Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright (C) 2014 Facebook. All rights reserved.
  3 *
  4 * This file is released under the GPL.
  5 */
  6
  7#include <linux/device-mapper.h>
  8
  9#include <linux/module.h>
 10#include <linux/init.h>
 11#include <linux/blkdev.h>
 12#include <linux/bio.h>
 13#include <linux/dax.h>
 14#include <linux/slab.h>
 15#include <linux/kthread.h>
 16#include <linux/freezer.h>
 17#include <linux/uio.h>
 18
 19#define DM_MSG_PREFIX "log-writes"
 20
 21/*
 22 * This target will sequentially log all writes to the target device onto the
 23 * log device.  This is helpful for replaying writes to check for fs consistency
 24 * at all times.  This target provides a mechanism to mark specific events to
 25 * check data at a later time.  So for example you would:
 26 *
 27 * write data
 28 * fsync
 29 * dmsetup message /dev/whatever mark mymark
 30 * unmount /mnt/test
 31 *
 32 * Then replay the log up to mymark and check the contents of the replay to
 33 * verify it matches what was written.
 34 *
 35 * We log writes only after they have been flushed, this makes the log describe
 36 * close to the order in which the data hits the actual disk, not its cache.  So
 37 * for example the following sequence (W means write, C means complete)
 38 *
 39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
 40 *
 41 * Would result in the log looking like this:
 42 *
 43 * c,a,b,flush,fuad,<other writes>,<next flush>
 44 *
 45 * This is meant to help expose problems where file systems do not properly wait
 46 * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
 47 * completes it is added to the log as it should be on disk.
 48 *
 49 * We treat DISCARDs as if they don't bypass cache so that they are logged in
 50 * order of completion along with the normal writes.  If we didn't do it this
 51 * way we would process all the discards first and then write all the data, when
 52 * in fact we want to do the data and the discard in the order that they
 53 * completed.
 54 */
 55#define LOG_FLUSH_FLAG		(1 << 0)
 56#define LOG_FUA_FLAG		(1 << 1)
 57#define LOG_DISCARD_FLAG	(1 << 2)
 58#define LOG_MARK_FLAG		(1 << 3)
 59#define LOG_METADATA_FLAG	(1 << 4)
 60
 61#define WRITE_LOG_VERSION 1ULL
 62#define WRITE_LOG_MAGIC 0x6a736677736872ULL
 63#define WRITE_LOG_SUPER_SECTOR 0
 64
 65/*
 66 * The disk format for this is braindead simple.
 67 *
 68 * At byte 0 we have our super, followed by the following sequence for
 69 * nr_entries:
 70 *
 71 * [   1 sector    ][  entry->nr_sectors ]
 72 * [log_write_entry][    data written    ]
 73 *
 74 * The log_write_entry takes up a full sector so we can have arbitrary length
 75 * marks and it leaves us room for extra content in the future.
 76 */
 77
 78/*
 79 * Basic info about the log for userspace.
 80 */
 81struct log_write_super {
 82	__le64 magic;
 83	__le64 version;
 84	__le64 nr_entries;
 85	__le32 sectorsize;
 86};
 87
 88/*
 89 * sector - the sector we wrote.
 90 * nr_sectors - the number of sectors we wrote.
 91 * flags - flags for this log entry.
 92 * data_len - the size of the data in this log entry, this is for private log
 93 * entry stuff, the MARK data provided by userspace for example.
