Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Driver for SMM665 Power Controller / Monitor
  3 *
  4 * Copyright (C) 2010 Ericsson AB.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; version 2 of the License.
  9 *
 10 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
 11 * for those chips. Only monitoring functionality is implemented.
 12 *
 13 * Datasheets:
 14 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
 15 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
 16 */
 17
 18#include <linux/kernel.h>
 19#include <linux/module.h>
 20#include <linux/init.h>
 21#include <linux/err.h>
 22#include <linux/slab.h>
 23#include <linux/i2c.h>
 24#include <linux/hwmon.h>
 25#include <linux/hwmon-sysfs.h>
 26#include <linux/delay.h>
 
 27
 28/* Internal reference voltage (VREF, x 1000 */
 29#define SMM665_VREF_ADC_X1000	1250
 30
 31/* module parameters */
 32static int vref = SMM665_VREF_ADC_X1000;
 33module_param(vref, int, 0);
 34MODULE_PARM_DESC(vref, "Reference voltage in mV");
 35
 36enum chips { smm465, smm665, smm665c, smm764, smm766 };
 37
 38/*
 39 * ADC channel addresses
 40 */
 41#define	SMM665_MISC16_ADC_DATA_A	0x00
 42#define	SMM665_MISC16_ADC_DATA_B	0x01
 43#define	SMM665_MISC16_ADC_DATA_C	0x02
 44#define	SMM665_MISC16_ADC_DATA_D	0x03
 45#define	SMM665_MISC16_ADC_DATA_E	0x04
 46#define	SMM665_MISC16_ADC_DATA_F	0x05
 47#define	SMM665_MISC16_ADC_DATA_VDD	0x06
 48#define	SMM665_MISC16_ADC_DATA_12V	0x07
 49#define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
 50#define	SMM665_MISC16_ADC_DATA_AIN1	0x09
 51#define	SMM665_MISC16_ADC_DATA_AIN2	0x0a
 52
 53/*
 54 * Command registers
 55 */
 56#define	SMM665_MISC8_CMD_STS		0x80
 57#define	SMM665_MISC8_STATUS1		0x81
 58#define	SMM665_MISC8_STATUSS2		0x82
 59#define	SMM665_MISC8_IO_POLARITY	0x83
 60#define	SMM665_MISC8_PUP_POLARITY	0x84
 61#define	SMM665_MISC8_ADOC_STATUS1	0x85
 62#define	SMM665_MISC8_ADOC_STATUS2	0x86
 63#define	SMM665_MISC8_WRITE_PROT		0x87
 64#define	SMM665_MISC8_STS_TRACK		0x88
 65
 66/*
 67 * Configuration registers and register groups
 68 */
 69#define SMM665_ADOC_ENABLE		0x0d
 70#define SMM665_LIMIT_BASE		0x80	/* First limit register */
 71
 72/*
 73 * Limit register bit masks
 74 */
 75#define SMM665_TRIGGER_RST		0x8000
 76#define SMM665_TRIGGER_HEALTHY		0x4000
 77#define SMM665_TRIGGER_POWEROFF		0x2000
 78#define SMM665_TRIGGER_SHUTDOWN		0x1000
 79#define SMM665_ADC_MASK			0x03ff
 80
 81#define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
 82					| SMM665_TRIGGER_POWEROFF \
 83					| SMM665_TRIGGER_SHUTDOWN))
 84/*
 85 * Fault register bit definitions
 86 * Values are merged from status registers 1/2,
 87 * with status register 1 providing the upper 8 bits.
 88 */
 89#define SMM665_FAULT_A		0x0001
 90#define SMM665_FAULT_B		0x0002
 91#define SMM665_FAULT_C		0x0004
 92#define SMM665_FAULT_D		0x0008
 93#define SMM665_FAULT_E		0x0010
 94#define SMM665_FAULT_F		0x0020
 95#define SMM665_FAULT_VDD	0x0040
 96#define SMM665_FAULT_12V	0x0080
 97#define SMM665_FAULT_TEMP	0x0100
 98#define SMM665_FAULT_AIN1	0x0200
 99#define SMM665_FAULT_AIN2	0x0400
100
101/*
102 * I2C Register addresses
103 *
104 * The configuration register needs to be the configured base register.
105 * The command/status register address is derived from it.
106 */
107#define SMM665_REGMASK		0x78
108#define SMM665_CMDREG_BASE	0x48
109#define SMM665_CONFREG_BASE	0x50
110
111/*
112 *  Equations given by chip manufacturer to calculate voltage/temperature values
113 *  vref = Reference voltage on VREF_ADC pin (module parameter)
114 *  adc  = 10bit ADC value read back from registers
115 */
116
117/* Voltage A-F and VDD */
118#define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
119
120/* Voltage 12VIN */
121#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
122
123/* Voltage AIN1, AIN2 */
124#define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
125
126/* Temp Sensor */
127#define SMM665_TEMP_ADC_TO_CELSIUS(adc) ((adc) <= 511) ?		   \
128					 ((int)(adc) * 1000 / 4) :	   \
129					 (((int)(adc) - 0x400) * 1000 / 4)
130
131#define SMM665_NUM_ADC		11
132
133/*
134 * Chip dependent ADC conversion time, in uS
135 */
136#define SMM665_ADC_WAIT_SMM665	70
137#define SMM665_ADC_WAIT_SMM766	185
138
139struct smm665_data {
140	enum chips type;
141	int conversion_time;		/* ADC conversion time */
142	struct device *hwmon_dev;
143	struct mutex update_lock;
144	bool valid;
145	unsigned long last_updated;	/* in jiffies */
146	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
147	u16 faults;			/* fault status */
148	/* The following values are in mV */
149	int critical_min_limit[SMM665_NUM_ADC];
150	int alarm_min_limit[SMM665_NUM_ADC];
151	int critical_max_limit[SMM665_NUM_ADC];
152	int alarm_max_limit[SMM665_NUM_ADC];
153	struct i2c_client *cmdreg;
154};
155
156/*
157 * smm665_read16()
158 *
159 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
160 */
161static int smm665_read16(struct i2c_client *client, int reg)
162{
163	int rv, val;
164
165	rv = i2c_smbus_read_byte_data(client, reg);
166	if (rv < 0)
167		return rv;
168	val = rv << 8;
169	rv = i2c_smbus_read_byte_data(client, reg + 1);
170	if (rv < 0)
171		return rv;
172	val |= rv;
173	return val;
174}
175
176/*
177 * Read adc value.
178 */
179static int smm665_read_adc(struct smm665_data *data, int adc)
180{
181	struct i2c_client *client = data->cmdreg;
182	int rv;
183	int radc;
184
185	/*
186	 * Algorithm for reading ADC, per SMM665 datasheet
187	 *
188	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
189	 * [wait conversion time]
190	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
191	 *
192	 * To implement the first part of this exchange,
