Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2// Copyright (C) 2014 Broadcom Corporation
   3
   4#include <linux/delay.h>
   5#include <linux/i2c.h>
   6#include <linux/interrupt.h>
   7#include <linux/io.h>
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/of_device.h>
  11#include <linux/platform_device.h>
  12#include <linux/slab.h>
  13
  14#define IDM_CTRL_DIRECT_OFFSET       0x00
  15#define CFG_OFFSET                   0x00
  16#define CFG_RESET_SHIFT              31
  17#define CFG_EN_SHIFT                 30
  18#define CFG_SLAVE_ADDR_0_SHIFT       28
  19#define CFG_M_RETRY_CNT_SHIFT        16
  20#define CFG_M_RETRY_CNT_MASK         0x0f
  21
  22#define TIM_CFG_OFFSET               0x04
  23#define TIM_CFG_MODE_400_SHIFT       31
  24#define TIM_RAND_SLAVE_STRETCH_SHIFT      24
  25#define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
  26#define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
  27#define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
  28
  29#define S_CFG_SMBUS_ADDR_OFFSET           0x08
  30#define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
  31#define S_CFG_NIC_SMB_ADDR3_SHIFT         24
  32#define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
  33#define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
  34#define S_CFG_NIC_SMB_ADDR2_SHIFT         16
  35#define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
  36#define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
  37#define S_CFG_NIC_SMB_ADDR1_SHIFT         8
  38#define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
  39#define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
  40#define S_CFG_NIC_SMB_ADDR0_SHIFT         0
  41#define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
  42
  43#define M_FIFO_CTRL_OFFSET           0x0c
  44#define M_FIFO_RX_FLUSH_SHIFT        31
  45#define M_FIFO_TX_FLUSH_SHIFT        30
  46#define M_FIFO_RX_CNT_SHIFT          16
  47#define M_FIFO_RX_CNT_MASK           0x7f
  48#define M_FIFO_RX_THLD_SHIFT         8
  49#define M_FIFO_RX_THLD_MASK          0x3f
  50
  51#define S_FIFO_CTRL_OFFSET           0x10
  52#define S_FIFO_RX_FLUSH_SHIFT        31
  53#define S_FIFO_TX_FLUSH_SHIFT        30
  54#define S_FIFO_RX_CNT_SHIFT          16
  55#define S_FIFO_RX_CNT_MASK           0x7f
  56#define S_FIFO_RX_THLD_SHIFT         8
  57#define S_FIFO_RX_THLD_MASK          0x3f
  58
  59#define M_CMD_OFFSET                 0x30
  60#define M_CMD_START_BUSY_SHIFT       31
  61#define M_CMD_STATUS_SHIFT           25
  62#define M_CMD_STATUS_MASK            0x07
  63#define M_CMD_STATUS_SUCCESS         0x0
  64#define M_CMD_STATUS_LOST_ARB        0x1
  65#define M_CMD_STATUS_NACK_ADDR       0x2
  66#define M_CMD_STATUS_NACK_DATA       0x3
  67#define M_CMD_STATUS_TIMEOUT         0x4
  68#define M_CMD_STATUS_FIFO_UNDERRUN   0x5
  69#define M_CMD_STATUS_RX_FIFO_FULL    0x6
  70#define M_CMD_PROTOCOL_SHIFT         9
  71#define M_CMD_PROTOCOL_MASK          0xf
  72#define M_CMD_PROTOCOL_QUICK         0x0
  73#define M_CMD_PROTOCOL_BLK_WR        0x7
  74#define M_CMD_PROTOCOL_BLK_RD        0x8
  75#define M_CMD_PROTOCOL_PROCESS       0xa
  76#define M_CMD_PEC_SHIFT              8
  77#define M_CMD_RD_CNT_SHIFT           0
  78#define M_CMD_RD_CNT_MASK            0xff
  79
  80#define S_CMD_OFFSET                 0x34
  81#define S_CMD_START_BUSY_SHIFT       31
  82#define S_CMD_STATUS_SHIFT           23
  83#define S_CMD_STATUS_MASK            0x07
  84#define S_CMD_STATUS_SUCCESS         0x0
  85#define S_CMD_STATUS_TIMEOUT         0x5
  86#define S_CMD_STATUS_MASTER_ABORT    0x7
  87
  88#define IE_OFFSET                    0x38
  89#define IE_M_RX_FIFO_FULL_SHIFT      31
  90#define IE_M_RX_THLD_SHIFT           30
  91#define IE_M_START_BUSY_SHIFT        28
  92#define IE_M_TX_UNDERRUN_SHIFT       27
  93#define IE_S_RX_FIFO_FULL_SHIFT      26
  94#define IE_S_RX_THLD_SHIFT           25
  95#define IE_S_RX_EVENT_SHIFT          24
  96#define IE_S_START_BUSY_SHIFT        23
  97#define IE_S_TX_UNDERRUN_SHIFT       22
  98#define IE_S_RD_EVENT_SHIFT          21
  99
 100#define IS_OFFSET                    0x3c
 101#define IS_M_RX_FIFO_FULL_SHIFT      31
 102#define IS_M_RX_THLD_SHIFT           30
 103#define IS_M_START_BUSY_SHIFT        28
 104#define IS_M_TX_UNDERRUN_SHIFT       27
 105#define IS_S_RX_FIFO_FULL_SHIFT      26
 106#define IS_S_RX_THLD_SHIFT           25
 107#define IS_S_RX_EVENT_SHIFT          24
 108#define IS_S_START_BUSY_SHIFT        23
 109#define IS_S_TX_UNDERRUN_SHIFT       22
 110#define IS_S_RD_EVENT_SHIFT          21
 111
 112#define M_TX_OFFSET                  0x40