 94 */
 95struct log_write_entry {
 96	__le64 sector;
 97	__le64 nr_sectors;
 98	__le64 flags;
 99	__le64 data_len;
100};
101
102struct log_writes_c {
103	struct dm_dev *dev;
104	struct dm_dev *logdev;
105	u64 logged_entries;
106	u32 sectorsize;
107	u32 sectorshift;
108	atomic_t io_blocks;
109	atomic_t pending_blocks;
110	sector_t next_sector;
111	sector_t end_sector;
112	bool logging_enabled;
113	bool device_supports_discard;
114	spinlock_t blocks_lock;
115	struct list_head unflushed_blocks;
116	struct list_head logging_blocks;
117	wait_queue_head_t wait;
118	struct task_struct *log_kthread;
119	struct completion super_done;
120};
121
122struct pending_block {
123	int vec_cnt;
124	u64 flags;
125	sector_t sector;
126	sector_t nr_sectors;
127	char *data;
128	u32 datalen;
129	struct list_head list;
130	struct bio_vec vecs[];
131};
132
133struct per_bio_data {
134	struct pending_block *block;
135};
136
137static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
138					  sector_t sectors)
139{
140	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
141}
142
143static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
144					  sector_t sectors)
145{
146	return sectors << (lc->sectorshift - SECTOR_SHIFT);
147}
148
149static void put_pending_block(struct log_writes_c *lc)
150{
151	if (atomic_dec_and_test(&lc->pending_blocks)) {
152		smp_mb__after_atomic();
153		if (waitqueue_active(&lc->wait))
154			wake_up(&lc->wait);
155	}
156}
157
158static void put_io_block(struct log_writes_c *lc)
159{
160	if (atomic_dec_and_test(&lc->io_blocks)) {
161		smp_mb__after_atomic();
162		if (waitqueue_active(&lc->wait))
163			wake_up(&lc->wait);
164	}
165}
166
167static void log_end_io(struct bio *bio)
168{
169	struct log_writes_c *lc = bio->bi_private;
170
171	if (bio->bi_status) {
172		unsigned long flags;
173
174		DMERR("Error writing log block, error=%d", bio->bi_status);
175		spin_lock_irqsave(&lc->blocks_lock, flags);
176		lc->logging_enabled = false;
177		spin_unlock_irqrestore(&lc->blocks_lock, flags);
178	}
179
180	bio_free_pages(bio);
181	put_io_block(lc);
182	bio_put(bio);
183}
184
185static void log_end_super(struct bio *bio)
186{
187	struct log_writes_c *lc = bio->bi_private;
188
189	complete(&lc->super_done);
190	log_end_io(bio);
191}
192
193/*
194 * Meant to be called if there is an error, it will free all the pages
195 * associated with the block.
196 */
197static void free_pending_block(struct log_writes_c *lc,
198			       struct pending_block *block)
199{
200	int i;
201
202	for (i = 0; i < block->vec_cnt; i++) {
203		if (block->vecs[i].bv_page)
204			__free_page(block->vecs[i].bv_page);
205	}
206	kfree(block->data);
207	kfree(block);
208	put_pending_block(lc);
209}
210
211static int write_metadata(struct log_writes_c *lc, void *entry,
212			  size_t entrylen, void *data, size_t datalen,
213			  sector_t sector)
214{
215	struct bio *bio;
216	struct page *page;
217	void *ptr;
218	size_t ret;
219
220	bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL);
221	bio->bi_iter.bi_size = 0;
222	bio->bi_iter.bi_sector = sector;
223	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
224			  log_end_super : log_end_io;
225	bio->bi_private = lc;
226
227	page = alloc_page(GFP_KERNEL);
228	if (!page) {
229		DMERR("Couldn't alloc log page");
230		bio_put(bio);
231		goto error;
232	}
233
234	ptr = kmap_atomic(page);
235	memcpy(ptr, entry, entrylen);
236	if (datalen)
237		memcpy(ptr + entrylen, data, datalen);
238	memset(ptr + entrylen + datalen, 0,
239	       lc->sectorsize - entrylen - datalen);
240	kunmap_atomic(ptr);
241
242	ret = bio_add_page(bio, page, lc->sectorsize, 0);
243	if (ret != lc->sectorsize) {
244		DMERR("Couldn't add page to the log block");
245		goto error_bio;
246	}
247	submit_bio(bio);
248	return 0;
249error_bio:
250	bio_put(bio);
251	__free_page(page);
252error:
253	put_io_block(lc);
254	return -1;
255}
256
257static int write_inline_data(struct log_writes_c *lc, void *entry,
258			     size_t entrylen, void *data, size_t datalen,
259			     sector_t sector)
260{
261	int bio_pages, pg_datalen, pg_sectorlen, i;
262	struct page *page;
263	struct bio *bio;
264	size_t ret;
265	void *ptr;
266
267	while (datalen) {
268		bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