193	 * do a full read transaction and expect a failure/Nack.
194	 * This sets up the address pointer on the SMM665
195	 * and starts the ADC conversion.
196	 * Then do a two-byte read transaction.
197	 */
198	rv = i2c_smbus_read_byte_data(client, adc << 3);
199	if (rv != -ENXIO) {
200		/*
201		 * We expect ENXIO to reflect NACK
202		 * (per Documentation/i2c/fault-codes).
203		 * Everything else is an error.
204		 */
205		dev_dbg(&client->dev,
206			"Unexpected return code %d when setting ADC index", rv);
207		return (rv < 0) ? rv : -EIO;
208	}
209
210	udelay(data->conversion_time);
211
212	/*
213	 * Now read two bytes.
214	 *
215	 * Neither i2c_smbus_read_byte() nor
216	 * i2c_smbus_read_block_data() worked here,
217	 * so use i2c_smbus_read_word_data() instead.
218	 * We could also try to use i2c_master_recv(),
219	 * but that is not always supported.
220	 */
221	rv = i2c_smbus_read_word_data(client, 0);
222	if (rv < 0) {
223		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
224		return -1;
225	}
226	/*
227	 * Validate/verify readback adc channel (in bit 11..14).
228	 * High byte is in lower 8 bit of rv, so only shift by 3.
229	 */
230	radc = (rv >> 3) & 0x0f;
231	if (radc != adc) {
232		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
233			adc, radc);
234		return -EIO;
235	}
236	/*
237	 * Chip replies with H/L, while SMBus expects L/H.
238	 * Thus, byte order is reversed, and we have to swap
239	 * the result.
240	 */
241	rv = swab16(rv) & SMM665_ADC_MASK;
242
243	return rv;
244}
245
246static struct smm665_data *smm665_update_device(struct device *dev)
247{
248	struct i2c_client *client = to_i2c_client(dev);
249	struct smm665_data *data = i2c_get_clientdata(client);
250	struct smm665_data *ret = data;
251
252	mutex_lock(&data->update_lock);
253
254	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
255		int i, val;
256
257		/*
258		 * read status registers
259		 */
260		val = smm665_read16(client, SMM665_MISC8_STATUS1);
261		if (unlikely(val < 0)) {
262			ret = ERR_PTR(val);
263			goto abort;
264		}
265		data->faults = val;
266
267		/* Read adc registers */
268		for (i = 0; i < SMM665_NUM_ADC; i++) {
269			val = smm665_read_adc(data, i);
270			if (unlikely(val < 0)) {
271				ret = ERR_PTR(val);
272				goto abort;
273			}
274			data->adc[i] = val;
275		}
276		data->last_updated = jiffies;
277		data->valid = 1;
278	}
279abort:
280	mutex_unlock(&data->update_lock);
281	return ret;
282}
283
284/* Return converted value from given adc */
285static int smm665_convert(u16 adcval, int index)
286{
287	int val = 0;
288
289	switch (index) {
290	case SMM665_MISC16_ADC_DATA_12V:
291		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
292		break;
293
294	case SMM665_MISC16_ADC_DATA_VDD:
295	case SMM665_MISC16_ADC_DATA_A:
296	case SMM665_MISC16_ADC_DATA_B:
297	case SMM665_MISC16_ADC_DATA_C:
298	case SMM665_MISC16_ADC_DATA_D:
299	case SMM665_MISC16_ADC_DATA_E:
300	case SMM665_MISC16_ADC_DATA_F:
301		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
302		break;
303
304	case SMM665_MISC16_ADC_DATA_AIN1:
305	case SMM665_MISC16_ADC_DATA_AIN2:
306		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
307		break;
308
309	case SMM665_MISC16_ADC_DATA_INT_TEMP:
310		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
311		break;
312
313	default:
314		/* If we get here, the developer messed up */
315		WARN_ON_ONCE(1);
316		break;
317	}
318
319	return val;
320}
321
322static int smm665_get_min(struct device *dev, int index)
323{
324	struct i2c_client *client = to_i2c_client(dev);
325	struct smm665_data *data = i2c_get_clientdata(client);
326
327	return data->alarm_min_limit[index];
328}
329
330static int smm665_get_max(struct device *dev, int index)
331{
332	struct i2c_client *client = to_i2c_client(dev);
333	struct smm665_data *data = i2c_get_clientdata(client);
334
335	return data->alarm_max_limit[index];
336}
337
338static int smm665_get_lcrit(struct device *dev, int index)
339{
340	struct i2c_client *client = to_i2c_client(dev);
341	struct smm665_data *data = i2c_get_clientdata(client);
342
343	return data->critical_min_limit[index];
344}
345
346static int smm665_get_crit(struct device *dev, int index)
347{
348	struct i2c_client *client = to_i2c_client(dev);
349	struct smm665_data *data = i2c_get_clientdata(client);
350
351	return data->critical_max_limit[index];
352}
353
354static ssize_t smm665_show_crit_alarm(struct device *dev,
355				      struct device_attribute *da, char *buf)
356{
357	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
358	struct smm665_data *data = smm665_update_device(dev);
359	int val = 0;
360
361	if (IS_ERR(data))
362		return PTR_ERR(data);
363
364	if (data->faults & (1 << attr->index))
365		val = 1;
366
367	return snprintf(buf, PAGE_SIZE, "%d\n", val);
368}
369
370static ssize_t smm665_show_input(struct device *dev,
371				 struct device_attribute *da, char *buf)
372{
373	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
374	struct smm665_data *data = smm665_update_device(dev);
375	int adc = attr->index;
376	int val;
377
378	if (IS_ERR(data))
379		return PTR_ERR(data);
380
381	val = smm665_convert(data->adc[adc], adc);
382	return snprintf(buf, PAGE_SIZE, "%d\n", val);
383}
384
385#define SMM665_SHOW(what) \
386  static ssize_t smm665_show_##what(struct device *dev, \
387				    struct device_attribute *da, char *buf) \
388{ \
389	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
390	const int val = smm665_get_##what(dev, attr->index); \
391	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
392}
393
394SMM665_SHOW(min);
395SMM665_SHOW(max);
396SMM665_SHOW(lcrit);
397SMM665_SHOW(crit);
398
399/* These macros are used below in constructing device attribute objects
 
