Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright(C) 2015 Linaro Limited. All rights reserved.
  4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
  5 */
  6
  7#include <linux/coresight.h>
  8#include <linux/coresight-pmu.h>
  9#include <linux/cpumask.h>
 10#include <linux/device.h>
 11#include <linux/list.h>
 12#include <linux/mm.h>
 13#include <linux/init.h>
 14#include <linux/perf_event.h>
 15#include <linux/percpu-defs.h>
 16#include <linux/slab.h>
 17#include <linux/stringhash.h>
 18#include <linux/types.h>
 19#include <linux/workqueue.h>
 20
 21#include "coresight-config.h"
 22#include "coresight-etm-perf.h"
 23#include "coresight-priv.h"
 24#include "coresight-syscfg.h"
 25
 26static struct pmu etm_pmu;
 27static bool etm_perf_up;
 28
 29/*
 30 * An ETM context for a running event includes the perf aux handle
 31 * and aux_data. For ETM, the aux_data (etm_event_data), consists of
 32 * the trace path and the sink configuration. The event data is accessible
 33 * via perf_get_aux(handle). However, a sink could "end" a perf output
 34 * handle via the IRQ handler. And if the "sink" encounters a failure
 35 * to "begin" another session (e.g due to lack of space in the buffer),
 36 * the handle will be cleared. Thus, the event_data may not be accessible
 37 * from the handle when we get to the etm_event_stop(), which is required
 38 * for stopping the trace path. The event_data is guaranteed to stay alive
 39 * until "free_aux()", which cannot happen as long as the event is active on
 40 * the ETM. Thus the event_data for the session must be part of the ETM context
 41 * to make sure we can disable the trace path.
 42 */
 43struct etm_ctxt {
 44	struct perf_output_handle handle;
 45	struct etm_event_data *event_data;
 46};
 47
 48static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
 49static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
 50
 51/*
 52 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
 53 * now take them as general formats and apply on all ETMs.
 54 */
 55PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
 56PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
 57/* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
 58PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
 59/* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
 60PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
 61PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
 62PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
 63/* preset - if sink ID is used as a configuration selector */
 64PMU_FORMAT_ATTR(preset,		"config:0-3");
 65/* Sink ID - same for all ETMs */
 66PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
 67/* config ID - set if a system configuration is selected */
 68PMU_FORMAT_ATTR(configid,	"config2:32-63");
 69
 70
 71/*
 72 * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
 73 * when the kernel is running at EL1; when the kernel is at EL2,
 74 * the PID is in CONTEXTIDR_EL2.
 75 */
 76static ssize_t format_attr_contextid_show(struct device *dev,
 77					  struct device_attribute *attr,
 78					  char *page)
 79{
 80	int pid_fmt = ETM_OPT_CTXTID;
 81
 82#if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
 83	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
 84#endif
 85	return sprintf(page, "config:%d\n", pid_fmt);
 86}
 87
 88static struct device_attribute format_attr_contextid =
 89	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
 90
 91static struct attribute *etm_config_formats_attr[] = {
 92	&format_attr_cycacc.attr,
 93	&format_attr_contextid.attr,
 94	&format_attr_contextid1.attr,
 95	&format_attr_contextid2.attr,
 96	&format_attr_timestamp.attr,
 97	&format_attr_retstack.attr,
 98	&format_attr_sinkid.attr,
 99	&format_attr_preset.attr,
100	&format_attr_configid.attr,
101	&format_attr_branch_broadcast.attr,
102	NULL,
103};
104
105static const struct attribute_group etm_pmu_format_group = {
106	.name   = "format",
107	.attrs  = etm_config_formats_attr,
108};
109
110static struct attribute *etm_config_sinks_attr[] = {
111	NULL,
112};
113
114static const struct attribute_group etm_pmu_sinks_group = {
115	.name   = "sinks",
116	.attrs  = etm_config_sinks_attr,
117};
118
119static struct attribute *etm_config_events_attr[] = {
120	NULL,
121};
122