269
270		atomic_inc(&lc->io_blocks);
271
272		bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE,
273				GFP_KERNEL);
274		bio->bi_iter.bi_size = 0;
275		bio->bi_iter.bi_sector = sector;
276		bio->bi_end_io = log_end_io;
277		bio->bi_private = lc;
278
279		for (i = 0; i < bio_pages; i++) {
280			pg_datalen = min_t(int, datalen, PAGE_SIZE);
281			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
282
283			page = alloc_page(GFP_KERNEL);
284			if (!page) {
285				DMERR("Couldn't alloc inline data page");
286				goto error_bio;
287			}
288
289			ptr = kmap_atomic(page);
290			memcpy(ptr, data, pg_datalen);
291			if (pg_sectorlen > pg_datalen)
292				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
293			kunmap_atomic(ptr);
294
295			ret = bio_add_page(bio, page, pg_sectorlen, 0);
296			if (ret != pg_sectorlen) {
297				DMERR("Couldn't add page of inline data");
298				__free_page(page);
299				goto error_bio;
300			}
301
302			datalen -= pg_datalen;
303			data	+= pg_datalen;
304		}
305		submit_bio(bio);
306
307		sector += bio_pages * PAGE_SECTORS;
308	}
309	return 0;
310error_bio:
311	bio_free_pages(bio);
312	bio_put(bio);
313	put_io_block(lc);
314	return -1;
315}
316
317static int log_one_block(struct log_writes_c *lc,
318			 struct pending_block *block, sector_t sector)
319{
320	struct bio *bio;
321	struct log_write_entry entry;
322	size_t metadatalen, ret;
323	int i;
324
325	entry.sector = cpu_to_le64(block->sector);
326	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
327	entry.flags = cpu_to_le64(block->flags);
328	entry.data_len = cpu_to_le64(block->datalen);
329
330	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
331	if (write_metadata(lc, &entry, sizeof(entry), block->data,
332			   metadatalen, sector)) {
333		free_pending_block(lc, block);
334		return -1;
335	}
336
337	sector += dev_to_bio_sectors(lc, 1);
338
339	if (block->datalen && metadatalen == 0) {
340		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
341				      block->datalen, sector)) {
342			free_pending_block(lc, block);
343			return -1;
344		}
345		/* we don't support both inline data & bio data */
346		goto out;
347	}
348
349	if (!block->vec_cnt)
350		goto out;
351
352	atomic_inc(&lc->io_blocks);
353	bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt),
354			REQ_OP_WRITE, GFP_KERNEL);
355	bio->bi_iter.bi_size = 0;
356	bio->bi_iter.bi_sector = sector;
357	bio->bi_end_io = log_end_io;
358	bio->bi_private = lc;
359
360	for (i = 0; i < block->vec_cnt; i++) {
361		/*
362		 * The page offset is always 0 because we allocate a new page
363		 * for every bvec in the original bio for simplicity sake.
364		 */
365		ret = bio_add_page(bio, block->vecs[i].bv_page,
366				   block->vecs[i].bv_len, 0);
367		if (ret != block->vecs[i].bv_len) {
368			atomic_inc(&lc->io_blocks);
369			submit_bio(bio);
370			bio = bio_alloc(lc->logdev->bdev,
371					bio_max_segs(block->vec_cnt - i),
372					REQ_OP_WRITE, GFP_KERNEL);
373			bio->bi_iter.bi_size = 0;
374			bio->bi_iter.bi_sector = sector;
375			bio->bi_end_io = log_end_io;
376			bio->bi_private = lc;
377
378			ret = bio_add_page(bio, block->vecs[i].bv_page,
379					   block->vecs[i].bv_len, 0);
380			if (ret != block->vecs[i].bv_len) {
381				DMERR("Couldn't add page on new bio?");
382				bio_put(bio);
383				goto error;
384			}
385		}
386		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
387	}
388	submit_bio(bio);
389out:
390	kfree(block->data);
391	kfree(block);
392	put_pending_block(lc);
393	return 0;
394error:
395	free_pending_block(lc, block);
396	put_io_block(lc);
397	return -1;
398}
399
400static int log_super(struct log_writes_c *lc)
401{
402	struct log_write_super super;
403
404	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
405	super.version = cpu_to_le64(WRITE_LOG_VERSION);
406	super.nr_entries = cpu_to_le64(lc->logged_entries);
407	super.sectorsize = cpu_to_le32(lc->sectorsize);
408
409	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
410			   WRITE_LOG_SUPER_SECTOR)) {
411		DMERR("Couldn't write super");
412		return -1;
413	}
414
415	/*
416	 * Super sector should be writen in-order, otherwise the
417	 * nr_entries could be rewritten incorrectly by an old bio.