 113#define M_TX_WR_STATUS_SHIFT         31
 114#define M_TX_DATA_SHIFT              0
 115#define M_TX_DATA_MASK               0xff
 116
 117#define M_RX_OFFSET                  0x44
 118#define M_RX_STATUS_SHIFT            30
 119#define M_RX_STATUS_MASK             0x03
 120#define M_RX_PEC_ERR_SHIFT           29
 121#define M_RX_DATA_SHIFT              0
 122#define M_RX_DATA_MASK               0xff
 123
 124#define S_TX_OFFSET                  0x48
 125#define S_TX_WR_STATUS_SHIFT         31
 126#define S_TX_DATA_SHIFT              0
 127#define S_TX_DATA_MASK               0xff
 128
 129#define S_RX_OFFSET                  0x4c
 130#define S_RX_STATUS_SHIFT            30
 131#define S_RX_STATUS_MASK             0x03
 132#define S_RX_PEC_ERR_SHIFT           29
 133#define S_RX_DATA_SHIFT              0
 134#define S_RX_DATA_MASK               0xff
 135
 136#define I2C_TIMEOUT_MSEC             50000
 137#define M_TX_RX_FIFO_SIZE            64
 138#define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
 139
 140#define M_RX_MAX_READ_LEN            255
 141#define M_RX_FIFO_THLD_VALUE         50
 142
 143#define IE_M_ALL_INTERRUPT_SHIFT     27
 144#define IE_M_ALL_INTERRUPT_MASK      0x1e
 145
 146#define SLAVE_READ_WRITE_BIT_MASK    0x1
 147#define SLAVE_READ_WRITE_BIT_SHIFT   0x1
 148#define SLAVE_MAX_SIZE_TRANSACTION   64
 149#define SLAVE_CLOCK_STRETCH_TIME     25
 150
 151#define IE_S_ALL_INTERRUPT_SHIFT     21
 152#define IE_S_ALL_INTERRUPT_MASK      0x3f
 153/*
 154 * It takes ~18us to reading 10bytes of data, hence to keep tasklet
 155 * running for less time, max slave read per tasklet is set to 10 bytes.
 156 */
 157#define MAX_SLAVE_RX_PER_INT         10
 158
 159enum i2c_slave_read_status {
 160	I2C_SLAVE_RX_FIFO_EMPTY = 0,
 161	I2C_SLAVE_RX_START,
 162	I2C_SLAVE_RX_DATA,
 163	I2C_SLAVE_RX_END,
 164};
 165
 166enum bus_speed_index {
 167	I2C_SPD_100K = 0,
 168	I2C_SPD_400K,
 169};
 170
 171enum bcm_iproc_i2c_type {
 172	IPROC_I2C,
 173	IPROC_I2C_NIC
 174};
 175
 176struct bcm_iproc_i2c_dev {
 177	struct device *device;
 178	enum bcm_iproc_i2c_type type;
 179	int irq;
 180
 181	void __iomem *base;
 182	void __iomem *idm_base;
 183
 184	u32 ape_addr_mask;
 185
 186	/* lock for indirect access through IDM */
 187	spinlock_t idm_lock;
 188
 189	struct i2c_adapter adapter;
 190	unsigned int bus_speed;
 191
 192	struct completion done;
 193	int xfer_is_done;
 194
 195	struct i2c_msg *msg;
 196
 197	struct i2c_client *slave;
 198
 199	/* bytes that have been transferred */
 200	unsigned int tx_bytes;
 201	/* bytes that have been read */
 202	unsigned int rx_bytes;
 203	unsigned int thld_bytes;
 204
 205	bool slave_rx_only;
 206	bool rx_start_rcvd;
 207	bool slave_read_complete;
 208	u32 tx_underrun;
 209	u32 slave_int_mask;
 210	struct tasklet_struct slave_rx_tasklet;
 211};
 212
 213/* tasklet to process slave rx data */
 214static void slave_rx_tasklet_fn(unsigned long);
 215
 216/*
 217 * Can be expanded in the future if more interrupt status bits are utilized
 218 */
 219#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
 220		| BIT(IS_M_RX_THLD_SHIFT))
 221
 222#define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
 223		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
 224		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
 225		| BIT(IS_S_RX_THLD_SHIFT))
 226
 227static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
 228static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
 229static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
 230					 bool enable);
 231
 232static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
 233				   u32 offset)
 234{
 235	u32 val;
 236
 237	if (iproc_i2c->idm_base) {
 238		spin_lock(&iproc_i2c->idm_lock);
 239		writel(iproc_i2c->ape_addr_mask,
 240		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
 241		val = readl(iproc_i2c->base + offset);
 242		spin_unlock(&iproc_i2c->idm_lock);
 243	} else {
 244		val = readl(iproc_i2c->base + offset);
 245	}
 246
 247	return val;
 248}
 249
 250static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
 251				    u32 offset, u32 val)
 252{
 253	if (iproc_i2c->idm_base) {
 254		spin_lock(&iproc_i2c->idm_lock);
 255		writel(iproc_i2c->ape_addr_mask,
 256		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
 257		writel(val, iproc_i2c->base + offset);
 258		spin_unlock(&iproc_i2c->idm_lock);
 259	} else {
 260		writel(val, iproc_i2c->base + offset);
 261	}
 262}
 263
 264static void bcm_iproc_i2c_slave_init(
 265	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
 266{
 267	u32 val;
 268
 269	iproc_i2c->tx_underrun = 0;
 270	if (need_reset) {
 271		/* put controller in reset */
