Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  ads7871 - driver for TI ADS7871 A/D converter
  3 *
  4 *  Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
  5 *
  6 *  This program is distributed in the hope that it will be useful,
  7 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  8 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9 *  GNU General Public License for more details.
 10 *
 11 *  This program is free software; you can redistribute it and/or modify
 12 *  it under the terms of the GNU General Public License version 2 or
 13 *  later as publishhed by the Free Software Foundation.
 14 *
 15 *	You need to have something like this in struct spi_board_info
 16 *	{
 17 *		.modalias	= "ads7871",
 18 *		.max_speed_hz	= 2*1000*1000,
 19 *		.chip_select	= 0,
 20 *		.bus_num	= 1,
 21 *	},
 22 */
 23
 24/*From figure 18 in the datasheet*/
 25/*Register addresses*/
 26#define REG_LS_BYTE	0 /*A/D Output Data, LS Byte*/
 27#define REG_MS_BYTE	1 /*A/D Output Data, MS Byte*/
 28#define REG_PGA_VALID	2 /*PGA Valid Register*/
 29#define REG_AD_CONTROL	3 /*A/D Control Register*/
 30#define REG_GAIN_MUX	4 /*Gain/Mux Register*/
 31#define REG_IO_STATE	5 /*Digital I/O State Register*/
 32#define REG_IO_CONTROL	6 /*Digital I/O Control Register*/
 33#define REG_OSC_CONTROL	7 /*Rev/Oscillator Control Register*/
 34#define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
 35#define REG_ID		31 /*ID Register*/
 36
 37/*From figure 17 in the datasheet
 38* These bits get ORed with the address to form
 39* the instruction byte */
 
 
 40/*Instruction Bit masks*/
 41#define INST_MODE_bm	(1<<7)
 42#define INST_READ_bm	(1<<6)
 43#define INST_16BIT_bm	(1<<5)
 44
 45/*From figure 18 in the datasheet*/
 46/*bit masks for Rev/Oscillator Control Register*/
 47#define MUX_CNV_bv	7
 48#define MUX_CNV_bm	(1<<MUX_CNV_bv)
 49#define MUX_M3_bm	(1<<3) /*M3 selects single ended*/
 50#define MUX_G_bv	4 /*allows for reg = (gain << MUX_G_bv) | ...*/
 51
 52/*From figure 18 in the datasheet*/
 53/*bit masks for Rev/Oscillator Control Register*/
 54#define OSC_OSCR_bm	(1<<5)
 55#define OSC_OSCE_bm	(1<<4)
 56#define OSC_REFE_bm	(1<<3)
 57#define OSC_BUFE_bm	(1<<2)
 58#define OSC_R2V_bm	(1<<1)
 59#define OSC_RBG_bm	(1<<0)
 60
 61#include <linux/module.h>
 62#include <linux/init.h>
 63#include <linux/spi/spi.h>
 64#include <linux/hwmon.h>
 65#include <linux/hwmon-sysfs.h>
 66#include <linux/err.h>
 67#include <linux/mutex.h>
 68#include <linux/delay.h>
 69
 70#define DEVICE_NAME	"ads7871"
 71
 72struct ads7871_data {
 73	struct device	*hwmon_dev;
 74	struct mutex	update_lock;
 75};
 76
 77static int ads7871_read_reg8(struct spi_device *spi, int reg)
 78{
 79	int ret;
 80	reg = reg | INST_READ_bm;
 81	ret = spi_w8r8(spi, reg);
 82	return ret;
 83}
 84
 85static int ads7871_read_reg16(struct spi_device *spi, int reg)
 86{
 87	int ret;
 88	reg = reg | INST_READ_bm | INST_16BIT_bm;
 89	ret = spi_w8r16(spi, reg);
 90	return ret;
 91}
 92
 93static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
 94{
 95	u8 tmp[2] = {reg, val};
 96	return spi_write(spi, tmp, sizeof(tmp));
 97}
 98
 99static ssize_t show_voltage(struct device *dev,
100		struct device_attribute *da, char *buf)
101{
102	struct spi_device *spi = to_spi_device(dev);
 