418	 */
419	wait_for_completion_io(&lc->super_done);
420
421	return 0;
422}
423
424static inline sector_t logdev_last_sector(struct log_writes_c *lc)
425{
426	return bdev_nr_sectors(lc->logdev->bdev);
427}
428
429static int log_writes_kthread(void *arg)
430{
431	struct log_writes_c *lc = (struct log_writes_c *)arg;
432	sector_t sector = 0;
433
434	while (!kthread_should_stop()) {
435		bool super = false;
436		bool logging_enabled;
437		struct pending_block *block = NULL;
438		int ret;
439
440		spin_lock_irq(&lc->blocks_lock);
441		if (!list_empty(&lc->logging_blocks)) {
442			block = list_first_entry(&lc->logging_blocks,
443						 struct pending_block, list);
444			list_del_init(&block->list);
445			if (!lc->logging_enabled)
446				goto next;
447
448			sector = lc->next_sector;
449			if (!(block->flags & LOG_DISCARD_FLAG))
450				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
451			lc->next_sector += dev_to_bio_sectors(lc, 1);
452
453			/*
454			 * Apparently the size of the device may not be known
455			 * right away, so handle this properly.
456			 */
457			if (!lc->end_sector)
458				lc->end_sector = logdev_last_sector(lc);
459			if (lc->end_sector &&
460			    lc->next_sector >= lc->end_sector) {
461				DMERR("Ran out of space on the logdev");
462				lc->logging_enabled = false;
463				goto next;
464			}
465			lc->logged_entries++;
466			atomic_inc(&lc->io_blocks);
467
468			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
469			if (super)
470				atomic_inc(&lc->io_blocks);
471		}
472next:
473		logging_enabled = lc->logging_enabled;
474		spin_unlock_irq(&lc->blocks_lock);
475		if (block) {
476			if (logging_enabled) {
477				ret = log_one_block(lc, block, sector);
478				if (!ret && super)
479					ret = log_super(lc);
480				if (ret) {
481					spin_lock_irq(&lc->blocks_lock);
482					lc->logging_enabled = false;
483					spin_unlock_irq(&lc->blocks_lock);
484				}
485			} else
486				free_pending_block(lc, block);
487			continue;
488		}
489
490		if (!try_to_freeze()) {
491			set_current_state(TASK_INTERRUPTIBLE);
492			if (!kthread_should_stop() &&
493			    list_empty(&lc->logging_blocks))
494				schedule();
495			__set_current_state(TASK_RUNNING);
496		}
497	}
498	return 0;
499}
500
501/*
502 * Construct a log-writes mapping:
503 * log-writes <dev_path> <log_dev_path>
504 */
505static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
506{
507	struct log_writes_c *lc;
508	struct dm_arg_set as;
509	const char *devname, *logdevname;
510	int ret;
511
512	as.argc = argc;
513	as.argv = argv;
514
515	if (argc < 2) {
516		ti->error = "Invalid argument count";
517		return -EINVAL;
518	}
519
520	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
521	if (!lc) {
522		ti->error = "Cannot allocate context";
523		return -ENOMEM;
524	}
525	spin_lock_init(&lc->blocks_lock);
526	INIT_LIST_HEAD(&lc->unflushed_blocks);
527	INIT_LIST_HEAD(&lc->logging_blocks);
528	init_waitqueue_head(&lc->wait);
529	init_completion(&lc->super_done);
530	atomic_set(&lc->io_blocks, 0);
531	atomic_set(&lc->pending_blocks, 0);
532
533	devname = dm_shift_arg(&as);
534	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
535	if (ret) {
536		ti->error = "Device lookup failed";
537		goto bad;
538	}
539
540	logdevname = dm_shift_arg(&as);
541	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
542			    &lc->logdev);
543	if (ret) {
544		ti->error = "Log device lookup failed";
545		dm_put_device(ti, lc->dev);
546		goto bad;
547	}
548
549	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
550	lc->sectorshift = ilog2(lc->sectorsize);
551	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
552	if (IS_ERR(lc->log_kthread)) {
553		ret = PTR_ERR(lc->log_kthread);
554		ti->error = "Couldn't alloc kthread";
555		dm_put_device(ti, lc->dev);
556		dm_put_device(ti, lc->logdev);
557		goto bad;
558	}
559
560	/*
561	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
562	 * The super starts at sector 0, and the next_sector is the next logical
563	 * one based on the sectorsize of the device.