 272		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
 273		val |= BIT(CFG_RESET_SHIFT);
 274		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 275
 276		/* wait 100 usec per spec */
 277		udelay(100);
 278
 279		/* bring controller out of reset */
 280		val &= ~(BIT(CFG_RESET_SHIFT));
 281		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 282	}
 283
 284	/* flush TX/RX FIFOs */
 285	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
 286	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
 287
 288	/* Maximum slave stretch time */
 289	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
 290	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
 291	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
 292	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
 293
 294	/* Configure the slave address */
 295	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
 296	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
 297	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
 298	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
 299	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
 300
 301	/* clear all pending slave interrupts */
 302	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
 303
 304	/* Enable interrupt register to indicate a valid byte in receive fifo */
 305	val = BIT(IE_S_RX_EVENT_SHIFT);
 306	/* Enable interrupt register to indicate Slave Rx FIFO Full */
 307	val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
 308	/* Enable interrupt register to indicate a Master read transaction */
 309	val |= BIT(IE_S_RD_EVENT_SHIFT);
 310	/* Enable interrupt register for the Slave BUSY command */
 311	val |= BIT(IE_S_START_BUSY_SHIFT);
 312	iproc_i2c->slave_int_mask = val;
 313	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 314}
 315
 316static void bcm_iproc_i2c_check_slave_status(
 317	struct bcm_iproc_i2c_dev *iproc_i2c)
 318{
 319	u32 val;
 320
 321	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
 322	/* status is valid only when START_BUSY is cleared after it was set */
 323	if (val & BIT(S_CMD_START_BUSY_SHIFT))
 324		return;
 325
 326	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
 327	if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
 328		dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
 329			"slave random stretch time timeout\n" :
 330			"Master aborted read transaction\n");
 331		/* re-initialize i2c for recovery */
 332		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
 333		bcm_iproc_i2c_slave_init(iproc_i2c, true);
 334		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
 335	}
 336}
 337
 338static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
 339{
 340	u8 rx_data, rx_status;
 341	u32 rx_bytes = 0;
 342	u32 val;
 343
 344	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
 345		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
 346		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
 347		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
 348
 349		if (rx_status == I2C_SLAVE_RX_START) {
 350			/* Start of SMBUS Master write */
 351			i2c_slave_event(iproc_i2c->slave,
 352					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
 353			iproc_i2c->rx_start_rcvd = true;
 354			iproc_i2c->slave_read_complete = false;
 355		} else if (rx_status == I2C_SLAVE_RX_DATA &&
 356			   iproc_i2c->rx_start_rcvd) {
 357			/* Middle of SMBUS Master write */
 358			i2c_slave_event(iproc_i2c->slave,
 359					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
 360		} else if (rx_status == I2C_SLAVE_RX_END &&
 361			   iproc_i2c->rx_start_rcvd) {
 362			/* End of SMBUS Master write */
 363			if (iproc_i2c->slave_rx_only)
 364				i2c_slave_event(iproc_i2c->slave,
 365						I2C_SLAVE_WRITE_RECEIVED,
 366						&rx_data);
 367
 368			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
 369					&rx_data);
 370		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
 371			iproc_i2c->rx_start_rcvd = false;
 372			iproc_i2c->slave_read_complete = true;
 373			break;
 374		}
 375
 376		rx_bytes++;
 377	}
 378}
 379
 380static void slave_rx_tasklet_fn(unsigned long data)
 381{
 382	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
 383	u32 int_clr;
 384
 385	bcm_iproc_i2c_slave_read(iproc_i2c);
 386
 387	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
 388	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
 389
 390	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
 391		/*
 392		 * In case of single byte master-read request,
 393		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
 394		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
 395		 * from first IS_S_TX_UNDERRUN_SHIFT event.