400 * for use with sysfs_create_group() to make a sysfs device file
401 * for each register.
402 */
403
404#define SMM665_ATTR(name, type, cmd_idx) \
405	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
406				  smm665_show_##type, NULL, cmd_idx)
407
408/* Construct a sensor_device_attribute structure for each register */
409
410/* Input voltages */
411SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
412SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
413SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
414SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
415SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
416SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
417SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
418SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
419SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
420SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
421
422/* Input voltages min */
423SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
424SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
425SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
426SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
427SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
428SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
429SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
430SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
431SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
432SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
433
434/* Input voltages max */
435SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
436SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
437SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
438SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
439SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
440SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
441SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
442SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
443SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
444SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
445
446/* Input voltages lcrit */
447SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
448SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
449SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
450SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
451SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
452SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
453SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
454SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
455SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
456SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
457
458/* Input voltages crit */
459SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
460SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
461SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
462SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
463SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
464SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
465SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
466SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
467SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
468SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
469
470/* critical alarms */
471SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
472SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
473SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
474SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
475SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
476SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
477SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
478SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
479SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
480SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
481
482/* Temperature */
483SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
484SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
485SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
486SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
487SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
488SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
489
490/*
491 * Finally, construct an array of pointers to members of the above objects,
492 * as required for sysfs_create_group()
493 */
494static struct attribute *smm665_attributes[] = {
495	&sensor_dev_attr_in1_input.dev_attr.attr,
496	&sensor_dev_attr_in1_min.dev_attr.attr,
497	&sensor_dev_attr_in1_max.dev_attr.attr,
498	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
499	&sensor_dev_attr_in1_crit.dev_attr.attr,
500	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
501
502	&sensor_dev_attr_in2_input.dev_attr.attr,
503	&sensor_dev_attr_in2_min.dev_attr.attr,
504	&sensor_dev_attr_in2_max.dev_attr.attr,
505	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
506	&sensor_dev_attr_in2_crit.dev_attr.attr,
507	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
508
509	&sensor_dev_attr_in3_input.dev_attr.attr,
510	&sensor_dev_attr_in3_min.dev_attr.attr,
511	&sensor_dev_attr_in3_max.dev_attr.attr,
512	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
513	&sensor_dev_attr_in3_crit.dev_attr.attr,
514	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
515
516	&sensor_dev_attr_in4_input.dev_attr.attr,
517	&sensor_dev_attr_in4_min.dev_attr.attr,
518	&sensor_dev_attr_in4_max.dev_attr.attr,
519	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
520	&sensor_dev_attr_in4_crit.dev_attr.attr,
521	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
522
523	&sensor_dev_attr_in5_input.dev_attr.attr,
524	&sensor_dev_attr_in5_min.dev_attr.attr,
525	&sensor_dev_attr_in5_max.dev_attr.attr,
526	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
527	&sensor_dev_attr_in5_crit.dev_attr.attr,
528	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
529
530	&sensor_dev_attr_in6_input.dev_attr.attr,
531	&sensor_dev_attr_in6_min.dev_attr.attr,
532	&sensor_dev_attr_in6_max.dev_attr.attr,
533	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
534	&sensor_dev_attr_in6_crit.dev_attr.attr,
535	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
536
537	&sensor_dev_attr_in7_input.dev_attr.attr,
538	&sensor_dev_attr_in7_min.dev_attr.attr,
539	&sensor_dev_attr_in7_max.dev_attr.attr,
540	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
541	&sensor_dev_attr_in7_crit.dev_attr.attr,
542	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
543
544	&sensor_dev_attr_in8_input.dev_attr.attr,
545	&sensor_dev_attr_in8_min.dev_attr.attr,
546	&sensor_dev_attr_in8_max.dev_attr.attr,
547	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
548	&sensor_dev_attr_in8_crit.dev_attr.attr,
549	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
550
551	&sensor_dev_attr_in9_input.dev_attr.attr,
552	&sensor_dev_attr_in9_min.dev_attr.attr,
553	&sensor_dev_attr_in9_max.dev_attr.attr,
554	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
555	&sensor_dev_attr_in9_crit.dev_attr.attr,
556	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
557
558	&sensor_dev_attr_in10_input.dev_attr.attr,
559	&sensor_dev_attr_in10_min.dev_attr.attr,
560	&sensor_dev_attr_in10_max.dev_attr.attr,
561	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
562	&sensor_dev_attr_in10_crit.dev_attr.attr,
563	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
564
565	&sensor_dev_attr_temp1_input.dev_attr.attr,
566	&sensor_dev_attr_temp1_min.dev_attr.attr,
567	&sensor_dev_attr_temp1_max.dev_attr.attr,
568	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
569	&sensor_dev_attr_temp1_crit.dev_attr.attr,
570	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
571
572	NULL,
573};
574
575static const struct attribute_group smm665_group = {
576	.attrs = smm665_attributes,
577};
578
579static int smm665_probe(struct i2c_client *client,
580			const struct i2c_device_id *id)
 