103	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
104	int ret, val, i = 0;
105	uint8_t channel, mux_cnv;
106
107	channel = attr->index;
108	/*TODO: add support for conversions
109	 *other than single ended with a gain of 1*/
110	/*MUX_M3_bm forces single ended*/
 
 
111	/*This is also where the gain of the PGA would be set*/
112	ads7871_write_reg8(spi, REG_GAIN_MUX,
113		(MUX_CNV_bm | MUX_M3_bm | channel));
114
115	ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
116	mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
117	/*on 400MHz arm9 platform the conversion
118	 *is already done when we do this test*/
 
 
119	while ((i < 2) && mux_cnv) {
120		i++;
121		ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
122		mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
123		msleep_interruptible(1);
124	}
125
126	if (mux_cnv == 0) {
127		val = ads7871_read_reg16(spi, REG_LS_BYTE);
128		/*result in volts*10000 = (val/8192)*2.5*10000*/
129		val = ((val>>2) * 25000) / 8192;
130		return sprintf(buf, "%d\n", val);
131	} else {
132		return -1;
133	}
134}
135
136static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_voltage, NULL, 0);
137static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 1);
138static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 2);
139static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 3);
140static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 4);
141static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 5);
142static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 6);
143static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 7);
144
145static struct attribute *ads7871_attributes[] = {
146	&sensor_dev_attr_in0_input.dev_attr.attr,
147	&sensor_dev_attr_in1_input.dev_attr.attr,
148	&sensor_dev_attr_in2_input.dev_attr.attr,
149	&sensor_dev_attr_in3_input.dev_attr.attr,
150	&sensor_dev_attr_in4_input.dev_attr.attr,
151	&sensor_dev_attr_in5_input.dev_attr.attr,
152	&sensor_dev_attr_in6_input.dev_attr.attr,
153	&sensor_dev_attr_in7_input.dev_attr.attr,
154	NULL
155};
156
157static const struct attribute_group ads7871_group = {
158	.attrs = ads7871_attributes,
159};
160
161static int __devinit ads7871_probe(struct spi_device *spi)
162{
163	int ret, err;
 
164	uint8_t val;
165	struct ads7871_data *pdata;
166
167	dev_dbg(&spi->dev, "probe\n");
168
169	/* Configure the SPI bus */
170	spi->mode = (SPI_MODE_0);
171	spi->bits_per_word = 8;
172	spi_setup(spi);
173
174	ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
175	ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
176
177	val = (OSC_OSCR_bm | OSC_OSCE_bm | OSC_REFE_bm | OSC_BUFE_bm);
178	ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
179	ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
180
181	dev_dbg(&spi->dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
182	/*because there is no other error checking on an SPI bus
183	we need to make sure we really have a chip*/
184	if (val != ret) {
185		err = -ENODEV;
186		goto exit;
187	}
188
189	pdata = kzalloc(sizeof(struct ads7871_data), GFP_KERNEL);
190	if (!pdata) {
191		err = -ENOMEM;
192		goto exit;
193	}
194
195	err = sysfs_create_group(&spi->dev.kobj, &ads7871_group);
196	if (err < 0)
197		goto error_free;
198
199	spi_set_drvdata(spi, pdata);
200
201	pdata->hwmon_dev = hwmon_device_register(&spi->dev);
202	if (IS_ERR(pdata->hwmon_dev)) {
203		err = PTR_ERR(pdata->hwmon_dev);
204		goto error_remove;
205	}
206
207	return 0;
208
209error_remove:
210	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
211error_free:
212	kfree(pdata);
213exit:
214	return err;
215}
216
217static int __devexit ads7871_remove(struct spi_device *spi)
218{
219	struct ads7871_data *pdata = spi_get_drvdata(spi);
220
221	hwmon_device_unregister(pdata->hwmon_dev);
222	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
223	kfree(pdata);
224	return 0;
225}
226
227static struct spi_driver ads7871_driver = {
228	.driver = {
229		.name = DEVICE_NAME,
230		.bus = &spi_bus_type,
231		.owner = THIS_MODULE,
232	},
233
234	.probe = ads7871_probe,
235	.remove = __devexit_p(ads7871_remove),
236};
237
238static int __init ads7871_init(void)
239{
240	return spi_register_driver(&ads7871_driver);
241}
242
243static void __exit ads7871_exit(void)
244{
245	spi_unregister_driver(&ads7871_driver);
246}
247
248module_init(ads7871_init);
249module_exit(ads7871_exit);
250
251MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
252MODULE_DESCRIPTION("TI ADS7871 A/D driver");
253MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  ads7871 - driver for TI ADS7871 A/D converter
  4 *
  5 *  Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
  6 *
 