 396		 *
 397		 * This means don't send any data from slave when
 398		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
 399		 * eeprom or other backend slave driver read pointer twice.
 400		 */
 401		iproc_i2c->tx_underrun = 0;
 402		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
 403
 404		/* clear IS_S_RD_EVENT_SHIFT interrupt */
 405		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
 406	}
 407
 408	/* clear slave interrupt */
 409	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
 410	/* enable slave interrupts */
 411	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
 412}
 413
 414static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
 415				    u32 status)
 416{
 417	u32 val;
 418	u8 value;
 419
 420	/*
 421	 * Slave events in case of master-write, master-write-read and,
 422	 * master-read
 423	 *
 424	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
 425	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
 426	 *                    events
 427	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
 428	 *                    events or only IS_S_RD_EVENT_SHIFT
 429	 *
 430	 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
 431	 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
 432	 * full. This can happen if Master issues write requests of more than
 433	 * 64 bytes.
 434	 */
 435	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
 436	    status & BIT(IS_S_RD_EVENT_SHIFT) ||
 437	    status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
 438		/* disable slave interrupts */
 439		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 440		val &= ~iproc_i2c->slave_int_mask;
 441		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 442
 443		if (status & BIT(IS_S_RD_EVENT_SHIFT))
 444			/* Master-write-read request */
 445			iproc_i2c->slave_rx_only = false;
 446		else
 447			/* Master-write request only */
 448			iproc_i2c->slave_rx_only = true;
 449
 450		/* schedule tasklet to read data later */
 451		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
 452
 453		/*
 454		 * clear only IS_S_RX_EVENT_SHIFT and
 455		 * IS_S_RX_FIFO_FULL_SHIFT interrupt.
 456		 */
 457		val = BIT(IS_S_RX_EVENT_SHIFT);
 458		if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
 459			val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
 460		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
 461	}
 462
 463	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
 464		iproc_i2c->tx_underrun++;
 465		if (iproc_i2c->tx_underrun == 1)
 466			/* Start of SMBUS for Master Read */
 467			i2c_slave_event(iproc_i2c->slave,
 468					I2C_SLAVE_READ_REQUESTED,
 469					&value);
 470		else
 471			/* Master read other than start */
 472			i2c_slave_event(iproc_i2c->slave,
 473					I2C_SLAVE_READ_PROCESSED,
 474					&value);
 475
 476		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
 477		/* start transfer */
 478		val = BIT(S_CMD_START_BUSY_SHIFT);
 479		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
 480
 481		/* clear interrupt */
 482		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
 483				 BIT(IS_S_TX_UNDERRUN_SHIFT));
 484	}
 485
 486	/* Stop received from master in case of master read transaction */
 487	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
 488		/*
 489		 * Disable interrupt for TX FIFO becomes empty and
 490		 * less than PKT_LENGTH bytes were output on the SMBUS
 491		 */
 492		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
 493		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
 494				 iproc_i2c->slave_int_mask);
 495
 496		/* End of SMBUS for Master Read */
 497		val = BIT(S_TX_WR_STATUS_SHIFT);
 498		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
 499
 500		val = BIT(S_CMD_START_BUSY_SHIFT);
 501		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
 502
 503		/* flush TX FIFOs */
 504		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
 505		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
 506		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
 507
 508		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
 509
 510		/* clear interrupt */
 511		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
 512				 BIT(IS_S_START_BUSY_SHIFT));
 513	}
 514
 515	/* check slave transmit status only if slave is transmitting */
 516	if (!iproc_i2c->slave_rx_only)
 517		bcm_iproc_i2c_check_slave_status(iproc_i2c);
 518
 519	return true;
 520}
 521
 522static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
 523{
 524	struct i2c_msg *msg = iproc_i2c->msg;
 525	uint32_t val;
 526
 527	/* Read valid data from RX FIFO */
 528	while (iproc_i2c->rx_bytes < msg->len) {
 529		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
 530
 531		/* rx fifo empty */
 532		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
 533			break;
 534
 535		msg->buf[iproc_i2c->rx_bytes] =
 536			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
 537		iproc_i2c->rx_bytes++;
 538	}
 539}
 540
 541static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
 542{
 543	struct i2c_msg *msg = iproc_i2c->msg;
 544	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
 545	unsigned int i;
 546	u32 val;
 547
 548	/* can only fill up to the FIFO size */
 549	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
 550	for (i = 0; i < tx_bytes; i++) {
 551		/* start from where we left over */
 552		unsigned int idx = iproc_i2c->tx_bytes + i;
 553
 554		val = msg->buf[idx];
 555
 556		/* mark the last byte */
 557		if (idx == msg->len - 1) {
 558			val |= BIT(M_TX_WR_STATUS_SHIFT);
 559
 560			if (iproc_i2c->irq) {
 561				u32 tmp;
 562
 563				/*
 564				 * Since this is the last byte, we should now
 565				 * disable TX FIFO underrun interrupt
 566				 */
 567				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 568				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
 569				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
 570						 tmp);
 571			}
 572		}
 573
 574		/* load data into TX FIFO */
 575		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
 576	}
 577
 578	/* update number of transferred bytes */
 579	iproc_i2c->tx_bytes += tx_bytes;
 580}
 581
 582static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
 583{
 584	struct i2c_msg *msg = iproc_i2c->msg;
 585	u32 bytes_left, val;
 586
 587	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
 588	bytes_left = msg->len - iproc_i2c->rx_bytes;
 589	if (bytes_left == 0) {
 590		if (iproc_i2c->irq) {
 591			/* finished reading all data, disable rx thld event */
 592			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 593			val &= ~BIT(IS_M_RX_THLD_SHIFT);
 594			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 595		}
 596	} else if (bytes_left < iproc_i2c->thld_bytes) {
 597		/* set bytes left as threshold */
 598		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
 599		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
 600		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
 601		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 602		iproc_i2c->thld_bytes = bytes_left;
 603	}
 604	/*
 605	 * bytes_left >= iproc_i2c->thld_bytes,
 606	 * hence no need to change the THRESHOLD SET.