123static const struct attribute_group etm_pmu_events_group = {
124	.name   = "events",
125	.attrs  = etm_config_events_attr,
126};
127
128static const struct attribute_group *etm_pmu_attr_groups[] = {
129	&etm_pmu_format_group,
130	&etm_pmu_sinks_group,
131	&etm_pmu_events_group,
132	NULL,
133};
134
135static inline struct list_head **
136etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
137{
138	return per_cpu_ptr(data->path, cpu);
139}
140
141static inline struct list_head *
142etm_event_cpu_path(struct etm_event_data *data, int cpu)
143{
144	return *etm_event_cpu_path_ptr(data, cpu);
145}
146
147static void etm_event_read(struct perf_event *event) {}
148
149static int etm_addr_filters_alloc(struct perf_event *event)
150{
151	struct etm_filters *filters;
152	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
153
154	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
155	if (!filters)
156		return -ENOMEM;
157
158	if (event->parent)
159		memcpy(filters, event->parent->hw.addr_filters,
160		       sizeof(*filters));
161
162	event->hw.addr_filters = filters;
163
164	return 0;
165}
166
167static void etm_event_destroy(struct perf_event *event)
168{
169	kfree(event->hw.addr_filters);
170	event->hw.addr_filters = NULL;
171}
172
173static int etm_event_init(struct perf_event *event)
174{
175	int ret = 0;
176
177	if (event->attr.type != etm_pmu.type) {
178		ret = -ENOENT;
179		goto out;
180	}
181
182	ret = etm_addr_filters_alloc(event);
183	if (ret)
184		goto out;
185
186	event->destroy = etm_event_destroy;
187out:
188	return ret;
189}
190
191static void free_sink_buffer(struct etm_event_data *event_data)
192{
193	int cpu;
194	cpumask_t *mask = &event_data->mask;
195	struct coresight_device *sink;
196
197	if (!event_data->snk_config)
198		return;
199
200	if (WARN_ON(cpumask_empty(mask)))
201		return;
202
203	cpu = cpumask_first(mask);
204	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
205	sink_ops(sink)->free_buffer(event_data->snk_config);
206}
207
208static void free_event_data(struct work_struct *work)
209{
210	int cpu;
211	cpumask_t *mask;
212	struct etm_event_data *event_data;
213
214	event_data = container_of(work, struct etm_event_data, work);
215	mask = &event_data->mask;
216
217	/* Free the sink buffers, if there are any */
218	free_sink_buffer(event_data);
219
220	/* clear any configuration we were using */
221	if (event_data->cfg_hash)
222		cscfg_deactivate_config(event_data->cfg_hash);
223
224	for_each_cpu(cpu, mask) {
225		struct list_head **ppath;
226
227		ppath = etm_event_cpu_path_ptr(event_data, cpu);
228		if (!(IS_ERR_OR_NULL(*ppath)))
229			coresight_release_path(*ppath);
230		*ppath = NULL;
231	}
232
233	free_percpu(event_data->path);
234	kfree(event_data);
235}
236
237static void *alloc_event_data(int cpu)
238{
239	cpumask_t *mask;
240	struct etm_event_data *event_data;
241
242	/* First get memory for the session's data */
243	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
244	if (!event_data)
245		return NULL;
246
247
248	mask = &event_data->mask;
249	if (cpu != -1)
250		cpumask_set_cpu(cpu, mask);
251	else
252		cpumask_copy(mask, cpu_present_mask);
253
254	/*
255	 * Each CPU has a single path between source and destination.  As such
256	 * allocate an array using CPU numbers as indexes.  That way a path
257	 * for any CPU can easily be accessed at any given time.  We proceed
258	 * the same way for sessions involving a single CPU.  The cost of
259	 * unused memory when dealing with single CPU trace scenarios is small
260	 * compared to the cost of searching through an optimized array.
261	 */
262	event_data->path = alloc_percpu(struct list_head *);
263
264	if (!event_data->path) {
265		kfree(event_data);
266		return NULL;
267	}
268
269	return event_data;
270}
271
272static void etm_free_aux(void *data)
273{
274	struct etm_event_data *event_data = data;
275
276	schedule_work(&event_data->work);
277}
278
279/*
280 * Check if two given sinks are compatible with each other,
281 * so that they can use the same sink buffers, when an event
282 * moves around.
283 */
284static bool sinks_compatible(struct coresight_device *a,
285			     struct coresight_device *b)
286{
287	if (!a || !b)
288		return false;
289	/*
290	 * If the sinks are of the same subtype and driven
291	 * by the same driver, we can use the same buffer
292	 * on these sinks.
