Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (C) 2005-2007 Red Hat GmbH
  3 *
  4 * A target that delays reads and/or writes and can send
  5 * them to different devices.
  6 *
  7 * This file is released under the GPL.
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/blkdev.h>
 13#include <linux/bio.h>
 14#include <linux/slab.h>
 15
 16#include <linux/device-mapper.h>
 17
 18#define DM_MSG_PREFIX "delay"
 19
 
 
 
 
 
 
 
 20struct delay_c {
 21	struct timer_list delay_timer;
 22	struct mutex timer_lock;
 
 23	struct work_struct flush_expired_bios;
 24	struct list_head delayed_bios;
 25	atomic_t may_delay;
 26	mempool_t *delayed_pool;
 27
 28	struct dm_dev *dev_read;
 29	sector_t start_read;
 30	unsigned read_delay;
 31	unsigned reads;
 32
 33	struct dm_dev *dev_write;
 34	sector_t start_write;
 35	unsigned write_delay;
 36	unsigned writes;
 37};
 38
 39struct dm_delay_info {
 40	struct delay_c *context;
 
 41	struct list_head list;
 42	struct bio *bio;
 43	unsigned long expires;
 44};
 45
 46static DEFINE_MUTEX(delayed_bios_lock);
 47
 48static struct workqueue_struct *kdelayd_wq;
 49static struct kmem_cache *delayed_cache;
 50
 51static void handle_delayed_timer(unsigned long data)
 52{
 53	struct delay_c *dc = (struct delay_c *)data;
 54
 55	queue_work(kdelayd_wq, &dc->flush_expired_bios);
 56}
 57
 58static void queue_timeout(struct delay_c *dc, unsigned long expires)
 59{
 60	mutex_lock(&dc->timer_lock);
 61
 62	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
 63		mod_timer(&dc->delay_timer, expires);
 64
 65	mutex_unlock(&dc->timer_lock);
 66}
 67
 68static void flush_bios(struct bio *bio)
 69{
 70	struct bio *n;
 71
 72	while (bio) {
 73		n = bio->bi_next;
 74		bio->bi_next = NULL;
 75		generic_make_request(bio);
 76		bio = n;
 77	}
 78}
 79
 80static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
 81{
 82	struct dm_delay_info *delayed, *next;
 83	unsigned long next_expires = 0;
 84	int start_timer = 0;
 85	struct bio_list flush_bios = { };
 86
 87	mutex_lock(&delayed_bios_lock);
 88	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
 89		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
 
 
 90			list_del(&delayed->list);
 91			bio_list_add(&flush_bios, delayed->bio);
 92			if ((bio_data_dir(delayed->bio) == WRITE))
 93				delayed->context->writes--;
 94			else
 95				delayed->context->reads--;
 96			mempool_free(delayed, dc->delayed_pool);
 97			continue;
 98		}
 99
100		if (!start_timer) {
101			start_timer = 1;
102			next_expires = delayed->expires;
103		} else
104			next_expires = min(next_expires, delayed->expires);
105	}
106
107	mutex_unlock(&delayed_bios_lock);
108
109	if (start_timer)
110		queue_timeout(dc, next_expires);
111
112	return bio_list_get(&flush_bios);
113}
114
115static void flush_expired_bios(struct work_struct *work)
116{
117	struct delay_c *dc;
118
119	dc = container_of(work, struct delay_c, flush_expired_bios);
120	flush_bios(flush_delayed_bios(dc, 0));
121}
122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123/*
124 * Mapping parameters:
125 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
126 *
127 * With separate write parameters, the first set is only used for reads.
 
128 * Delays are specified in milliseconds.
129 */
130static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
131{
132	struct delay_c *dc;
133	unsigned long long tmpll;
134
135	if (argc != 3 && argc != 6) {
136		ti->error = "requires exactly 3 or 6 arguments";
137		return -EINVAL;
138	}
139
140	dc = kmalloc(sizeof(*dc), GFP_KERNEL);
141	if (!dc) {
142		ti->error = "Cannot allocate context";
143		return -ENOMEM;
144	}
145
146	dc->reads = dc->writes = 0;
 
 
 
 
 
 
147
148	if (sscanf(argv[1], "%llu", &tmpll) != 1) {
149		ti->error = "Invalid device sector";
150		goto bad;
151	}
152	dc->start_read = tmpll;
153
154	if (sscanf(argv[2], "%u", &dc->read_delay) != 1) {
155		ti->error = "Invalid delay";
156		goto bad;
 
 
 
 
 
