Loading...
1/*
2 * ads7871 - driver for TI ADS7871 A/D converter
3 *
4 * Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 or
13 * later as publishhed by the Free Software Foundation.
14 *
15 * You need to have something like this in struct spi_board_info
16 * {
17 * .modalias = "ads7871",
18 * .max_speed_hz = 2*1000*1000,
19 * .chip_select = 0,
20 * .bus_num = 1,
21 * },
22 */
23
24/*From figure 18 in the datasheet*/
25/*Register addresses*/
26#define REG_LS_BYTE 0 /*A/D Output Data, LS Byte*/
27#define REG_MS_BYTE 1 /*A/D Output Data, MS Byte*/
28#define REG_PGA_VALID 2 /*PGA Valid Register*/
29#define REG_AD_CONTROL 3 /*A/D Control Register*/
30#define REG_GAIN_MUX 4 /*Gain/Mux Register*/
31#define REG_IO_STATE 5 /*Digital I/O State Register*/
32#define REG_IO_CONTROL 6 /*Digital I/O Control Register*/
33#define REG_OSC_CONTROL 7 /*Rev/Oscillator Control Register*/
34#define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
35#define REG_ID 31 /*ID Register*/
36
37/*From figure 17 in the datasheet
38* These bits get ORed with the address to form
39* the instruction byte */
40/*Instruction Bit masks*/
41#define INST_MODE_bm (1<<7)
42#define INST_READ_bm (1<<6)
43#define INST_16BIT_bm (1<<5)
44
45/*From figure 18 in the datasheet*/
46/*bit masks for Rev/Oscillator Control Register*/
47#define MUX_CNV_bv 7
48#define MUX_CNV_bm (1<<MUX_CNV_bv)
49#define MUX_M3_bm (1<<3) /*M3 selects single ended*/
50#define MUX_G_bv 4 /*allows for reg = (gain << MUX_G_bv) | ...*/
51
52/*From figure 18 in the datasheet*/
53/*bit masks for Rev/Oscillator Control Register*/
54#define OSC_OSCR_bm (1<<5)
55#define OSC_OSCE_bm (1<<4)
56#define OSC_REFE_bm (1<<3)
57#define OSC_BUFE_bm (1<<2)
58#define OSC_R2V_bm (1<<1)
59#define OSC_RBG_bm (1<<0)
60
61#include <linux/module.h>
62#include <linux/init.h>
63#include <linux/spi/spi.h>
64#include <linux/hwmon.h>
65#include <linux/hwmon-sysfs.h>
66#include <linux/err.h>
67#include <linux/mutex.h>
68#include <linux/delay.h>
69
70#define DEVICE_NAME "ads7871"
71
72struct ads7871_data {
73 struct device *hwmon_dev;
74 struct mutex update_lock;
75};
76
77static int ads7871_read_reg8(struct spi_device *spi, int reg)
78{
79 int ret;
80 reg = reg | INST_READ_bm;
81 ret = spi_w8r8(spi, reg);
82 return ret;
83}
84
85static int ads7871_read_reg16(struct spi_device *spi, int reg)
86{
87 int ret;
88 reg = reg | INST_READ_bm | INST_16BIT_bm;
89 ret = spi_w8r16(spi, reg);
90 return ret;
91}
92
93static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
94{
95 u8 tmp[2] = {reg, val};
96 return spi_write(spi, tmp, sizeof(tmp));
97}
98
99static ssize_t show_voltage(struct device *dev,
100 struct device_attribute *da, char *buf)
101{
102 struct spi_device *spi = to_spi_device(dev);
103 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
104 int ret, val, i = 0;
105 uint8_t channel, mux_cnv;
106
107 channel = attr->index;
108 /*TODO: add support for conversions
109 *other than single ended with a gain of 1*/
110 /*MUX_M3_bm forces single ended*/
111 /*This is also where the gain of the PGA would be set*/
112 ads7871_write_reg8(spi, REG_GAIN_MUX,
113 (MUX_CNV_bm | MUX_M3_bm | channel));
114
115 ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
116 mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
117 /*on 400MHz arm9 platform the conversion
118 *is already done when we do this test*/