293	 */
294	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
295	       (sink_ops(a) == sink_ops(b));
296}
297
298static void *etm_setup_aux(struct perf_event *event, void **pages,
299			   int nr_pages, bool overwrite)
300{
301	u32 id, cfg_hash;
302	int cpu = event->cpu;
303	cpumask_t *mask;
304	struct coresight_device *sink = NULL;
305	struct coresight_device *user_sink = NULL, *last_sink = NULL;
306	struct etm_event_data *event_data = NULL;
307
308	event_data = alloc_event_data(cpu);
309	if (!event_data)
310		return NULL;
311	INIT_WORK(&event_data->work, free_event_data);
312
313	/* First get the selected sink from user space. */
314	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
315		id = (u32)event->attr.config2;
316		sink = user_sink = coresight_get_sink_by_id(id);
317	}
318
319	/* check if user wants a coresight configuration selected */
320	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
321	if (cfg_hash) {
322		if (cscfg_activate_config(cfg_hash))
323			goto err;
324		event_data->cfg_hash = cfg_hash;
325	}
326
327	mask = &event_data->mask;
328
329	/*
330	 * Setup the path for each CPU in a trace session. We try to build
331	 * trace path for each CPU in the mask. If we don't find an ETM
332	 * for the CPU or fail to build a path, we clear the CPU from the
333	 * mask and continue with the rest. If ever we try to trace on those
334	 * CPUs, we can handle it and fail the session.
335	 */
336	for_each_cpu(cpu, mask) {
337		struct list_head *path;
338		struct coresight_device *csdev;
339
340		csdev = per_cpu(csdev_src, cpu);
341		/*
342		 * If there is no ETM associated with this CPU clear it from
343		 * the mask and continue with the rest. If ever we try to trace
344		 * on this CPU, we handle it accordingly.
345		 */
346		if (!csdev) {
347			cpumask_clear_cpu(cpu, mask);
348			continue;
349		}
350
351		/*
352		 * No sink provided - look for a default sink for all the ETMs,
353		 * where this event can be scheduled.
354		 * We allocate the sink specific buffers only once for this
355		 * event. If the ETMs have different default sink devices, we
356		 * can only use a single "type" of sink as the event can carry
357		 * only one sink specific buffer. Thus we have to make sure
358		 * that the sinks are of the same type and driven by the same
359		 * driver, as the one we allocate the buffer for. As such
360		 * we choose the first sink and check if the remaining ETMs
361		 * have a compatible default sink. We don't trace on a CPU
362		 * if the sink is not compatible.
363		 */
364		if (!user_sink) {
365			/* Find the default sink for this ETM */
366			sink = coresight_find_default_sink(csdev);
367			if (!sink) {
368				cpumask_clear_cpu(cpu, mask);
369				continue;
370			}
371
372			/* Check if this sink compatible with the last sink */
373			if (last_sink && !sinks_compatible(last_sink, sink)) {
374				cpumask_clear_cpu(cpu, mask);
375				continue;
376			}
377			last_sink = sink;
378		}
379
380		/*
381		 * Building a path doesn't enable it, it simply builds a
382		 * list of devices from source to sink that can be
383		 * referenced later when the path is actually needed.
384		 */
385		path = coresight_build_path(csdev, sink);
386		if (IS_ERR(path)) {
387			cpumask_clear_cpu(cpu, mask);
388			continue;
389		}
390
391		*etm_event_cpu_path_ptr(event_data, cpu) = path;
392	}
393
394	/* no sink found for any CPU - cannot trace */
395	if (!sink)
396		goto err;
397
398	/* If we don't have any CPUs ready for tracing, abort */
399	cpu = cpumask_first(mask);
400	if (cpu >= nr_cpu_ids)
401		goto err;
402
403	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
404		goto err;
405
406	/*
407	 * Allocate the sink buffer for this session. All the sinks
408	 * where this event can be scheduled are ensured to be of the
409	 * same type. Thus the same sink configuration is used by the
410	 * sinks.
411	 */
412	event_data->snk_config =
413			sink_ops(sink)->alloc_buffer(sink, event, pages,
414						     nr_pages, overwrite);
415	if (!event_data->snk_config)
416		goto err;
417
418out:
419	return event_data;
420
421err:
422	etm_free_aux(event_data);
423	event_data = NULL;
424	goto out;
425}
426
427static void etm_event_start(struct perf_event *event, int flags)
428{
429	int cpu = smp_processor_id();
430	struct etm_event_data *event_data;
431	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
432	struct perf_output_handle *handle = &ctxt->handle;
433	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
434	struct list_head *path;
435
436	if (!csdev)
437		goto fail;
438
439	/* Have we messed up our tracking ? */
440	if (WARN_ON(ctxt->event_data))
441		goto fail;
442
443	/*
444	 * Deal with the ring buffer API and get a handle on the
445	 * session's information.