157	}
158
159	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
160			  &dc->dev_read)) {
161		ti->error = "Device lookup failed";
162		goto bad;
163	}
164
165	dc->dev_write = NULL;
166	if (argc == 3)
167		goto out;
168
169	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
170		ti->error = "Invalid write device sector";
171		goto bad_dev_read;
172	}
173	dc->start_write = tmpll;
174
175	if (sscanf(argv[5], "%u", &dc->write_delay) != 1) {
176		ti->error = "Invalid write delay";
177		goto bad_dev_read;
178	}
179
180	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table),
181			  &dc->dev_write)) {
182		ti->error = "Write device lookup failed";
183		goto bad_dev_read;
184	}
185
186out:
187	dc->delayed_pool = mempool_create_slab_pool(128, delayed_cache);
188	if (!dc->delayed_pool) {
189		DMERR("Couldn't create delayed bio pool.");
190		goto bad_dev_write;
 
191	}
192
193	setup_timer(&dc->delay_timer, handle_delayed_timer, (unsigned long)dc);
194
195	INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
196	INIT_LIST_HEAD(&dc->delayed_bios);
197	mutex_init(&dc->timer_lock);
198	atomic_set(&dc->may_delay, 1);
199
200	ti->num_flush_requests = 1;
201	ti->num_discard_requests = 1;
202	ti->private = dc;
203	return 0;
204
205bad_dev_write:
206	if (dc->dev_write)
207		dm_put_device(ti, dc->dev_write);
208bad_dev_read:
209	dm_put_device(ti, dc->dev_read);
210bad:
211	kfree(dc);
212	return -EINVAL;
213}
214
215static void delay_dtr(struct dm_target *ti)
216{
217	struct delay_c *dc = ti->private;
218
219	flush_workqueue(kdelayd_wq);
220
221	dm_put_device(ti, dc->dev_read);
222
223	if (dc->dev_write)
224		dm_put_device(ti, dc->dev_write);
225
226	mempool_destroy(dc->delayed_pool);
227	kfree(dc);
228}
229
230static int delay_bio(struct delay_c *dc, int delay, struct bio *bio)
231{
232	struct dm_delay_info *delayed;
233	unsigned long expires = 0;
234
235	if (!delay || !atomic_read(&dc->may_delay))
236		return 1;
237
238	delayed = mempool_alloc(dc->delayed_pool, GFP_NOIO);
239
240	delayed->context = dc;
241	delayed->bio = bio;
242	delayed->expires = expires = jiffies + (delay * HZ / 1000);
243
244	mutex_lock(&delayed_bios_lock);
245
246	if (bio_data_dir(bio) == WRITE)
247		dc->writes++;
248	else
249		dc->reads++;
250
251	list_add_tail(&delayed->list, &dc->delayed_bios);
252
253	mutex_unlock(&delayed_bios_lock);
254
255	queue_timeout(dc, expires);
256
257	return 0;
258}
259
260static void delay_presuspend(struct dm_target *ti)
261{
262	struct delay_c *dc = ti->private;
263
264	atomic_set(&dc->may_delay, 0);
265	del_timer_sync(&dc->delay_timer);
266	flush_bios(flush_delayed_bios(dc, 1));
267}
268
269static void delay_resume(struct dm_target *ti)
270{
271	struct delay_c *dc = ti->private;
272
273	atomic_set(&dc->may_delay, 1);
274}
275
276static int delay_map(struct dm_target *ti, struct bio *bio,
277		     union map_info *map_context)
278{
279	struct delay_c *dc = ti->private;
 
 
280
281	if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) {
282		bio->bi_bdev = dc->dev_write->bdev;
283		if (bio_sectors(bio))
284			bio->bi_sector = dc->start_write +
285					 dm_target_offset(ti, bio->bi_sector);
286
287		return delay_bio(dc, dc->write_delay, bio);
288	}
 
 
 
289
290	bio->bi_bdev = dc->dev_read->bdev;
291	bio->bi_sector = dc->start_read + dm_target_offset(ti, bio->bi_sector);
292
293	return delay_bio(dc, dc->read_delay, bio);
294}
295
296static int delay_status(struct dm_target *ti, status_type_t type,
297			char *result, unsigned maxlen)
 
 
 