119 while ((i < 2) && mux_cnv) {
120 i++;
121 ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
122 mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
123 msleep_interruptible(1);
124 }
125
126 if (mux_cnv == 0) {
127 val = ads7871_read_reg16(spi, REG_LS_BYTE);
128 /*result in volts*10000 = (val/8192)*2.5*10000*/
129 val = ((val>>2) * 25000) / 8192;
130 return sprintf(buf, "%d\n", val);
131 } else {
132 return -1;
133 }
134}
135
136static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_voltage, NULL, 0);
137static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 1);
138static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 2);
139static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 3);
140static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 4);
141static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 5);
142static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 6);
143static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 7);
144
145static struct attribute *ads7871_attributes[] = {
146 &sensor_dev_attr_in0_input.dev_attr.attr,
147 &sensor_dev_attr_in1_input.dev_attr.attr,
148 &sensor_dev_attr_in2_input.dev_attr.attr,
149 &sensor_dev_attr_in3_input.dev_attr.attr,
150 &sensor_dev_attr_in4_input.dev_attr.attr,
151 &sensor_dev_attr_in5_input.dev_attr.attr,
152 &sensor_dev_attr_in6_input.dev_attr.attr,
153 &sensor_dev_attr_in7_input.dev_attr.attr,
154 NULL
155};
156
157static const struct attribute_group ads7871_group = {
158 .attrs = ads7871_attributes,
159};
160
161static int __devinit ads7871_probe(struct spi_device *spi)
162{
163 int ret, err;
164 uint8_t val;
165 struct ads7871_data *pdata;
166
167 dev_dbg(&spi->dev, "probe\n");
168
169 /* Configure the SPI bus */
170 spi->mode = (SPI_MODE_0);
171 spi->bits_per_word = 8;
172 spi_setup(spi);
173
174 ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
175 ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
176
177 val = (OSC_OSCR_bm | OSC_OSCE_bm | OSC_REFE_bm | OSC_BUFE_bm);
178 ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
179 ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
180
181 dev_dbg(&spi->dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
182 /*because there is no other error checking on an SPI bus
183 we need to make sure we really have a chip*/
184 if (val != ret) {
185 err = -ENODEV;
186 goto exit;
187 }
188
189 pdata = kzalloc(sizeof(struct ads7871_data), GFP_KERNEL);
190 if (!pdata) {
191 err = -ENOMEM;
192 goto exit;
193 }
194
195 err = sysfs_create_group(&spi->dev.kobj, &ads7871_group);
196 if (err < 0)
197 goto error_free;
198
199 spi_set_drvdata(spi, pdata);
200
201 pdata->hwmon_dev = hwmon_device_register(&spi->dev);
202 if (IS_ERR(pdata->hwmon_dev)) {
203 err = PTR_ERR(pdata->hwmon_dev);
204 goto error_remove;
205 }
206
207 return 0;
208
209error_remove:
210 sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
211error_free:
212 kfree(pdata);
213exit:
214 return err;
215}
216
217static int __devexit ads7871_remove(struct spi_device *spi)
218{
219 struct ads7871_data *pdata = spi_get_drvdata(spi);
220
221 hwmon_device_unregister(pdata->hwmon_dev);
222 sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
223 kfree(pdata);
224 return 0;
225}
226
227static struct spi_driver ads7871_driver = {
228 .driver = {
229 .name = DEVICE_NAME,