581{
582	struct i2c_adapter *adapter = client->adapter;
583	struct smm665_data *data;
 
584	int i, ret;
585
586	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
587				     | I2C_FUNC_SMBUS_WORD_DATA))
588		return -ENODEV;
589
590	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
591		return -ENODEV;
592
593	ret = -ENOMEM;
594	data = kzalloc(sizeof(*data), GFP_KERNEL);
595	if (!data)
596		goto out_return;
597
598	i2c_set_clientdata(client, data);
599	mutex_init(&data->update_lock);
600
601	data->type = id->driver_data;
602	data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK)
 
603				     | SMM665_CMDREG_BASE);
604	if (!data->cmdreg)
605		goto out_kfree;
606
607	switch (data->type) {
608	case smm465:
609	case smm665:
610		data->conversion_time = SMM665_ADC_WAIT_SMM665;
611		break;
612	case smm665c:
613	case smm764:
614	case smm766:
615		data->conversion_time = SMM665_ADC_WAIT_SMM766;
616		break;
617	}
618
619	ret = -ENODEV;
620	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
621		goto out_unregister;
622
623	/*
624	 * Read limits.
625	 *
626	 * Limit registers start with register SMM665_LIMIT_BASE.
627	 * Each channel uses 8 registers, providing four limit values
628	 * per channel. Each limit value requires two registers, with the
629	 * high byte in the first register and the low byte in the second
630	 * register. The first two limits are under limit values, followed
631	 * by two over limit values.
632	 *
633	 * Limit register order matches the ADC register order, so we use
634	 * ADC register defines throughout the code to index limit registers.
635	 *
636	 * We save the first retrieved value both as "critical" and "alarm"
637	 * value. The second value overwrites either the critical or the
638	 * alarm value, depending on its configuration. This ensures that both
639	 * critical and alarm values are initialized, even if both registers are
640	 * configured as critical or non-critical.
641	 */
642	for (i = 0; i < SMM665_NUM_ADC; i++) {
643		int val;
644
645		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
646		if (unlikely(val < 0))
647			goto out_unregister;
648		data->critical_min_limit[i] = data->alarm_min_limit[i]
649		  = smm665_convert(val, i);
650		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
651		if (unlikely(val < 0))
652			goto out_unregister;
653		if (smm665_is_critical(val))
654			data->critical_min_limit[i] = smm665_convert(val, i);
655		else
656			data->alarm_min_limit[i] = smm665_convert(val, i);
657		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
658		if (unlikely(val < 0))
659			goto out_unregister;
660		data->critical_max_limit[i] = data->alarm_max_limit[i]
661		  = smm665_convert(val, i);
662		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
663		if (unlikely(val < 0))
664			goto out_unregister;
665		if (smm665_is_critical(val))
666			data->critical_max_limit[i] = smm665_convert(val, i);
667		else
668			data->alarm_max_limit[i] = smm665_convert(val, i);
669	}
670
671	/* Register sysfs hooks */
672	ret = sysfs_create_group(&client->dev.kobj, &smm665_group);
673	if (ret)
 
 
674		goto out_unregister;
675
676	data->hwmon_dev = hwmon_device_register(&client->dev);
677	if (IS_ERR(data->hwmon_dev)) {
678		ret = PTR_ERR(data->hwmon_dev);
679		goto out_remove_group;
680	}
681
682	return 0;
683
684out_remove_group:
685	sysfs_remove_group(&client->dev.kobj, &smm665_group);
686out_unregister:
687	i2c_unregister_device(data->cmdreg);
688out_kfree:
689	kfree(data);
690out_return:
691	return ret;
692}
693
694static int smm665_remove(struct i2c_client *client)
695{
696	struct smm665_data *data = i2c_get_clientdata(client);
697
698	i2c_unregister_device(data->cmdreg);
699	hwmon_device_unregister(data->hwmon_dev);
700	sysfs_remove_group(&client->dev.kobj, &smm665_group);
701
702	kfree(data);
703
704	return 0;
705}
706
707static const struct i2c_device_id smm665_id[] = {
708	{"smm465", smm465},
709	{"smm665", smm665},
710	{"smm665c", smm665c},
711	{"smm764", smm764},
712	{"smm766", smm766},
713	{}
714};
715
716MODULE_DEVICE_TABLE(i2c, smm665_id);
717
718/* This is the driver that will be inserted */
719static struct i2c_driver smm665_driver = {
720	.driver = {
721		   .name = "smm665",
722		   },
723	.probe = smm665_probe,
724	.remove = smm665_remove,
725	.id_table = smm665_id,
726};
727
728static int __init smm665_init(void)
729{
730	return i2c_add_driver(&smm665_driver);
731}
732
733static void __exit smm665_exit(void)
734{
735	i2c_del_driver(&smm665_driver);
736}
737
738MODULE_AUTHOR("Guenter Roeck");
739MODULE_DESCRIPTION("SMM665 driver");
740MODULE_LICENSE("GPL");
741
742module_init(smm665_init);
743module_exit(smm665_exit);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for SMM665 Power Controller / Monitor
  4 *
  5 * Copyright (C) 2010 Ericsson AB.
  6 *
 