298{
299	struct delay_c *dc = ti->private;
300	int sz = 0;
301
302	switch (type) {
303	case STATUSTYPE_INFO:
304		DMEMIT("%u %u", dc->reads, dc->writes);
305		break;
306
307	case STATUSTYPE_TABLE:
308		DMEMIT("%s %llu %u", dc->dev_read->name,
309		       (unsigned long long) dc->start_read,
310		       dc->read_delay);
311		if (dc->dev_write)
312			DMEMIT(" %s %llu %u", dc->dev_write->name,
313			       (unsigned long long) dc->start_write,
314			       dc->write_delay);
 
 
315		break;
316	}
317
318	return 0;
 
 
 
319}
320
321static int delay_iterate_devices(struct dm_target *ti,
322				 iterate_devices_callout_fn fn, void *data)
323{
324	struct delay_c *dc = ti->private;
325	int ret = 0;
326
327	ret = fn(ti, dc->dev_read, dc->start_read, ti->len, data);
 
 
 
 
 
 
328	if (ret)
329		goto out;
330
331	if (dc->dev_write)
332		ret = fn(ti, dc->dev_write, dc->start_write, ti->len, data);
333
334out:
335	return ret;
336}
337
338static struct target_type delay_target = {
339	.name	     = "delay",
340	.version     = {1, 1, 0},
 
341	.module      = THIS_MODULE,
342	.ctr	     = delay_ctr,
343	.dtr	     = delay_dtr,
344	.map	     = delay_map,
345	.presuspend  = delay_presuspend,
346	.resume	     = delay_resume,
347	.status	     = delay_status,
348	.iterate_devices = delay_iterate_devices,
349};
350
351static int __init dm_delay_init(void)
352{
353	int r = -ENOMEM;
354
355	kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
356	if (!kdelayd_wq) {
357		DMERR("Couldn't start kdelayd");
358		goto bad_queue;
359	}
360
361	delayed_cache = KMEM_CACHE(dm_delay_info, 0);
362	if (!delayed_cache) {
363		DMERR("Couldn't create delayed bio cache.");
364		goto bad_memcache;
365	}
366
367	r = dm_register_target(&delay_target);
368	if (r < 0) {
369		DMERR("register failed %d", r);
370		goto bad_register;
371	}
372
373	return 0;
374
375bad_register:
376	kmem_cache_destroy(delayed_cache);
377bad_memcache:
378	destroy_workqueue(kdelayd_wq);
379bad_queue:
380	return r;
381}
382
383static void __exit dm_delay_exit(void)
384{
385	dm_unregister_target(&delay_target);
386	kmem_cache_destroy(delayed_cache);
387	destroy_workqueue(kdelayd_wq);
388}
389
390/* Module hooks */
391module_init(dm_delay_init);
392module_exit(dm_delay_exit);
393
394MODULE_DESCRIPTION(DM_NAME " delay target");
395MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
396MODULE_LICENSE("GPL");
v6.2
  1/*
  2 * Copyright (C) 2005-2007 Red Hat GmbH
  3 *
  4 * A target that delays reads and/or writes and can send
  5 * them to different devices.
  6 *
  7 * This file is released under the GPL.
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/blkdev.h>
 13#include <linux/bio.h>
 14#include <linux/slab.h>
 15
 16#include <linux/device-mapper.h>
 17
 18#define DM_MSG_PREFIX "delay"
 19
 20struct delay_class {
 21	struct dm_dev *dev;
 22	sector_t start;
 23	unsigned delay;
 24	unsigned ops;
 25};
 26
 27struct delay_c {
 28	struct timer_list delay_timer;
 29	struct mutex timer_lock;
 30	struct workqueue_struct *kdelayd_wq;
 31	struct work_struct flush_expired_bios;
 32	struct list_head delayed_bios;
 33	atomic_t may_delay;
 
 34
 35	struct delay_class read;
 36	struct delay_class write;
 37	struct delay_class flush;
 38
 39	int argc;
 
 
 
 
 40};
 41
 42struct dm_delay_info {
 43	struct delay_c *context;
 44	struct delay_class *class;
 45	struct list_head list;
 
 46	unsigned long expires;
 47};
 48
 49static DEFINE_MUTEX(delayed_bios_lock);
 50
 51static void handle_delayed_timer(struct timer_list *t)
 
 
 