230 .bus = &spi_bus_type,
231 .owner = THIS_MODULE,
232 },
233
234 .probe = ads7871_probe,
235 .remove = __devexit_p(ads7871_remove),
236};
237
238static int __init ads7871_init(void)
239{
240 return spi_register_driver(&ads7871_driver);
241}
242
243static void __exit ads7871_exit(void)
244{
245 spi_unregister_driver(&ads7871_driver);
246}
247
248module_init(ads7871_init);
249module_exit(ads7871_exit);
250
251MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
252MODULE_DESCRIPTION("TI ADS7871 A/D driver");
253MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * ads7871 - driver for TI ADS7871 A/D converter
4 *
5 * Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
6 *
7 * You need to have something like this in struct spi_board_info
8 * {
9 * .modalias = "ads7871",
10 * .max_speed_hz = 2*1000*1000,
11 * .chip_select = 0,
12 * .bus_num = 1,
13 * },
14 */
15
16/*From figure 18 in the datasheet*/
17/*Register addresses*/
18#define REG_LS_BYTE 0 /*A/D Output Data, LS Byte*/
19#define REG_MS_BYTE 1 /*A/D Output Data, MS Byte*/
20#define REG_PGA_VALID 2 /*PGA Valid Register*/
21#define REG_AD_CONTROL 3 /*A/D Control Register*/
22#define REG_GAIN_MUX 4 /*Gain/Mux Register*/
23#define REG_IO_STATE 5 /*Digital I/O State Register*/
24#define REG_IO_CONTROL 6 /*Digital I/O Control Register*/
25#define REG_OSC_CONTROL 7 /*Rev/Oscillator Control Register*/
26#define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
27#define REG_ID 31 /*ID Register*/
28
29/*
30 * From figure 17 in the datasheet
31 * These bits get ORed with the address to form
32 * the instruction byte
33 */
34/*Instruction Bit masks*/
35#define INST_MODE_BM (1 << 7)
36#define INST_READ_BM (1 << 6)
37#define INST_16BIT_BM (1 << 5)
38
39/*From figure 18 in the datasheet*/
40/*bit masks for Rev/Oscillator Control Register*/
41#define MUX_CNV_BV 7
42#define MUX_CNV_BM (1 << MUX_CNV_BV)
43#define MUX_M3_BM (1 << 3) /*M3 selects single ended*/
44#define MUX_G_BV 4 /*allows for reg = (gain << MUX_G_BV) | ...*/
45
46/*From figure 18 in the datasheet*/
47/*bit masks for Rev/Oscillator Control Register*/
48#define OSC_OSCR_BM (1 << 5)
49#define OSC_OSCE_BM (1 << 4)
50#define OSC_REFE_BM (1 << 3)
51#define OSC_BUFE_BM (1 << 2)
52#define OSC_R2V_BM (1 << 1)
53#define OSC_RBG_BM (1 << 0)
54
55#include <linux/module.h>
56#include <linux/init.h>
57#include <linux/spi/spi.h>
58#include <linux/hwmon.h>
59#include <linux/hwmon-sysfs.h>
60#include <linux/err.h>
61#include <linux/delay.h>
62
63#define DEVICE_NAME "ads7871"
64
65struct ads7871_data {
66 struct spi_device *spi;
67};
68
69static int ads7871_read_reg8(struct spi_device *spi, int reg)
70{
71 int ret;
72 reg = reg | INST_READ_BM;
73 ret = spi_w8r8(spi, reg);
74 return ret;
75}
76
77static int ads7871_read_reg16(struct spi_device *spi, int reg)
78{
79 int ret;
80 reg = reg | INST_READ_BM | INST_16BIT_BM;
81 ret = spi_w8r16(spi, reg);
82 return ret;
83}
84
85static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
86{
87 u8 tmp[2] = {reg, val};
88 return spi_write(spi, tmp, sizeof(tmp));
89}
90
91static ssize_t voltage_show(struct device *dev, struct device_attribute *da,
92 char *buf)
93{
94 struct ads7871_data *pdata = dev_get_drvdata(dev);
95 struct spi_device *spi = pdata->spi;
96 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
97 int ret, val, i = 0;
98 uint8_t channel, mux_cnv;