 607	 * It will remain as iproc_i2c->thld_bytes itself
 608	 */
 609}
 610
 611static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
 612					  u32 status)
 613{
 614	/* TX FIFO is empty and we have more data to send */
 615	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
 616		bcm_iproc_i2c_send(iproc_i2c);
 617
 618	/* RX FIFO threshold is reached and data needs to be read out */
 619	if (status & BIT(IS_M_RX_THLD_SHIFT))
 620		bcm_iproc_i2c_read(iproc_i2c);
 621
 622	/* transfer is done */
 623	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
 624		iproc_i2c->xfer_is_done = 1;
 625		if (iproc_i2c->irq)
 626			complete(&iproc_i2c->done);
 627	}
 628}
 629
 630static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
 631{
 632	struct bcm_iproc_i2c_dev *iproc_i2c = data;
 633	u32 slave_status;
 634	u32 status;
 635	bool ret;
 636
 637	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
 638	/* process only slave interrupt which are enabled */
 639	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
 640		       ISR_MASK_SLAVE;
 641
 642	if (slave_status) {
 643		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
 644		if (ret)
 645			return IRQ_HANDLED;
 646		else
 647			return IRQ_NONE;
 648	}
 649
 650	status &= ISR_MASK;
 651	if (!status)
 652		return IRQ_NONE;
 653
 654	/* process all master based events */
 655	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
 656	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
 657
 658	return IRQ_HANDLED;
 659}
 660
 661static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
 662{
 663	u32 val;
 664
 665	/* put controller in reset */
 666	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
 667	val |= BIT(CFG_RESET_SHIFT);
 668	val &= ~(BIT(CFG_EN_SHIFT));
 669	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 670
 671	/* wait 100 usec per spec */
 672	udelay(100);
 673
 674	/* bring controller out of reset */
 675	val &= ~(BIT(CFG_RESET_SHIFT));
 676	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 677
 678	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
 679	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
 680	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 681	/* disable all interrupts */
 682	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 683	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
 684			IE_M_ALL_INTERRUPT_SHIFT);
 685	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 686
 687	/* clear all pending interrupts */
 688	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
 689
 690	return 0;
 691}
 692
 693static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
 694					 bool enable)
 695{
 696	u32 val;
 697
 698	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
 699	if (enable)
 700		val |= BIT(CFG_EN_SHIFT);
 701	else
 702		val &= ~BIT(CFG_EN_SHIFT);
 703	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 704}
 705
 706static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
 707				      struct i2c_msg *msg)
 708{
 709	u32 val;
 710
 711	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
 712	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
 713
 714	switch (val) {
 715	case M_CMD_STATUS_SUCCESS:
 716		return 0;
 717
 718	case M_CMD_STATUS_LOST_ARB:
 719		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
 720		return -EAGAIN;
 721
 722	case M_CMD_STATUS_NACK_ADDR:
 723		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
 724		return -ENXIO;
 725
 726	case M_CMD_STATUS_NACK_DATA:
 727		dev_dbg(iproc_i2c->device, "NAK data\n");
 728		return -ENXIO;
 729
 730	case M_CMD_STATUS_TIMEOUT:
 731		dev_dbg(iproc_i2c->device, "bus timeout\n");
 732		return -ETIMEDOUT;
 733
 734	case M_CMD_STATUS_FIFO_UNDERRUN:
 735		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
 736		return -ENXIO;
 737
 738	case M_CMD_STATUS_RX_FIFO_FULL:
 739		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
 740		return -ETIMEDOUT;
 741
 742	default:
 743		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
 744
 745		/* re-initialize i2c for recovery */
 746		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
 747		bcm_iproc_i2c_init(iproc_i2c);
 748		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
 749
 750		return -EIO;
 751	}
 752}
 753
 754static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
 755				   struct i2c_msg *msg,
 756				   u32 cmd)
 757{
 758	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
 759	u32 val, status;
 760	int ret;
 761
 762	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
 763
 764	if (iproc_i2c->irq) {
 765		time_left = wait_for_completion_timeout(&iproc_i2c->done,
 766							time_left);
 767		/* disable all interrupts */
 768		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
 769		/* read it back to flush the write */
 770		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 771		/* make sure the interrupt handler isn't running */
 772		synchronize_irq(iproc_i2c->irq);