 52{
 53	struct delay_c *dc = from_timer(dc, t, delay_timer);
 54
 55	queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
 56}
 57
 58static void queue_timeout(struct delay_c *dc, unsigned long expires)
 59{
 60	mutex_lock(&dc->timer_lock);
 61
 62	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
 63		mod_timer(&dc->delay_timer, expires);
 64
 65	mutex_unlock(&dc->timer_lock);
 66}
 67
 68static void flush_bios(struct bio *bio)
 69{
 70	struct bio *n;
 71
 72	while (bio) {
 73		n = bio->bi_next;
 74		bio->bi_next = NULL;
 75		dm_submit_bio_remap(bio, NULL);
 76		bio = n;
 77	}
 78}
 79
 80static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
 81{
 82	struct dm_delay_info *delayed, *next;
 83	unsigned long next_expires = 0;
 84	unsigned long start_timer = 0;
 85	struct bio_list flush_bios = { };
 86
 87	mutex_lock(&delayed_bios_lock);
 88	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
 89		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
 90			struct bio *bio = dm_bio_from_per_bio_data(delayed,
 91						sizeof(struct dm_delay_info));
 92			list_del(&delayed->list);
 93			bio_list_add(&flush_bios, bio);
 94			delayed->class->ops--;
 
 
 
 
 95			continue;
 96		}
 97
 98		if (!start_timer) {
 99			start_timer = 1;
100			next_expires = delayed->expires;
101		} else
102			next_expires = min(next_expires, delayed->expires);
103	}
 
104	mutex_unlock(&delayed_bios_lock);
105
106	if (start_timer)
107		queue_timeout(dc, next_expires);
108
109	return bio_list_get(&flush_bios);
110}
111
112static void flush_expired_bios(struct work_struct *work)
113{
114	struct delay_c *dc;
115
116	dc = container_of(work, struct delay_c, flush_expired_bios);
117	flush_bios(flush_delayed_bios(dc, 0));
118}
119
120static void delay_dtr(struct dm_target *ti)
121{
122	struct delay_c *dc = ti->private;
123
124	if (dc->kdelayd_wq)
125		destroy_workqueue(dc->kdelayd_wq);
126
127	if (dc->read.dev)
128		dm_put_device(ti, dc->read.dev);
129	if (dc->write.dev)
130		dm_put_device(ti, dc->write.dev);
131	if (dc->flush.dev)
132		dm_put_device(ti, dc->flush.dev);
133
134	mutex_destroy(&dc->timer_lock);
135
136	kfree(dc);
137}
138
139static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
140{
141	int ret;
142	unsigned long long tmpll;
143	char dummy;
144
145	if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
146		ti->error = "Invalid device sector";
147		return -EINVAL;
148	}
149	c->start = tmpll;
150
151	if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
152		ti->error = "Invalid delay";
153		return -EINVAL;
154	}
155
156	ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
157	if (ret) {
158		ti->error = "Device lookup failed";
159		return ret;
160	}
161
162	return 0;
163}
164
165/*
166 * Mapping parameters:
167 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
168 *
169 * With separate write parameters, the first set is only used for reads.
170 * Offsets are specified in sectors.
171 * Delays are specified in milliseconds.
172 */
173static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
174{
175	struct delay_c *dc;
176	int ret;
177
178	if (argc != 3 && argc != 6 && argc != 9) {
179		ti->error = "Requires exactly 3, 6 or 9 arguments";
180		return -EINVAL;
181	}
182
183	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
184	if (!dc) {
185		ti->error = "Cannot allocate context";
186		return -ENOMEM;
187	}
188
189	ti->private = dc;
190	timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
191	INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
192	INIT_LIST_HEAD(&dc->delayed_bios);
193	mutex_init(&dc->timer_lock);
194	atomic_set(&dc->may_delay, 1);
195	dc->argc = argc;
196
197	ret = delay_class_ctr(ti, &dc->read, argv);
198	if (ret)
199		goto bad;
 
 
200
201	if (argc == 3) {
202		ret = delay_class_ctr(ti, &dc->write, argv);
203		if (ret)
204			goto bad;
205		ret = delay_class_ctr(ti, &dc->flush, argv);
206		if (ret)
207			goto bad;
208		goto out;
209	}
210
211	ret = delay_class_ctr(ti, &dc->write, argv + 3);
212	if (ret)
 
213		goto bad;
214	if (argc == 6) {
215		ret = delay_class_ctr(ti, &dc->flush, argv + 3);
216		if (ret)
217			goto bad;
218		goto out;
 
 
 
 
219	}
 
220
221	ret = delay_class_ctr(ti, &dc->flush, argv + 6);
222	if (ret)
223		goto bad;
 
 
 
 
 
 
 
224
225out:
226	dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
227	if (!dc->kdelayd_wq) {
228		ret = -EINVAL;
229		DMERR("Couldn't start kdelayd");
230		goto bad;
231	}
232
233	ti->num_flush_bios = 1;
234	ti->num_discard_bios = 1;
235	ti->accounts_remapped_io = true;
236	ti->per_io_data_size = sizeof(struct dm_delay_info);
 
