsb) * v->fec->roots;
 68	block = div64_u64_rem(position, v->fec->io_size, &rem);
 69	*offset = (unsigned)rem;
 70
 71	res = dm_bufio_read(v->fec->bufio, block, buf);
 72	if (IS_ERR(res)) {
 73		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
 74		      v->data_dev->name, (unsigned long long)rsb,
 75		      (unsigned long long)block, PTR_ERR(res));
 76		*buf = NULL;
 77	}
 78
 79	return res;
 80}
 81
 82/* Loop over each preallocated buffer slot. */
 83#define fec_for_each_prealloc_buffer(__i) \
 84	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
 85
 86/* Loop over each extra buffer slot. */
 87#define fec_for_each_extra_buffer(io, __i) \
 88	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
 89
 90/* Loop over each allocated buffer. */
 91#define fec_for_each_buffer(io, __i) \
 92	for (__i = 0; __i < (io)->nbufs; __i++)
 93
 94/* Loop over each RS block in each allocated buffer. */
 95#define fec_for_each_buffer_rs_block(io, __i, __j) \
 96	fec_for_each_buffer(io, __i) \
 97		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
 98
 99/*
100 * Return a pointer to the current RS block when called inside
101 * fec_for_each_buffer_rs_block.
102 */
103static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
104				      struct dm_verity_fec_io *fio,
105				      unsigned i, unsigned j)
106{
107	return &fio->bufs[i][j * v->fec->rsn];
108}
109
110/*
111 * Return an index to the current RS block when called inside
112 * fec_for_each_buffer_rs_block.
113 */
114static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
115{
116	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
117}
118
119/*
120 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
121 * starting from block_offset.
122 */
123static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
124			   u64 rsb, int byte_index, unsigned block_offset,
125			   int neras)
126{
127	int r, corrected = 0, res;
128	struct dm_buffer *buf;
129	unsigned n, i, offset;
130	u8 *par, *block;
131
132	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
133	if (IS_ERR(par))
134		return PTR_ERR(par);
135
136	/*
137	 * Decode the RS blocks we have in bufs. Each RS block results in
138	 * one corrected target byte and consumes fec->roots parity bytes.
139	 */
140	fec_for_each_buffer_rs_block(fio, n, i) {
141		block = fec_buffer_rs_block(v, fio, n, i);
142		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
143		if (res < 0) {
144			r = res;
145			goto error;
146		}
147
148		corrected += res;
149		fio->output[block_offset] = block[byte_index];
150
151		block_offset++;
152		if (block_offset >= 1 << v->data_dev_block_bits)
153			goto done;
154
155		/* read the next block when we run out of parity bytes */
156		offset += v->fec->roots;
157		if (offset >= v->fec->io_size) {
158			dm_bufio_release(buf);
159
160			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
161			if (IS_ERR(par))
162				return PTR_ERR(par);
163		}
164	}
165done:
166	r = corrected;
167error:
168	dm_bufio_release(buf);
169
170	if (r < 0 && neras)
171		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
172			    v->data_dev->name, (unsigned long long)rsb, r);
173	else if (r > 0)
174		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
175			     v->data_dev->name, (unsigned long long)rsb, r);
176
177	return r;
178}
179
180/*
181 * Locate data block erasures using verity hashes.
182 */
183static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
184			  u8 *want_digest, u8 *data)
185{
186	if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
187				 data, 1 << v->data_dev_block_bits,
188				 verity_io_real_digest(v, io))))
189		return 0;
190
191	return memcmp(verity_io_real_digest(v, io), want_digest,
192		      v->digest_size) != 0;
193}
194
195/*
196 * Read data blocks that are part of the RS block and deinterleave as much as
197 * fits into buffers. Check for erasure locations if @neras is non-NULL.