 
 
 
  7 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
  8 * for those chips. Only monitoring functionality is implemented.
  9 *
 10 * Datasheets:
 11 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
 12 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/init.h>
 18#include <linux/err.h>
 19#include <linux/slab.h>
 20#include <linux/i2c.h>
 21#include <linux/hwmon.h>
 22#include <linux/hwmon-sysfs.h>
 23#include <linux/delay.h>
 24#include <linux/jiffies.h>
 25
 26/* Internal reference voltage (VREF, x 1000 */
 27#define SMM665_VREF_ADC_X1000	1250
 28
 29/* module parameters */
 30static int vref = SMM665_VREF_ADC_X1000;
 31module_param(vref, int, 0);
 32MODULE_PARM_DESC(vref, "Reference voltage in mV");
 33
 34enum chips { smm465, smm665, smm665c, smm764, smm766 };
 35
 36/*
 37 * ADC channel addresses
 38 */
 39#define	SMM665_MISC16_ADC_DATA_A	0x00
 40#define	SMM665_MISC16_ADC_DATA_B	0x01
 41#define	SMM665_MISC16_ADC_DATA_C	0x02
 42#define	SMM665_MISC16_ADC_DATA_D	0x03
 43#define	SMM665_MISC16_ADC_DATA_E	0x04
 44#define	SMM665_MISC16_ADC_DATA_F	0x05
 45#define	SMM665_MISC16_ADC_DATA_VDD	0x06
 46#define	SMM665_MISC16_ADC_DATA_12V	0x07
 47#define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
 48#define	SMM665_MISC16_ADC_DATA_AIN1	0x09
 49#define	SMM665_MISC16_ADC_DATA_AIN2	0x0a
 50
 51/*
 52 * Command registers
 53 */
 54#define	SMM665_MISC8_CMD_STS		0x80
 55#define	SMM665_MISC8_STATUS1		0x81
 56#define	SMM665_MISC8_STATUSS2		0x82
 57#define	SMM665_MISC8_IO_POLARITY	0x83
 58#define	SMM665_MISC8_PUP_POLARITY	0x84
 59#define	SMM665_MISC8_ADOC_STATUS1	0x85
 60#define	SMM665_MISC8_ADOC_STATUS2	0x86
 61#define	SMM665_MISC8_WRITE_PROT		0x87
 62#define	SMM665_MISC8_STS_TRACK		0x88
 63
 64/*
 65 * Configuration registers and register groups
 66 */
 67#define SMM665_ADOC_ENABLE		0x0d
 68#define SMM665_LIMIT_BASE		0x80	/* First limit register */
 69
 70/*
 71 * Limit register bit masks
 72 */
 73#define SMM665_TRIGGER_RST		0x8000
 74#define SMM665_TRIGGER_HEALTHY		0x4000
 75#define SMM665_TRIGGER_POWEROFF		0x2000
 76#define SMM665_TRIGGER_SHUTDOWN		0x1000
 77#define SMM665_ADC_MASK			0x03ff
 78
 79#define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
 80					| SMM665_TRIGGER_POWEROFF \
 81					| SMM665_TRIGGER_SHUTDOWN))
 82/*
 83 * Fault register bit definitions
 84 * Values are merged from status registers 1/2,
 85 * with status register 1 providing the upper 8 bits.
 86 */
 87#define SMM665_FAULT_A		0x0001
 88#define SMM665_FAULT_B		0x0002
 89#define SMM665_FAULT_C		0x0004
 90#define SMM665_FAULT_D		0x0008
 91#define SMM665_FAULT_E		0x0010
 92#define SMM665_FAULT_F		0x0020
 93#define SMM665_FAULT_VDD	0x0040
 94#define SMM665_FAULT_12V	0x0080
 95#define SMM665_FAULT_TEMP	0x0100
 96#define SMM665_FAULT_AIN1	0x0200
 97#define SMM665_FAULT_AIN2	0x0400
 98
 99/*
100 * I2C Register addresses
101 *
102 * The configuration register needs to be the configured base register.
103 * The command/status register address is derived from it.
104 */
105#define SMM665_REGMASK		0x78
106#define SMM665_CMDREG_BASE	0x48
107#define SMM665_CONFREG_BASE	0x50
108
109/*
110 *  Equations given by chip manufacturer to calculate voltage/temperature values
111 *  vref = Reference voltage on VREF_ADC pin (module parameter)
112 *  adc  = 10bit ADC value read back from registers
113 */
114
115/* Voltage A-F and VDD */
116#define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
117
118/* Voltage 12VIN */
119#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
120
121/* Voltage AIN1, AIN2 */
122#define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
123
124/* Temp Sensor */
125#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?		   \
126					 ((int)(adc) * 1000 / 4) :	   \
127					 (((int)(adc) - 0x400) * 1000 / 4))
128
129#define SMM665_NUM_ADC		11
130
131/*
132 * Chip dependent ADC conversion time, in uS
133 */
134#define SMM665_ADC_WAIT_SMM665	70
135#define SMM665_ADC_WAIT_SMM766	185
136
137struct smm665_data {
138	enum chips type;
139	int conversion_time;		/* ADC conversion time */
140	struct i2c_client *client;
141	struct mutex update_lock;
142	bool valid;
143	unsigned long last_updated;	/* in jiffies */
144	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
145	u16 faults;			/* fault status */
146	/* The following values are in mV */
147	int critical_min_limit[SMM665_NUM_ADC];
148	int alarm_min_limit[SMM665_NUM_ADC];
149	int critical_max_limit[SMM665_NUM_ADC];
150	int alarm_max_limit[SMM665_NUM_ADC];
151	struct i2c_client *cmdreg;
152};
153
154/*
155 * smm665_read16()
156 *
157 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
158 */
159static int smm665_read16(struct i2c_client *client, int reg)
160{
161	int rv, val;
162
163	rv = i2c_smbus_read_byte_data(client, reg);
164	if (rv < 0)
165		return rv;
166	val = rv << 8;
167	rv = i2c_smbus_read_byte_data(client, reg + 1);
168	if (rv < 0)
169		return rv;
170	val |= rv;
171	return val;
172}
173
174/*
175 * Read adc value.
176 */
177static int smm665_read_adc(struct smm665_data *data, int adc)
178{
179	struct i2c_client *client = data->cmdreg;
180	int rv;
181	int radc;
182
183	/*
184	 * Algorithm for reading ADC, per SMM665 datasheet
185	 *
186	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
187	 * [wait conversion time]
188	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
189	 *
190	 * To implement the first part of this exchange,
191	 * do a full read transaction and expect a failure/Nack.
192	 * This sets up the address pointer on the SMM665
193	 * and starts the ADC conversion.
194	 * Then do a two-byte read transaction.
195	 */
196	rv = i2c_smbus_read_byte_data(client, adc << 3);
197	if (rv != -ENXIO) {
198		/*
199		 * We expect ENXIO to reflect NACK
200		 * (per Documentation/i2c/fault-codes.rst).
201		 * Everything else is an error.
202		 */
203		dev_dbg(&client->dev,
204			"Unexpected return code %d when setting ADC index", rv);
205		return (rv < 0) ? rv : -EIO;
206	}
207
208	udelay(data->conversion_time);
209
210	/*
211	 * Now read two bytes.
212	 *
213	 * Neither i2c_smbus_read_byte() nor
214	 * i2c_smbus_read_block_data() worked here,
215	 * so use i2c_smbus_read_word_swapped() instead.
216	 * We could also try to use i2c_master_recv(),
217	 * but that is not always supported.
218	 */
219	rv = i2c_smbus_read_word_swapped(client, 0);
220	if (rv < 0) {
221		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
222		return rv;
223	}
224	/*
225	 * Validate/verify readback adc channel (in bit 11..14).
 