446	 */
447	event_data = perf_aux_output_begin(handle, event);
448	if (!event_data)
449		goto fail;
450
451	/*
452	 * Check if this ETM is allowed to trace, as decided
453	 * at etm_setup_aux(). This could be due to an unreachable
454	 * sink from this ETM. We can't do much in this case if
455	 * the sink was specified or hinted to the driver. For
456	 * now, simply don't record anything on this ETM.
457	 *
458	 * As such we pretend that everything is fine, and let
459	 * it continue without actually tracing. The event could
460	 * continue tracing when it moves to a CPU where it is
461	 * reachable to a sink.
462	 */
463	if (!cpumask_test_cpu(cpu, &event_data->mask))
464		goto out;
465
466	path = etm_event_cpu_path(event_data, cpu);
467	/* We need a sink, no need to continue without one */
468	sink = coresight_get_sink(path);
469	if (WARN_ON_ONCE(!sink))
470		goto fail_end_stop;
471
472	/* Nothing will happen without a path */
473	if (coresight_enable_path(path, CS_MODE_PERF, handle))
474		goto fail_end_stop;
475
476	/* Finally enable the tracer */
477	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
478		goto fail_disable_path;
479
480out:
481	/* Tell the perf core the event is alive */
482	event->hw.state = 0;
483	/* Save the event_data for this ETM */
484	ctxt->event_data = event_data;
485	return;
486
487fail_disable_path:
488	coresight_disable_path(path);
489fail_end_stop:
490	/*
491	 * Check if the handle is still associated with the event,
492	 * to handle cases where if the sink failed to start the
493	 * trace and TRUNCATED the handle already.
494	 */
495	if (READ_ONCE(handle->event)) {
496		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
497		perf_aux_output_end(handle, 0);
498	}
499fail:
500	event->hw.state = PERF_HES_STOPPED;
501	return;
502}
503
504static void etm_event_stop(struct perf_event *event, int mode)
505{
506	int cpu = smp_processor_id();
507	unsigned long size;
508	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
509	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
510	struct perf_output_handle *handle = &ctxt->handle;
511	struct etm_event_data *event_data;
512	struct list_head *path;
513
514	/*
515	 * If we still have access to the event_data via handle,
516	 * confirm that we haven't messed up the tracking.
517	 */
518	if (handle->event &&
519	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
520		return;
521
522	event_data = ctxt->event_data;
523	/* Clear the event_data as this ETM is stopping the trace. */
524	ctxt->event_data = NULL;
525
526	if (event->hw.state == PERF_HES_STOPPED)
527		return;
528
529	/* We must have a valid event_data for a running event */
530	if (WARN_ON(!event_data))
531		return;
532
533	/*
534	 * Check if this ETM was allowed to trace, as decided at
535	 * etm_setup_aux(). If it wasn't allowed to trace, then
536	 * nothing needs to be torn down other than outputting a
537	 * zero sized record.
538	 */
539	if (handle->event && (mode & PERF_EF_UPDATE) &&
540	    !cpumask_test_cpu(cpu, &event_data->mask)) {
541		event->hw.state = PERF_HES_STOPPED;
542		perf_aux_output_end(handle, 0);
543		return;
544	}
545
546	if (!csdev)
547		return;
548
549	path = etm_event_cpu_path(event_data, cpu);
550	if (!path)
551		return;
552
553	sink = coresight_get_sink(path);
554	if (!sink)
555		return;
556
557	/* stop tracer */
558	source_ops(csdev)->disable(csdev, event);
559
560	/* tell the core */
561	event->hw.state = PERF_HES_STOPPED;
562
563	/*
564	 * If the handle is not bound to an event anymore
565	 * (e.g, the sink driver was unable to restart the
566	 * handle due to lack of buffer space), we don't
567	 * have to do anything here.