198 */
199static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
200			 u64 rsb, u64 target, unsigned block_offset,
201			 int *neras)
202{
203	bool is_zero;
204	int i, j, target_index = -1;
205	struct dm_buffer *buf;
206	struct dm_bufio_client *bufio;
207	struct dm_verity_fec_io *fio = fec_io(io);
208	u64 block, ileaved;
209	u8 *bbuf, *rs_block;
210	u8 want_digest[HASH_MAX_DIGESTSIZE];
211	unsigned n, k;
212
213	if (neras)
214		*neras = 0;
215
216	if (WARN_ON(v->digest_size > sizeof(want_digest)))
217		return -EINVAL;
218
219	/*
220	 * read each of the rsn data blocks that are part of the RS block, and
221	 * interleave contents to available bufs
222	 */
223	for (i = 0; i < v->fec->rsn; i++) {
224		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
225
226		/*
227		 * target is the data block we want to correct, target_index is
228		 * the index of this block within the rsn RS blocks
229		 */
230		if (ileaved == target)
231			target_index = i;
232
233		block = ileaved >> v->data_dev_block_bits;
234		bufio = v->fec->data_bufio;
235
236		if (block >= v->data_blocks) {
237			block -= v->data_blocks;
238
239			/*
240			 * blocks outside the area were assumed to contain
241			 * zeros when encoding data was generated
242			 */
243			if (unlikely(block >= v->fec->hash_blocks))
244				continue;
245
246			block += v->hash_start;
247			bufio = v->bufio;
248		}
249
250		bbuf = dm_bufio_read(bufio, block, &buf);
251		if (IS_ERR(bbuf)) {
252			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
253				     v->data_dev->name,
254				     (unsigned long long)rsb,
255				     (unsigned long long)block, PTR_ERR(bbuf));
256
257			/* assume the block is corrupted */
258			if (neras && *neras <= v->fec->roots)
259				fio->erasures[(*neras)++] = i;
260
261			continue;
262		}
263
264		/* locate erasures if the block is on the data device */
265		if (bufio == v->fec->data_bufio &&
266		    verity_hash_for_block(v, io, block, want_digest,
267					  &is_zero) == 0) {
268			/* skip known zero blocks entirely */
269			if (is_zero)
270				goto done;
271
272			/*
273			 * skip if we have already found the theoretical
274			 * maximum number (i.e. fec->roots) of erasures
275			 */
276			if (neras && *neras <= v->fec->roots &&
277			    fec_is_erasure(v, io, want_digest, bbuf))
278				fio->erasures[(*neras)++] = i;
279		}
280
281		/*
282		 * deinterleave and copy the bytes that fit into bufs,
283		 * starting from block_offset
284		 */
285		fec_for_each_buffer_rs_block(fio, n, j) {
286			k = fec_buffer_rs_index(n, j) + block_offset;
287
288			if (k >= 1 << v->data_dev_block_bits)
289				goto done;
290
291			rs_block = fec_buffer_rs_block(v, fio, n, j);
292			rs_block[i] = bbuf[k];
293		}
294done:
295		dm_bufio_release(buf);
296	}
297
298	return target_index;
299}
300
301/*
302 * Allocate RS control structure and FEC buffers from preallocated mempools,
303 * and attempt to allocate as many extra buffers as available.
304 */
305static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
306{
307	unsigned n;
308
309	if (!fio->rs)
310		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
311
312	fec_for_each_prealloc_buffer(n) {
313		if (fio->bufs[n])
314			continue;
315
316		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
317		if (unlikely(!fio->bufs[n])) {
318			DMERR("failed to allocate FEC buffer");
319			return -ENOMEM;
320		}
321	}
322
323	/* try to allocate the maximum number of buffers */
324	fec_for_each_extra_buffer(fio, n) {
325		if (fio->bufs[n])
326			continue;
327
328		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
329		/* we can manage with even one buffer if necessary */
330		if (unlikely(!fio->bufs[n]))
331			break;
332	}
333	fio->nbufs = n;
334
335	if (!fio->output)
336		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
337
338	return 0;
339}
340
341/*
342 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
343 * zeroed before deinterleaving.