 
 
 
 
 
 
 
 
  7 *	You need to have something like this in struct spi_board_info
  8 *	{
  9 *		.modalias	= "ads7871",
 10 *		.max_speed_hz	= 2*1000*1000,
 11 *		.chip_select	= 0,
 12 *		.bus_num	= 1,
 13 *	},
 14 */
 15
 16/*From figure 18 in the datasheet*/
 17/*Register addresses*/
 18#define REG_LS_BYTE	0 /*A/D Output Data, LS Byte*/
 19#define REG_MS_BYTE	1 /*A/D Output Data, MS Byte*/
 20#define REG_PGA_VALID	2 /*PGA Valid Register*/
 21#define REG_AD_CONTROL	3 /*A/D Control Register*/
 22#define REG_GAIN_MUX	4 /*Gain/Mux Register*/
 23#define REG_IO_STATE	5 /*Digital I/O State Register*/
 24#define REG_IO_CONTROL	6 /*Digital I/O Control Register*/
 25#define REG_OSC_CONTROL	7 /*Rev/Oscillator Control Register*/
 26#define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
 27#define REG_ID		31 /*ID Register*/
 28
 29/*
 30 * From figure 17 in the datasheet
 31 * These bits get ORed with the address to form
 32 * the instruction byte
 33 */
 34/*Instruction Bit masks*/
 35#define INST_MODE_BM	(1 << 7)
 36#define INST_READ_BM	(1 << 6)
 37#define INST_16BIT_BM	(1 << 5)
 38
 39/*From figure 18 in the datasheet*/
 40/*bit masks for Rev/Oscillator Control Register*/
 41#define MUX_CNV_BV	7
 42#define MUX_CNV_BM	(1 << MUX_CNV_BV)
 43#define MUX_M3_BM	(1 << 3) /*M3 selects single ended*/
 44#define MUX_G_BV	4 /*allows for reg = (gain << MUX_G_BV) | ...*/
 45
 46/*From figure 18 in the datasheet*/
 47/*bit masks for Rev/Oscillator Control Register*/
 48#define OSC_OSCR_BM	(1 << 5)
 49#define OSC_OSCE_BM	(1 << 4)
 50#define OSC_REFE_BM	(1 << 3)
 51#define OSC_BUFE_BM	(1 << 2)
 52#define OSC_R2V_BM	(1 << 1)
 53#define OSC_RBG_BM	(1 << 0)
 54
 55#include <linux/module.h>
 56#include <linux/init.h>
 57#include <linux/spi/spi.h>
 58#include <linux/hwmon.h>
 59#include <linux/hwmon-sysfs.h>
 60#include <linux/err.h>
 
 61#include <linux/delay.h>
 62
 63#define DEVICE_NAME	"ads7871"
 64
 65struct ads7871_data {
 66	struct spi_device *spi;
 