99
100 channel = attr->index;
101 /*
102 * TODO: add support for conversions
103 * other than single ended with a gain of 1
104 */
105 /*MUX_M3_BM forces single ended*/
106 /*This is also where the gain of the PGA would be set*/
107 ads7871_write_reg8(spi, REG_GAIN_MUX,
108 (MUX_CNV_BM | MUX_M3_BM | channel));
109
110 ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
111 mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
112 /*
113 * on 400MHz arm9 platform the conversion
114 * is already done when we do this test
115 */
116 while ((i < 2) && mux_cnv) {
117 i++;
118 ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
119 mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
120 msleep_interruptible(1);
121 }
122
123 if (mux_cnv == 0) {
124 val = ads7871_read_reg16(spi, REG_LS_BYTE);
125 /*result in volts*10000 = (val/8192)*2.5*10000*/
126 val = ((val >> 2) * 25000) / 8192;
127 return sprintf(buf, "%d\n", val);
128 } else {
129 return -1;
130 }
131}
132
133static SENSOR_DEVICE_ATTR_RO(in0_input, voltage, 0);
134static SENSOR_DEVICE_ATTR_RO(in1_input, voltage, 1);
135static SENSOR_DEVICE_ATTR_RO(in2_input, voltage, 2);
136static SENSOR_DEVICE_ATTR_RO(in3_input, voltage, 3);
137static SENSOR_DEVICE_ATTR_RO(in4_input, voltage, 4);
138static SENSOR_DEVICE_ATTR_RO(in5_input, voltage, 5);
139static SENSOR_DEVICE_ATTR_RO(in6_input, voltage, 6);
140static SENSOR_DEVICE_ATTR_RO(in7_input, voltage, 7);
141
142static struct attribute *ads7871_attrs[] = {
143 &sensor_dev_attr_in0_input.dev_attr.attr,
144 &sensor_dev_attr_in1_input.dev_attr.attr,
145 &sensor_dev_attr_in2_input.dev_attr.attr,
146 &sensor_dev_attr_in3_input.dev_attr.attr,
147 &sensor_dev_attr_in4_input.dev_attr.attr,
148 &sensor_dev_attr_in5_input.dev_attr.attr,
149 &sensor_dev_attr_in6_input.dev_attr.attr,
150 &sensor_dev_attr_in7_input.dev_attr.attr,
151 NULL
152};
153
154ATTRIBUTE_GROUPS(ads7871);
155
156static int ads7871_probe(struct spi_device *spi)
157{
158 struct device *dev = &spi->dev;
159 int ret;
160 uint8_t val;
161 struct ads7871_data *pdata;
162 struct device *hwmon_dev;
163
164 /* Configure the SPI bus */
165 spi->mode = (SPI_MODE_0);
166 spi->bits_per_word = 8;
167 spi_setup(spi);
168
169 ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
170 ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
171
172 val = (OSC_OSCR_BM | OSC_OSCE_BM | OSC_REFE_BM | OSC_BUFE_BM);
173 ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
174 ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
175
176 dev_dbg(dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
177 /*
178 * because there is no other error checking on an SPI bus
179 * we need to make sure we really have a chip
180 */
181 if (val != ret)
182 return -ENODEV;
183
184 pdata = devm_kzalloc(dev, sizeof(struct ads7871_data), GFP_KERNEL);
185 if (!pdata)
186 return -ENOMEM;
187
188 pdata->spi = spi;
189
190 hwmon_dev = devm_hwmon_device_register_with_groups(dev, spi->modalias,
191 pdata,
192 ads7871_groups);
193 return PTR_ERR_OR_ZERO(hwmon_dev);
194}
195
196static struct spi_driver ads7871_driver = {
197 .driver = {
198 .name = DEVICE_NAME,
199 },
200 .probe = ads7871_probe,
201};
202
203module_spi_driver(ads7871_driver);
204
205MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
206MODULE_DESCRIPTION("TI ADS7871 A/D driver");
207MODULE_LICENSE("GPL");