226	 */
227	radc = (rv >> 11) & 0x0f;
228	if (radc != adc) {
229		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
230			adc, radc);
231		return -EIO;
232	}
 
 
 
 
 
 
233
234	return rv & SMM665_ADC_MASK;
235}
236
237static struct smm665_data *smm665_update_device(struct device *dev)
238{
239	struct smm665_data *data = dev_get_drvdata(dev);
240	struct i2c_client *client = data->client;
241	struct smm665_data *ret = data;
242
243	mutex_lock(&data->update_lock);
244
245	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
246		int i, val;
247
248		/*
249		 * read status registers
250		 */
251		val = smm665_read16(client, SMM665_MISC8_STATUS1);
252		if (unlikely(val < 0)) {
253			ret = ERR_PTR(val);
254			goto abort;
255		}
256		data->faults = val;
257
258		/* Read adc registers */
259		for (i = 0; i < SMM665_NUM_ADC; i++) {
260			val = smm665_read_adc(data, i);
261			if (unlikely(val < 0)) {
262				ret = ERR_PTR(val);
263				goto abort;
264			}
265			data->adc[i] = val;
266		}
267		data->last_updated = jiffies;
268		data->valid = true;
269	}
270abort:
271	mutex_unlock(&data->update_lock);
272	return ret;
273}
274
275/* Return converted value from given adc */
276static int smm665_convert(u16 adcval, int index)
277{
278	int val = 0;
279
280	switch (index) {
281	case SMM665_MISC16_ADC_DATA_12V:
282		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
283		break;
284
285	case SMM665_MISC16_ADC_DATA_VDD:
286	case SMM665_MISC16_ADC_DATA_A:
287	case SMM665_MISC16_ADC_DATA_B:
288	case SMM665_MISC16_ADC_DATA_C:
289	case SMM665_MISC16_ADC_DATA_D:
290	case SMM665_MISC16_ADC_DATA_E:
291	case SMM665_MISC16_ADC_DATA_F:
292		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
293		break;
294
295	case SMM665_MISC16_ADC_DATA_AIN1:
296	case SMM665_MISC16_ADC_DATA_AIN2:
297		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
298		break;
299
300	case SMM665_MISC16_ADC_DATA_INT_TEMP:
301		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
302		break;
303
304	default:
305		/* If we get here, the developer messed up */
306		WARN_ON_ONCE(1);
307		break;
308	}
309
310	return val;
311}
312
313static int smm665_get_min(struct device *dev, int index)
314{
315	struct smm665_data *data = dev_get_drvdata(dev);
 
316
317	return data->alarm_min_limit[index];
318}
319
320static int smm665_get_max(struct device *dev, int index)
321{
322	struct smm665_data *data = dev_get_drvdata(dev);
 