344 */
345static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
346{
347	unsigned n;
348
349	fec_for_each_buffer(fio, n)
350		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
351
352	memset(fio->erasures, 0, sizeof(fio->erasures));
353}
354
355/*
356 * Decode all RS blocks in a single data block and return the target block
357 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
358 * hashes to locate erasures.
359 */
360static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
361			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
362			  bool use_erasures)
363{
364	int r, neras = 0;
365	unsigned pos;
366
367	r = fec_alloc_bufs(v, fio);
368	if (unlikely(r < 0))
369		return r;
370
371	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
372		fec_init_bufs(v, fio);
373
374		r = fec_read_bufs(v, io, rsb, offset, pos,
375				  use_erasures ? &neras : NULL);
376		if (unlikely(r < 0))
377			return r;
378
379		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
380		if (r < 0)
381			return r;
382
383		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
384	}
385
386	/* Always re-validate the corrected block against the expected hash */
387	r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
388			1 << v->data_dev_block_bits,
389			verity_io_real_digest(v, io));
390	if (unlikely(r < 0))
391		return r;
392
393	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
394		   v->digest_size)) {
395		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
396			    v->data_dev->name, (unsigned long long)rsb, neras);
397		return -EILSEQ;
398	}
399
400	return 0;
401}
402
403static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
404		       size_t len)
405{
406	struct dm_verity_fec_io *fio = fec_io(io);
407
408	memcpy(data, &fio->output[fio->output_pos], len);
409	fio->output_pos += len;
410
411	return 0;
412}
413
414/*
415 * Correct errors in a block. Copies corrected block to dest if non-NULL,
416 * otherwise to a bio_vec starting from iter.
417 */
418int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
419		      enum verity_block_type type, sector_t block, u8 *dest,
420		      struct bvec_iter *iter)
421{
422	int r;
423	struct dm_verity_fec_io *fio = fec_io(io);
424	u64 offset, res, rsb;
425
426	if (!verity_fec_is_enabled(v))
427		return -EOPNOTSUPP;
428
429	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
430		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
431		return -EIO;
432	}
433
434	fio->level++;
435
436	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
437		block = block - v->hash_start + v->data_blocks;
438
439	/*
440	 * For RS(M, N), the continuous FEC data is divided into blocks of N
441	 * bytes. Since block size may not be divisible by N, the last block
442	 * is zero padded when decoding.
443	 *
444	 * Each byte of the block is covered by a different RS(M, N) code,
445	 * and each code is interleaved over N blocks to make it less likely
446	 * that bursty corruption will leave us in unrecoverable state.
447	 */
448
449	offset = block << v->data_dev_block_bits;
450	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
451
452	/*
453	 * The base RS block we can feed to the interleaver to find out all
454	 * blocks required for decoding.
455	 */
456	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
457
458	/*
459	 * Locating erasures is slow, so attempt to recover the block without
460	 * them first. Do a second attempt with erasures if the corruption is
461	 * bad enough.
462	 */
463	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
464	if (r < 0) {
465		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
466		if (r < 0)
467			goto done;
468	}
469
470	if (dest)
471		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
472	else if (iter) {
473		fio->output_pos = 0;
474		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
475	}
476
477done:
478	fio->level--;
479	return r;
480}
481
482/*
483 * Clean up per-bio data.
484 */
485void verity_fec_finish_io(struct dm_verity_io *io)
486{
487	unsigned n;
488	struct dm_verity_fec *f = io->v->fec;
489	struct dm_verity_fec_io *fio = fec_io(io);
490
491	if (!verity_fec_is_enabled(io->v))
492		return;
493
494	mempool_free(fio->rs, &f->rs_pool);
495
496	fec_for_each_prealloc_buffer(n)
497		mempool_free(fio->bufs[n], &f->prealloc_pool);
498
499	fec_for_each_extra_buffer(fio, n)
500		mempool_free(fio->bufs[n], &f->extra_pool);
501
502	mempool_free(fio->output, &f->output_pool);
503}
504
505/*
506 * Initialize per-bio data.