 67};
 68
 69static int ads7871_read_reg8(struct spi_device *spi, int reg)
 70{
 71	int ret;
 72	reg = reg | INST_READ_BM;
 73	ret = spi_w8r8(spi, reg);
 74	return ret;
 75}
 76
 77static int ads7871_read_reg16(struct spi_device *spi, int reg)
 78{
 79	int ret;
 80	reg = reg | INST_READ_BM | INST_16BIT_BM;
 81	ret = spi_w8r16(spi, reg);
 82	return ret;
 83}
 84
 85static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
 86{
 87	u8 tmp[2] = {reg, val};
 88	return spi_write(spi, tmp, sizeof(tmp));
 89}
 90
 91static ssize_t voltage_show(struct device *dev, struct device_attribute *da,
 92			    char *buf)
 93{
 94	struct ads7871_data *pdata = dev_get_drvdata(dev);
 95	struct spi_device *spi = pdata->spi;
 96	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 97	int ret, val, i = 0;
 98	uint8_t channel, mux_cnv;
 99
100	channel = attr->index;
101	/*
102	 * TODO: add support for conversions
103	 * other than single ended with a gain of 1
104	 */
105	/*MUX_M3_BM forces single ended*/
106	/*This is also where the gain of the PGA would be set*/
107	ads7871_write_reg8(spi, REG_GAIN_MUX,
108		(MUX_CNV_BM | MUX_M3_BM | channel));
109
110	ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
111	mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
112	/*
113	 * on 400MHz arm9 platform the conversion
114	 * is already done when we do this test
115	 */
116	while ((i < 2) && mux_cnv) {
117		i++;
118		ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
119		mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
120		msleep_interruptible(1);
121	}
122
123	if (mux_cnv == 0) {
124		val = ads7871_read_reg16(spi, REG_LS_BYTE);
125		/*result in volts*10000 = (val/8192)*2.5*10000*/
126		val = ((val >> 2) * 25000) / 8192;
127		return sprintf(buf, "%d\n", val);
128	} else {
129		return -1;
130	}
131}
132
133static SENSOR_DEVICE_ATTR_RO(in0_input, voltage, 0);
134static SENSOR_DEVICE_ATTR_RO(in1_input, voltage, 1);
135static SENSOR_DEVICE_ATTR_RO(in2_input, voltage, 2);
136static SENSOR_DEVICE_ATTR_RO(in3_input, voltage, 3);
137static SENSOR_DEVICE_ATTR_RO(in4_input, voltage, 4);
138static SENSOR_DEVICE_ATTR_RO(in5_input, voltage, 5);
139static SENSOR_DEVICE_ATTR_RO(in6_input, voltage, 6);
140static SENSOR_DEVICE_ATTR_RO(in7_input, voltage, 7);
141
142static struct attribute *ads7871_attrs[] = {
143	&sensor_dev_attr_in0_input.dev_attr.attr,
144	&sensor_dev_attr_in1_input.dev_attr.attr,
145	&sensor_dev_attr_in2_input.dev_attr.attr,
146	&sensor_dev_attr_in3_input.dev_attr.attr,
147	&sensor_dev_attr_in4_input.dev_attr.attr,
148	&sensor_dev_attr_in5_input.dev_attr.attr,
149	&sensor_dev_attr_in6_input.dev_attr.attr,
150	&sensor_dev_attr_in7_input.dev_attr.attr,
151	NULL
152};
153
154ATTRIBUTE_GROUPS(ads7871);
 
 
155
156static int ads7871_probe(struct spi_device *spi)
157{
158	struct device *dev = &spi->dev;
159	int ret;
160	uint8_t val;
161	struct ads7871_data *pdata;
162	struct device *hwmon_dev;
 
163
164	/* Configure the SPI bus */
165	spi->mode = (SPI_MODE_0);
166	spi->bits_per_word = 8;
167	spi_setup(spi);
168
169	ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
170	ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
171
172	val = (OSC_OSCR_BM | OSC_OSCE_BM | OSC_REFE_BM | OSC_BUFE_BM);
173	ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
174	ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
175
176	dev_dbg(dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
177	/*
178	 * because there is no other error checking on an SPI bus
179	 * we need to make sure we really have a chip
180	 */
181	if (val != ret)
182		return -ENODEV;
183
184	pdata = devm_kzalloc(dev, sizeof(struct ads7871_data), GFP_KERNEL);
185	if (!pdata)
186		return -ENOMEM;
187
188	pdata->spi = spi;
189
190	hwmon_dev = devm_hwmon_device_register_with_groups(dev, spi->modalias,
191							   pdata,
192							   ads7871_groups);
193	return PTR_ERR_OR_ZERO(hwmon_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194}
195
196static struct spi_driver ads7871_driver = {
197	.driver = {
198		.name = DEVICE_NAME,
 
 
199	},
 
200	.probe = ads7871_probe,
 
201};
202
203module_spi_driver(ads7871_driver);
 
 
 
 
 
 
 
 
 
 
 
204
205MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
206MODULE_DESCRIPTION("TI ADS7871 A/D driver");
207MODULE_LICENSE("GPL");