323
324	return data->alarm_max_limit[index];
325}
326
327static int smm665_get_lcrit(struct device *dev, int index)
328{
329	struct smm665_data *data = dev_get_drvdata(dev);
 
330
331	return data->critical_min_limit[index];
332}
333
334static int smm665_get_crit(struct device *dev, int index)
335{
336	struct smm665_data *data = dev_get_drvdata(dev);
 
337
338	return data->critical_max_limit[index];
339}
340
341static ssize_t smm665_show_crit_alarm(struct device *dev,
342				      struct device_attribute *da, char *buf)
343{
344	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
345	struct smm665_data *data = smm665_update_device(dev);
346	int val = 0;
347
348	if (IS_ERR(data))
349		return PTR_ERR(data);
350
351	if (data->faults & (1 << attr->index))
352		val = 1;
353
354	return sysfs_emit(buf, "%d\n", val);
355}
356
357static ssize_t smm665_show_input(struct device *dev,
358				 struct device_attribute *da, char *buf)
359{
360	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
361	struct smm665_data *data = smm665_update_device(dev);
362	int adc = attr->index;
363	int val;
364
365	if (IS_ERR(data))
366		return PTR_ERR(data);
367
368	val = smm665_convert(data->adc[adc], adc);
369	return sysfs_emit(buf, "%d\n", val);
370}
371
372#define SMM665_SHOW(what) \
373static ssize_t smm665_show_##what(struct device *dev, \
374				    struct device_attribute *da, char *buf) \
375{ \
376	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
377	const int val = smm665_get_##what(dev, attr->index); \
378	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
379}
380
381SMM665_SHOW(min);
382SMM665_SHOW(max);
383SMM665_SHOW(lcrit);
384SMM665_SHOW(crit);
385
386/*
387 * These macros are used below in constructing device attribute objects
388 * for use with sysfs_create_group() to make a sysfs device file
389 * for each register.
390 */
391
392#define SMM665_ATTR(name, type, cmd_idx) \
393	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
394				  smm665_show_##type, NULL, cmd_idx)
395
396/* Construct a sensor_device_attribute structure for each register */
397
398/* Input voltages */
399SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
400SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
401SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
402SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
403SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
404SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
405SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
406SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
407SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
408SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
409
410/* Input voltages min */
411SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
412SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
413SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
414SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
415SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
416SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
417SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
418SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
419SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
420SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
421
422/* Input voltages max */
423SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
424SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
425SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
426SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
427SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
428SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
429SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
430SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
431SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
432SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
433
434/* Input voltages lcrit */
435SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
436SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
437SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
438SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
439SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
440SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
441SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
442SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
443SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
444SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
445
446/* Input voltages crit */
447SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
448SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
449SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
450SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
451SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
452SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
453SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
454SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
455SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
456SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
457
458/* critical alarms */
459SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
460SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
461SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
462SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
463SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
464SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
465SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
466SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
467SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
468SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
469
470/* Temperature */
471SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
472SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
473SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
474SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
475SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
476SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
477
478/*
479 * Finally, construct an array of pointers to members of the above objects,
480 * as required for sysfs_create_group()
481 */
482static struct attribute *smm665_attrs[] = {
483	&sensor_dev_attr_in1_input.dev_attr.attr,
484	&sensor_dev_attr_in1_min.dev_attr.attr,
485	&sensor_dev_attr_in1_max.dev_attr.attr,
486	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
487	&sensor_dev_attr_in1_crit.dev_attr.attr,
488	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
489
490	&sensor_dev_attr_in2_input.dev_attr.attr,
491	&sensor_dev_attr_in2_min.dev_attr.attr,
492	&sensor_dev_attr_in2_max.dev_attr.attr,
493	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
494	&sensor_dev_attr_in2_crit.dev_attr.attr,
495	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
496
497	&sensor_dev_attr_in3_input.dev_attr.attr,
498	&sensor_dev_attr_in3_min.dev_attr.attr,
499	&sensor_dev_attr_in3_max.dev_attr.attr,
500	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
501	&sensor_dev_attr_in3_crit.dev_attr.attr,
502	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
503
504	&sensor_dev_attr_in4_input.dev_attr.attr,
505	&sensor_dev_attr_in4_min.dev_attr.attr,
506	&sensor_dev_attr_in4_max.dev_attr.attr,
507	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
508	&sensor_dev_attr_in4_crit.dev_attr.attr,
509	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
510
511	&sensor_dev_attr_in5_input.dev_attr.attr,
512	&sensor_dev_attr_in5_min.dev_attr.attr,
513	&sensor_dev_attr_in5_max.dev_attr.attr,
514	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
515	&sensor_dev_attr_in5_crit.dev_attr.attr,
516	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
517
518	&sensor_dev_attr_in6_input.dev_attr.attr,
519	&sensor_dev_attr_in6_min.dev_attr.attr,
520	&sensor_dev_attr_in6_max.dev_attr.attr,
521	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
522	&sensor_dev_attr_in6_crit.dev_attr.attr,
523	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
524
525	&sensor_dev_attr_in7_input.dev_attr.attr,
526	&sensor_dev_attr_in7_min.dev_attr.attr,
527	&sensor_dev_attr_in7_max.dev_attr.attr,
528	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
529	&sensor_dev_attr_in7_crit.dev_attr.attr,
530	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
531
532	&sensor_dev_attr_in8_input.dev_attr.attr,
533	&sensor_dev_attr_in8_min.dev_attr.attr,
534	&sensor_dev_attr_in8_max.dev_attr.attr,
535	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
536	&sensor_dev_attr_in8_crit.dev_attr.attr,
537	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
538
539	&sensor_dev_attr_in9_input.dev_attr.attr,
540	&sensor_dev_attr_in9_min.dev_attr.attr,
541	&sensor_dev_attr_in9_max.dev_attr.attr,
542	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
543	&sensor_dev_attr_in9_crit.dev_attr.attr,
544	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
545
546	&sensor_dev_attr_in10_input.dev_attr.attr,
547	&sensor_dev_attr_in10_min.dev_attr.attr,
548	&sensor_dev_attr_in10_max.dev_attr.attr,
549	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
550	&sensor_dev_attr_in10_crit.dev_attr.attr,
551	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
552
553	&sensor_dev_attr_temp1_input.dev_attr.attr,
554	&sensor_dev_attr_temp1_min.dev_attr.attr,
555	&sensor_dev_attr_temp1_max.dev_attr.attr,
556	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
557	&sensor_dev_attr_temp1_crit.dev_attr.attr,
558	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
559
560	NULL,
561};
562
563ATTRIBUTE_GROUPS(smm665);
 