507 */
508void verity_fec_init_io(struct dm_verity_io *io)
509{
510	struct dm_verity_fec_io *fio = fec_io(io);
511
512	if (!verity_fec_is_enabled(io->v))
513		return;
514
515	fio->rs = NULL;
516	memset(fio->bufs, 0, sizeof(fio->bufs));
517	fio->nbufs = 0;
518	fio->output = NULL;
519	fio->level = 0;
520}
521
522/*
523 * Append feature arguments and values to the status table.
524 */
525unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
526				 char *result, unsigned maxlen)
527{
528	if (!verity_fec_is_enabled(v))
529		return sz;
530
531	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
532	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
533	       DM_VERITY_OPT_FEC_START " %llu "
534	       DM_VERITY_OPT_FEC_ROOTS " %d",
535	       v->fec->dev->name,
536	       (unsigned long long)v->fec->blocks,
537	       (unsigned long long)v->fec->start,
538	       v->fec->roots);
539
540	return sz;
541}
542
543void verity_fec_dtr(struct dm_verity *v)
544{
545	struct dm_verity_fec *f = v->fec;
546
547	if (!verity_fec_is_enabled(v))
548		goto out;
549
550	mempool_exit(&f->rs_pool);
551	mempool_exit(&f->prealloc_pool);
552	mempool_exit(&f->extra_pool);
553	mempool_exit(&f->output_pool);
554	kmem_cache_destroy(f->cache);
555
556	if (f->data_bufio)
557		dm_bufio_client_destroy(f->data_bufio);
558	if (f->bufio)
559		dm_bufio_client_destroy(f->bufio);
560
561	if (f->dev)
562		dm_put_device(v->ti, f->dev);
563out:
564	kfree(f);
565	v->fec = NULL;
566}
567
568static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
569{
570	struct dm_verity *v = (struct dm_verity *)pool_data;
571
572	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
573}
574
575static void fec_rs_free(void *element, void *pool_data)
576{
577	struct rs_control *rs = (struct rs_control *)element;
578
579	if (rs)
580		free_rs(rs);
581}
582
583bool verity_is_fec_opt_arg(const char *arg_name)
584{
585	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
586		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
587		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
588		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
589}
590
591int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
592			      unsigned *argc, const char *arg_name)
593{
594	int r;
595	struct dm_target *ti = v->ti;
596	const char *arg_value;
597	unsigned long long num_ll;
598	unsigned char num_c;
599	char dummy;
600
601	if (!*argc) {
602		ti->error = "FEC feature arguments require a value";
603		return -EINVAL;
604	}
605
606	arg_value = dm_shift_arg(as);
607	(*argc)--;
608
609	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
610		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
611		if (r) {
612			ti->error = "FEC device lookup failed";
613			return r;
614		}
615
616	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
617		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
618		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
619		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
620			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
621			return -EINVAL;
622		}
623		v->fec->blocks = num_ll;
624
625	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
626		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
627		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
628		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
629			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
630			return -EINVAL;
631		}
632		v->fec->start = num_ll;
633
634	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
635		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
636		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
637		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
638			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
639			return -EINVAL;
640		}
641		v->fec->roots = num_c;
642
643	} else {
644		ti->error = "Unrecognized verity FEC feature request";
645		return -EINVAL;
646	}
647
648	return 0;
649}
650
651/*
652 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
653 */
654int verity_fec_ctr_alloc(struct dm_verity *v)
655{
656	struct dm_verity_fec *f;
657
658	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
659	if (!f) {
660		v->ti->error = "Cannot allocate FEC structure";
661		return -ENOMEM;
662	}
663	v->fec = f;
664
665	return 0;
666}
667
668/*
669 * Validate arguments and preallocate memory. Must be called after arguments
670 * have been parsed using verity_fec_parse_opt_args.