 773
 774	} else { /* polling mode */
 775		unsigned long timeout = jiffies + time_left;
 776
 777		do {
 778			status = iproc_i2c_rd_reg(iproc_i2c,
 779						  IS_OFFSET) & ISR_MASK;
 780			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
 781			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
 782
 783			if (time_after(jiffies, timeout)) {
 784				time_left = 0;
 785				break;
 786			}
 787
 788			cpu_relax();
 789			cond_resched();
 790		} while (!iproc_i2c->xfer_is_done);
 791	}
 792
 793	if (!time_left && !iproc_i2c->xfer_is_done) {
 794		dev_err(iproc_i2c->device, "transaction timed out\n");
 795
 796		/* flush both TX/RX FIFOs */
 797		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
 798		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 799		return -ETIMEDOUT;
 800	}
 801
 802	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
 803	if (ret) {
 804		/* flush both TX/RX FIFOs */
 805		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
 806		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 807		return ret;
 808	}
 809
 810	return 0;
 811}
 812
 813/*
 814 * If 'process_call' is true, then this is a multi-msg transfer that requires
 815 * a repeated start between the messages.
 816 * More specifically, it must be a write (reg) followed by a read (data).
 817 * The i2c quirks are set to enforce this rule.
 818 */
 819static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
 820					struct i2c_msg *msgs, bool process_call)
 821{
 822	int i;
 823	u8 addr;
 824	u32 val, tmp, val_intr_en;
 825	unsigned int tx_bytes;
 826	struct i2c_msg *msg = &msgs[0];
 827
 828	/* check if bus is busy */
 829	if (!!(iproc_i2c_rd_reg(iproc_i2c,
 830				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
 831		dev_warn(iproc_i2c->device, "bus is busy\n");
 832		return -EBUSY;
 833	}
 834
 835	iproc_i2c->msg = msg;
 836
 837	/* format and load slave address into the TX FIFO */
 838	addr = i2c_8bit_addr_from_msg(msg);
 839	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
 840
 841	/*
 842	 * For a write transaction, load data into the TX FIFO. Only allow
 843	 * loading up to TX FIFO size - 1 bytes of data since the first byte
 844	 * has been used up by the slave address
 845	 */
 846	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
 847	if (!(msg->flags & I2C_M_RD)) {
 848		for (i = 0; i < tx_bytes; i++) {
 849			val = msg->buf[i];
 850
 851			/* mark the last byte */
 852			if (!process_call && (i == msg->len - 1))
 853				val |= BIT(M_TX_WR_STATUS_SHIFT);
 854
 855			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
 856		}
 857		iproc_i2c->tx_bytes = tx_bytes;
 858	}
 859
 860	/* Process the read message if this is process call */
 861	if (process_call) {
 862		msg++;
 863		iproc_i2c->msg = msg;  /* point to second msg */
 864
 865		/*
 866		 * The last byte to be sent out should be a slave
 867		 * address with read operation
 868		 */
 869		addr = i2c_8bit_addr_from_msg(msg);
 870		/* mark it the last byte out */
 871		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
 872		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
 873	}
 874
 875	/* mark as incomplete before starting the transaction */
 876	if (iproc_i2c->irq)
 877		reinit_completion(&iproc_i2c->done);
 878
 879	iproc_i2c->xfer_is_done = 0;
 880
 881	/*
 882	 * Enable the "start busy" interrupt, which will be triggered after the
 883	 * transaction is done, i.e., the internal start_busy bit, transitions
 884	 * from 1 to 0.
 885	 */
 886	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
 887
 888	/*
 889	 * If TX data size is larger than the TX FIFO, need to enable TX
 890	 * underrun interrupt, which will be triggerred when the TX FIFO is
 891	 * empty. When that happens we can then pump more data into the FIFO
 892	 */
 893	if (!process_call && !(msg->flags & I2C_M_RD) &&
 894	    msg->len > iproc_i2c->tx_bytes)
 895		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
 896
 897	/*
 898	 * Now we can activate the transfer. For a read operation, specify the
 899	 * number of bytes to read
 900	 */
 901	val = BIT(M_CMD_START_BUSY_SHIFT);
 902
 903	if (msg->len == 0) {
 904		/* SMBUS QUICK Command (Read/Write) */
 905		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
 906	} else if (msg->flags & I2C_M_RD) {
 907		u32 protocol;
 908
 909		iproc_i2c->rx_bytes = 0;
 910		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
 911			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
 912		else
 913			iproc_i2c->thld_bytes = msg->len;
 914
 915		/* set threshold value */
 916		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
 917		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
 918		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
 919		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
 920
 921		/* enable the RX threshold interrupt */
 922		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
 923
 924		protocol = process_call ?