568	 */
569	if (handle->event && (mode & PERF_EF_UPDATE)) {
570		if (WARN_ON_ONCE(handle->event != event))
571			return;
572
573		/* update trace information */
574		if (!sink_ops(sink)->update_buffer)
575			return;
576
577		size = sink_ops(sink)->update_buffer(sink, handle,
578					      event_data->snk_config);
579		/*
580		 * Make sure the handle is still valid as the
581		 * sink could have closed it from an IRQ.
582		 * The sink driver must handle the race with
583		 * update_buffer() and IRQ. Thus either we
584		 * should get a valid handle and valid size
585		 * (which may be 0).
586		 *
587		 * But we should never get a non-zero size with
588		 * an invalid handle.
589		 */
590		if (READ_ONCE(handle->event))
591			perf_aux_output_end(handle, size);
592		else
593			WARN_ON(size);
594	}
595
596	/* Disabling the path make its elements available to other sessions */
597	coresight_disable_path(path);
598}
599
600static int etm_event_add(struct perf_event *event, int mode)
601{
602	int ret = 0;
603	struct hw_perf_event *hwc = &event->hw;
604
605	if (mode & PERF_EF_START) {
606		etm_event_start(event, 0);
607		if (hwc->state & PERF_HES_STOPPED)
608			ret = -EINVAL;
609	} else {
610		hwc->state = PERF_HES_STOPPED;
611	}
612
613	return ret;
614}
615
616static void etm_event_del(struct perf_event *event, int mode)
617{
618	etm_event_stop(event, PERF_EF_UPDATE);
619}
620
621static int etm_addr_filters_validate(struct list_head *filters)
622{
623	bool range = false, address = false;
624	int index = 0;
625	struct perf_addr_filter *filter;
626
627	list_for_each_entry(filter, filters, entry) {
628		/*
629		 * No need to go further if there's no more
630		 * room for filters.
631		 */
632		if (++index > ETM_ADDR_CMP_MAX)
633			return -EOPNOTSUPP;
634
635		/* filter::size==0 means single address trigger */
636		if (filter->size) {
637			/*
638			 * The existing code relies on START/STOP filters
639			 * being address filters.
640			 */
641			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
642			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
643				return -EOPNOTSUPP;
644
645			range = true;
646		} else
647			address = true;
648
649		/*
650		 * At this time we don't allow range and start/stop filtering
651		 * to cohabitate, they have to be mutually exclusive.
652		 */
653		if (range && address)
654			return -EOPNOTSUPP;
655	}
656
657	return 0;
658}
659
660static void etm_addr_filters_sync(struct perf_event *event)
661{
662	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
663	unsigned long start, stop;
664	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
665	struct etm_filters *filters = event->hw.addr_filters;
666	struct etm_filter *etm_filter;
667	struct perf_addr_filter *filter;
668	int i = 0;
669
670	list_for_each_entry(filter, &head->list, entry) {
671		start = fr[i].start;
672		stop = start + fr[i].size;
673		etm_filter = &filters->etm_filter[i];
674
675		switch (filter->action) {
676		case PERF_ADDR_FILTER_ACTION_FILTER:
677			etm_filter->start_addr = start;
678			etm_filter->stop_addr = stop;
679			etm_filter->type = ETM_ADDR_TYPE_RANGE;
680			break;
681		case PERF_ADDR_FILTER_ACTION_START:
682			etm_filter->start_addr = start;
683			etm_filter->type = ETM_ADDR_TYPE_START;
684			break;
685		case PERF_ADDR_FILTER_ACTION_STOP:
686			etm_filter->stop_addr = stop;
687			etm_filter->type = ETM_ADDR_TYPE_STOP;
688			break;
689		}
690		i++;
691	}
692
693	filters->nr_filters = i;
694}
695
696int etm_perf_symlink(struct coresight_device *csdev, bool link)
697{
698	char entry[sizeof("cpu9999999")];
699	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
700	struct device *pmu_dev = etm_pmu.dev;
701	struct device *cs_dev = &csdev->dev;
702
703	sprintf(entry, "cpu%d", cpu);
704
705	if (!etm_perf_up)
706		return -EPROBE_DEFER;
707
708	if (link) {
709		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
710		if (ret)
711			return ret;
712		per_cpu(csdev_src, cpu) = csdev;
713	} else {
714		sysfs_remove_link(&pmu_dev->kobj, entry);
715		per_cpu(csdev_src, cpu) = NULL;
716	}
717
718	return 0;
719}
720EXPORT_SYMBOL_GPL(etm_perf_symlink);
721
722static ssize_t etm_perf_sink_name_show(struct device *dev,
723				       struct device_attribute *dattr,
724				       char *buf)
725{
726	struct dev_ext_attribute *ea;
727
728	ea = container_of(dattr, struct dev_ext_attribute, attr);
729	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
730}
731
732static struct dev_ext_attribute *
733etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
734{
735	struct dev_ext_attribute *ea;
736	unsigned long hash;
737	int ret;
738	struct device *pmu_dev = etm_pmu.dev;
739
740	if (!etm_perf_up)
741		return ERR_PTR(-EPROBE_DEFER);
742
743	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
744	if (!ea)
745		return ERR_PTR(-ENOMEM);
746
747	/*
748	 * If this function is called adding a sink then the hash is used for
749	 * sink selection - see function coresight_get_sink_by_id().