 
564
565static const struct i2c_device_id smm665_id[];
566
567static int smm665_probe(struct i2c_client *client)
568{
569	struct i2c_adapter *adapter = client->adapter;
570	struct smm665_data *data;
571	struct device *hwmon_dev;
572	int i, ret;
573
574	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
575				     | I2C_FUNC_SMBUS_WORD_DATA))
576		return -ENODEV;
577
578	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
579		return -ENODEV;
580
581	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
 
582	if (!data)
583		return -ENOMEM;
584
585	i2c_set_clientdata(client, data);
586	mutex_init(&data->update_lock);
587
588	data->client = client;
589	data->type = i2c_match_id(smm665_id, client)->driver_data;
590	data->cmdreg = i2c_new_dummy_device(adapter, (client->addr & ~SMM665_REGMASK)
591				     | SMM665_CMDREG_BASE);
592	if (IS_ERR(data->cmdreg))
593		return PTR_ERR(data->cmdreg);
594
595	switch (data->type) {
596	case smm465:
597	case smm665:
598		data->conversion_time = SMM665_ADC_WAIT_SMM665;
599		break;
600	case smm665c:
601	case smm764:
602	case smm766:
603		data->conversion_time = SMM665_ADC_WAIT_SMM766;
604		break;
605	}
606
607	ret = -ENODEV;
608	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
609		goto out_unregister;
610
611	/*
612	 * Read limits.
613	 *
614	 * Limit registers start with register SMM665_LIMIT_BASE.
615	 * Each channel uses 8 registers, providing four limit values
616	 * per channel. Each limit value requires two registers, with the
617	 * high byte in the first register and the low byte in the second
618	 * register. The first two limits are under limit values, followed
619	 * by two over limit values.
620	 *
621	 * Limit register order matches the ADC register order, so we use
622	 * ADC register defines throughout the code to index limit registers.
623	 *
624	 * We save the first retrieved value both as "critical" and "alarm"
625	 * value. The second value overwrites either the critical or the
626	 * alarm value, depending on its configuration. This ensures that both
627	 * critical and alarm values are initialized, even if both registers are
628	 * configured as critical or non-critical.
629	 */
630	for (i = 0; i < SMM665_NUM_ADC; i++) {
631		int val;
632
633		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
634		if (unlikely(val < 0))
635			goto out_unregister;
636		data->critical_min_limit[i] = data->alarm_min_limit[i]
637		  = smm665_convert(val, i);
638		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
639		if (unlikely(val < 0))
640			goto out_unregister;
641		if (smm665_is_critical(val))
642			data->critical_min_limit[i] = smm665_convert(val, i);
643		else
644			data->alarm_min_limit[i] = smm665_convert(val, i);
645		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
646		if (unlikely(val < 0))
647			goto out_unregister;
648		data->critical_max_limit[i] = data->alarm_max_limit[i]
649		  = smm665_convert(val, i);
650		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
651		if (unlikely(val < 0))
652			goto out_unregister;
653		if (smm665_is_critical(val))
654			data->critical_max_limit[i] = smm665_convert(val, i);
655		else
656			data->alarm_max_limit[i] = smm665_convert(val, i);
657	}
658
659	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
660							   client->name, data,
661							   smm665_groups);
662	if (IS_ERR(hwmon_dev)) {
663		ret = PTR_ERR(hwmon_dev);
664		goto out_unregister;
 
 
 
 
 
665	}
666
667	return 0;
668
 
 
669out_unregister:
670	i2c_unregister_device(data->cmdreg);
 
 
 
671	return ret;
672}
673
674static void smm665_remove(struct i2c_client *client)
675{
676	struct smm665_data *data = i2c_get_clientdata(client);
677
678	i2c_unregister_device(data->cmdreg);
 
 
 
 
 
 
679}
680
681static const struct i2c_device_id smm665_id[] = {
682	{"smm465", smm465},
683	{"smm665", smm665},
684	{"smm665c", smm665c},
685	{"smm764", smm764},
686	{"smm766", smm766},
687	{}
688};
689
690MODULE_DEVICE_TABLE(i2c, smm665_id);
691
692/* This is the driver that will be inserted */
693static struct i2c_driver smm665_driver = {
694	.driver = {
695		   .name = "smm665",
696		   },
697	.probe_new = smm665_probe,
698	.remove = smm665_remove,
699	.id_table = smm665_id,
700};
701
702module_i2c_driver(smm665_driver);
 
 
 
 
 
 
 
 
703
704MODULE_AUTHOR("Guenter Roeck");
705MODULE_DESCRIPTION("SMM665 driver");
706MODULE_LICENSE("GPL");