564	 */
565	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
566	lc->logging_enabled = true;
567	lc->end_sector = logdev_last_sector(lc);
568	lc->device_supports_discard = true;
569
570	ti->num_flush_bios = 1;
571	ti->flush_supported = true;
572	ti->num_discard_bios = 1;
573	ti->discards_supported = true;
574	ti->per_io_data_size = sizeof(struct per_bio_data);
575	ti->private = lc;
576	return 0;
577
578bad:
579	kfree(lc);
580	return ret;
581}
582
583static int log_mark(struct log_writes_c *lc, char *data)
584{
585	struct pending_block *block;
586	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
587
588	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
589	if (!block) {
590		DMERR("Error allocating pending block");
591		return -ENOMEM;
592	}
593
594	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
595	if (!block->data) {
596		DMERR("Error copying mark data");
597		kfree(block);
598		return -ENOMEM;
599	}
600	atomic_inc(&lc->pending_blocks);
601	block->datalen = strlen(block->data);
602	block->flags |= LOG_MARK_FLAG;
603	spin_lock_irq(&lc->blocks_lock);
604	list_add_tail(&block->list, &lc->logging_blocks);
605	spin_unlock_irq(&lc->blocks_lock);
606	wake_up_process(lc->log_kthread);
607	return 0;
608}
609
610static void log_writes_dtr(struct dm_target *ti)
611{
612	struct log_writes_c *lc = ti->private;
613
614	spin_lock_irq(&lc->blocks_lock);
615	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
616	spin_unlock_irq(&lc->blocks_lock);
617
618	/*
619	 * This is just nice to have since it'll update the super to include the
620	 * unflushed blocks, if it fails we don't really care.
621	 */
622	log_mark(lc, "dm-log-writes-end");
623	wake_up_process(lc->log_kthread);
624	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
625		   !atomic_read(&lc->pending_blocks));
626	kthread_stop(lc->log_kthread);
627
628	WARN_ON(!list_empty(&lc->logging_blocks));
629	WARN_ON(!list_empty(&lc->unflushed_blocks));
630	dm_put_device(ti, lc->dev);
631	dm_put_device(ti, lc->logdev);
632	kfree(lc);
633}
634
635static void normal_map_bio(struct dm_target *ti, struct bio *bio)
636{
637	struct log_writes_c *lc = ti->private;
638
639	bio_set_dev(bio, lc->dev->bdev);
640}
641
642static int log_writes_map(struct dm_target *ti, struct bio *bio)
643{
644	struct log_writes_c *lc = ti->private;
645	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
646	struct pending_block *block;
647	struct bvec_iter iter;
648	struct bio_vec bv;
649	size_t alloc_size;
650	int i = 0;
651	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
652	bool fua_bio = (bio->bi_opf & REQ_FUA);
653	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
654	bool meta_bio = (bio->bi_opf & REQ_META);
655
656	pb->block = NULL;
657
658	/* Don't bother doing anything if logging has been disabled */
659	if (!lc->logging_enabled)
660		goto map_bio;
661
662	/*
663	 * Map reads as normal.
664	 */
665	if (bio_data_dir(bio) == READ)
666		goto map_bio;
667
668	/* No sectors and not a flush?  Don't care */
669	if (!bio_sectors(bio) && !flush_bio)
670		goto map_bio;
671
672	/*
673	 * Discards will have bi_size set but there's no actual data, so just
674	 * allocate the size of the pending block.