671 */
672int verity_fec_ctr(struct dm_verity *v)
673{
674	struct dm_verity_fec *f = v->fec;
675	struct dm_target *ti = v->ti;
676	u64 hash_blocks, fec_blocks;
677	int ret;
678
679	if (!verity_fec_is_enabled(v)) {
680		verity_fec_dtr(v);
681		return 0;
682	}
683
684	/*
685	 * FEC is computed over data blocks, possible metadata, and
686	 * hash blocks. In other words, FEC covers total of fec_blocks
687	 * blocks consisting of the following:
688	 *
689	 *  data blocks | hash blocks | metadata (optional)
690	 *
691	 * We allow metadata after hash blocks to support a use case
692	 * where all data is stored on the same device and FEC covers
693	 * the entire area.
694	 *
695	 * If metadata is included, we require it to be available on the
696	 * hash device after the hash blocks.
697	 */
698
699	hash_blocks = v->hash_blocks - v->hash_start;
700
701	/*
702	 * Require matching block sizes for data and hash devices for
703	 * simplicity.
704	 */
705	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
706		ti->error = "Block sizes must match to use FEC";
707		return -EINVAL;
708	}
709
710	if (!f->roots) {
711		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
712		return -EINVAL;
713	}
714	f->rsn = DM_VERITY_FEC_RSM - f->roots;
715
716	if (!f->blocks) {
717		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
718		return -EINVAL;
719	}
720
721	f->rounds = f->blocks;
722	if (sector_div(f->rounds, f->rsn))
723		f->rounds++;
724
725	/*
726	 * Due to optional metadata, f->blocks can be larger than
727	 * data_blocks and hash_blocks combined.
728	 */
729	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
730		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
731		return -EINVAL;
732	}
733
734	/*
735	 * Metadata is accessed through the hash device, so we require
736	 * it to be large enough.
737	 */
738	f->hash_blocks = f->blocks - v->data_blocks;
739	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
740		ti->error = "Hash device is too small for "
741			DM_VERITY_OPT_FEC_BLOCKS;
742		return -E2BIG;
743	}
744
745	if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
746		f->io_size = 1 << v->data_dev_block_bits;
747	else
748		f->io_size = v->fec->roots << SECTOR_SHIFT;
749
750	f->bufio = dm_bufio_client_create(f->dev->bdev,
751					  f->io_size,
752					  1, 0, NULL, NULL, 0);
753	if (IS_ERR(f->bufio)) {
754		ti->error = "Cannot initialize FEC bufio client";
755		return PTR_ERR(f->bufio);
756	}
757
758	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
759
760	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
761	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
762		ti->error = "FEC device is too small";
763		return -E2BIG;
764	}
765
766	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
767					       1 << v->data_dev_block_bits,
768					       1, 0, NULL, NULL, 0);
769	if (IS_ERR(f->data_bufio)) {
770		ti->error = "Cannot initialize FEC data bufio client";
771		return PTR_ERR(f->data_bufio);
772	}
773
774	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
775		ti->error = "Data device is too small";
776		return -E2BIG;
777	}
778
779	/* Preallocate an rs_control structure for each worker thread */
780	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
781			   fec_rs_free, (void *) v);
782	if (ret) {
783		ti->error = "Cannot allocate RS pool";
784		return ret;
785	}
786
787	f->cache = kmem_cache_create("dm_verity_fec_buffers",
788				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
789				     0, 0, NULL);
790	if (!f->cache) {
791		ti->error = "Cannot create FEC buffer cache";
792		return -ENOMEM;
793	}
794
795	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
796	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
797				     DM_VERITY_FEC_BUF_PREALLOC,
798				     f->cache);
799	if (ret) {
800		ti->error = "Cannot allocate FEC buffer prealloc pool";
801		return ret;
802	}
803
804	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
805	if (ret) {
806		ti->error = "Cannot allocate FEC buffer extra pool";
807		return ret;
808	}
809
810	/* Preallocate an output buffer for each thread */
811	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
812					1 << v->data_dev_block_bits);
813	if (ret) {
814		ti->error = "Cannot allocate FEC output pool";
815		return ret;
816	}
817
818	/* Reserve space for our per-bio data */
819	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
820
821	return 0;
822}