 925				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
 926
 927		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
 928		       (msg->len << M_CMD_RD_CNT_SHIFT);
 929	} else {
 930		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
 931	}
 932
 933	if (iproc_i2c->irq)
 934		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
 935
 936	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
 937}
 938
 939static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
 940			      struct i2c_msg msgs[], int num)
 941{
 942	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
 943	bool process_call = false;
 944	int ret;
 945
 946	if (num == 2) {
 947		/* Repeated start, use process call */
 948		process_call = true;
 949		if (msgs[1].flags & I2C_M_NOSTART) {
 950			dev_err(iproc_i2c->device, "Invalid repeated start\n");
 951			return -EOPNOTSUPP;
 952		}
 953	}
 954
 955	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
 956	if (ret) {
 957		dev_dbg(iproc_i2c->device, "xfer failed\n");
 958		return ret;
 959	}
 960
 961	return num;
 962}
 963
 964static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
 965{
 966	u32 val;
 967
 968	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
 969
 970	if (adap->algo->reg_slave)
 971		val |= I2C_FUNC_SLAVE;
 972
 973	return val;
 974}
 975
 976static struct i2c_algorithm bcm_iproc_algo = {
 977	.master_xfer = bcm_iproc_i2c_xfer,
 978	.functionality = bcm_iproc_i2c_functionality,
 979	.reg_slave = bcm_iproc_i2c_reg_slave,
 980	.unreg_slave = bcm_iproc_i2c_unreg_slave,
 981};
 982
 983static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
 984	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
 985	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
 986	.max_read_len = M_RX_MAX_READ_LEN,
 987};
 988
 989static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
 990{
 991	unsigned int bus_speed;
 992	u32 val;
 993	int ret = of_property_read_u32(iproc_i2c->device->of_node,
 994				       "clock-frequency", &bus_speed);
 995	if (ret < 0) {
 996		dev_info(iproc_i2c->device,
 997			"unable to interpret clock-frequency DT property\n");
 998		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
 999	}
1000
1001	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1002		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1003			bus_speed);
1004		dev_err(iproc_i2c->device,
1005			"valid speeds are 100khz and 400khz\n");
1006		return -EINVAL;
1007	} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1008		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1009	} else {
1010		bus_speed = I2C_MAX_FAST_MODE_FREQ;
1011	}
1012
1013	iproc_i2c->bus_speed = bus_speed;
1014	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1015	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1016	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1017	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1018
1019	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1020
1021	return 0;
1022}
1023
1024static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1025{
1026	int irq, ret = 0;
1027	struct bcm_iproc_i2c_dev *iproc_i2c;
1028	struct i2c_adapter *adap;
1029	struct resource *res;
1030
1031	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1032				 GFP_KERNEL);
1033	if (!iproc_i2c)
1034		return -ENOMEM;
1035
1036	platform_set_drvdata(pdev, iproc_i2c);
1037	iproc_i2c->device = &pdev->dev;
1038	iproc_i2c->type =
1039		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1040	init_completion(&iproc_i2c->done);
1041
1042	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1043	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
1044	if (IS_ERR(iproc_i2c->base))
1045		return PTR_ERR(iproc_i2c->base);
1046
1047	if (iproc_i2c->type == IPROC_I2C_NIC) {
1048		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1049		iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
1050							    res);
1051		if (IS_ERR(iproc_i2c->idm_base))
1052			return PTR_ERR(iproc_i2c->idm_base);
1053
1054		ret = of_property_read_u32(iproc_i2c->device->of_node,
1055					   "brcm,ape-hsls-addr-mask",
1056					   &iproc_i2c->ape_addr_mask);
1057		if (ret < 0) {
1058			dev_err(iproc_i2c->device,
1059				"'brcm,ape-hsls-addr-mask' missing\n");
1060			return -EINVAL;
1061		}
1062
1063		spin_lock_init(&iproc_i2c->idm_lock);
1064
1065		/* no slave support */
1066		bcm_iproc_algo.reg_slave = NULL;
1067		bcm_iproc_algo.unreg_slave = NULL;
1068	}
1069
1070	ret = bcm_iproc_i2c_init(iproc_i2c);
1071	if (ret)
1072		return ret;
1073
1074	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1075	if (ret)
1076		return ret;
1077
1078	irq = platform_get_irq(pdev, 0);
1079	if (irq > 0) {
1080		ret = devm_request_irq(iproc_i2c->device, irq,
1081				       bcm_iproc_i2c_isr, 0, pdev->name,
1082				       iproc_i2c);
1083		if (ret < 0) {
1084			dev_err(iproc_i2c->device,
1085				"unable to request irq %i\n", irq);
1086			return ret;
1087		}
1088
1089		iproc_i2c->irq = irq;
1090	} else {
1091		dev_warn(iproc_i2c->device,
1092			 "no irq resource, falling back to poll mode\n");
1093	}
1094