 
 
 
 
 
237	return 0;
238
 
 
 
 
 
239bad:
240	delay_dtr(ti);
241	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242}
243
244static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
245{
246	struct dm_delay_info *delayed;
247	unsigned long expires = 0;
248
249	if (!c->delay || !atomic_read(&dc->may_delay))
250		return DM_MAPIO_REMAPPED;
251
252	delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
253
254	delayed->context = dc;
255	delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
 
256
257	mutex_lock(&delayed_bios_lock);
258	c->ops++;
 
 
 
 
 
259	list_add_tail(&delayed->list, &dc->delayed_bios);
 
260	mutex_unlock(&delayed_bios_lock);
261
262	queue_timeout(dc, expires);
263
264	return DM_MAPIO_SUBMITTED;
265}
266
267static void delay_presuspend(struct dm_target *ti)
268{
269	struct delay_c *dc = ti->private;
270
271	atomic_set(&dc->may_delay, 0);
272	del_timer_sync(&dc->delay_timer);
273	flush_bios(flush_delayed_bios(dc, 1));
274}
275
276static void delay_resume(struct dm_target *ti)
277{
278	struct delay_c *dc = ti->private;
279
280	atomic_set(&dc->may_delay, 1);
281}
282
283static int delay_map(struct dm_target *ti, struct bio *bio)
 
284{
285	struct delay_c *dc = ti->private;
286	struct delay_class *c;
287	struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
288
289	if (bio_data_dir(bio) == WRITE) {
290		if (unlikely(bio->bi_opf & REQ_PREFLUSH))
291			c = &dc->flush;
292		else
293			c = &dc->write;
294	} else {
295		c = &dc->read;
296	}
297	delayed->class = c;
298	bio_set_dev(bio, c->dev->bdev);
299	bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
300
301	return delay_bio(dc, c, bio);
 
 
 
302}
303
304#define DMEMIT_DELAY_CLASS(c) \
305	DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
306
307static void delay_status(struct dm_target *ti, status_type_t type,
308			 unsigned status_flags, char *result, unsigned maxlen)
309{
310	struct delay_c *dc = ti->private;
311	int sz = 0;
312
313	switch (type) {
314	case STATUSTYPE_INFO:
315		DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
316		break;
317
318	case STATUSTYPE_TABLE:
319		DMEMIT_DELAY_CLASS(&dc->read);
320		if (dc->argc >= 6) {
321			DMEMIT(" ");
322			DMEMIT_DELAY_CLASS(&dc->write);
323		}
324		if (dc->argc >= 9) {
325			DMEMIT(" ");
326			DMEMIT_DELAY_CLASS(&dc->flush);
327		}
328		break;
 
329
330	case STATUSTYPE_IMA:
331		*result = '\0';
332		break;
333	}
334}
335
336static int delay_iterate_devices(struct dm_target *ti,
337				 iterate_devices_callout_fn fn, void *data)
338{
339	struct delay_c *dc = ti->private;
340	int ret = 0;
341
342	ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
343	if (ret)
344		goto out;
345	ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
346	if (ret)
347		goto out;
348	ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
349	if (ret)
350		goto out;
 
 
 
351
352out:
353	return ret;
354}
355
356static struct target_type delay_target = {
357	.name	     = "delay",
358	.version     = {1, 3, 0},
359	.features    = DM_TARGET_PASSES_INTEGRITY,
360	.module      = THIS_MODULE,
361	.ctr	     = delay_ctr,
362	.dtr	     = delay_dtr,
363	.map	     = delay_map,
364	.presuspend  = delay_presuspend,
365	.resume	     = delay_resume,
366	.status	     = delay_status,
367	.iterate_devices = delay_iterate_devices,
368};
369
370static int __init dm_delay_init(void)
371{
372	int r;
 
 
 
 
 
 
 
 
 
 
 
 
373
374	r = dm_register_target(&delay_target);
375	if (r < 0) {
376		DMERR("register failed %d", r);
377		goto bad_register;
378	}
379
380	return 0;
381
382bad_register:
 
 
 
 
383	return r;
384}
385
386static void __exit dm_delay_exit(void)
387{
388	dm_unregister_target(&delay_target);
 
 
389}
390
391/* Module hooks */
392module_init(dm_delay_init);
393module_exit(dm_delay_exit);
394
395MODULE_DESCRIPTION(DM_NAME " delay target");
396MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
397MODULE_LICENSE("GPL");