675	 */
676	if (discard_bio)
677		alloc_size = sizeof(struct pending_block);
678	else
679		alloc_size = struct_size(block, vecs, bio_segments(bio));
680
681	block = kzalloc(alloc_size, GFP_NOIO);
682	if (!block) {
683		DMERR("Error allocating pending block");
684		spin_lock_irq(&lc->blocks_lock);
685		lc->logging_enabled = false;
686		spin_unlock_irq(&lc->blocks_lock);
687		return DM_MAPIO_KILL;
688	}
689	INIT_LIST_HEAD(&block->list);
690	pb->block = block;
691	atomic_inc(&lc->pending_blocks);
692
693	if (flush_bio)
694		block->flags |= LOG_FLUSH_FLAG;
695	if (fua_bio)
696		block->flags |= LOG_FUA_FLAG;
697	if (discard_bio)
698		block->flags |= LOG_DISCARD_FLAG;
699	if (meta_bio)
700		block->flags |= LOG_METADATA_FLAG;
701
702	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
703	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
704
705	/* We don't need the data, just submit */
706	if (discard_bio) {
707		WARN_ON(flush_bio || fua_bio);
708		if (lc->device_supports_discard)
709			goto map_bio;
710		bio_endio(bio);
711		return DM_MAPIO_SUBMITTED;
712	}
713
714	/* Flush bio, splice the unflushed blocks onto this list and submit */
715	if (flush_bio && !bio_sectors(bio)) {
716		spin_lock_irq(&lc->blocks_lock);
717		list_splice_init(&lc->unflushed_blocks, &block->list);
718		spin_unlock_irq(&lc->blocks_lock);
719		goto map_bio;
720	}
721
722	/*
723	 * We will write this bio somewhere else way later so we need to copy
724	 * the actual contents into new pages so we know the data will always be
725	 * there.
726	 *
727	 * We do this because this could be a bio from O_DIRECT in which case we
728	 * can't just hold onto the page until some later point, we have to
729	 * manually copy the contents.
730	 */
731	bio_for_each_segment(bv, bio, iter) {
732		struct page *page;
733		void *dst;
734
735		page = alloc_page(GFP_NOIO);
736		if (!page) {
737			DMERR("Error allocing page");
738			free_pending_block(lc, block);
739			spin_lock_irq(&lc->blocks_lock);
740			lc->logging_enabled = false;
741			spin_unlock_irq(&lc->blocks_lock);
742			return DM_MAPIO_KILL;
743		}
744
745		dst = kmap_atomic(page);
746		memcpy_from_bvec(dst, &bv);
747		kunmap_atomic(dst);
748		block->vecs[i].bv_page = page;
749		block->vecs[i].bv_len = bv.bv_len;
750		block->vec_cnt++;
751		i++;
752	}
753
754	/* Had a flush with data in it, weird */
755	if (flush_bio) {
756		spin_lock_irq(&lc->blocks_lock);
757		list_splice_init(&lc->unflushed_blocks, &block->list);
758		spin_unlock_irq(&lc->blocks_lock);
759	}
760map_bio:
761	normal_map_bio(ti, bio);
762	return DM_MAPIO_REMAPPED;
763}
764
765static int normal_end_io(struct dm_target *ti, struct bio *bio,
766		blk_status_t *error)
767{
768	struct log_writes_c *lc = ti->private;
769	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
770
771	if (bio_data_dir(bio) == WRITE && pb->block) {
772		struct pending_block *block = pb->block;
773		unsigned long flags;
774
775		spin_lock_irqsave(&lc->blocks_lock, flags);
776		if (block->flags & LOG_FLUSH_FLAG) {
777			list_splice_tail_init(&block->list, &lc->logging_blocks);
778			list_add_tail(&block->list, &lc->logging_blocks);
779			wake_up_process(lc->log_kthread);
780		} else if (block->flags & LOG_FUA_FLAG) {
781			list_add_tail(&block->list, &lc->logging_blocks);
782			wake_up_process(lc->log_kthread);
783		} else
784			list_add_tail(&block->list, &lc->unflushed_blocks);
785		spin_unlock_irqrestore(&lc->blocks_lock, flags);
786	}
787
788	return DM_ENDIO_DONE;
789}
790
791/*
792 * INFO format: <logged entries> <highest allocated sector>
793 */
794static void log_writes_status(struct dm_target *ti, status_type_t type,
795			      unsigned status_flags, char *result,
796			      unsigned maxlen)
797{
798	unsigned sz = 0;
799	struct log_writes_c *lc = ti->private;
800
801	switch (type) {
802	case STATUSTYPE_INFO:
803		DMEMIT("%llu %llu", lc->logged_entries,
804		       (unsigned long long)lc->next_sector - 1);
805		if (!lc->logging_enabled)
806			DMEMIT(" logging_disabled");
807		break;
808
809	case STATUSTYPE_TABLE:
810		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
811		break;
812
813	case STATUSTYPE_IMA:
814		*result = '\0';
815		break;
816	}
817}
818
819static int log_writes_prepare_ioctl(struct dm_target *ti,
820				    struct block_device **bdev)
821{
822	struct log_writes_c *lc = ti->private;
823	struct dm_dev *dev = lc->dev;
824
825	*bdev = dev->bdev;
826	/*
827	 * Only pass ioctls through if the device sizes match exactly.