750	 * If adding a configuration then the hash is used for selection in
751	 * cscfg_activate_config()
752	 */
753	hash = hashlen_hash(hashlen_string(NULL, name));
754
755	sysfs_attr_init(&ea->attr.attr);
756	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
757	if (!ea->attr.attr.name)
758		return ERR_PTR(-ENOMEM);
759
760	ea->attr.attr.mode = 0444;
761	ea->var = (unsigned long *)hash;
762
763	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
764				      &ea->attr.attr, group_name);
765
766	return ret ? ERR_PTR(ret) : ea;
767}
768
769int etm_perf_add_symlink_sink(struct coresight_device *csdev)
770{
771	const char *name;
772	struct device *dev = &csdev->dev;
773	int err = 0;
774
775	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
776	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
777		return -EINVAL;
778
779	if (csdev->ea != NULL)
780		return -EINVAL;
781
782	name = dev_name(dev);
783	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
784	if (IS_ERR(csdev->ea)) {
785		err = PTR_ERR(csdev->ea);
786		csdev->ea = NULL;
787	} else
788		csdev->ea->attr.show = etm_perf_sink_name_show;
789
790	return err;
791}
792
793static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
794{
795	struct device *pmu_dev = etm_pmu.dev;
796
797	sysfs_remove_file_from_group(&pmu_dev->kobj,
798				     &ea->attr.attr, group_name);
799}
800
801void etm_perf_del_symlink_sink(struct coresight_device *csdev)
802{
803	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
804	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
805		return;
806
807	if (!csdev->ea)
808		return;
809
810	etm_perf_del_symlink_group(csdev->ea, "sinks");
811	csdev->ea = NULL;
812}
813
814static ssize_t etm_perf_cscfg_event_show(struct device *dev,
815					 struct device_attribute *dattr,
816					 char *buf)
817{
818	struct dev_ext_attribute *ea;
819
820	ea = container_of(dattr, struct dev_ext_attribute, attr);
821	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
822}
823
824int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
825{
826	int err = 0;
827
828	if (config_desc->event_ea != NULL)
829		return 0;
830
831	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
832
833	/* set the show function to the custom cscfg event */
834	if (!IS_ERR(config_desc->event_ea))
835		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
836	else {
837		err = PTR_ERR(config_desc->event_ea);
838		config_desc->event_ea = NULL;
839	}
840
841	return err;
842}
843
844void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
845{
846	if (!config_desc->event_ea)
847		return;
848
849	etm_perf_del_symlink_group(config_desc->event_ea, "events");
850	config_desc->event_ea = NULL;
851}
852
853int __init etm_perf_init(void)
854{
855	int ret;
856
857	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
858					   PERF_PMU_CAP_ITRACE);
859
860	etm_pmu.attr_groups		= etm_pmu_attr_groups;
861	etm_pmu.task_ctx_nr		= perf_sw_context;
862	etm_pmu.read			= etm_event_read;
863	etm_pmu.event_init		= etm_event_init;
864	etm_pmu.setup_aux		= etm_setup_aux;
865	etm_pmu.free_aux		= etm_free_aux;
866	etm_pmu.start			= etm_event_start;
867	etm_pmu.stop			= etm_event_stop;
868	etm_pmu.add			= etm_event_add;
869	etm_pmu.del			= etm_event_del;
870	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
871	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
872	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
873
874	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
875	if (ret == 0)
876		etm_perf_up = true;
877
878	return ret;
879}
880
881void etm_perf_exit(void)
882{
883	perf_pmu_unregister(&etm_pmu);
884}