1095	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1096
1097	adap = &iproc_i2c->adapter;
1098	i2c_set_adapdata(adap, iproc_i2c);
1099	snprintf(adap->name, sizeof(adap->name),
1100		"Broadcom iProc (%s)",
1101		of_node_full_name(iproc_i2c->device->of_node));
1102	adap->algo = &bcm_iproc_algo;
1103	adap->quirks = &bcm_iproc_i2c_quirks;
1104	adap->dev.parent = &pdev->dev;
1105	adap->dev.of_node = pdev->dev.of_node;
1106
1107	return i2c_add_adapter(adap);
1108}
1109
1110static int bcm_iproc_i2c_remove(struct platform_device *pdev)
1111{
1112	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1113
1114	if (iproc_i2c->irq) {
1115		/*
1116		 * Make sure there's no pending interrupt when we remove the
1117		 * adapter
1118		 */
1119		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1120		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1121		synchronize_irq(iproc_i2c->irq);
1122	}
1123
1124	i2c_del_adapter(&iproc_i2c->adapter);
1125	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1126
1127	return 0;
1128}
1129
1130#ifdef CONFIG_PM_SLEEP
1131
1132static int bcm_iproc_i2c_suspend(struct device *dev)
1133{
1134	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1135
1136	if (iproc_i2c->irq) {
1137		/*
1138		 * Make sure there's no pending interrupt when we go into
1139		 * suspend
1140		 */
1141		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1142		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1143		synchronize_irq(iproc_i2c->irq);
1144	}
1145
1146	/* now disable the controller */
1147	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1148
1149	return 0;
1150}
1151
1152static int bcm_iproc_i2c_resume(struct device *dev)
1153{
1154	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1155	int ret;
1156	u32 val;
1157
1158	/*
1159	 * Power domain could have been shut off completely in system deep
1160	 * sleep, so re-initialize the block here
1161	 */
1162	ret = bcm_iproc_i2c_init(iproc_i2c);
1163	if (ret)
1164		return ret;
1165
1166	/* configure to the desired bus speed */
1167	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1168	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1169	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1170	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1171
1172	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1173
1174	return 0;
1175}
1176
1177static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1178	.suspend_late = &bcm_iproc_i2c_suspend,
1179	.resume_early = &bcm_iproc_i2c_resume
1180};
1181
1182#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1183#else
1184#define BCM_IPROC_I2C_PM_OPS NULL
1185#endif /* CONFIG_PM_SLEEP */
1186
1187
1188static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1189{
1190	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1191
1192	if (iproc_i2c->slave)
1193		return -EBUSY;
1194
1195	if (slave->flags & I2C_CLIENT_TEN)
1196		return -EAFNOSUPPORT;
1197
1198	iproc_i2c->slave = slave;
1199
1200	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1201		     (unsigned long)iproc_i2c);
1202
1203	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1204	return 0;
1205}
1206
1207static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1208{
1209	u32 tmp;
1210	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1211
1212	if (!iproc_i2c->slave)
1213		return -EINVAL;
1214
1215	disable_irq(iproc_i2c->irq);
1216
1217	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1218
1219	/* disable all slave interrupts */
1220	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1221	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1222			IE_S_ALL_INTERRUPT_SHIFT);
1223	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1224
1225	/* Erase the slave address programmed */
1226	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1227	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1228	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1229
1230	/* flush TX/RX FIFOs */
1231	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1232	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1233
1234	/* clear all pending slave interrupts */
1235	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1236
1237	iproc_i2c->slave = NULL;
1238
1239	enable_irq(iproc_i2c->irq);
1240
1241	return 0;
1242}
1243
1244static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1245	{
1246		.compatible = "brcm,iproc-i2c",
1247		.data = (int *)IPROC_I2C,
1248	}, {
1249		.compatible = "brcm,iproc-nic-i2c",
1250		.data = (int *)IPROC_I2C_NIC,
1251	},
1252	{ /* sentinel */ }
1253};
1254MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1255
1256static struct platform_driver bcm_iproc_i2c_driver = {
1257	.driver = {
1258		.name = "bcm-iproc-i2c",
1259		.of_match_table = bcm_iproc_i2c_of_match,
1260		.pm = BCM_IPROC_I2C_PM_OPS,
1261	},
1262	.probe = bcm_iproc_i2c_probe,
1263	.remove = bcm_iproc_i2c_remove,
1264};
1265module_platform_driver(bcm_iproc_i2c_driver);
1266
1267MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1268MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1269MODULE_LICENSE("GPL v2");