828	 */
829	if (ti->len != bdev_nr_sectors(dev->bdev))
830		return 1;
831	return 0;
832}
833
834static int log_writes_iterate_devices(struct dm_target *ti,
835				      iterate_devices_callout_fn fn,
836				      void *data)
837{
838	struct log_writes_c *lc = ti->private;
839
840	return fn(ti, lc->dev, 0, ti->len, data);
841}
842
843/*
844 * Messages supported:
845 *   mark <mark data> - specify the marked data.
846 */
847static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
848			      char *result, unsigned maxlen)
849{
850	int r = -EINVAL;
851	struct log_writes_c *lc = ti->private;
852
853	if (argc != 2) {
854		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
855		return r;
856	}
857
858	if (!strcasecmp(argv[0], "mark"))
859		r = log_mark(lc, argv[1]);
860	else
861		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
862
863	return r;
864}
865
866static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
867{
868	struct log_writes_c *lc = ti->private;
869
870	if (!bdev_max_discard_sectors(lc->dev->bdev)) {
871		lc->device_supports_discard = false;
872		limits->discard_granularity = lc->sectorsize;
873		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
874	}
875	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
876	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
877	limits->io_min = limits->physical_block_size;
878	limits->dma_alignment = limits->logical_block_size - 1;
879}
880
881#if IS_ENABLED(CONFIG_FS_DAX)
882static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
883		pgoff_t *pgoff)
884{
885	struct log_writes_c *lc = ti->private;
886
887	*pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
888	return lc->dev->dax_dev;
889}
890
891static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
892		long nr_pages, enum dax_access_mode mode, void **kaddr,
893		pfn_t *pfn)
894{
895	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
896
897	return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
898}
899
900static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
901					  size_t nr_pages)
902{
903	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
904
905	return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
906}
907
908static size_t log_writes_dax_recovery_write(struct dm_target *ti,
909		pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i)
910{
911	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
912
913	return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
914}
915
916#else
917#define log_writes_dax_direct_access NULL
918#define log_writes_dax_zero_page_range NULL
919#define log_writes_dax_recovery_write NULL
920#endif
921
922static struct target_type log_writes_target = {
923	.name   = "log-writes",
924	.version = {1, 1, 0},
925	.module = THIS_MODULE,
926	.ctr    = log_writes_ctr,
927	.dtr    = log_writes_dtr,
928	.map    = log_writes_map,
929	.end_io = normal_end_io,
930	.status = log_writes_status,
931	.prepare_ioctl = log_writes_prepare_ioctl,
932	.message = log_writes_message,
933	.iterate_devices = log_writes_iterate_devices,
934	.io_hints = log_writes_io_hints,
935	.direct_access = log_writes_dax_direct_access,
936	.dax_zero_page_range = log_writes_dax_zero_page_range,
937	.dax_recovery_write = log_writes_dax_recovery_write,
938};
939
940static int __init dm_log_writes_init(void)
941{
942	int r = dm_register_target(&log_writes_target);
943
944	if (r < 0)
945		DMERR("register failed %d", r);
946
947	return r;
948}
949
950static void __exit dm_log_writes_exit(void)
951{
952	dm_unregister_target(&log_writes_target);
953}
954
955module_init(dm_log_writes_init);
956module_exit(dm_log_writes_exit);
957
958MODULE_DESCRIPTION(DM_NAME " log writes target");
959MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
960MODULE_LICENSE("GPL");